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Abstract

We present a case study in formally verified security for realistic systems: the informa-

tion flow security verification of the functional kernel of a web application, the CoCon

conference management system. We use the Isabelle theorem prover to specify and ver-

ify fine-grained confidentiality properties, as well as complementary safety and “traceback”

properties. The challenges posed by this development in terms of expressiveness have led

to bounded-deducibility security, a novel security model and verification method generally

applicable to systems describable as input/output automata.

Keywords Information-Flow Security · Confidentiality · Unwinding Proof Method ·
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1 Introduction

Information flow security is concerned with preventing or facilitating (un)desired flow of

information in computer systems, covering aspects such as confidentiality, integrity and

availability of information. Dieter Gollmann wrote in 2005 [27]: “Currently, information

flow and noninterference models are areas of research rather than the bases of a practical

methodology for the design of secure systems.” The situation has undergone steady improve-

ments in the past fourteen years. A number of practical systems, some of which are surveyed

by Murray et al. [58], have been formally certified for information flow security—covering

hardware, operating systems, programming languages, web browsers and web applications.

This paper gives a detailed presentation of the verification work that went into one such

system. CoCon is a full-fledged conference management system, handling multiple users

and multiple conferences and offering a similar functionality (though fewer features and less

customization) to that of popular systems such as EasyChair [76] and HotCRP [77].

CoCon’s high-level architecture (depicted in Fig. 1) follows the paradigm of security by

design. It consists of a verified kernel and some trusted components. Namely:

– We formalize and verify the kernel of the system in the Isabelle proof assistant [60,61].

– The formalization is automatically translated into a functional programming language.

– The translated program is wrapped in a web application.

Conference management systems are widely used in the scientific community. EasyChair

alone claims more than two million users. Moreover, the information flow in these systems

possesses enough complexity so that errors can sneak into their specifications or implemen-

tations. For example, Fig. 2 shows a confidentiality violation in a past version of HotCRP

[77], probably stemming from the logic of the system: It gives the authors capabilities to read

confidential comments by the program committee (PC).

The main focus of the verification work presented in this paper is guarding against confi-

dentiality violations (although our methods would equally apply to integrity violations). We

verify that CoCon’s kernel satisfies properties such as the following, where Dis addresses

the problem in Fig. 2:

Pap1: A group of users learns nothing about a paper (i.e., about its title, author name list,

abstract and content) unless one of them becomes an author of that paper or becomes a PC

member at the paper’s conference and the conference has reached the bidding phase.

Pap2: A group of users learns nothing about a paper beyond the last submitted version unless

one of them becomes an author of that paper.
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Fig. 1 CoCon’s high-level architecture

Fig. 2 Confidentiality bug in HotCRP

Rev: A group of users learns nothing about the content of a paper’s review beyond the last

submitted version before the discussion phase and the later versions unless one of them is

that review’s author.

Dis: The authors learn nothing about the discussion of their paper.

In general, we will be concerned with properties restricting the information flow from the

various sensitive documents maintained by the system (papers, reviews, comments, decisions)

towards the users of the system. The restrictions refer to certain conditions (e.g., authorship,

PC membership) as well as to upper bounds (e.g., at most the last submitted version) for

information release. We consider groups of users rather than single users in order to ensure

stronger properties, guaranteeing that information does not leak even if unauthorized users

cooperate with each other, combining their partial knowledge.

Here is the structure of this paper. We start with a description of CoCon’s kernel, formalized

in Isabelle as an executable input/output (I/O) automaton (Sect. 2).

Then we move on to describing the first main contribution of this paper: a general secu-

rity model called bounded-deducibility (BD) security (Sect. 3). It is applicable to any I/O

automaton and allows the precise formulation of triggers and (upper) bounds for the con-

trolled release of information, also known as declassification. The framework is instantiated

to provide a comprehensive coverage of CoCon’s confidentiality properties of interest, includ-

ing the ones discussed in this introduction. To address information flow security concerns

more thoroughly, we discover the additional need for a form of traceback properties (Sect.

3.6), which naturally complement BD Security by showing that the declassification triggers

cannot be forged.

Our second main contribution is a verification infrastructure for BD Security, centered

around an unwinding proof technique (Sect. 4), which we have applied to CoCon’s con-

fidentiality properties. In the process of verifying confidentiality, we also needed to prove

several safety properties (system invariants). The Isabelle scripts, covering both the abstract

framework and the CoCon instances, are available from this paper’s website [36].

We used CoCon to manage the submission and reviewing process of two interna-

tional conferences: TABLEAUX 2015 [19] and ITP 2016 [11]. In Sect. 5, we discuss

CoCon’s implementation and holistic security concerns, and describe our experience with its

deployment—including facing a critical bug in the (unverified) web application wrapper.
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The current paper is an extended version of a conference paper presented at CAV 2014

[39]. In addition to the material in the conference paper, it includes:

– the detailed description of some of the verified confidentiality properties (in Sect. 3.4)

and of the unwinding relations used in their verification (in Sect. 4.3)

– a presentation of CoCon’s traceback properties (in Sect. 3.6)

– the full definition of the abstract unwinding conditions (in Sect. 4.1) and their composi-

tionality oriented theorems (in Sect. 4.2)

– a discussion of CoCon’s deployment to conferences (in Sect. 5)

Notation We write function application by juxtaposition, without placing the argument in

parentheses, as in f a, unless required for disambiguation, e.g., f (g a). Multiple-argument

functions will be considered in curried form—e.g., we think of f : A → B → C as a two-

argument function, and f a b denotes its application to a and b. We write “◦” for function

composition.

For the purpose of this paper, “set” and “type” will be synonymous. Particular types are

the inductive datatypes (which are heavily used in proof assistants such as Isabelle/HOL):

They consist of expressions freely generated by applying the indicated constructors.

Also, “list” and “sequence” will be synonymous. We write [a1, . . . , an] for the list con-

sisting of the indicated elements; in particular, [] is the empty list and [a] is a singleton

list. We write “·” for list concatenation. Applied to a non-empty list [a1, . . . , an], the func-

tions head, tail and last return a1, [a2, . . . , an] and an respectively. Given the function

f , map f [a1, . . . , an] returns [ f a1, . . . , f an]. Given a predicate P , filter P [a1, . . . , an]

returns the sublist of all elements ai satisfying P . If A is a set, List (A) denotes the set of

lists with elements in A. As a general convention, if a, b denote elements in A, automatically

al, bl will denote elements of List (A). An exception will be the system traces—even though

they are lists of transitions t , for them we will use the customized notation tr.

2 System Specification

CoCon is inspired by EasyChair, which was created by Andrei Voronkov. It hosts multiple

users and conferences, allowing the creation of new users and conferences at any time. It has

a superuser, which we call voronkov as a tribute to EasyChair. The voronkov is the first user

of the system, and his role is to approve new-conference requests.

2.1 CoCon’sWorkflow

A conference goes through several phases.

No-Phase Any user can apply for a new conference, with the effect of registering it in the

system as initially having “no phase.” After approval from the voronkov, the conference

moves to the setup phase, with the applicant becoming a conference chair.

Setup A conference chair can add new chairs and new regular PC members. From here on,

moving the conference to successor phases can be done by the chairs.

Submission Any user can list the conferences awaiting submissions (i.e., being in the sub-

mission phase). A user can submit a paper, upload new versions, or indicate other users as

coauthors thereby granting them reading and editing rights.

Bidding Authors are no longer allowed to upload or register new papers, and PC members

are allowed to view the submitted papers. PC members can place bids, indicating for each

paper one of the following preferences: “want to review”, “would review”, “no preference”,
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“would not review”, and “conflict”. If the preference is “conflict”, the PC member cannot be

assigned that paper, and will not see its discussion. “Conflict” is assigned automatically to

papers authored by a PC member.

Reviewing Chairs can assign papers to PC members for reviewing either manually or by

invoking an external program to establish fair assignment based on some parameters: prefer-

ences, number of papers per PC member, and number of reviewers per paper. The assigned

reviewers can edit their reviews.

Discussion All PC members having no conflict with a paper can see its reviews and can add

comments. The reviewers can still edit their reviews, but in a transparent manner—so that

the overwritten versions are still visible to the non-conflict PC members. Also, chairs can

edit the decision.

Notification The authors can read the reviews and the accept/reject decision, which no one

can edit any longer.

Closing The conference becomes inactive. All users can still read the documents previously

readable, but nothing is editable any longer.

2.2 CoCon’s I/O Automaton

The state stores the lists of registered conference IDs, user IDs and paper IDs; and, for each

ID, the state stores actual conference, user or paper information. For user IDs, the state also

stores (hashed) passwords. In the context of a conference, each user is assigned one or more

of the roles described by the following Isabelle datatype:

datatype Role = Chair | PC | Aut PaperID | Rev PaperIDNat

with the following meanings, assuming pid is a paper ID and n is a number:

Chair: The user is a chair of the conference

PC: The user is a member of the program committee

Aut pid: The user is an author of the paper with ID pid

Rev pid n: The user is the n’th reviewer of the paper with ID pid

In a state, each paper ID is assigned a paper having title, abstract, content, and, in due time, a

list of reviews, a discussion text, and a decision. We keep different versions of the decision and

of each review, as they may transparently change during the discussion phase. This means

that a decision is a list of strings representing its different versions, Dec = List (String).

Similarly, a review is a list of review contents representing its different versions, Review =

List (Review_Content), where Review_Content consists of triples (expertise, text, score).

In addition, the state stores: for each conference, the list of (IDs of) papers submitted to

that conference, the list of news updated by the chairs, and the current phase; for each user

and paper, the preferences resulted from biddings; for each user and conference, a list of

roles. We will mainly access the roles through discriminators. For example, isPC σ cid uid

returns True just in case in state σ the user uid is a PC member for conference cid. Here is

the formal structure of the state:

record State =

confIDs : List (ConfID) conf : ConfID → Conf

userIDs : List (UserID) pass : UserID → Pass

user : UserID → User roles : ConfID → UserID → List (Role)

paperIDs : ConfID → List (PaperID) paper : PaperID → Paper

pref : UserID → PaperID → Pref voronkov : UserID

news : ConfID → List (String) phase : ConfID → Phase
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The initial state of the system, istate ∈ State, is the one with a single user, the voronkov,

and no conferences.

istate =

confIDs = [] conf = (λ cid. emptyConf)

userIDs = [“voronkov”] pass = (λ uid. emptyPass)

user = (λ uid. emptyUser) roles = (λ cid uid. [])

paperIDs = (λ cid. []) paper = (λ pid. emptyPaper)

pref = (λ uid pid.NoPref) voronkov = “voronkov”

news = (λ cid. []) phase = (λ cid.noPh)

Actions are parameterized by user IDs and passwords. There are 45 actions forming five

categories: creation, update, nondestructive update, reading and listing.

The creation actions register new objects (users, conferences, chairs, PC members, papers,

authors), assign reviewers (by registering new review objects), and declare conflicts. For

example, cPaper cid uid pw pid title abs is an action by user uid with password pw attempting

to register to conference cid a new paper pid with indicated title and abstract. Moreover,

cAuthor cid uid pw pid uid′ expresses an attempt of user uid with password pw to create a

new (co)author for the paper pid in the context of the conference cid—namely, to set the user

uid′ as this new author.

The update actions modify the various documents of the system: user information

and password, paper content, reviewing preference, review content, etc. For example,

uPaperC cid uid pw pid pct is an attempt by user uid with password pw to upload a new

version of paper pid by modifying its content to pct.

The nondestructive update actions are similar, but also record the history of a document’s

versions. For example, if a reviewer decides to change their review during the discussion

phase, then the previous version is still stored in the system and visible to the other PC

members (although never to the authors). Other documents subject to nondestructive updates

are the news, the discussion, and the accept–reject decision.

The reading actions access the content of the system’s documents: papers, reviews,

comments, decisions, news. The listing actions produce lists of IDs satisfying various

filters—e.g., all conferences awaiting paper submissions, all PC members of a conference,

all the papers submitted by a given user, etc.

The different categories of actions are wrapped in a single datatype through specific

constructors:

datatype Act = Cact cAct | Uact uAct | UUact uuAct | Ract rAct | Lact lAct

Note that the first three categories of actions are aimed at modifying the state, and the last

two are aimed at observing the state through outputs. However, the modification actions also

produce a simple output, since they may succeed or fail. Moreover, the observation actions

can also be seen as changing the state to itself. Therefore we can assume that both types

produce a pair consisting of a new state and an output.

Outputs include some generic output types, like outOK for a successful update action

and outErr for a failed action. Moreover, outputs for various datatypes are defined, e.g., for

Booleans, lists of strings, lists of pairs of strings, etc. Similarly to the case of actions, all

these types of outputs are wrapped together in a single type Out.

Finally, we define the step function step : State → Act → Out× State that operates by

determining the type of the action and dispatching specialized handler functions. We illustrate

the definition of step by zooming into one of its subcases:
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step σ a ≡

case a of Cact ca ⇒ case ca of

cAuthor cid uid pw pid uid′ ⇒

if e_createAuthor σ cid uid pw pid uid′

then (outOK, createAuthor σ cid uid pw pid uid′)

else (outErr, s)

| cConf cid uid pw name abs ⇒ . . .

. . .

| Uact ua ⇒ . . .

| UUact uua ⇒ . . .

| Ract ra ⇒ . . .

| Lact la ⇒ . . .

Above, we only showed one subcase of the creation-action case in full. The semantics of each

type of action (e.g., cAuthor, which is itself a subtype of creation actions) has an associated

test for enabledness (here, e_createAuthor) and an effect function (here, createAuthor).

The enabledness test checks if it is allowed to perform the requested action: if the IDs

of the involved users and conferences exist (expressed by a generic predicate IDsOK), if the

password matches the acting user’s ID, if the conference phase is appropriate, if the acting

user holds the appropriate role, etc.

e_createAuthor σ cid uid pw pid uid′ ≡

IDsOK σ [cid] [uid, uid′][pid] ∧ pass σ uid = pw ∧

phase σ cid = Submission ∧ isAut σ uid pid ∧ uid 	= uid′

The effect is only applied if the action is enabled; otherwise an error output is issued. In

this example, the effect is to add an author uid′ to the existing paper pid, as well as a conflict

in the system database between the author and the paper:

createAuthor σ cid uid pw pid uid′ ≡

let rls = roles σ cid uid′ in

σ (roles := fun_upd2 (roles σ) cid uid′ (insert (Aut pid) rls),

pref := fun_upd2(pref σ) uid′ pid Conflict)

To the outside world, i.e., to the web application wrapper, our specification only exports the

initial state istate : State → bool and the step function step : State → Act → Out×State,

i.e., it exports an I/O automaton.

3 Security Model

As a starting point towards a framework where we can express CoCon’s desired security prop-

erties, we recall the classic notion of nondeducibility. Then we proceed with a generalization

that replaces non with bounded deducibility.

3.1 Sutherland’s Nondeducibility Recalled

In its most abstract form, Sutherland’s early notion of nondeducibility [74] is parameterized

by a set of worlds World and two functions F : World → J and H : World → K . For

example, the worlds could be the valid traces of the system, F could select the actions of

certain users (potential attackers), and H could select the actions of other users (intended as
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being secret). Nondeducibility of H from F says that the following holds for all w1 ∈ World:

For all k2 in the image of H , there exists w2 ∈ World such that F w2 = F w1 and H w2 = k2.

Intuitively, from what the attacker (modeled as F) knows about the actual world w1, the secret

actions (the value of H ) could be anything (in the image of H )—hence cannot be “deduced.”

The generality of this framework allows one to fine-tune both the location of the relevant

events in the trace and their secrets.

But generality is no free lunch: Unlike in other less expressive settings (some of them

recalled in Sect. 6), it is not clear how to provide an incremental proof method in the style

of unwinding—a (bi)simulation-like [54,72] method pioneered by Goguen and Meseguer in

the context of proving noninterference [26], which has been applied widely and successfully

in the world of information flow security [48].

3.2 Bounded-Deducibility Security

We introduce a notion of information flow security that:

– retains the precision and versatility of nondeducibility;

– factors in declassification as required by our motivating examples;

– is amenable to a general unwinding technique.

We will formulate security in general, not only for CoCon’s I/O automaton described in

Sect. 2.2, but for any I/O automaton indicated by the following data, which will be considered

fixed throughout this subsection: sets of states, State, actions,Act, and outputs,Out, an initial

state istate ∈ State, and a step function step : State → Act → Out × State.

We let Trans, the set of transitions, be State × Act × Out × State. Thus, a transition is

a tuple t = (σ, a, o, σ ′), where σ indicates the source, a the action, o the output, and σ ′ the

target of t. The transition t is called valid if it has been induced by the step function, namely

step σ a = (o, σ ′).

A trace tr ∈ Trace is any list of transitions: Trace = List (Trans). For any σ ∈ State, the

set of valid traces starting in σ , Validσ ⊆ Trace, consists of the traces of the form [t1, . . . , tn]

for some n, where each ti is a valid transition, the source of t1 is σ and, for all i ∈ {2, . . . , n},

the source of ti is the target of ti−1. We will be mostly interested in the valid traces starting

in the initial state istate—we simply call these valid traces and write Valid for Validistate.

For a system specified as an I/O automaton, we want to verify that there are no unintended

flows of information to attackers who can observe and influence certain aspects of the system

execution. To this end, we specify:

1. what the capabilities of the attacker are;

2. which information is (potentially) confidential;

3. which flows are allowed.

The first point is captured by a function O : Trace → List (Obs) taking a trace and returning

the observable part of that trace—where Obs is a chosen domain of observations. Similarly,

the second point is captured by a function S : Trace → List (Sec) taking a trace and returning

the sequence of secrets occurring in that trace—where Sec is a chosen domain of secrets.

We think of the above as an instantiation of the abstract framework for nondeducibility

recalled in Sect. 3.1, where World = Valid, F = O, and H = S. Thus, nondeducibility states

that the observer O may learn nothing about S.

However, here we are concerned with a more fine-grained analysis, in terms of which

flows are allowed (our third point). To this end, we ask what may the observer O learn about

S. Using the idea underlying nondeducibility (and, more broadly, the concept of knowledge),
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we can answer this question precisely: Given a trace tr1 ∈ Valid, the observer sees O tr1

and therefore can infer that S tr1 belongs to the set of all sequences of secrets of the form

S tr2 for some tr2 ∈ Valid such that O tr2 = O tr1. In other words, the observer can infer

that the sequence of secrets is in the set S (O−1(O tr1) ∩ Valid), and nothing beyond this

(where O−1 : Obs → Set (Trace) is the usual nondeterministic inverse of O, defined by

O−1 tr = {ol | O ol = tr}). We call this set the declassification associated to tr1, written

Dectr1 .

We want to establish, under certain conditions, upper bounds for declassification, or, in

terms of set-theoretic inclusion, lower bounds for Dectr1 . For this, we further consider two

parameters:

– a relation B : List (Sec) → List (Sec) → Bool, which we call declassification bound;

– a predicate T : Trans → Bool, which we call declassification trigger.

Given some list of secrets sl1, B will delimit a set {sl2 | B sl1 sl2} that represents a lower

bound on the intended attacker uncertainty about sl1, i.e., an upper bound on the information

about sl1 that the attacker should be allowed to learn, in the absence of the trigger Tfiring. This

leads to the following definition: The system is said to be bounded-deducibility secure (BD

Secure) if for all tr1 ∈ Valid such that never T tr1, it holds that {sl2 | B (S tr1) sl2} ⊆ Dectr1 ,

where “never T tr1” means “T holds for no transition in tr1.”

Informally, BD Security can be summarized as follows:

If trigger T never holds,1 then attacker O can learn nothing about secrets S beyond B.

We can think of B positively, as an upper bound for declassification, or negatively, as a

lower bound for uncertainty. On the other hand, T is a trigger removing the bound B: As soon

as T becomes true, the containment of declassification is no longer guaranteed. In the extreme

case of B being everywhere true and T everywhere false, we have no declassification, i.e.,

total uncertainty—in other words, standard nondeducibility.

Expanding some of the above definitions, we can alternatively express BD Security as the

following implication holding for all tr1 ∈ Valid and sl1, sl2 ∈ List (Sec):

never T tr1 ∧ S tr1 = sl1 ∧ B sl1 sl2 → (∃tr2 ∈ Valid.O tr2 = O tr1 ∧ S tr2 = sl2) (∗)

In the rest of the paper we will refer to this last formulation of the definition. In this context,

we will call tr1 “the original trace” (since, in our scenario, tr1 actually occurred when running

the system) and tr2 “the alternative trace” (since, for what the observer knows, tr2 could have

alternatively occurred). We will also apply the qualifiers “original” and “alternative” to tr1’s

and tr2’s produced sequences of observations and secrets. Note that BD Security is a ∀∃-

property—quantified universally over the original trace tr1 and the alternative secrets sl2,

and then existentially over the alternative trace tr2. (The additional universal quantification

over the original secrets sl1 is done only for clarity; it could have been avoided, since sl1 is

determined by tr1.) This ∀∃ structure will be essential for the (game-like) unwinding proof

method we devise in Sect. 4.1.

Regarding the parameters O and S, we assume that they are defined componentwise, in

terms of functions on individual transitions:

– isObs : Trans → Bool, filtering the transitions that produce observations;

– getObs : Trans → Obs, producing an observation out of a transition;

– isSec : Trans → Bool, filtering the transitions that produce secrets;

1 Alternative formulations of “if the trigger T never holds” are “unless the trigger (ever) holds” (preferred in

our informal examples), and “until the trigger T holds”—keeping in mind the weak interpretation of “until.”
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Trace

List (Obs)

List (Sec)

O

S

t1 t2
¬T t′1 t′2

t′′1 t′′2
t′′2

o1 = o2 o′′

1 = o′

2

s1 s2

s′

1 B s′′

2

s′′

1

Fig. 3 BD Security illustrated. (The figure uses colors.) Here the red trace [t1, t ′1, t ′′1 ] has been formed,

with each of t1, t ′1, t ′′1 satisfying ¬T, producing secrets [s1, s′
1, s′′

1 ] and observations [o1, o′′
1 ]. Say the secrets

[s1, s′
1, s′′

1 ] are related under B to other secrets [s2, s′′
2 ], shown in green. BD Security requires the existence of

a second trace that produces these alternative secrets [s2, s′′
2 ] and the same observations, namely [o1, o′′

1 ]. In

the figure this alternative trace is [t2, t ′2, t ′′2 ], shown in green

– getSec : Trans → Sec, producing a secret out of a transition.

We define O = mapgetObs ◦ filter isObs and S = mapgetSec ◦ filter isSec. Thus, O uses

filter to select the transitions in a trace that are (partially) observable according to isObs, and

then applies getObs to each selected transition. Similarly, S produces sequences of secrets

by filtering with isSec and applying getSec.

Figure 3 contains a visual illustration of BD Security’s two-dimensional nature: The

system traces (displayed on the top left corner) produce observations (on the bottom left), as

well as secrets (on the top right). The figure also includes an abstract example of traces and

their observation and secret projections. The original trace tr1 consists of three transitions,

tr1 = [t1, t ′1, t ′′1 ], of which all produce secrets, [s1, s′
1, s′′

1], and only the first and the third

produce observations, [o1, o′′
1]—all these are depicted in red. The alternative trace tr2 also

consists of three transitions, tr2 = [t2, t ′2, t ′′2 ], of which the first and the third produce secrets,

[s2, s′′
2], and the first two produce observations, [o2, o′

2]—all these are depicted in green.2

Thus, the figure’s functions O and S are given by filters and producers behaving as follows:

isObs getObs isSec getSec

t1 True o1 True s1

t ′1 False True s′
1

t ′′1 True o′′
1 True s′′

1

t2 True o2 True s2

t ′2 True o′
2 False

t ′′2 False True s′′
2

The empty slots in the table correspond to values of getObs and getSec that are irrelevant,

since the corresponding values of isObs and isSec are False. Here is how to read BD Security’s

∀∃ structure on the figure: Given the original trace, here [t1, t ′1, t ′′1 ] (which produces the shown

observations and secrets and has all its transitions satisfying ¬ T) and given some alternative

secrets, here [s2, s′′
2 ], located within the bound B of the original secrets, BD Security requires

the existence of the alternative trace, here [t2, t ′2, t ′′2 ], producing the same observations and

producing the alternative secrets.

In summary, BD Security is parameterized by the following data:

2 Note that BD Security does not require tr2 to have the same length of tr1—this just happens to be the case

in our example.
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– an I/O automaton (State,Act,Out, istate, step)

– a security model, consisting of:

– an observation infrastructure (Obs, isObs,getObs)

– a secrecy infrastructure (Sec, isSec,getSec)

– a declassification bound B

– a declassification trigger T

3.3 Discussion

BD Security is a natural extension of nondeducibility. If one considers the latter as reasonably

expressing the absence of information leak, then one is likely to accept the former as a

reasonable means to indicate bounds on the leak. Unlike most notions in the literature, BD

Security allows to express the bounds as precisely as desired.

As an extension of nondeducibility, BD Security is subject to the same criticism. The

problem with nondeducibility [50,52,68] is that in some cases it is too weak, since it takes as

plausible each possible explanation for an observation: If the observation sequence is, say,

ol, then any trace tr1 such that O tr1 = ol is plausible. But what if the low-level observers

can synchronize their actions and observations with the actions of other entities, such as a

high-level user or a Trojan horse acting on the user’s behalf, or even a third-party entity that

is neither high nor low? Even without synchronization, the low-level observers may learn,

from outside the system, of certain behavior patterns of the high-level users. Then the set of

plausible explanations can be reduced, leading to information leaks.

In our case, the low-level observers are a group of users assumed to never acquire a

certain status (e.g., authorship of a paper). The other users of the system are either “high-

level” (e.g., the authors of the paper) or “third-party” (e.g., the non-author users not in the

group of observers). Concerning the high-level users, it does not make sense to assume that

they would cooperate to leak information through the system, since they certainly have better

means to do that outside the system, e.g., via email. As for the possible third-party cooperation

towards leaks of information, this is bypassed by our consideration of arbitrary groups of

observers: In the worst case, all the unauthorized users can be placed in this group. However,

the possibility to learn and exploit behavior patterns from outside the system is not explicitly

addressed by BD Security—it would be best handled by a probabilistic analysis.

3.4 Instantiation to Our Running Examples

Recall that BD Security applies to I/O automata—in particular, to CoCon’s I/O automaton

described in Sect. 2.2. As we are about to show, BD Security captures our running exam-

ples, as well as other information flow properties for CoCon, by suitably instantiating the

parameters comprising the security model: secrecy infrastructure, observation infrastructure,

declassification bound, and declassification trigger.

Common Observation Infrastructure For all our instance properties, we will consider the

same observation infrastructure. We fix UIDs, the set of IDs of the observing users. We let

Obs = Act × Out. We take isObs to hold for a transition iff its acting user is in UIDs, and

getObs to return its action and output:

isObs (σ, a, o, σ ′) ≡ userOf a ∈ UIDs

getObs (σ, a, o, σ ′) ≡ (a, o)
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O tr1 thus purges tr1 keeping only actions performed (or merely attempted) by users in UIDs.

The secrecy infrastructure depends on the considered type of document.

Secrecy Infrastructure for PAP1 and PAP2 We fix PID, the ID of the paper of interest. We let

Sec = List (Paper_Content). We take isSec to hold iff the transition is a successful upload

of paper PID’s content (denoted below by pct), and getSec to return the uploaded content.

S tr1 thus returns the list of all uploaded paper contents for PID:

isSec (σ, a, o, σ ′) ≡ o = outOK∧

(∃ cid uid pw pct. a = Uact (uPaperC cid uid pw PID pct))

getSec (σ, a, o, σ ′) ≡ pct

Above, the value pct from the righthand side of the definition of getSec (σ, a, o, σ ′) is the one

uniquely determined by the condition defining isSec (σ, a, o, σ ′). (When isSec (σ, a, o, σ ′)

does not hold, the result returned by getSec (σ, a, o, σ ′) is irrelevant.)

The declassification triggers and bounds are specific to each example.

Declassification Trigger and Bound for PAP1 We define T(σ, a, o, σ ′) as “in state σ ′, the

paper PID is registered at some conference cid and some user in UIDs is an author of PID or

a PC member of cid and the conference has reached the bidding phase,” formally:

∃uid ∈ UIDs. ∃ cid. PID ∈ paperIDs σ ′ cid ∧

(isAut σ ′ uid PID ∨ (isPC σ ′ uid cid ∧ phase σ ′ cid ≥ Bidding))

Intuitively, the intent with Pap1 is that, provided T never holds, users in UIDs learn nothing

about the various consecutive versions of PID. But is it true that they can learn absolutely

nothing? There is the possibility that a user could infer that no version was submitted: Say

the paper’s conference has not yet reached the submission phase; then the trace of paper

uploads must be empty. But indeed, nothing beyond this quite harmless information should

leak: Any nonempty sequence of secrets sl1 might as well have been any other (possibly

empty) sequence sl2. Hence we define B sl1 sl2 as sl1 	= []. It is interesting to notice here

that, while a user could infer emptiness, this is not true for nonemptiness: If the trigger is not

fired, there is no way for a user to say that there has been at least one upload of a given paper.

In particular, the aforementioned mechanism that could allow a user to infer the absence of

any uploads (namely probing the conference phase) is not useful for inferring the presence

of any uploads. This shows that declassification bounds can be naturally asymmetric.

Declassification Trigger and Bound for PAP2 The trigger only involves authorship, ignoring

PC membership at the paper’s conference—we take T(σ, a, o, σ ′) to be

∃uid ∈ UIDs. ∃ cid. PID ∈ paperIDs σ ′ cid ∧ isAut σ ′ uid PID

In the case of Pap2, we have a nontrivial declassification bound: Since a PC member

should only be able to learn the last submitted version of the considered paper’s content, we

take B sl1 sl2 to be

sl1 	= [] ∧ sl2 	= [] ∧ last sl1 = last sl2

where the function last returns the last element of a list.

Instantiation for REV To uniquely identify a review, we fix not only a paper ID PID, but

also a number N—with the understanding that the pair (PID,N) denotes the N’th review of

the paper PID. The secrecy infrastructure refers not only to the review’s content but also

to the conference phase: Sec = List (Phase × Review_Content). The functions isSec and
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getSec are defined similarly to those for Pap1 and Pap2, mutatis mutandis. Thus, isSec checks

whether the transition is a successful update or nondestructive update3 of the given review,

namely (PID,N), and getSec returns a pair consisting of the conference’s current phase and

the updated review’s content; hence S returns a list of such pairs.

isSec (σ, a, o, σ ′) ≡ o = outOK∧

(∃ cid uid pw rct. a = Uact (uReview cid uid pw PIDN rct)∨

a = UUact (uuReview cid uid pw PIDN rct))

getSec (σ, a, o, σ ′) ≡ (phase σ cid, rct)

The trigger T is similar to that of Pap2 but refers to authorship of the paper’s N’th review

rather than paper authorship:

T (σ, a, o, σ ′) ≡ ∃uid ∈ UIDs. ∃ cid. PID ∈ paperIDs σ ′ cid ∧ isRevNth σ ′ uid PIDN

One may wonder why do we keep the conference phase as part of the secrecy infrastructure

for Rev, in other words, why do we have getSec return the conference phase in addition

to the review content. The answer is that we need this information in order to formulate

an appropriate bound B, which is able to distinguish between updates occurring before the

discussion phase and those occurring starting from the discussion phase—because these

updates have different confidentiality statuses. It is a priori knowledge (i.e., knowledge that

can be attained solely by studying the system’s specification) that review updates can only

occur during the review and discussion phases, in this order—i.e., that any produced sequence

of secrets sl1 has the form ul · wl such that the pairs in ul have Reviewing as first component

and the pairs in wl have Discussion as first component. Moreover, any PC member having no

conflict with PID can additionally learn last ul (the last submitted version before discussion),

and wl (the versions updated during discussion); but (unless/until T holds) nothing beyond

these. So we take B sl1 sl2 to state that sl1 decomposes as ul · wl as indicated above, sl2

decomposes similarly as ul2 · wl, and last ul = last ul2.

Instantiation for DIS The property Dis needs rephrasing in order to be captured as BD

Security. It can be decomposed into:

Dis1: An author always has a conflict with their own papers.

Dis2: A group of users learns nothing4 about a paper’s discussion unless one of them becomes

a PC member at the paper’s conference having no conflict with the paper.

Dis1 is a safety property (holding for all reachable states of the system). Dis2 is an instance of

BD Security defined as expected (in light of our previous analysis). In particular, the secrecy

infrastructure focuses on the actions that (nondestructively) update the discussion section

with comments.

isSec (σ, a, o, σ ′) ≡ o = outOK∧

(∃ cid uid pw com. a = UUact (uuDis cid uid pw PID com))

getSec (σ, a, o, σ ′) ≡ com

T (σ, a, o, σ ′) ≡ ∃uid ∈ UIDs. ∃ cid. PID ∈ paperIDs σ ′ cid ∧

isPC σ ′ cid uid ∧ pref σ ′ uid PID 	= Conflict

B sl1 sl2 ≡ sl1 	= []

3 Unlike papers, reviews can also be updated nondestructively, i.e., with the previous version remaining

available—namely, in the discussion phase.

4 More precisely, almost nothing, i.e., nothing beyond the absence of any edit.
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Table 1 CoCon’s confidentiality properties

Source Declassification trigger Declassification bound

1 Paper Paper Authorship Last Uploaded Version

2 Paper Authorship or PC

MembershipB
Absence of Any Upload

3 Review Review Authorship Last Edited Version Before

Discussion and All the Later

Versions

4 Review Authorship or

Non-Conflict PC MembershipD
Last Edited Version Before

Notification

5 Review Authorship or

Non-Conflict PC MembershipD

or Paper AuthorshipN

Absence of Any Edit

6 Discussion Non-Conflict PC Membership Absence of Any Edit

7 Decision Non-Conflict PC Membership Last Edited Version

8 Non-Conflict PC Membership or

PC MembershipN or Paper

AuthorshipN

Absence of Any Edit

9 Reviewer Assignment Non-Conflict PC MembershipR Reviewers Being Non-Conflict

PC Members,and Number of

Reviewers

10 Non-Conflict PC MembershipR

or Paper AuthorshipN
Reviewers Being Non-Conflict

PC Members

Phase Stamps: B = Bidding, D = Discussion, N = Notification, R = Review

3.5 More Instances

Table 1 shows, in informal notation, the entire array of confidentiality properties we have

formulated as BD Security (and have also proved them, as discussed in Sect. 4.3). The

observation infrastructure is always the same, given by the actions and outputs of a fixed

group of observer users, as in Sect. 3.4.

There are several information sources, each yielding a different secrecy infrastructure. In

rows 1–8, the sources are actual documents: paper content, review, discussion, decision. The

properties Pap1, Pap2, Rev and Dis2 form the rows 2, 1, 3, and 6, respectively. In rows 9

and 10, the source is the data about the reviewers assigned to a paper.

The declassification triggers express paper or review authorship (being or becoming an

author of the indicated document) or PC membership at the paper’s conference. Some trig-

gers are also listed with “phase stamps” that strengthen the statements. For example, “PC

membershipB” should be read as “PC membership and paper’s conference phase being at

least bidding.”

Some of the triggers require lack of conflicts with the paper, which is often important for

the security statement to be sufficiently strong. This is the case of Dis2 (row 6), since without

the non-conflict assumption Dis2 and Dis1 would no longer imply the desired property Dis.

By contrast, lack of conflicts cannot be added to PC membership in Pap1 (row 2), since such

a stronger version would not hold: Even if a PC member decides to indicate a conflict with

a paper, this happens after they had the opportunity to see the paper’s content.

Note that the listed properties capture exhaustively the information flow from the indicated

sources, in the sense that they identify all the relevant roles that can influence these flows. This
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can be seen by traversing the rows for each source upwards—in the increasing order of the

bound’s permissiveness, which is also the decreasing order of the trigger’s permissiveness—

and recording the differences with respect to the triggers.

For example, for the review source, we have the following cases:

Row 5: If a user is not the review’s author, not a non-conflict PC member in the discussion

phase, and not the reviewed paper’s author in the notification phase, then they could learn

about the absence of any edit—but nothing more.

Subtracting row 4 from row 5: In addition, the reviewed paper’s authors will learn in the

notification phase of the last edited version of the review before notification—but nothing

more.

Subtracting row 3 from row 4: In addition, non-conflict PC members will learn in the

discussion phase of all the intermediate versions starting from the last one before the

discussion phase and all the later versions (produced during the discussion phase)—but

nothing more.

The role that persists even in the least permissive trigger (in row 3) is that of the review’s

author, which obviously has no restriction.

As another example, consider the reviewer assignment source, where we have the cases:

Row 10: If a user is not a non-conflict PC member in the reviewing phase and not the

paper’s author in the notification phase, then they will have access to the a priori knowl-

edge that reviewers are non-conflict PC members—but nothing more.

Subtracting row 9 from row 10: In addition, the paper’s authors will learn in the notification

phase of the number of reviewers (of course, inferring it from the number of reviews they

receive as authors)—but nothing more.

Here, the role that persists in the least permissive trigger (in row 9) is that of PC member in

the reviewing phase.

3.6 Traceback Properties

Our confidentiality properties show upper bounds on information release that are valid

unless/until some trigger T occurs, e.g., chairness, PC membership, authorship, or the con-

ference reaching a given phase. While T is allowed to depend on all four components of a

transition (σ, o, a, σ ′), our CoCon instances only depend on σ ′, employing predicates such

as isAut σ ′ uid PID and isPC σ ′ uid cid. Two questions arise.

First, why do we consider the target state σ ′ and not the source state σ? This is because

our choice gives the more intuitive result: never T holding for a valid trace [(σ1, a1, o1, σ2),

(σ2, a2, o2, σ3), . . . , (σn−1, an−1, on, σn)] means that the corresponding state condition fails

for σ2, . . . , σn (importantly, also including the last state σn); and all our trigger conditions

fail trivially for the initial state σ1 = istate, therefore not covering this state is not a problem.

Second, why do we formulate T “intensionally” as a state-based condition, and not “exten-

sionally” as an action-based condition? For example, instead of asking that a user uid ∈ UIDs

be an author in the transition’s target state (isAut σ ′ uid PID), why not ask that the action of

such a user becoming an author has occurred in the trace? The answer to this is pragmatic:

The two choices are equivalent, while state-based conditions are easier to formulate since

they don’t need to refer to entire traces.
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However, the state-based versus action-based question leads us to a more fundamental

concern about the security guarantees.5 We have proved that one does not acquire a certain

information unless one acquires a certain role. But how can we know that only “lawfully”

appointed users acquire that role? To fully answer this question, we trace back, within valid

traces, all possible chains of events that could have led to certain roles and other information

flow enabling situations—leading to what we call traceback properties.

For example, we prove that, if a user is currently a chair then they either must have been

the original chair (who registered the conference), or, inductively, must have been appointed

by another chair—and this of course in a well-founded fashion, in that the chain of chair

appointments can always be traced back to the original chair and the registration of the

conference.

Formally, we achieve this by introducing an alternative “is chair” predicate isChair′ :

Trace → ConfID → UserID → Bool, which is defined inductively to account for the lawful

chair-appointment transitions on the trace:

Create Conference:
t = (_,Cact (cConf cid uid _ _ _), outOK, _)

isChair′ (tr · [t]) cid uid

Add Chair:
isChair′ tr cid uid′t = (_, (Cact (cChair cid uid′ _ uid)), outOK, _)

isChair′ (tr · [t]) cid uid

Irrelevant Transition:
isChair′ tr cid uid

isChair′ (tr · [t]) cid uid

The chair-role traceback property rests on the equivalence between the original (state-

based) predicate and this alternative trace-based predicate:

Prop 1 For all valid traces tr1 ending in state σ , we have that

isChair σ cid uid ←→ isChair′ tr1 cid uid

We formulate (and prove) such traceback properties for all the trigger components used

in our security properties:

1. If a user is an author of a paper then either the user has registered the paper in the first

place or, inductively, has been appointed as coauthor by another author

2. If a user is a PC member then the user either must have been the original chair or must

have been appointed by a chair.

3. If a user is a paper’s reviewer, then the user must have been appointed by a chair (from

among the PC members who have not declared a conflict with the paper).

4. If a user has a conflict with a paper, then the user is either an author of the paper or the

conflict has been declared by that user or by a paper’s author, in such a way that between

the moment when the conflict has been last declared and the current moment there is no

transition that successfully removes the conflict.

5. If a conference is in a given phase different from “no phase,” then this has happened as

a consequence of either a conference approval action by the voronkov (if the phase is

Setup) or a phase change action by a chair (otherwise).

As expected, some of the above traceback schemes rely on the others. For example, the

scheme for the PC member role relies on that of the chair role, and that of reviewer relies on

those of chair and PC member.

5 While inspired by the question of choosing between state-based and action-based formulations of the trigger,

the concern we are about to discuss is valid regardless of this choice.
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In conclusion, the BD Security instances for CoCon state that information disclosure

is bounded, provided certain triggers are not fired. To complement these, we formulated

traceback properties, stating that users cannot improperly fire the triggers. There is an analogy

between traceback and accountability properties [80]: Say a certain situation occurs (e.g.,

a role acquisition), which could represent an “abuse”; our traceback property identifies the

actions that have led to that, which also contain information about the “responsible” parties.

4 Verification

To cope with general declassification bounds, BD Security talks about system traces in

conjunction with sequences of secrets that must be produced by these traces. We extend the

unwinding proof technique to cope with this situation and employ the result to the verification

of our confidentiality properties.

4.1 Unwinding Proof Method

Let us recall, looking at Sect. 3.2’s definition (∗), what it takes to prove BD Security: We are

given the original (valid) trace tr1 which produces the sequence of secrets sl1 and for which

never T holds. We are also given an alternative sequence of secrets sl2 such thatB sl1 sl2 holds.

From these, we need to provide an alternative (valid) trace tr2 whose produced sequence of

secrets is exactly sl2 and whose produced sequence of observations is the same as that of tr1.

Following the tradition of unwinding for noninterference [26,48,67], we wish to construct

tr2 from tr1 incrementally: As tr1 grows, tr2 should grow nearly synchronously. If we adopted

the traditional setting, we would take an unwinding to be a relation on states, connecting

the states reached by the under-construction traces tr1 and tr2, assumed to satisfy some

conditions connecting possible ways to extend tr1 by single transitions with ways to extend

tr2 by matching transitions; and also, ideally, allowing for some slack in terms of unmatched

unobservable transitions on each side (in the style of weak bisimulation). Proving a relation

to be an unwinding would essentially be a two player game, where we, the prover, have

control over the tr2 extensions and the opponent has control over the tr1 extensions.

In order for tr2 to have the same observation sequence (produced viaO) as tr1, we naturally

commit to the requirement that the observable transitions of tr2 (i.e., those for which isObs

holds) be perfectly synchronized with those of tr1 and produce the same observations (via

getObs). However, when dealing with sequences of secrets (produced via S), there is a

complication: In contrast to the traditional setting, we must consider an additional parameter,

namely the a priori given B-related sequences of secrets sl1 and sl2, such that (1) we can

count on the fact that tr1 produces sl1 and (2) we must make sure that tr2 also produces sl2.

From the above discussion, we see that, in a presumptive unwinding game for BD Security,

we must record not only pairs (σ1, σ2), but quadruples (σ1, sl1, σ2, sl2), where σ1 and σ2 are,

as before, the states reached by the under-construction traces tr1 and tr2, while sl1 and sl2

are the sequences of secrets that must still be produced by the two traces.

Figure 4 illustrates, on Fig. 3’s abstract example, how such an unwinding game would

work. (The figure uses colors.) We play with Green, having control over the alternative trace,

with moves shown on the right of the figure, against our opponent, who plays Red, having

control over the original trace, with moves shown on the left. The game starts with a pair of

sequences of secrets, related by the bound B: an original one sl1 = [s1, s′
1, s′′

1 ] (to be produced

by the original trace) and an alternative one sl2 = [s2, s′′
2 ] (to be produced by the alternative
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trace). Both the original trace tr1 and the alternative trace tr2 are initially empty—they will

grow as the players make moves. Note that, even if the figure shows the traces tr1 and tr2,

all the information needed in order to extend them are the states that they have reached (i.e.,

the target states of their last transitions), say, σ1 and σ2. In other words, we only need to

store configurations (σ1, sl1, σ2, sl2), as noted before. At the beginning, both σ1 and σ2 are

the initial state istate. The game proceeds as follows: Each time we, the Green, can choose

between two options: (1) asking the opponent to move and then performing a Reaction,

which can be either Ignore or Match, and (2) taking Independent Action.

In case we choose the first option, the opponent must make a move, which consists of

extending the original trace with one transition; if this transition produces a secret, it must be

the first in the remaining original sequence of secrets—and that secret will be crossed out,

i.e., removed from the sequence. (This condition ensures that the under-construction original

trace tr1 stays on track with respect to the to-be-produced secrets sl1).

To this move, we must react by either Ignore, thus changing nothing (an option made

available to us only if the opponent’s last transition was unobservable, in order to keep

our commitment to full synchronization with respect to observations) or Match. If we

choose Match, we must extend the alternative trace with a transition, which must be equally

observable and, if observable, it must produce the same observation as the opponent’s last

transition (again, in line with our observation-synchronization commitment). Concerning the

secrets, we have a restriction similar to the opponent’s: If our transition produces a secret, it

must be the first in the remaining alternative sequence of secrets (and it will be crossed out).

In Fig. 4, we see how the first three pairs of moves are triggered by us repeatedly asking

for a move from the opponent, who does the following:

– adds the transition t1 (crossing out the first original secret s1 and producing an observation

o1); to this, we react by the matching transition t2 (crossing out the first alternative secret

s2 and producing an identical observation o2 = o1);

– adds a further transition t ′1 (crossing out the next original secret s′
1 and producing no

observation); this we ignore (and we are allowed to do that, since t ′1 is unobservable);

– adds a further transition t ′′1 (crossing out the next original secret s′′
1 and producing an

observation o′′
1); to this, we react by the matching transition t ′2 (producing no secret and

producing an identical observation o′
2 = o′′

1).

In case we choose the second option (Independent Action), the opponent waits and it

is us who must make a move: by adding an unobservable transition and again committing to

only producing, if any, the first secret in the remaining list of alternative secrets. In Fig. 4,

the last move is Independent Action, which crosses out the remaining alternative secret.

When should the game be won? Traditionally with unwinding and the other notions in

the (bi)simulation family, we win if we are able to stay in the game indefinitely—which

is essentially a safety-like condition. However, in our case, due to the sequence-of-secrets

components, we need an additional liveness-like twist: Provided the opponent has crossed

out all their secrets (in the original sequence of secrets sl1), we must also eventually cross out

all our secrets (in the alternative sequence of secrets sl2). We achieve this by the following

mechanism: As soon as the opponent has crossed out all their secrets (meaning sl1 = []),

provided we have not yet crossed out all our secrets (meaning sl2 	= []), we are forced to

choose Independent Action; moreover, we ask that Independent Action must always

produce secrets. This last requirement also avoids the possibility of “filibustering” the game

with observationless and secretless Independent Action moves—which would be unsound

with respect to our goal of proving BD security.
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Fig. 4 Illustration of BD security unwinding
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Note that Fig. 4 does not show an entire run of the game, but only a prefix of such a

run—corresponding to Fig. 3’s particular instantiation of BD Security’s ∀- and ∃-quantified

variables. In order to prove BD security by this unwinding scheme, we must of course

(symbolically) produce a strategy for winning the game for each B-related sequences of

secrets and each choice of moves by the opponent. In the configuration shown at the end of

Fig. 4, we, the Green, have achieved an important milestone—by having crossed out all the

secrets of the given instance. However, in order to win we would still need to show how we can

stay in the game indefinitely—by being able to properly react to any of the opponent’s further

moves. For example, a scenario in which we can still lose Fig. 4’s game is if we next choose

Reaction and the opponent comes up with a further transition t ′′′1 that produces no secret

and produces an observation o′′′
1 that we are not able to match with any available transition.

Considering all the above, we define an unwinding relation to be a quaternary relation

∆ : State → List (Sec) → State → List (Sec) → Bool satisfying the condition unwind∆

shown below, where reach : State → Bool is the state reachability predicate and reach¬ T :

State → Bool is its strengthening to reachability by transitions that do not satisfy T:

unwind∆ ≡ ∀σ1 sl1 σ2 sl2. reach¬ T σ1 ∧ reach σ2 ∧ ∆σ1 sl1 σ2 sl2 →

((sl1 	= [] ∨ sl2 = []) ∧ reaction∆σ1 sl1 σ2 sl2)∨

iaction∆σ1 sl1 σ2 sl2 ∨

(sl1 	= [] ∧ exit σ1 (head sl1))

The predicates reaction and iaction formalize Reaction and Independent Action, the

former involving a disjunction of predicates formalizing Ignore and Match. To define all

these, we first introduce the auxiliary predicate consume t sl1 sl′1, stating that the transition

t either produces a secret that is consumed from sl1 yielding sl′1 or produces no secret and

sl1 = sl′1, formally:

if isSec t then (sl1 	= [] ∧ getSec t = head sl1 ∧ sl′1 = tail sl1) else (sl′1 = sl1)

Now the predicates are defined as follows:

reaction∆σ1 sl1 σ2 sl2 ≡ ∀a o σ ′
1. let t = (σ1, a, o, σ ′

1) in

t ∈ Valid ∧ ¬ T t ∧ consume t sl1 sl′1 →

match∆σ1 σ2 sl2 a o σ ′
1 sl′1 ∨ ignore∆σ1 σ2 sl2 a o σ ′

1 sl′1
where:

ignore∆σ1 σ2 sl2 a o σ ′
1 sl′1 ≡ ¬ isObs (σ1, a, o, σ ′

1) ∧ ∆σ ′
1 sl′1 σ2 sl2

match∆σ1 σ2 sl2 a o σ ′
1 sl′1 ≡

∃a2 o2 σ ′
2 sl′2. let t1 = (σ1, a, o, σ ′

1) and t2 = (σ2, a2, o2, σ
′
2) in

t2 ∈ Valid ∧ consume t2 sl2 sl′2 ∧ (isObs t1 ←→ isObs t2)∧

(isObs t1 → getObs t1 = getObs t2) ∧ ∆ σ ′
1 sl′1 σ ′

2 sl′2
iaction∆σ1 sl1 σ2 sl2 ≡

∃a2 o2 σ ′
2 sl′2. let t2 = (σ2, a2, o2, σ

′
2) in

t2 ∈ Valid ∧ consume t2 sl2 sl′2 ∧ isSec t2 ∧ ¬ isObs t2 ∧ ∆σ1 sl1 σ ′
2 sl′2

In the above definition of unwind, there is a predicate exit which has not been defined

or motivated yet. It performs an optimization that allows us to finish a game earlier by

proving that the opponent cannot fulfill their contract. Namely, we note that BD Security

holds trivially if the original trace tr1 cannot produce the sequence of secrets sl1, i.e., if

S tr1 	= sl1—this happens if and only if, at some point, an element s of sl1 can no longer be

produced, i.e., for some decompositions tr1 = tr′
1 · tr′′

1 and sl1 = sl′1 · [s] · sl′′1 of tr1 and

sl1, it holds that S tr′
1 = sl′1 and ∀t ∈ tr′′

1. isSec t → getSec t 	= s. Can we detect such a
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situation from within ∆? The answer is an over-approximated yes, in that we can detect a

sufficient (though not necessary) condition for this situation to occur: After ∆σ1 sl1 σ2 sl2

evolves by Reaction and Independent Action to ∆σ ′
1 ([s] · sl′′1) σ ′

2 sl′2 for some σ ′
1, σ ′

2

and sl′2 (presumably consuming tr′
1 and producing the sl′1 prefix of sl1), then one can safely

exit the game if one proves that no valid trace tr′′
1 starting from σ ′

1 can ever produce s, in that

it satisfies ∀t ∈ tr′′
1 . isSec t → getSec t 	= s. The above justifies the following definition:

exit σ1 s ≡ ∀ tr1 t. tr1 · [t] ∈ Validσ1 ∧ isSec t → getSec t 	= s

This predicate essentially expresses a safety property, and therefore can be verified in a trace-

free manner by exhibiting an invariant K : State → Bool and proving that it holds for σ1.

Intuitively, the potential invariant K ensures that the secret s can never be produced:

Prop 2 Assume that, for all valid transitions t = (σ1, a, o, σ ′
1), K σ1 implies K σ ′

1 ∧

(isSec t → getSec t 	= s). Then ∀σ1. K σ1 → exit σ1 s

We can now formulate our main result about unwinding:

Theorem 3 (Unwinding Theorem) Assume that the following hold:

– ∀sl1 sl2. B sl1 sl2 → ∆ istate sl1 istate sl2

– unwind∆

Then the system is BD secure.

According to the theorem, our notion of unwinding is a sound proof method for BD

Security: To check BD Security it suffices to define a relation ∆ and prove that it coincides

with B on the initial state and that it is an unwinding.

To prove this theorem, we first prove that, given an unwinding relation ∆ and a configu-

ration (σ1, sl1, σ2, sl2) for which the relation holds and the states σ1 and σ2 are reachable via

¬ T transitions and respectively reachable, a generalization of BD Security holds—for traces

starting in σ1 and σ2 instead of istate:

Lemma 4 unwind∆ ∧ ∆σ1 sl1 σ2 sl2 ∧ reach¬ T σ1 ∧ reach σ2 ∧ tr1 ∈ Validσ1 ∧

never T tr1 ∧ S tr1 = sl1 → (∃tr2. tr2 ∈ Validσ2 ∧ O tr2 = O tr1 ∧ S tr2 = sl2)

Proof By induction on length tr1 + length sl2: Our carefully chosen unwinding conditions

ensure that, at each move in the unwinding game, either tr1 decreases or sl2 decreases. ⊓⊔

The theorem follows immediately from the above lemma, taking σ1 = σ2 = istate.

4.2 Compositional Reasoning

To keep each reasoning step manageable, we replace the monolithic unwinding relation ∆

with a network of relations, such that any relation may unwind to any number of relations

in the network. To achieve this, we replace the single requirement unwind∆ with a set of

requirements unwind_to∆∆s with ∆s being a set of relations. The predicate unwind_to

is defined similarly to unwind, but employing disjunctions of the predicates in ∆s, written

disj∆s:

unwind_to∆∆s ≡ ∀σ1 sl1 σ2 sl2. reach¬ T σ1 ∧ reach σ2 ∧ ∆σ1 sl1 σ2 sl2 →

((sl1 	= [] ∨ sl2 = []) ∧ reaction (disj∆s) σ1 sl1 σ2 sl2)∨

iaction (disj∆s) σ1 sl1 σ2 sl2 ∨

(sl1 	= [] ∧ exit σ1 (head sl1))
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Fig. 5 A network of unwinding

components

This enables a form of sound compositional reasoning: If we verify a condition as above for

each component relation, we obtain an overall secure system.

Corollary 5 (Compositional Unwinding Theorem) Let ∆s be a set of relations. For each

∆ ∈ ∆s, let next∆ ⊆ ∆s be a (possibly empty) “continuation” of ∆, and let ∆init ∈ ∆s be a

chosen “initial” relation. Assume the following hold:

– ∀sl1 sl2. B sl1 sl2 → ∆init istate sl1 istate sl2

– ∀∆ ∈ ∆s. unwind_to∆ next∆

Then the system is BD secure.

Proof One can show that unwind (disj∆s) holds and use the original unwinding theorem. ⊓⊔

The network of components can in principle form any directed graph, the only require-

ment being that each node has an outgoing edge—Fig. 5 shows an example. However, the

unwinding proofs for our CoCon instances will follow the temporal evolution of the con-

ference as witnessed by the phase change and other events. Hence the following essentially

linear network will suffice (Fig. 6): Each ∆i unwinds either to itself, or to ∆i+1 (if i 	= n), or

to an exit component ∆e that invariably chooses the “exit” unwinding condition. To capture

this type of situation, we employ the predicate unwind_cont that restricts the unwinding of

∆i to proper continuations (i.e., no exits) and the predicate unwind_exit that restricts the

unwinding of ∆e to exits (as depicted in Fig. 6):

unwind_cont∆∆s ≡ ∀σ1 sl1 σ2 sl2. reach¬ T σ1 ∧ reach σ2 ∧ ∆σ1 sl1 σ2 sl2 →

((sl1 	= [] ∨ sl2 = []) ∧ reaction (disj∆s) σ1 sl1 σ2 sl2)∨

iaction (disj∆s) σ1 sl1 σ2 sl2

unwind_exit∆ ≡ ∀σ1 sl1 σ2 sl2. reach¬ T σ1 ∧ reach σ2 ∧ ∆σ1 sl1 σ2 sl2 →

sl1 	= [] ∧ exit σ1 (head sl1)

Corollary 6 (Sequential Unwinding Theorem) Consider the indexed set of relations

{∆1, . . . , ∆n} such that the following hold:

– ∀sl1 sl2. B sl1 sl2 → ∆1 istate sl1 istate sl2

– ∀i ∈ {1, . . . , n − 1}. unwind_cont∆i {∆i ,∆i+1,∆e}

– unwind_cont∆n {∆n,∆e}

– unwind_exit∆e

Then the system is BD secure.

Proof From the compositional unwinding theorem, given thatunwind_cont andunwind_exit

are both subsumed by unwind_to. ⊓⊔

We found the sequential unwinding theorem to represent a sweet spot between generality

and ease of instantiation for our concrete unwinding proofs, which we discuss next. In fact,

we even went a little further and partially instantiated this theorem with various fixed small

numbers of non-terminal relations, namely 3, 4 and 5.
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Fig. 6 A linear network with exit

4.3 Verification of the Concrete Instances

We have employed the sequential unwinding theorem to verify all the CoCon instances of

BD Security listed in Table 1. We will explain our unwinding proofs quasi-informally, in

terms of the strategy for incrementally building an alternative trace tr1 from an original trace

tr2 (even though, strictly speaking, what the unwinding relation remembers are not the traces

themselves, but only the states they have currently reached).

The choice of the relations ∆i required by the sequential unwinding theorem was guided

by milestones in the journey of tr1 and tr2: changing a conference’s phase, registering a

paper, registering a relevant agent such as a chair, a PC member or a reviewer, declaring or

removing a conflict, etc. For example, here are the unwinding relations we used in the proof

of Pap2:

∆1 σ1 sl1 σ2 sl2 ¬ (∃cid. PID ∈ paperIDs σ1 cid) ∧ σ1 = σ2 ∧ B sl1 sl2

∆2 σ1 sl1 σ2 sl2 (∃cid. PID ∈ paperIDs σ1 cid ∧ phase σ1 cid = Submission )∧ σ1 =PID σ2 ∧ B sl1 sl2

∆3 σ1 sl1 σ2 sl2 (∃cid. PID ∈ paperIDs σ1 cid) ∧ σ1 = σ2 ∧ sl1 = sl2 = []

∆e σ1 sl1 σ2 sl2 (∃cid. PID ∈ paperIDs σ1 cid ∧ phase σ1 cid > Submission) ∧ sl1 	= []

And here are the ones we used in the proof of Rev:

∆1 σ1 sl1 σ2 sl2 (∀cid. PID ∈ paperIDs σ1 cid → phase σ1 cid < Reviewing) ∧ σ1 = σ2 ∧ B sl1 sl2

∆2 σ1 sl1 σ2 sl2

(∃cid. PID ∈ paperIDs σ1 cid ∧ phase σ1 cid = Reviewing ∧

¬ (∃uid. isRevNth σ1 uid PIDN)) ∧

σ1 = σ2 ∧ B sl1 sl2

∆3 σ1 sl1 σ2 sl2

(∃cid uid. PID ∈ paperIDs σ1 cid ∧ phase σ1 cid = Reviewing∧

(∃cid uid. isRevNth σ1 uid PIDN ) ∧

σ1 =PID,N σ2 ∧ B sl1 sl2

∆4 σ1 sl1 σ2 sl2

(∃cid uid. PID ∈ paperIDs σ1 cid ∧ phase σ1 cid ≥ Reviewing ∧

(∃cid uid. isRevNth σ1 uid PIDN) ∧

σ1 = σ2 ∧ ( ∃wl. sl1 = sl2 = map (Pair Discussion) wl )

∆e σ1 sl1 σ2 sl2

sl1 	= [] ∧

((∃cid. PID ∈ paperIDs σ1 cid ∧ phase σ1 cid > Reviewing∧

((∃cid. ¬ (∃uid. isRevNth σ1 uid PIDN))

∨

(∃cid. PID ∈ paperIDs σ1 cid ∧ phase σ1 cid > Reviewing∧

((∃cid. fst (head sl1) = Reviewing))

Above, B sl1 sl2 denotes the respective declassification bounds for these instances, and the

changes from ∆i to ∆i+1 have been emphasized.

Each BD Security instance has one or more critical phases, the only phases when the

sequences of secrets sl1 and sl2 can be produced. For Pap2, secret production means paper

uploading, which is only possible in the submission phase—meaning that submission is the

single critical phase. For Rev, secret production means review update; there is an update

action available in the reviewing phase, and a nondestructive update action available in the

discussion phase—so both these phases are critical. Until the critical phases, (the construction
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of) tr2 proceeds perfectly synchronously to tr1, taking the same actions—consequently, the

states σ1 and σ2 stay equal in ∆1 for Pap2 and in ∆1 and ∆2 for Rev.

In the critical phases, the traces tr1 and tr2 will partly diverge, due to the need of producing

possibly different (butB-related) sequences of secrets. As a result, the equality between σ1 and

σ2 is replaced with the weaker relation of equality everywhere except on certain components

of the state. This is the case with the relation ∆2 for Pap2, where =PID denotes equality

everywhere except on the content of PID. Similarly, in ∆3 for Rev, =PID,N denotes equality

everywhere except on the content of PID’s N’th review.

At the end of the critical phases, tr2 will usually need to resynchronize with tr1 and

hereafter proceed with identical actions. Consequently, σ1 and σ2 will become connected by

a stronger “equality everywhere except” relation or even plain equality again—which is the

case with ∆3 for Pap2 and with ∆4 for Rev.

Besides the phase changes, other relevant events in the unwinding proofs of Pap2 and

Rev are the registration of the considered paper or review. For Pap2, here is the informal

reading of ∆1–∆3 in light of such events:

∆1: The paper PID is not registered yet, so the two states σ1 and σ2 are equal.

∆2: The paper is registered and the phase is Submission; now the two states can diverge

on the content of PID.

∆3: The paper is registered, and both the original trace and the alternative trace have

exhausted their to-be-produced secrets.

And here is the informal reading of the relations in the case of Rev:

∆1: Either the paper PID is not registered yet or the phase is not yet Reviewing, so the

two states are equal.

∆2: The paper is registered and the phase is Reviewing but the paper’s N’th review is not

registered yet, so the two states are still equal.

∆3: Both the paper and its N’th review are registered and the phase is Reviewing; now

the two states can diverge on the content of the review.

∆4: The phase is eitherReviewing or higher (e.g.,Discussion), both traces have exhausted

their Reviewing-tagged secrets, meaning that the remaining to-be-produced secrets must

be Discussion-tagged6 and are required to be equal; now the states must be equal too.

The smooth transition between consecutive components ∆i and ∆i+1 that impose different

state equalities is ensured by a suitable Independent- Action/Reaction strategy—which

does not show up in the relations themselves, but only in our proofs that the relations constitute

a linear network of unwindings. For Pap2, the crucial part in the proof is the strategy for

transitioning from ∆2 to ∆3, with emptying the sequences of secrets sl1 and sl2 at the same

time: By Independent Action, tr2 will produce all secrets in sl2 save for the last one,

which will be produced by Reaction in sync with tr1 when tr1 reaches the last secret in sl1;

this is possible since B guarantees last sl1 = last sl2. And Rev has a similar strategy for the

crucial move from ∆3 to ∆4, this time with emptying not the entire sequences of secrets, but

only their Reviewing-tagged components.

The exit component ∆e collects unsound situations (σ1, sl1) (that cannot be produced

from any system trace tr1), in order to exclude them via Exit. For Pap2, such a situation is

the paper’s conference phase (in state σ1) exceeding Submission while there are still secrets

in sl1 to be produced. The transition from ∆2 to ∆e occurs if a “premature” change-phase

6 Remember that, for Rev, the secrets are pairs, each consisting of a review content tagged with a conference

phase that witnesses when the content has been added.
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action is taken (from Submission to Bidding), while sl1 is still nonempty. For Rev, ∆e

witnesses two unsound situations: when the phase exceeds Reviewing and either there is no

N’th review or sl1 still contains Reviewing-tagged secrets.

In summary, employing the sequential unwinding theorem in our unwinding proofs had the

benefit of allowing (and encouraging) a separation of concerns: the ∆i ’s and the transitions

between them constitute the main sequential flow of the phase-directed proof, while ∆e

collects all unsound situations, taking them out of our way.

About 20 safety properties are needed in the unwinding proofs, among which:

– A paper is never registered at two conferences.

– An author always has conflicts with that author’s papers (Dis1).

– A paper always has at least one author.

– A user never reviews a paper with which that user has a conflict.

– A user never gets to write more than one review for a given paper.

For example, the first property in the above list was needed in the proof of Pap2, to make

sure that no secret can be produced (i.e., isSec (head sl1) does not hold) from within ∆1 or

∆2, since no paper upload is possible without prior registration. Another safety property,

which is important in itself, is that CoCon’s kernel is never accessed with a wrong user ID

or password, more precisely:

– An action that is not a user-creation action and contains either a non-existing user ID or

an incorrect (user ID, password) pair always yields an error output and does not change

the state.

The verification took us three person months, which also counts the development of

reusable proof infrastructure and automation. Eventually, we could prove the auxiliary safety

properties quasi-automatically. By contrast, the unwinding proofs required interaction for

indicating the Independent-Action/Reaction strategy.

5 Implementation and Deployment

CoCon has been developed as part of a research program aimed at illustrating the feasibil-

ity of practical systems based on formally verified, semantically justified information flow

security. Therefore, we and our colleagues have invested some effort into a fairly practical

implementation, which allowed us to deploy CoCon for real conferences.

5.1 Implemention Layers

CoCon’s implementation consists of three layers, depicted in Fig. 7: the kernel generated

automatically from the Isabelle specification, the REST API layer, and the graphical user

interface (GUI) layer. The last two were implemented manually. This is a refinement of

Fig. 1 from the introduction, showing the separation of the web application wrapper in two

layers.

The kernel consists of the I/O automaton described in Sect. 2.2—extracted from the

Isabelle specification to a Scala program using Isabelle’s code generator [31,32]. Its verifi-

cation has been the main topic of this paper.
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Graphical User Interface

REST API

Scala
Program
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Specification

code generation

Fig. 7 CoCon’s architecture in more detail

The API, written with Scalatra (one of the standard web frameworks for Scala) [78],

forwards requests back and forth between the kernel and the outside world. It converts the

payload of http(s) requests into actions that are passed to the kernel; the output retrieved from

the kernel is then converted into JSON output, which is delivered as the API response.

This layer also has a stateful part, which stores salts for passwords and an association

between authentication tokens and pairs consisting of a user ID and a (hashed) password.

When a user logs in with their ID and password, a (temporary) authentication token is issued,

which is associated with the given pair (user ID, password). Upon the arrival of an http request

containing the authentication token, the pair (user ID, password) is retrieved and is used to

access the desired data through the kernel.

Special treatment is given to data that cannot be reasonably stored in memory, namely

the pdf’s of the papers. These are stored on the disk, while the kernel state stores the paths

to their locations. They are all placed in a single directory, and the names of the files are the

(guaranteed to be nonoverlapping) paper IDs. When a user requests the read of a paper pdf,

the API layer invokes the corresponding reading action from the kernel to retrieve the path

to that file—then the pdf is provided as payload of the API response.

The GUI is a stateless layer written in AngularJS. It offers a menu system through which

the users can perform high-level requests. This layer transforms each high-level request into

one or more requests to the API layer, retrieves the data from the API, and finally processes

and displays the results back to the user. Figure 8 shows a screenshot of CoCon’s GUI during

a conference run.

5.2 Verified and Trusted Components

Our verification work targets confidentiality, safety and traceback properties of CoCon’s

Isabelle kernel. In order for these guarantees to apply to the overall system (the entire web

application), there are some components that we need to trust (or, in the future, verify).

First, we need to trust Isabelle’s code generator. Its general-purpose design is quite flex-

ible, supporting program and data refinement. In the presence of these rich features, the

code generator is only known to preserve partial correctness, hence safety properties [31,32].

However, here we use the code generator in a very restrictive manner, to “refine” an already

deterministic specification which is an implementation in its own right, and is simply trans-

lated from the functional language of Isabelle to that of Scala. In addition, all the used Isabelle

functions are proved to terminate, and nontrivial data refinement is disabled. These allow us

to (informally) conclude that the synthesized kernel implementation is trace-isomorphic to
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Fig. 8 CoCon’s GUI: page of an author in the reviewing Phase

the specification, hence the former has the same confidentiality and traceback properties as

the latter, in particular, it leaks as little information as the latter according to our notion of

leakage (which disregards timing channels).

Second, we need to trust that no leakage is introduced through the API layer (with all

its employed library functions). As we have seen, this layer is a mostly stateless wrapper,

forwarding information back and forth between the kernel and the outside world—which is

an essentially safe behavior. An exception to statelessness is the user identity management

component, which performs password hashing and issues and stores salts and authentication

tokens. This trusted component is of course critical to the overall confidentiality guarantees,

and is outside the scope of our verification. In fact, our security model assumes that the users

act on behalf of themselves, hence our proved properties do not cover identity theft, i.e., the

notion of an attacker (user of the system or not) impersonating another user—more about

this in Sect. 5.3.

Finally, our verification targets only the server-side implementation logic. Lower-level

attacks, as well as browser-level forging are out of its reach, but are orthogonal issues that

could in principle be mitigated separately.

5.3 Deployment to Conferences and Critical Bug

CoCon has been deployed to two conferences, TABLEAUX 2015 and ITP 2016, hosting

approximately 70 users and 110 users, respectively—consisting of PC members and authors.

As a program extracted from Isabelle to Scala, CoCon’s kernel stores its data in memory

(except for the pdf files, which, as noted before, are subject to a special treatment). Therefore,

when deploying CoCon to the conferences, the developers had to find a way to prevent loss

of data due to server crashing or other accidents. It was decided to do that without any

intrusion into the generated code—by using the backup facility of the Redis NoSQL database
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management system [75], configured to take snapshots of CoCon’s memory every second.

This turned out to be a practical solution: It allowed the crash-safe use of an in-memory

application, which delivered quicker responses compared to the alternative of retrieving data

from a standard database. Of course, it also introduced an additional trusted component.

Unfortunately, the implementation of the API layer was plagued by a banal data race bug,

caused by thread-unsafe code in the handler for authenticated requests. This made it possible

that, under conditions of high traffic, the authentication tokens of two different users A and

B be mixed up, meaning that A would be treated with the credentials of B.

The bug was difficult to catch because the data race occurred very seldom—apparently

under the higher traffic conditions of ITP 2016, but not under the ones of TABLEAUX 2015

or our previous testing sessions. In addition, the data race was highly volatile: occurring per

single http requests, then disappearing. It was discovered during the running of ITP 2016 by

the PC member Andrew Tolmach, and took CoCon’s verifiers and developers an investigation

of 3.5 days before a fix was deployed. This large amount of time was partly caused by the

verifiers’ and developers’ doubt about the very existence of the bug, due to a misplaced

confidence in the scope of verification: We were aware that CoCon had trusted components,

but the notion of a user not accessing data that they are not supposed to access was exactly

what our bullet-proof kernel protected against!

It did not help that the bug was also very hard to reproduce. Initially, we believed it was

an (annoying but information-flow harmless) pseudo-bug, caused by the display of outdated

information due to browser caching. After some effort, Tolmach was able to reproduce the

bug and bring us evidence for the leak—by accessing, with the ITP 2016 chairs’ permission,

some (quite harmless) information that should have been protected from that user. It was only

then that we looked more closely for a problem with the identity management outside the

kernel. As Tolmach put it: “In my opinion, the whole episode is an unusually clear illustration

of the perils of overselling (even to oneself) the benefits of verification. The most interesting

thing is not that CoCon had a bug, but rather that the developers were (temporarily) in denial

about it.” (See also Fig. 9.)

In all probability, the damaging effect of the bug has been very limited. This is because

CoCon’s users (authors and PC members) have used the system not through direct calls to

the API, but through the graphical interface—which had the property that accessing sensitive

information was at least two clicks away from the main menu, meaning that a leak required

the unlikely occurrence of the data race two times in a row. In addition, the users were friendly,

having no interest, desire, or attention span for malicious activity. Of course, a completely

different situation would have been somewhere in the wild, with motivated attackers. For

example, once Tolmach purposely set out to “attack” the system for reproducing the bug, it

took him some effort but he did succeed fairly quickly.

Managing authentication tokens is a standard and well-understood activity. The bug was

caused by our web developer’s lack of experience with the Scalatra web framework. In

addition, the bug was in the scope of what static data-race analyzers would be able to detect.

So far, while having invested a significant effort in the verification of CoCon’s kernel, we

have lacked the resources and the inspiration to explore such complementary verification/bug-

finding techniques for the outer components.
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Fig. 9 CoCon’s login page before and after ITP 2016

6 RelatedWork

There is a vast amount of literature on information flow security models, with many variants

of formalisms and verification/enforcement techniques.

6.1 Conceptual Frameworks for Information Flow Security

An important distinction is between models that completely forbid information flow (between

designated sources and sinks) and models that only restrict the flow, allowing some declas-

sification, i.e., controlled information release. Historically, the former were introduced first,

and the latter were subsequently introduced as generalizations.

Absence of Information Flow The information flow security literature starts in the late 1970s

and early 1980s [16,25,63], motivated by the desire to express the absence of information

leaks of systems more abstractly and more precisely than by means of access control [8,43].

Applied to our case of interest, the debate concerning information flow control versus

access control can be summarized as follows: Wouldn’t properties such as “only users with a

certain role can access certain data” suffice, where the data is identified as a particular state

component, such as a stored document? In other words, isn’t the simpler access data a good

substitute for learn information? More than twenty years ago, the security community has

decisively established that the answer is “no”—McLean [52] gives a good early summary of

the debate and its conclusion, which was reinforced by the subsequent abundant literature

(including the works cited below). Indeed, while access control properties are partially reas-

suring, no collection of such properties can offer the level of assurance achieved by factoring

in genuine information flow in the statements.

For example, proving that an author learns nothing about their paper’s reviews before

the notification phase represents much more than proving that an author cannot access those

reviews before the notification phase. Unlike the latter, the former is a global property of the

system that excludes in one swoop a whole variety of potential leaks. Here is one leaking

scenario: The PC members are shown all the papers, but the scores of the papers with which

they have a conflict are omitted; moreover, the PC members clearly have conflicts with their

own (authored) papers. But what if the current average score of the papers’ reviews is used to

determine the order in which the papers are listed? Then a PC member may learn the current

average score for their authored paper with high accuracy—in spite of being forbidden direct

access to the scores. An ad hoc access control property can be designed to cope with this

particular scenario, but there is an endless supply of such scenarios, which an information

flow property would exclude without having to consider explicitly.
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Influential early contributions to information flow security were Goguen and Meseguer’s

noninterference [25] and its associated proof by unwinding [26]. Many other notions

were introduced subsequently, either in specialized programming-language-based [69] or

processalgebra-based [23,68] settings or in purely semantic, event-system-based settings

[50,51,62]. These notions are aimed at extending noninterference to nondeterministic sys-

tems, closing Trojan-horse channels, or achieving compositionality. The unwinding technique

has been generalized for some of these variants—McLean [52] and Mantel [48] give

overviews.

Even ignoring our aimed declassification aspect, most of these notions could not ade-

quately capture our properties of interest for CoCon. One problem is that they are not flexible

enough w.r.t. the observations. They state nondetectability of the presence or absence of cer-

tain events anywhere in a system trace. An exception is of course Sutherland’s nondeducibility

(discussed in Sect. 3.1), which already holds the seeds for BD Security’s flexibility. Indeed,

nondeducibility can express a more fine-grained positioning of such undetectable events, and

also it can focus not only on entire events, but more precisely on designated secrets extracted

from the events—e.g., the content of the uploaded paper, ignoring other data in the event

such as the ID of the author who uploaded it.

Another line of work based on nondeducibility is Halpern and O’Neill’s [33]. They recast

nondeducibility as a property called secrecy maintenance, in a multi-agent framework of runs-

and-systems. Their formulation enables general-purpose epistemic logic [66] primitives for

deducing the absence of leaks.

Restriction of Information Flow A large body of work on declassification was pursued in a

(mostly) language-based setting. Sabelfeld and Sands [71] give an overview of the state of

the art up to 2009. They identify some generic dimensions of declassification that are relevant

for our CoCon case study:

– What information is released? Here, document content, e.g., of papers, reviews, etc.

– Where in the system is information released? In our case, the relevant “where” is a “from

where” (referring to the source, not to the exit point): from selected places in the system

trace, e.g., the last submitted version before the deadline.

– When can information be released? After a certain trigger occurs, e.g., authorship.

– Who releases the information? The users who are entitled, e.g., the authors of a document.

Rushby’s intransitive noninterference [47,67] is an extension of noninterference targeting

the “where” dimension of declassification. It allows the downgrading of information, say,

from High to Low, via a controlled Declassifier level. It could be possible to encode aspects

of our properties of interest as intransitive noninterference, e.g., we could encode the act of

a user becoming an author as a declassifying action for the target paper.

Some information flow security concepts based on knowledge, similar in spirit to our BD

Security, have been quite influential in the language-based setting. Zdancewic and Myers’s

robust declassification [82] limits what a class of attackers can learn if allowed to (actively)

modify the system in addition to what they can by (passively) observing the system—thus

addressing the “who” dimension in a blend of confidentiality and integrity.

Sabelfeld and Myers’s delimited release [70] addresses the “what” dimension. It describes

the containment of declassification to specified escape hatches as an end-to-end property,

involving the initial and final states of program executions. It can be viewed as a particular

form of BD Security, where secrets are only produced at the beginning and observations are

only produced at the end of traces.

Perhaps most similar to BD Security are the concepts introduced in a series of papers by

Askarov and collaborators [2–5]. Although their work is placed in a language-based setting,
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the core of their security properties refers to traces of events—hence could be routinely

adapted to arbitrary I/O automata. They introduce gradual release [4] as an extensional means

to capture the “where” dimension—defining knowledge along (low components of) traces

similarly to how we define the declassification associated to a trace,Dectr , introduced in Sect.

3.2 to motivate BD Security. Gradual release requires that knowledge changes (increases)

only at specifically indicated events. Unlike in the intransitive noninterference’s take on the

“where” dimension, the security guarantees offered by gradual release also cover traces on

which actual declassification occurs. An extension of gradual release [5] with ideas from

delimited release achieves fine-grained control over “where” and “what” declassification

similar to that of BD Security—a main difference being their focus on variation of knowledge

at different points, contrasting BD Security’s focus on the overall knowledge acquired. Later

refinements of gradual release account for integrity in addition to confidentiality [3] (also

incorporating ideas from robust declassification) and for the presence of weaker, forgetful

attackers [2]. As far as we see, forgetful attackers could also be modeled by an upgrade of

BD Security: extending our simple filter-map observation infrastructure to a stateful one.

Finally, flexible declassification (especially along the “when” dimension) has been

addressed by custom temporal logics. Dimitrova et al. introduce SecLTL [20], a linear tempo-

ral logic enriched with an information-hiding operator. Their motivating examples include the

following properties, referring to a minimalistic, finite-state conference management system

[20, §1]:

– Last accept/reject before Close remains secret until Release.

– All accept/reject’s except the last before Close remain secret forever.

These roughly correspond to the following BD Security properties:

– One learns nothing about the last accept/reject decision (where “last” means “last

uploaded before a Close action occurs”), unless/until a Release action occurs.

– One learns nothing about all but the last accept/reject decision.

Thus, on a high level, SecLTL seems able to capture, if not arbitrary BD Security properties, at

least (slight reformulations of) the instance triggers and bounds we employed for CoCon. But

upon a closer look we find that the superficially similar formulations yield mathematically

quite different properties. Indeed, whereas the BD Security instances are ∀∃ properties (quan-

tifying universally over the original trace tr1 and the bound-related secrets, and existentially

over the alternative trace tr2), the SecLTL counterparts are ∀∀ properties—as can be seen

from unpacking the semantics of SecLTL’s information-hiding operator. A second important

difference is that SecLTL keeps the traces tr1 and tr2 synchronized, in that any differences

in their events (be they observable or not) can occur only after secrets are being produced—

in the spirit of MAKS’s “backwards strict” properties [48, §3.4.4]. More general temporal

logics for hyperproperties, such as HyperCTL∗ [15,22,64], allow for arbitrary alternations of

quantifiers (including ∀∃), but preserve the aforementioned built-in synchronization. Depict-

ing the exact relationship between temporal-logic-based and knowledge-based definitions of

information flow security would be interesting future work.

6.2 Information Flow Security for Conference Management Systems

Arapinis et al. [1] introduce ConfiChair, a conference management system that improves

on the state of the art by guaranteeing that the cloud, consisting of the system provider,

cannot learn the content of the papers and reviews, and cannot link users with their written

reviews. This is achieved by a cryptographic protocol based on key translations and mixes.
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They encode the desired properties as strong secrecy (a property similar to Goguen-Meseguer

noninterference) and verify them using the ProVerif [10] tool specialized in security protocols.

Our work differs from theirs in three major aspects. First, they propose a cryptography-based

enhancement, while we focus on a traditional conference system. Second, they manage

to encode and verify the desired properties automatically, while we use interactive theorem

proving. While their automatic verification is an impressive achievement, we cannot hope for

the same with our targeted properties which, while having a similar nature, are more nuanced

and complex. For example, the properties Pap2 and Rev, with such precise indication of

declassification bounds, go far beyond strong secrecy and require interactive verification.

Finally, we synthesize functional code isomorphic to the specification, whereas they provide

a separate implementation, not linked to the specification which abstracts away from many

functionality aspects.

Qapla [53] is a middleware tool for enforcing access control policies for database systems.

It has been deployed to the HotCRP conference management system. An interesting future

work would be to use BD Security to analyze the information flow content of the enforced

policies. We expect that such an analysis would yield a certain overlap between the CoCon

properties we have verified and the HotCRP properties that can be inferred from the Qapla

policies.

6.3 Holistic Verification of Systems

Proof assistants are today’s choice for precise and holistic formal verification of hardware

and software systems. Already legendary verification works are the AMD microprocessor

floating-point operations [55], the CompCert C compiler [44] and the seL4 operating system

kernel [40]. More recent developments include a range of microprocessors [34], Java and

ML compilers [42,46], and model checkers [21,79].

Major holistic verification case studies in the area of information flow security are less well

represented, perhaps due to the more complex nature of the involved properties compared to

traditional safety and liveness [49]. They include a hardware architecture with information

flow primitives [18], a separation kernel [17], and noninterference for seL4 [56,57]. A sub-

stantial contribution to web client security is the Quark verified browser [37]. Our own line

of work is concerned with proof assistant verification of web-based system confidentiality

grounded in BD Security: It started in 2014 with CoCon and continued with the CoSMed

social media platform [7] and its extension to a distributed model, CoSMeDis [6]. For most

of the CoSMed/CoSMeDis properties of interest, the bounds B had to be significantly more

complex, to account for the repeated opening and closing of access windows, i.e., the repeated

firing and canceling of various triggers. This made the actual triggers T unnecessary, meaning

they had to be instantiated to “vacuously false” [7, §3]. (In general, the triggers cannot be

encoded in the bounds—but could be if we changed BD security to a more symmetric notion,

requiring that all transitions in the alternative trace also falsify the trigger [7, §3.3].)

Outside the realm of proof-assistant based work, Ironclad [35] provides end-to-end secu-

rity guarantees down to the binary code level and across the network. The information flow

properties discussed in [35] focus on controlling where in the program information is declas-

sified, e.g., in trusted declassification functions. A verified Ironclad app is deployed on a

server, and a Trusted Platform Module certifies to remote users of the app that the code

running on the server indeed corresponds to the verified code.
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6.4 Automatic Analysis of Information Flow

There are quite a few programming languages and tools aimed at supporting information

flow secure programming—such as Jif [38] and its distributed extension Fabric [45] and

I/O-reactive extension JRIF [41], LIO [24] and its distribuetd extension Hails [24], Paragon

[12], Spark [73], Jeeves [81] and Ur-Web [13]—as well as information flow tracking tools

for the client side of web applications [9,14,29]. The properties specifiable in these tools are

significantly weaker (and more tractable) compared to those we considered in this paper.

We believe the future of information flow security verification will see an increased coop-

eration between fully automatic tools and proof assistants; the former being employed for

wide-covering lightweight properties and the latter being employed more sparingly, for heav-

ier properties of clearly isolated relatively small cores of systems. Compositionality results for

information flow security [6,28,30,48,59] will play a key role in achieving such a cooperation

on a well-understood semantic basis.
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