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Safety and Conservativity of Definitions in HOL and

Isabelle/HOL
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Stoilow of the Romanian Academy, Romania

Deinitions are traditionally considered to be a safe mechanism for introducing concepts on top of a logic

known to be consistent. In contrast to arbitrary axioms, deinitions should in principle be treatable as a form

of abbreviation, and thus compiled away from the theory without losing provability. In particular, deinitions

should form a conservative extension of the pure logic. These properties are crucial for modern interactive

theorem provers, since they ensure the consistency of the logic, as well as a valid environment for total/certiied

functional programming.

We prove these properties, namely, safety and conservativity, for Higher-Order Logic (HOL), a logic

implemented in several mainstream theorem provers and relied upon by thousands of users. Some unique

features of HOL, such as the requirement to give non-emptiness proofs when deining new types and the

impossibility to unfold type deinitions, make the proof of these properties, and also the very formulation of

safety, nontrivial.

Our study also factors in the essential variation of HOL deinitions featured by Isabelle/HOL, a popular

member of the HOL-based provers family. The current work improves on recent results which showed a

weaker property, consistency of Isabelle/HOL’s deinitions.
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1 INTRODUCTION

Higher-Order Logic (HOL) [Pitts 1993] (recalled in Section 3 of this paper) is an important logic
in the theorem proving community. It forms the basis of several interactive theorem provers
(also known as proof assistants), including HOL4 [Gordon and Melham 1993; Slind and Norrish
2008], HOL Light [Harrison 1996], Isabelle/HOL [Nipkow and Klein 2014; Nipkow et al. 2002],
ProofPower-HOL [Arthan 2004] and HOL Zero [Adams 2010].

In addition to supporting the development of formalized mathematics, most modern interactive
theorems provers also include a functional programming language, supporting the paradigm of
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24:2 Ondřej Kunčar and Andrei Popescu

total programming [Turner 2004]. For example, in provers based on type theory such as Agda [Bove
et al. 2009], Coq [Bertot and Casteran 2004] and Matita [Asperti et al. 2011], totality is ensured by a
global strong normalization property. There is a tight relationship between this property, allowing
functions/programs to be reduced to a normal form by recursively unfolding all deinitions and
reducing all redexes, and the logical consistency of these systems.
In HOL-based provers, programming is supported by a diferent mechanism: All recursive

datatype speciications and all recursive speciications of functions on these datatypes are translated
into nonrecursiveHOL primitives, i.e., constant and type deinitions; then the recursive speciications
are proved automatically as theorems in the logic. This scheme involves a massive background
compilation and proof process (supported by tools consisting of tens of thousands of lines of code,
e.g., [Blanchette et al. 2014; Krauss 2009; Melham 1989]). It ensures a high degree of trustworthinessÐ
given that all constructions must pass through the łirewallž of HOL’s minimalistic kernel. In
particular, a potential bug in the compilation tools could cause correct user speciications to fail,
but will not introduce logical inconsistencies unless the kernel has a bug.
In this paper, we turn our attention to the HOL kernel itself, which is the guarantor of logical

consistency and certiied programming in the above scheme. In spite of extensive foundational
studies and the relative simplicity of the logic, the normalization process underlying the HOL kernel,
i.e., the process of unfolding the HOL deinitions, remains less understood than the corresponding
łnormalizationž process in type theory, and occasionally leads to controversial design decisions and
heated debatesÐas we are about to show, after recalling some background information.
While its ideas go back a long way (to the work of Alonzo Church [Church 1940] and beyond),

HOL contains a unique blend of features proposed by Mike Gordon at the end of the eighties,
inspired by practical veriication needs: Its type system is the rank-one polymorphic extension
of simple types, generated using the function-space constructor from two base types, bool and
ind; its terms have built-in equality (from which all the usual connectives and quantiiers are
derived); deduction, operating on terms of type bool called formulas, is regulated by the built-in
axioms of Equality, (Hilbert) Choice and Ininity (for the type ind). In addition to this purely logical
layer, which we shall refer to as initial HOL, users can perform constant and type declarations and
deinitions. Type deinitions proceed by indicating a predicate on an existing type and carving out
the new type from the subset satisfying the predicate. For accepting a type deinition, the system
requires a proof that the subset is nonempty (the predicate has a witness). This is because HOL types
are required to be nonemptyÐa major design decision, with practical and theoretical ramiications
[Gordon and Melham 1993; Paulson 1990]. No new axioms are accepted (more precisely, they
are strongly discouraged), besides the aforementioned deinitions. This minimalistic, deinitional
approach ofers good protection against the accidental introduction of inconsistency (the possibility
to prove False).
Isabelle/HOL is a notable member of the HOL family, and a maverick to some extent. It imple-

ments an essential variation of HOL, where constant deinitions can be overloaded in an ad hoc
manner, for diferent instances of their types. This lexibility forms the basis of Haskell-style type
classes [Nipkow and Snelting 1991],1 a feature that allows for lighter, suppler formalizations and
should probably be credited, together with the high-level structured proof language [Wenzel 1999],
the powerful automation [Paulson 2010] and the convenient user interface [Wenzel 2014], for
Isabelle/HOL’s wide popularity and proliicness: thousands of users in both academia and industry,
a large library of formalized results [Isabelle 2016; Klein et al. 2016], major veriication success
stories [Esparza et al. 2013; Klein et al. 2010; Lochbihler 2010].

1Type classes do not require any additional extension of the logic, but are completely reduced (including at the level of

proofs) to HOL with type deinitions and ad hoc overloaded constants [Wenzel 1997, Section 5].
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The founders of HOL have paid special attention to consistency and related properties. Andrew
Pitts designed a custom notion of standard model [Pitts 1993], aimed at smoothly accommodating
both polymorphism and type deinitions. He proved that constant and type deinitions are model-

theoretically conservative w.r.t. standard models: Any standard model of a theory can be expanded
to a standard model of the theory plus the deinitions. This of course implies consistency of HOL
with deinitions. Surprisingly, the HOL founders have not looked into the more customary notion
of proof-theoretic conservativity, which we shall simply call conservativity. It states that, by adding
new constants and types and their deinitions, nothing new can be proved in the old language. This
does not follow from the model-theoretic version (because of the restriction to standard models,
for which deduction is not complete). In fact, as we discuss below, it does not even hold in general.
In Isabelle/HOL, the foundational problem is more challenging. Here, even the consistency of

deinitions has not been fully understood until very recently (Section 2.2). The culprit is precisely
the feature that contributes to Isabelle/HOL’s popularityÐad hoc overloadingÐwhich has a delicate
interaction with type deinitions [Kunčar and Popescu 2015, Section 1].
Motivated by the desire to settle the Isabelle foundations, in early work Wenzel formulates

criteria for safety of deinitions in HOL-like logics [Wenzel 1997]. For a theory extension Θ1 ⊆ Θ2,
he considers (proof-theoretic) conservativity, a property much stronger than preservation of
consistency, to be a minimum requirement for deeming a theory extension truly deinitional
[Wenzel 1997, p.7]. In fact, he argues for an even stronger notion, meta-safety. Let Σ1 and Σ2 be
the languages (signatures) of Θ1 and Θ2, respectively. (Thus, Σ1 ⊆ Σ2.) Meta-safety requires that,
whenever a Σ2-formula φ is deducible from Θ2, there exists a Σ1-formula φ[. . . , t/c, . . .], obtained
by replacing all the items c ∈ Σ2 ∖ Σ1 with some suitable Σ1-terms t , which is deducible from Θ1.
This way, the items c can be considered to be łdeinedž because they can always be compiled away
without losing provability. He also shows that, under appropriate well-formedness restrictions, a
set of constant deinitions forms a meta-safe extension.
However, as formulated, meta-safety does not apply to type deinitions, because in HOL it

is impossible to replace a deined type with its deining expression. In fact, Wenzel makes the
following observation: In general, type deinitions in HOL are not even consistency-preserving, let

alone conservative (let alone meta-safe in any reasonable way), as witnessed by the following example.
Consider the HOL theory consisting of a single formula φ stating that no type has precisely three
elements (i.e, for all types α , if α has at most three elements x , y, z then two of them must be equal):

∀x , y, z : α . (∀v : α . v = x ∨ v = y ∨ v = z) −→ x = y ∨ x = z ∨ y = z

The theory {φ} is consistent since there exists a model that satisies itÐthe full-frame model of
initial HOL, where all inite types are function-space combinations over bool, hence their cardinality
is a power of two, in particular, no type has cardinality three. On the other hand, the extension
of {φ} with the deinition of a type having three elements, τ = {0, Suc 0, Suc(Suc 0)}, is clearly
inconsistentÐwhich exhibits a type deinition that does not preserve consistency. This analysis
has led Wenzel, who is Isabelle’s long-standing lead developer and release manager, to deem type
deinitions axiomatic (i.e., having zero consistency or conservativity guarantees attached) rather
than deinitional. This departure from a well-established HOL tradition has generated confusion
and misunderstanding amongst Isabelle/HOL’s users and developers [Wolf 2015].
But the above counterexample involves a non-deinitional theoryÐφ is not a deinition, but

merely an axiom that happens to be consistent. Thus, the counterexample only shows that, unlike
constant deinitions, type deinitions do not preserve consistency, a fortiori, are not conservative,
over an arbitrary (axiomatic) theory. Nonetheless, it is still legitimate to ask:

Are arbitrary combinations of constant and type deinitions conservative over initial HOL?

And are they even meta-safe (again, over initial HOL) in a suitable sense?
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Over

Initial HOL

Over Arbitrary

HOL Theories

Over

Initial HOL

Over Arbitrary

HOL Theories

Constant Deinitions Yes (from right) Yes [Wenzel 1997] Yes (from right) Yes (from below)

Constant Deinitions

Mixed with Type Deinitions
Yes (this paper) No [Wenzel 1997] Yes (from right) Yes [Pitts 1993]

Isabelle-HOL

Constant Deinitions

Yes [Wenzel 1997]

[Obua 2006]
No (easy)

Yes (from

second left)
No (easy)

Isabelle-HOL

Constant Deinitions

Mixed with Type Deinitions

Yes (this paper) No (from above) No (from above)

(Proof-Theoretic) Conservativity
Model-Theoretic Conserva-

tivity w.r.t. Standard Models

Fig. 1. Conservativity of Definitions in HOL and Isabelle/HOL

We believe these are important questions for deepening our understanding of the nature of HOL
and Isabelle/HOL deinitions. Conservativity also provides the most compelling way of witnessing
consistency: Any proof of False using deinitions can be traced down to a proof of False in initial
HOL (the latter being manifestly consistent thanks to its standard set-theoretic semantics). This
is especially relevant for the brittle foundational terrain of Isabelle/HOL, where it should help
rehabilitating type deinitions as genuine, safe deinitions.
In this paper, we provide a positive answer to both questions. Figure 1 shows in bold our new

conservativity results in the context of similar known facts. For Isabelle/HOL constant deinitions,
ad hoc overloading immediately causes both (proof-theoretic) conservativity and model-theoretic
conservativity over arbitrary base theories to fail. On the other hand, Wenzel [Wenzel 1997] argues
by a proof sketch that any set of Isabelle/HOL constant deinitions is conservative over any base
theory provided the latter’s signature does not contain these constantsÐin particular, this covers
the case of initial HOL, which later Obua settles by a rigorous proof [Obua 2006]. Moreover, for
(HOL and Isabelle/HOL) constant deinitions over initial HOL, it is known that we can infer model-
theoretic conservativity from conservativity by replacing the deined constants with existentially
quantiied variables. However, this trick no longer works when we consider combinations of
constant and type deinitionsÐhence the empty slot in the igure’s table, meaning we don’t know
whether model-theoretic conservativity holds in this case. (This is an open problem only for the
case of Isabelle/HOL, since for standard HOL the fact even holds for arbitrary base theories, as
shown by Pitts’s well-known model-theoretic argument.) At the end of Section 5, we briely come
back to these aspects concerning model-theoretic conservativity, and suggest a possible positive
answer to ill the igure’s empty slot in the light of our techniques. Until then, we will focus entirely
on conservativity in the proof-theoretic sense.

Here is an overview of the rest of this paper. First, we focus on traditional HOL, where we formu-
late meta-safety by deining translation operators for types and terms that unfold the deinitions
(Section 4). Unfolding a type deinition has to be done in an indirect fashion, since HOL does not
support comprehension/reinement types (of the form {x : σ | t x}). Namely, a formula operating
on deined types will be relativized to a formula on the original, built-in types that hosted the type
deinitions; so the łunfoldingž of a deined type will be a predicate on its host type. Since type
deinitions are paired with nonemptiness proofs (in the current contexts, having available all the
previously introduced deinitions), we are forced to proceed gradually, one deinition at a time.
Consequently, the proof of meta-safety (also leading to conservativity) is itself gradual, in a feedback
loop between preservation of deduction, commutation with substitution, and nonemptiness of the
relativization predicates.
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We organized the proof development for traditional HOL modularly, separating lemmas about
termination of the deinitional dependency relation. This allows a smooth upgrade to the more
complex case of Isabelle/HOL (Section 5), where termination is no longer ensured by the historic
order of deinitions, but via a more global approach. Due to ad hoc overloading, here the translations
no longer commute with type substitution. We recover from this łanomalyž by mining the proofs
and weakening the commutation lemmaÐleading to an Isabelle/HOL version of the results.

Our constructions have a logical-relation lavor [Reynolds 1983], but with some non-standard (and
non-parametric) aspects due to the need to ensure non-emptiness of the representation predicates
and, for Isabelle/HOL, to cope with ad hoc polymorphism.

The appendix gives more details on the HOL logic concepts and shows some omitted proofs. We
implemented for Isabelle/HOL the unfolding and relativization functions presented in this paper,
and used them to check the paper’s examples. The documented implementation is available from
[Kunčar and Popescu 2017b].

2 MORE RELATED WORK

There is a vast literature on the logical foundations of theorem provers, which we will not attempt
to survey here. We focus on work that is directly relevant to our present contribution, from the
point of view of either the object logic or the techniques used.

2.1 HOL Foundations

Wiedijk [2009] deines stateless HOL, a version of HOL where terms and types carry in their syntax

information about the deined constants and type constructors. Kumar et al. [2014] deine a set-
theoretic (Pitts-style) model for stateless HOL and a translation from standard (stateful) HOL with
deinitions to stateless HOL, thus proving the consistency of both. Their stateful to stateless HOL
translation is similar to our translation, in that they both internalize the deinitions (which are part
of łthe statež) into łstatelessž formulas; however, for conservativity, we need to appeal to pure HOL
entities, not to syntactically enriched ones. In a subsequent paper [Kumar et al. 2016], the same
authors renounce the stateless HOL detour and prove model-theoretic conservativity directly on
initial HOL.

Kumar et al.’s work, which has been mechanized in HOL4, is based on pioneering self-veriication
work by Harrison [Harrison 2006], who uses HOL Light to give semantic proofs of soundness of
the HOL logic without deinitional mechanisms, in two lavors: either after removing the ininity
axiom from the object HOL logic, or after adding a łuniversež axiom to the meta-logic.

2.2 Isabelle/HOL Foundations

Wenzel’s work cited in the introduction [Wenzel 1997] sketched proofs of meta-safety and con-
servativity of constant deinitions but left type deinitions aside. In spite of Wenzel’s theoretical
observation that orthogonality and termination are required to ensure meta-safety, overloading
of constants remained unchecked in Isabelle/HOL for many yearsÐuntil Obua looked into the
problem and proposed a way to implement Wenzel’s observation with an external termination
checker [Obua 2006]. Obua also aimed to extend the scope of consistency by factoring in type
deinitions. But his syntactic proof missed out possible inconsistencies through delayed overloading
intertwined with type deinitions. Soon after, Wenzel designed and implemented a more structural
solution based on work of Haftmann, Obua and Urban (parts of which are reported in [Haftmann
and Wenzel 2006]).
The foundational work on Isabelle/HOL was resumed by us in 2014, after the aforementioned

inconsistencies caused by delayed overloading and type deinitions were discovered. To address the
problem, we deined a new dependency relation [Kunčar and Popescu 2015], operating on constants
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24:6 Ondřej Kunčar and Andrei Popescu

and types (which became part of the system starting from Isabelle2016). Employing a nonstandard
semantics, we proved that, after these modiications, any deinitional theory is consistent. In more
recent work, we gave an alternative syntactic proof, based on translating HOL to a richer logic,
HOLC, having comprehension types as irst-class citizens [Kunčar and Popescu 2017a]. The current
paper improves on these results, by proving properties much stronger than consistency.

2.3 Other Work

The general-purpose interactive theorem proving community is largely dominated by two successful
camps: provers based on type theory (Agda, Coq, Matita, etc.) and provers based on HOL.2 For the
former, the notion of normalizing terms is fairly well studied and well understood [Abel et al. 2007;
Altenkirch 1993; Barras 2010; Coquand et al. 1990; Coquand and Spiwack 2006; Geuvers 1993]. Our
notion of meta-safety can be seen as the HOL counterpart of type-theoretic normalization, hence
as a foundation for HOL-based programming. Of course, the technical challenges we face in HOL
are quite diferentÐhere, it is not the expressiveness of the logic or of its underlying type system
(e.g., fancy dependent types or polymorphism) that complicates the argument, but to a large extent
its lack of expressiveness: The logic disallows unfolding type deinitions, which forces us into a
labyrinth of relativization techniques. Another diference is that HOL is an inherently classical
logic: Type deinitions require possibly non-constructive proofs of nonemptiness, and the Hilbert
Choice is paramount. This makes our proof translations less clean than in type theory.

Other foundational work for theorem provers includes Myreen and Davis’s mechanized proof of
consistency for Milawa [Myreen and Davis 2014], a prover based on irst-order logic in the style of
ACL2, and Owre and Shankar’s set-theoretic semantics of PVS [Owre and Shankar 1999]Ðfeaturing
a logic similar to HOL, but with dependent types.
Outside the world of theorem proving, conservative extensions are widely employed in mathe-

matical logic, e.g., in the very popular Henkin technique for proving completeness [Henkin 1949].
They are also employed in algebraic speciications to achieve desirable modularity properties
[Sannella and Tarlecki 2012]. However, in these ields, deinitional extensions are often trivially
conservative, thanks to their simple equational structure and freshness conditions.

3 HOL PRELIMINARIES

By HOL, we mean classical higher-order logic with Ininity, Choice and rank-one polymorphism,
and mechanisms for constant and type deinitions and declarations. This section explains all these
concepts and features in detail.

3.1 Syntax

All throughout this paper, we ix the following:

• an ininite set TVar, of type variables, ranged by α , β
• an ininite set VarN, of (term) variable names, ranged by x , y, z

A type structure is a pair (K, arOf) where:

• K is a set of symbols, ranged by k , called type constructors, containing three special sym-
bols: łboolž, łindž and ł⇒ž (aimed at representing the type of booleans, an ininite type of
individuals and the function type constructor, respectively)
• arOf : K⇒ N is a function associating arities to the type constructors, such that arOf(bool) =
arOf(ind) = 0 and arOf(⇒) = 2.

2 There are of course successful provers outside these two camps, but they are usually focused on more specialized tasks,

and on automation more than on interaction. They include ACL2 [Kaufmann et al. 2000], Dafny [Leino 2010] and Key

[Ahrendt et al. 2016].
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The types associated to (K, arOf), ranged by σ , τ , are deined as follows:

σ ::= α | (σ1, . . . , σarOf(k )) k

Thus, a type is either a type variable or an n-ary type constructor k postix-applied to a number of
types corresponding to its arity. We write Type(K,arOf) for the set of types associated to (K, arOf).
A signature is a tuple Σ = (K, arOf, Const, tpOf), where:

• (K, arOf) is a type structure
• Const, ranged over by c , is a set of symbols called constants, containing four special symbols:
ł=ž, łεž, łzerož and łsucž (aimed at representing equality, Hilbert choice of some element from
a type, zero and successor, respectively)
• tpOf : Const⇒ Type is a function associating a type to every constant, such that:

tpOf(=) = α ⇒ α ⇒ bool tpOf(ε) = (α ⇒ bool) ⇒ α

tpOf(zero) = ind tpOf(suc) = ind⇒ ind

For the rest of this section, we ix a signature Σ = (K, arOf, Const, tpOf). We usually write Type
Σ
,

or simply Type, instead of Type(K,arOf).
TV(σ ) is the set of type variables of a type σ . A type substitution is a function ρ : TVar⇒ Type.

We let TSubst denote the set of type substitutions. The application of ρ to a type σ , written σ [ρ], is
deined recursively by α[ρ] = ρ(α) and ((σ1, . . . , σm) k)[ρ] = (σ1[ρ], . . . , σm[ρ]) k . If α1, . . . , αm
are all diferent, we write τ1/α , . . . , τn/αm for the type substitution that sends αi to τi and each
β < {α1, . . . , αm} to β . Thus, σ [τ1/α , . . . , τn/αm] is obtained from σ by substituting, for each i , τi
for all occurrences of αi .

We say that σ is an instance of τ via ρ, written σ ≤ρ τ , if τ [ρ] = σ . We say that σ is an instance

of τ , written σ ≤ τ , if there exists ρ ∈ TSubst such that σ ≤ρ τ . Two types σ1 and σ2 are called
orthogonal, written σ1 # σ2, if they have no common instance; i.e., for all τ , τ ̸≤ σ1 or τ ̸≤ σ2.

Given ρ1, ρ2 ∈ TSubst, we write ρ1 · ρ2 for their composition, deined as (ρ1 · ρ2)(α) = (ρ1(α))[ρ2].
It is easy to see that, for all types σ , it holds that σ [ρ1 · ρ2] = σ [ρ1][ρ2].
A (typed) variable is a pair of a variable name x and a type σ , written xσ . We let Var denote

the set of variables. A constant instance is a pair of a constant and a type, written cσ , such that
σ ≤ tpOf(c). We let CInst denote the set of constant instances. We extend the notions of being an
instance (≤) and being orthogonal (#) from types to constant instances:

cτ ≤ dσ if c = d and τ ≤ σ cτ # dσ if c , d or τ # σ

The signature’s terms, ranged over by s, t , are deined by the grammar:

t ::= xσ | cσ | t1 t2 | λxσ . t

Thus, a term is either a variable, or a constant instance, or an application, or an abstraction. As
usual, we identify terms modulo alpha-equivalence. We let TermΣ, or simply Term, ranged by s and
t , denote the set of terms. Typing is deined as a binary relation between terms and types, written
t : σ , inductively as follows:

xσ ∈ Var

xσ : σ

cσ ∈ CInst
cσ : σ

t1 : σ ⇒ τ t2 : σ

t1 t2 : τ

t : τ

λxσ . t : σ ⇒ τ

We can apply a type substitution ρ to a term t , written t[ρ], by applying it to the types of all
variables and constant instances occurring in t with the usual renaming of bound variables if they
get captured. FV(t) is the set of t ’s free variables. The term t is called closed if it has no free variables:
FV(t) = ∅. We write t[s/xσ ] for the term obtained from t by capture-free substituting the term s

for all free occurrences of xσ .
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24:8 Ondřej Kunčar and Andrei Popescu

A formula is a term of type bool. We let FmlaΣ, or simply Fmla, ranged by φ and χ , denote the
set of formulas. The formula connectives (e.g., ∧ and −→) and quantiiers (∀ and ∃) are deined in
the usual way, starting from the equality primitive. For example, for any type σ , we write ∀xσ . t
for allσ (λxσ . t), where allσ is the term λpσ⇒bool. p = (λxσ . true). The appendix gives more details.
Given terms b : bool, t1 : σ and t2 : σ , their if-then-else expression, written if˙t˙e b t1 t2, is the
term ε (λxσ . (b −→ xσ = t1) ∧ (¬ b −→ xσ = t2)). Its behavior is the expected one: It equals t1 if
b is true and equals t2 if b is false.

To avoid confusion with the object-logic deinitions discussed later, we treat the logical connec-
tives and quantiiers and the if-then-else operator as mere abbreviations (i.e., meta-level deinitions
of certain HOL terms). When writing terms, we sometimes omit the types of variables if they can be
inferredÐe.g, we write λxσ . x instead of λxσ . xσ . A theory (over Σ) is a set of closed (Σ-)formulas.

3.2 Axioms and Deduction

The HOL axioms, forming the set Ax, are the usual Equality axioms, the Ininity axioms (stating that
suc is diferent from 0 and is injective, which makes the type ind ininite), the classical Excluded
Middle and the Choice axiom, which states that the Hilbert choice operator returns an element
satisfying its argument predicate (if nonempty): pα⇒bool x −→ p (ε p).
A context Γ is a inite set of formulas. We write α < Γ to indicate that the type variable α does

not appear in any formula in Γ; similarly, xσ < Γ will indicate that xσ does not appear free in
any formula in Γ. We deine deduction as a ternary relation ⊢ between theories D, contexts Γ and
formulas φ, written D; Γ ⊢ φ.

D; Γ ⊢ φ

(Fact)

[φ ∈ Ax ∪ D] D; Γ ⊢ φ

(Assum)

[φ ∈ Γ]

D; Γ ⊢ φ

D; Γ ⊢ φ[σ/α]

(T-Inst)

[α < Γ]

D; Γ ⊢ φ

D; Γ ⊢ φ[t/xσ ]

(Inst)

[xσ < Γ] D; Γ ⊢ (λxσ . t) s = t[s/xσ ]
(Beta)

D; Γ ⊢ f xσ = д xσ

D; Γ ⊢ f = д

(Ext)

[xσ < Γ]

D; Γ ∪ {φ} ⊢ χ

D; Γ ⊢ φ −→ χ
(ImpI)

D; Γ ⊢ φ −→ χ D; Γ ⊢ φ

D; Γ ⊢ χ
(MP)

The axioms and the deduction rules we gave here are (a variant of) the standard ones for HOL
(as in, e.g., [Gordon and Melham 1993; Harrison 2009]). Diferent provers implementing standard
HOL, such as HOL4, HOL Light, HOL-ProofPower and HOL Zero, may use slightly diferent sets of
logical primitives and slightly diferent rules and axioms; moreover, they of course difer in their
implementation details. However, they all implement the same logic, up to logical equivalence.
We write D ⊢ φ instead of D; ∅ ⊢ φ and ⊢ φ instead of ∅; ∅ ⊢ φ (that is, we omit empty contexts

and theories). Note that the HOL axioms are not part of the parameter theory D, but are wired
together with D in the (Fact) axiom. So ⊢ φ indicates that φ is provable from the HOL axioms only.

3.3 HOL Definitions and Declarations

Besides deduction, another main component of the HOL logic is a mechanism for introducing new
constants and types by spelling out their deinitions.
The built-in type constructors are bool, ind and⇒. The built-in constants are =, ε, zero and suc.

Since the built-in items have an already speciied behavior (by the HOL axioms), only non-built-in
items can be deined.

Definition 1.
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Constant Deinitions: Given a non-built-in constant c such that tpOf(c) = σ and a closed term
t : σ , we let cσ ≡ t denote the formula cσ = t . We call cσ ≡ t a constant deinition provided
TV(t) ⊆ TV(cσ ) (i.e., TV(t) ⊆ TV(σ )).

Type Deinitions: Given types τ and σ and a closed term t : σ ⇒ bool, we let τ ≡ t denote the
formula

∃repτ⇒σ . One˙Onerep ∧ (∀yσ . t y ←→ (∃xτ . y = rep x))

whereOne˙Onerep is the formula stating that rep is one-to-one (injective), namely, ∀xτ , yτ . rep x =

rep y −→ x = y. We call τ ≡ t a type deinition, provided τ has the form (α1, . . . , αm) k such that k
is a non-built-in type constructor, the αi ’s are all distinct type variables and TV(t) ⊆ {α1, . . . , αm}.
(Hence, we have TV(t) ⊆ TV(τ ), which also implies TV(σ ) ⊆ TV(τ ).)

A type deinition expresses the following: The new type (α1, . . . , αm) k is embedded in its host
type σ via some one-to-one function rep, and the image of this embedding consists of the elements
of σ for which t holds. Since types in HOL are required to be nonempty, the deinition is only
accepted if the user provides a proof that ∃xσ . t x holds. Thus, to perform a type deinition, one

must give a nonemptiness proof.

Type and Constant Declarations: Declarations in HOL are a logical extension mechanism which is
signiicantly milder than deinitionsÐthey simply add new items to the signature as łuninterpreted,ž
without providing any deinition.

3.4 Signature Extensions and the Initial Signature

In the remainder of this paper, when necessary for disambiguation, we will indicate the signature
Σ as a subscript when denoting sets and relations associated to it: Type

Σ
, TermΣ, CInstΣ, ⊢Σ, etc.

Given a signature Σ = (K, arOf, Const, tpOf) and an item u, we write u ∈ Σ to mean that u ∈ K
or u ∈ Const. Given signatures Σ = (K, arOf, Const, tpOf) and Σ

′
= (K′, arOf ′, Const′, tpOf ′), we

say Σ is included in Σ
′, or Σ′ extends Σ, written Σ ⊆ Σ

′, if K ⊆ K′, Const ⊆ Const′ and the functions
arOf ′ and tpOf ′ are extensions of arOf and tpOf, respectively. We write u ∈ Σ′∖ Σ to mean u ∈ Σ′

and u < Σ. If c < Const and σ ∈ Type
Σ
, we write Σ ∪ {(c, σ )} for the extension of Σ with a new

constant c of type σ . Similarly, if k < K, we write Σ ∪ {(k, n)} for the extension of Σ with a new
type constructor k of arity n.

We write Σinit for the initial signature, containing only built-in type constructors and constants.
Note that, by deinition, any signature extends the initial signature.

4 CONSERVATIVITY OF HOL DEFINITIONS

A HOL development, i.e., a session of interaction with the HOL logic from a user’s perspective,
consists of intertwining deinitions, declarations and (statements and proofs of) theorems. Since
theorems are merely consequences of deinitions, we will not model them explicitly, but focus on
deinitions and declarations.
Let Σ = (K, arOf, Const, tpOf) be a signature and let D be a inite theory over Σ.

Definition 2. D is said to be awell-formed deinitional theory ifD = {def1, . . . , defn}, where each
def i is a (type or constant) deinition of the form ui ≡ ti , and there exist the signatures Σ1

, . . . , Σ
n

and Σ0, Σ1, . . . , Σn such that Σ0 = Σinit, Σn = Σ and the following hold for all i ∈ {1, . . . , n}:

(1) ti ∈ TermΣi and Σi is the extension of Σi with a fresh item deined by def i , namely:
(1.1) If ui has the form (α1, . . . , αm) k , then k < Σi and Σi = Σ

i ∪ {(k,m)}

(1.2) If ui has the form cσ , then c < Σ
i and Σi = Σ

i ∪ {(c, σ )}

(2) If def i is a type deinition, meaning ui is a type and ti : σ ⇒ bool, then {def1, . . . , def i−1} ⊢Σi
∃xσ . ti x
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(3) Σi−1 ⊆ Σ
i

These conditions express that the theory D consists of intertwined deinitions and declarations.
The chain of extensions

Σinit = Σ0 ⊆ Σ
1 ⊆ Σ1 ⊆ Σ

2 ⊆ Σ2 . . . ⊆ Σ
n ⊆ Σn = Σ,

starting from the initial signature and ending with Σ, alternates sets of declarations (the items in
Σ
i \ Σi−1) with deinitions (the unique item ui in Σi \ Σ

i being deined by def i , i.e., as ui ≡ ti ). As
shown by condition (2), in the case of type deinitions, we also require proofs of non-emptiness of
the deining predicate t (from the deinitions available so far).
In short, the above conditions state something very basic: Deinitions are introduced one at

a time and the deined symbols are fresh. This is clearly obeyed by correct implementations of
standard HOL, such as HOL4 and HOL Light. (By contrast, the Isabelle/HOL-speciic conditions in
Section 5 will involve the more complex notions of orthogonality and termination.)

Definition 3. A theory E over Σ is said to be a (proof-theoretic) conservative extension of initial

HOL if any formula proved from E that belongs to the initial signature Σinit could have been proved
without E or the types and constants from outside of Σ. Formally: For all φ ∈ FmlaΣinit , E ⊢Σ φ

implies ⊢Σinit φ.

4.1 Roadmap

In what follows, we ix a well-formed deinitional theory D and use for it the notations introduced
in Def. 2, e.g., Σ, Σi . We irst sketch the main ideas of our development, motivating the choice of
the concepts. The more formal deinitions and proofs will be given in the following subsections.
Our two main goals are to formulate and prove D’s meta-safety and to prove D’s conservativity.

As with any respectable notion of its kind, meta-safety will easily yield conservativity, so we
concentrate our eforts on the former.3

4.1.1 Unfolding the Definitions. Recall that, for a Σ-formula φ provable from D, meta-safety
should allow us to replace all the deined items in φ with items in the initial signature without losing
provability, i.e., obtaining a deducible Σinit-formula φ ′. For constants, the procedure is clear: Any
deined constant c appearing in φ is replaced with its deining term t , then any deined constant d
appearing in t is replaced with its deining term, and so on, until (hopefully) the process terminates
and we are left with built-in items only.
But how about for types τ occurring in φ? A HOL type deinition τ ≡ t where t : σ ⇒ bool,

is not an equality (there is no type equality in HOL), but a formula asserting the existence of a
bijection between τ and the set of elements of σ for which the predicate t holds. So it cannot be
łunfolded.ž First, let us make the simplifying assumption that σ ∈ Type

Σinit
and t ∈ TermΣinit . Then

the only reasonable Σinit-substitute for τ is its host type σ ; however, after the replacement of τ by
σ , the formula needs to be adjusted not to refer to the whole σ , but only to the isomorphic copy
of τÐin other words, the formula needs to be relativized to the predicate t . In general, σ or t may
themselves contain deined types or constants, which will need to be processed similarly, and so
on, recursively. In summary:

• for each type τ , we deine its host type HOST(τ ) ∈ Type
Σinit

and its relativization predicate
on that type, REL(τ ) : HOST(τ ) ⇒ bool (where REL(τ ) ∈ TermΣinit )

3A note on terminology: In this paper’s title, abstract and introduction, we use the term safety to refer to the informal notion

of a deinition being łsafe,ž i.e., being treatable as a form of abbreviation. On the other hand, meta-safety is a technical term

introduced by Wenzel for a mathematical formulation of safety for constant deinitions. We will introduce our own notion

of meta-safety, extending Wenzel’s.
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• for each term t : τ , we deine its unfolding UNF(t) : HOST(τ ) (where UNF(t) ∈ TermΣinit )

We will illustrate our design choices for the various cases in deining the above translation functions
with the help of a running example.

Example 4. Let Σ be the extension of the initial signature with:

• the nullary type constructors nat and zfun
• the constants absnat : ind⇒ nat and z : nat

Let D = {def i | i ∈ {1, . . . , 4}}, such that:

• def1 is nat ≡ t1, where t1 : ind⇒ bool is a predicate taking the intersection of all predicates
that hold for 0 and are closed under Suc. Formally, t1 is λiind. (∀Pind⇒bool. P 0 ∧ (∀jind. P j −→

P (Suc j))) −→ P i; but the precise form of t1 will not be important in our discussion, beyond
the fact that it is a term in the initial signature.
• def2 is absnat ≡ ε t2, where t2 : (ind⇒ nat) ⇒ bool is a predicate stating about its argument
function that it is a bijection between the elements of ind that satisfy t1 and nat. Formally, t2
is λfind⇒nat. φ1 ∧ φ2, where:
ś φ1 states that f is one-to-one on the elements satisfying t1, namely ∀iind jind. t1 i ∧ t1 j ∧

f i = f j −→ i = j

ś φ2 states that f maps t1 onto nat, namely ∀nnat. ∃iind. t1 i ∧ f i = n

• def3 is z ≡ t3, where t3 is absnat 0.
• def4 is zfun ≡ t4, where t4 : (nat⇒ nat) ⇒ bool is λfnat⇒nat. f z = z.

Thus, there are no (non-deined but) declared items, and the chain Σinit = Σ0 ⊆ Σ
1 ⊆ Σ1 ⊆ . . . ⊆

Σ
4 ⊆ Σ4 = Σ consists of the following signatures, where we do not repeat the arities and the types:

Σ
1
= Σ0 = Σinit Σ

3
= Σ2 = Σ

2 ∪ {absnat} Σ = Σ4 = Σ
4 ∪ {zfun}

Σ
2
= Σ1 = Σ

1 ∪ {nat} Σ
4
= Σ3 = Σ

3 ∪ {z}

Incidentally, this example shows the standard procedure of bootstrapping natural numbers in
HOL: The type nat is deined by carving out, from HOL’s built-in ininite type ind, the smallest set
closed under zero and successor. Using the Choice operator, we deine the abstraction function
absnat as a surjection whose restriction to nat’s deining predicate t1 is a bijection to nat. (The
opposite injection can of course also be deined, but is omitted here.) The version of zero for naturals,
z : nat, is deined by applying the abstraction to the built-in zero from ind. Subsequently, another
type is introduced, zfun, of zero-preserving functions between naturals, deined by carving out
from the type nat⇒ nat the set of those functions that map z to z.

The simplest of the three translation functions will be HOST, which will track recursively, for
each deined type, the built-in type that represents its deining ancestor. For example, following
the type deinitions def1 and def4, we can compute the host of zfun:

HOST(zfun) = HOST(nat⇒ nat) = HOST(nat) ⇒ HOST(nat) = ind⇒ ind

The UNF function will be more challenging to deine. A clearly desirable feature is that UNF
should leave built-in constants unchanged, e.g., UNF(=) should be =. Moreover, for instances cσ
of constants c : τ deined by equations cτ ≡ t , UNF(cσ ) will naturally be recursively deined
as UNF(t[ρ]) where ρ is the substitution that makes σ an instance of τ (i.e., σ ≤ρ τ ). In other
words, we unfold cσ with the appropriately substituted equation deining c . Since UNF is applied to
arbitrary terms, not only to constants, we must indicate its recursive behavior for all term constructs.
Abstraction and application are handled as expected, in that UNF distributes over themÐwith
changing the type of the bound variables through the HOST function. For example, starting with t4
which is λfnat⇒nat. fnat⇒nat z = z, we have the following equalities, where UNF delves recursively
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into abstractions and applications, unfolds the deinitions def3 of z and def2 of absnat, and leaves
the built-in constants =, 0 and ε unchanged:

UNF(t4) = λfHOST(nat⇒nat). UNF(fnat⇒nat z = z)
= λfind⇒ind. UNF(fnat⇒nat) UNF(z) UNF(=) UNF(z)
= λfind⇒ind. UNF(fnat⇒nat) UNF(absnat 0) = UNF(absnat 0)
= λfind⇒ind. UNF(fnat⇒nat) (UNF(absnat) UNF(0)) = UNF(absnat) UNF(0)
= λfind⇒ind. UNF(fnat⇒nat) (UNF(ε t2) 0) = UNF(ε t2) 0
= λfind⇒ind. UNF(fnat⇒nat) (UNF(ε) UNF(t2) 0) = UNF(ε) UNF(t2) 0
= λfind⇒ind. UNF(fnat⇒nat) (ε UNF(t2) 0) = ε UNF(t2) 0

Unlike applications and abstractions, variables raise a subtle issue, with global implications on our
overall proof strategy. But before discussing them, we must look at how to deine the relativization
predicates. Clearly, REL should send a deined type such as nat to the unfolding of its deining
predicate, here, UNF(t1). (Note that in this case t1 happens to contain only built-in items, meaning
UNF(t1) = t1.) Moreover, REL should łdistributež over ⇒ in that REL(σ1 ⇒ σ2) = REL(σ1) ⇒
REL(σ2) where, for p1 : τ1 ⇒ bool and p2 : τ2 ⇒ bool, p1 ⇒ p2 is the predicate on τ1 ⇒ τ2 stating
about its argument function that it maps elements satisfying p1 to elements satisfying p2Ði.e.,
p1 ⇒ p2 is the lifting of p1 and p2 to the function space. For example:

REL(nat⇒ nat) = REL(nat) ⇒ REL(nat) = t1 ⇒ t1

But what if a type is deined from a type that itself contains other deined types, as is the case of
zfun deined from nat⇒ nat (according to def4)? Then we must accumulate the deining predicates
of all intermediate types, each lifted if necessary along the encountered function-space structure:

REL(zfun) = λfHOST(zfun). REL(nat⇒ nat) fHOST(zfun) ∧ UNF(t4) fHOST(zfun)
= λfind⇒ind. (t1 ⇒ t1) find⇒ind ∧ UNF(t4) find⇒ind

Thus, REL(zfun) find⇒ind states that f preserves t1 (the deining predicate of nat from ind) and that
UNF(t4) f holds, where t4 is the deining predicate of zfun from nat⇒ nat.

Back to the unfolding of variables, we are now ready to ask what should UNF(xσ ) be. An obvious
candidate is xHOST(σ ). However, this will not work, since a crucial property that we will need about
our translation is that it observes membership to types, in that it maps terms of a given type to
terms satisfying that type’s representing predicate:

(F1) The relativization predicates hold on translated items, i.e., REL(σ ) UNF(t) is de-
ducible (in initial HOL) for each term t : σ .

In particular, any REL(σ ) UNF(xσ ), e.g., REL(nat ⇒ nat) UNF(fnat⇒nat), should be deducible.
To enforce this, we deine UNF(xσ ) to be either xHOST(σ ) if REL(σ ) xHOST(σ ) holds, or else any
item for which REL(σ ) holds. This is expressible using the if-then-else and Choice operators:
if˙t˙e (REL(σ ) xHOST(σ )) xHOST(σ ) (ε REL(σ )). For example:

UNF(fnat⇒nat) = if˙t˙e (REL(nat⇒ nat) fHOST(nat⇒nat)) fHOST(nat⇒nat) (ε REL(nat⇒ nat))
= if˙t˙e ((t1 ⇒ t1) find⇒ind) find⇒ind (ε (t1 ⇒ t1))

In other words, UNF(fnat⇒nat) is either find⇒ind if find⇒ind happens to preserve t1, or otherwise
some element that preserves t1.

By the Choice axiom, REL(σ ) holds for ε REL(σ ) just in case REL(σ ) is nonempty. So to achieve
the goal of ensuring REL(σ ) holds for xσ , we need:

(F2) The relativization predicates are nonempty, i.e., ∃xHOST(σ ). REL(σ ) x is deducible.
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(For our example, this would mean that there exists an element of ind⇒ ind that preserves t1. )
Another way to regard this property is as a relection of the HOL types being nonemptyÐa faithful
relativization should of course follow suit.

With our chosen behavior of UNF on variables, the formula connectives and quantiiers will be
treated as desired, i.e., yielding (modulo HOL deduction) standard relativization with respect to the
REL predicatesÐfor the universal and existential quantiiers, this means bounded quantiication.
For example, writing t1 =HOL t2 for ⊢Σinit t1 = t2, i.e., for the fact that the equality t1 = t2 is deducible
in initial HOL, we have:

UNF(∀xσ . φ xσ ) = UNF((λxσ . φ xσ ) = (λxσ . true))
= (λxHOST(σ ). UNF(φ) UNF(xσ )) = (λxHOST(σ ). true)
= ∀xHOST(σ ). UNF(φ) UNF(xσ )
= ∀xHOST(σ ). UNF(φ) (if˙t˙e (REL(σ ) xHOST(σ )) xHOST(σ ) (ϵ REL(σ )))
=HOL ∀xHOST(σ ). if˙t˙e (REL(σ ) xHOST(σ )) (UNF(φ) xHOST(σ )) (UNF(φ) (ϵ REL(σ )))
=HOL ∀xHOST(σ ). REL(σ ) xHOST(σ ) −→ UNF(φ) xHOST(σ )

The last =HOL step in the above chain follows from the non-emptiness of REL(σ ). Similarly, the
unfolding of ∃xσ . φ x will be equal modulo HOL deduction to ∃xHOST(σ ). REL(σ ) x ∧ UNF(φ) x .

We can take advantage of the above observation to obtain a palatable form for UNF(t2):

UNF(t2) =HOL λfind⇒ind. UNF(φ1) ∧ UNF(φ2)

UNF(φ1) =HOL ∀iind jind. t1 i ∧ t1 j ∧ s i = s j −→ i = j

UNF(φ2) =HOL ∀nind. t1 n −→ ∃iind. t1 i ∧ s i = n

where s is the term if˙t˙e ((t1 ⇒ t1)f ) f (ε (t1 ⇒ t1)). Thus, UNF(t2) states about its argument f
that, if it preserves t1, then it is in fact a bijection on the set of elements of ind that satisfy t1.

The above discussion suggests that the desired Σinit-formula φ ′ corresponding to a Σ-formula φ
should be UNF(φ). Hence, for us meta-safety over initial HOL will mean:

(MS) For all φ ∈ FmlaΣ, D ⊢Σ φ implies ⊢ΣinitUNF(φ).

This property is indeed a type-aware version of what Wenzel calls meta-safety: UNF(φ) replaces
each deined constant with a term as in Wenzel’s concept, and replaces each deined type with a
tandem of a host type and a relativization predicate.

For our running example, we can prove D ⊢Σ φ, where φ is ∀fnat⇒nat. ∃дnat⇒nat. ¬ f = д, which
is a way of saying that nat⇒ nat, if it is not empty (which is true for all HOL types) then it is not
a singleton. By our meta-safety result, we will infer ⊢ΣinitUNF(φ), where

UNF(φ) =HOL ∀fHOST(nat⇒nat). REL(nat⇒nat) f −→ ∃дHOST(nat⇒nat). REL(nat⇒nat) д ∧ ¬ f = д

= ∀find⇒ind. (t1 ⇒ t1) f −→ ∃дind⇒ind. (t1 ⇒ t1) д ∧ ¬ f = д

This is indeed a tautology (provable in initial HOL): It says that for any function that preserves
the natural-number predicate (i.e., t1) there exists a diferent function with the same property. This
follows from the fact that there are two distinct elements of ind satisfying t1, e.g., 0 and Suc 0.
To help proving (MS), we will also have lemmas about the good behavior of the translation

functions HOST, UNF and REL with respect to the main ingredients of HOL deduction:

(F3) The translation functions preserve variable freshness and commute with substitution.

The order in which we will have to prove these facts has supericially circular dependencies. As
discussed, we need (F2) for proving (F1). Moreover, (F1) is needed to prove (F3), more precisely,
to make sure that UNF commutes with substitution for the delicate case of variables xσ . In turn,
(F3) is used for (MS). But to prove (F2), the nonemptiness of the relativization predicates, we seem
to need (MS). Indeed, for the case of a type τ deined by τ ≡ t with t : σ ⇒ bool, REL(τ ) is
the conjunction of REL(σ ) and UNF(t). So, in an inductive proof of (F2), we will need to deduce
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∃xHOST(σ ). REL(σ ) x ∧ UNF(t) x . The only fact that can help here is that this formula is (equivalent
to) UNF(φ), where φ is ∃xσ . t x . Since φ is the non-emptiness claim for the new type τ , it is
deducible (according to Def. 2(2)). So we would like to apply (MS) here for obtaining that UNF(φ)
is deducible.
Thus, we have the apparent dependency loop

(MS) =⇒ (F3) =⇒ (F1) =⇒ (F2) =⇒ (MS)

The way out of this loop is a gradual approach: We will not deine a single version of the translation
functions, but one version,HOSTi , UNFi and RELi , for each subset {def1, . . . , def i } of D with i ≤ n.
This way, we can use (MS) for i to prove (F2) for i + 1.

4.1.2 Dealing With Declarations. Lastly, we must take into account a phenomenon we have
ignored so far: the presence of declarations in addition to deinitions.

Example 5. Consider the following extension of Example 4: After def4, a declaration of a constant
c : zfun is performed. Thus, we have a new signature Σ5

= Σ4 ∪ {(c, zfun)}.

What should the unfolding UNF(cσ ) of the declared constant c : zfun be? A possibility is to
acknowledge c as an irreducible entity, and deine UNF(czfun) = cHOST(zfun). However, this way our
desirable property (F1), here, REL(zfun) cHOST(zfun), will not be provable, since nothing prevents
the łuninterpretedž items cHOST(zfun) from being outside of the relativization predicate. Another
alternative is to deine UNF(czfun) as an arbitrary element satisfying REL(zfun), via Choice, i.e.,
as ϵ REL(zfun). But this would mean that UNF will artiicially identify several distinct constants,
e.g., UNF(cσ ) = UNF(dσ ) for any two declared constants cσ and dσÐbesides being unnatural, this
situation would become diicult to handle later, for Isabelle/HOL, since it would introduce a breach
in monotony: When declaring cσ and dσ , their unfoldings would be equal, but at a later stage one
of them could get deined, breaking this equality.

In summary, we wish to preserve the identity of the declared constants such as czfun, while still
enforcing REL(zfun) UNF(czfun). We achieve this by treating czfun in a guarded fashion, similarly to
the variablesÐhere, taking UNF(czfun) to be if˙t˙e (REL(zfun) cHOST(zfun)) cHOST(zfun) (ε REL(zfun)),
i.e., if˙t˙e (REL(zfun) cind⇒ind) cind⇒ind (ε REL(zfun)).

Another subtlety concerning declared constants lies in the question: What should be the signature
of UNF (czfun)? Since c has no deinition, it will not be compiled away by unfolding. However, its
type zfun, which is a deined type, must be translated into its host ind ⇒ ind. But none of the
existing signatures contains a constant c : ind⇒ ind. Consequently, we must create a signature ∆
that extends Σinit with all the declared constants but having HOST-translated types, and, similarly,
with all the declared type constructors. As for the declared (but not deined) types, these can be
kept in the signature ∆ without causing any problems. Our translations, as well as the statement of
(MS), will target this extended signature ∆ rather than Σinit.

4.2 Formal Definition of the Translations and Meta-Safety

We will write Di for the current deinitional theory at moment i , {def1, . . . , def i }. Thus, we have
D = Dn . As discussed in the previous subsection, we will deine deduction-preserving translations of
the Σ-types and Σ-terms into ∆-types and ∆-terms, where ∆ will be a suitable signature that collects
all the declared itemsÐnamely, for each Σ-type we deine its host ∆-type and its relativization
predicate (which is a ∆-term) and for each Σ-term we deine its unfolding (which is a ∆-term). We
proceed gradually, considering the Σi ’s one i at a time, eventually reaching Σ = Σn .
For each i ∈ {1, . . . , n}, we deine the signature ∆i (collecting the declared items from Σ

i with
their types translated to their host types), together with the function HOSTi : TypeΣi ⇒ Type

∆i

(producing the host types) as follows:
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(H1) HOSTi (α) = α

(H2) HOSTi ((σ1, . . . , σm) k) = (HOSTi (σ1), . . . , HOSTi (σm)) k,
if k ∈ Σ1 ∪

⋃i
i′=2(Σ

i′ ∖ Σi′−1)

(H3) HOSTi ((σ1, . . . , σm) k) = HOSTi (σ [σ1/α1, . . . , σm/αm]),
if (α1, . . . , αm) k ≡ t is in Di and t : σ ⇒ bool

(R1) RELi (σ ) = λxσ . true, if σ ∈ TVar ∪ {bool, ind}
(R2) RELi (σ1 ⇒ σ2) = λfHOSTi (σ1)⇒HOSTi (σ2). ∀xHOSTi (σ1). RELi (σ1) x −→ RELi (σ2) (f x)

(R3) RELi ((σ1, . . . , σm) k) = λx(HOSTi (σ1), . . .,HOSTi (σm )) k .true, if k ∈
⋃i

i′=1(Σ
i′ ∖ Σi′−1)

(R4) RELi ((σ1, . . . , σm)k) = λxHOSTi (σ ′). RELi (σ
′) x ∧ UNFi (t ′) x ,

if (α1, . . . , αm) k ≡ t is in Di and t : σ ⇒ bool,
where σ ′ = σ [σ1/α1, . . . , σm/αm] and t

′
= t[σ1/α1, . . . , σm/αm]

(U1) UNFi (xσ ) = if˙t˙e (RELi (σ ) xHOSTi (σ )) x (ε RELi (σ ))
(U2) UNFi (cσ ) = cHOSTi (σ ), if c ∈ Σinit

(U3) UNFi (cσ ) = if˙t˙e (RELi (σ ) cHOSTi (σ )) cHOSTi (σ ) (ε RELi (σ )), if c ∈
⋃i

i′=1(Σ
i′ ∖ Σi′−1)

(U4) UNFi (cσ ) = UNFi (t[ρ]), if cτ ≡ t is in Di and σ ≤ρ τ

(U5) UNFi (t1 t2) = UNFi (t1) UNFi (t2)
(U6) UNFi (λxσ . t) = λxHOSTi (σ ). UNFi (t)

Fig. 2. Definition of the translation functions

• ∆
1 is Σ1

• ∆
i+1 is ∆i extended with:

ś all the type constructors k ∈ Σi+1 ∖ Σi

ś for all constants c ∈ Σi+1 ∖ Σi of type σ , a constant c of type HOSTi (σ )
• HOSTi is deined as in Fig. 2, recursively on types

On deined types (i.e., types having a deined type constructor on top), HOSTi behaves as
prescribed in Section 4.1, recursively calling itself for the deining type (clause (H3)). Upon encoun-
tering built-in or declared type constructors, i.e., belonging to some Σi

′
for i ′ ≤ i , but not to the

corresponding Σi′−1, HOSTi delves into the subexpressions (clause (H2)).
Next, mutually recursively on Σi -types and Σi -terms, we deine a function returning the rel-

ativization predicate of a type, RELi : TypeΣi → Term∆i , and one returning the unfolded term,
UNFi : TermΣi

→ Term∆i . Their deinition is shown in Fig. 2 (where we again make use of the
convention that we don’t show the type labels of variables when they can be inferred). Again,
they behave as prescribed in Section 4.1. In particular, RELi is naturally lifted to function spaces
(clause (R2)) and accumulates deining predicates, as shown in clause (R4)Ðhere, the substitution
σ1/α1, . . . , σm/αm stems from an instance of the deined type, (α1, . . . , αm) k . Type variables and
declared types are treated as black boxes, so RELi is vacuously true for them, just like for the built-in
types bool and ind (clauses (R1) and (R3)). Note that, while (H2) refers to declared or built-in type
constructors, (R3) only refers to declared onesÐit explicitly excludes Σinit.
As discussed in Section 4.1, UNFi treats type variables and declared constants in a guarded

fashion (clauses (U1) and (U3)), and distributes over application and abstraction (clauses (U5) and
(U6)). Moreover, UNFi merely callsHOSTi for built-in constants (clause (U2)). Finally, UNFi unfolds
the deinitions of deined constants, as shown in clause (U4). In that clause, cτ and ρ ↾TV(cτ ) (the
restriction of ρ to TV(cτ )) are uniquely determined by cσ ; and since TV(t) ⊆ TV(cσ ) (by Def. 1), it
follows that t[ρ] is also uniquely determined by cσ .
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Obviously, these functions can reach their purpose only if they are total functions. i.e., their
recursive evaluation process terminates for all inputs. This is what we prove in the next subsection.

Assuming totality, we have all the prerequisites to formulate meta-safety. We let UNF be UNFn ,
the function that unfolds all deinitions in D = Dn , and ∆ be ∆n , the signature collecting all the
declared items in Σ.

Definition 6. D is said to be ameta-safe extension of HOL-with-declarations if, for all φ ∈ Fmla∆,
it holds that D ⊢Σ φ implies ⊢∆ UNF(φ).

4.3 Totality of the Translations

The goal of this subsection is to prove:

Prop 7. The following hold:

(1) The function HOSTi is total, i.e., its recursive calls terminate.
(2) The functions RELi and UNFi are total, i.e., their mutually recursive calls terminate.

As discussed, these functions combine structural recursion with the unfolding of constant and
type deinitions. Roughly speaking, the reason why this recursion terminates is the following: The
structural calls are clearly terminating, and the unfoldings are terminating thanks to the freshness
condition imposed on the HOL deinitional theories (Def. 2(1)), which means the new item on the
left of the deinition is reduced to existing items. But in order to make this rough intuition precise,
we will also need to show that the structural calls and the unfoldings do not somehow interfere in
a non-terminating manner.
Note that, if freshness is violated, the functions can become non-terminating. For example, a

deinition cσ ≡ cσ immediately makes UNFi non-terminating (due to clause (U4)), also leading
to the non-termination of RELi (which depends on UNFi via clause (R4)); and similarly for type
deinitions. Of course, freshness is only a suicient condition for termination. For example, deining
cα list in terms of cα violates freshness, but locally exhibits a form of terminating recursion, since it
descends on the constant’s type. As we discuss in Section 5, Isabelle/HOL takes advantage of this
observation to replace freshness by a weaker condition. We have designed the concepts we use in
the following proof of termination, in particular, the deinitional dependency relation, to also be
relevant later, when we attend to Isabelle/HOL.
To prove (1), we must show that the call graph of HOSTi , namely, the relation ▶▶i deined by:

(σ1, . . . , σm) k ▶▶i σj if k ∈ Σi

(σ1, . . . , σm) k ▶▶i σ [σ1/α1, . . . , σm/αm] if (α1, . . . , αm) k ≡ t is in Di and t : σ ⇒ bool

is terminating. This is easily done by deining a lexicographic order based on the order in which
the items were deined, i.e., the indexes of the deinitions def i in which they appear. (More details
are given in the appendix.)

To prove (2), we will exhibit a terminating relation▶i that captures the mutual call graph of RELi
and UNFi . We take ▶i to be the union ≡

↓
i ∪ ▷, where ≡

↓
i and ▷ are deined below. The relation ▷

consists of the structurally recursive calls of RELi and UNFi , from clauses (R2), (U1), (U5) and (U6):

σ1 ⇒ σ2 ▷ σ1 σ1 ⇒ σ2 ▷ σ2 xσ ▷ σ t1t2 ▷ t1 t1t2 ▷ t2 λxσ . t ▷ t

Moreover, ≡
↓
i captures the recursive calls corresponding to deined items, from (R4) and (U4).

Given u,v ∈ Type
Σi
∪ TermΣi

, u ≡
↓
i v states that there exists a deinition u ′ ≡ v ′ in Di and a type

substitution ρ such that u = ρ(u ′) and v = ρ(v ′).
Thus, the totality of RELi and UNFi is reduced to the termination of ▶i . In order to prove the

latter, we will introduce a more basic relation: the dependency relation between non-built-in items
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induced by deinitions in Di . We let Type•
Σi

be the set of Σi -types that have a non-built-in type

constructor at the top, and CInst•
Σi

be the set of instances of non-built-in constants. Given any term

t , we let types•(t) be the set of all types from Type•
Σi

appearing in t and cinsts•(t) be the set of all
constant instances from CInst•

Σi
appearing in t . (The appendix gives the formal deinition of these

operators.)

Definition 8. The dependency relation⇝i on Type•
Σi
∪ CInst•

Σi
is deined as follows: u ⇝i v if

there exists in Di a deinition of the form u ≡ t such that v ∈ cinsts•(t) ∪ types•(t).

We write⇝
↓
i for the (type-)substitutive closure of⇝i , deined as follows: u ⇝

↓
i v if there exist

u ′,v ′ and a type substitution ρ such that u = u ′[ρ], v = v ′[ρ] and u ′ ⇝i v
′. Since HOL with

deinitions is well-known to be consistent, one would expect that deinitions cannot introduce
ininite (including cyclic) chains of dependencies. This can indeed be proved by a lexicographic
argument, again taking advantage of the deinitional order:

Lemma 9. The relation⇝
↓
i is terminating.

The next observation connects ▶i and⇝
↓
i , via ▷

∗ (the transitive closure of ▷):

Lemma 10. If u,v ∈ Type•
Σi
∪ CInst•

Σi
and u ≡

↓
i t ▷

∗ v , then u ⇝
↓
i v

Now we can reduce the termination of ▶i to that of⇝
↓
i , hence prove the former:

Lemma 11. The relation ▶i is terminating.

This concludes the proof of Prop. 7.

4.4 Basic Properties of the Translations

As envisioned in Section 4.1, the translations are extensions of each other and preserve type
membership:

Lemma 12. Assume i ≤ n − 1. The following hold:

(1) If σ ∈ Type
Σi
, then HOSTi+1(σ ) = HOSTi (σ )

(2) If σ ∈ Type
Σi
, then RELi+1(σ ) = RELi (σ ).

(3) If t ∈ TermΣi
, then UNFi+1(t) = UNFi (t).

Lemma 13. If σ ∈ Type
Σi
, t ∈ Type

Σi
and t : σ , then RELi (σ ) : HOSTi (σ ) ⇒ bool and UNFi (t) :

HOSTi (σ ).

For items in the initial signature, the behavior of the translations is either idle (for HOSTi and
UNFi ) or trivial (for RELi ):

Lemma 14. The following hold:

(1) If σ ∈ Type
Σinit

, then HOSTi (σ ) = σ

(2) If σ ∈ Type
Σinit

, then ⊢Σinit RELi (σ ) = λxHOSTi (σ ). true
(3) If t ∈ TermΣinit and t is well-typed, then ⊢Σinit UNFi (t) = t

Other easy, but important properties state that the translations do not introduce new variables
or type variables and commute with type substitution:

Lemma 15. The following hold for all σ ∈ Type
Σi

and t ∈ TermΣi
:

(1) TV(HOSTi (σ )) ⊆ TV(σ )
(2) TV(RELi (σ )) ⊆ TV(σ ) and FV(RELi (σ )) = ∅
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(3) TV(UNFi (t)) ⊆ TV(t) and FV(UNFi (t)) = {xHOSTi (σ ) | xσ ∈ FV(t)}

Lemma 16. The following hold for all σ , τ ∈ Type
Σi

and t ∈ TermΣi
:

(1) HOSTi (σ [τ/α]) = HOSTi (σ )[HOSTi (τ )/α]
(2) RELi (σ [τ/α]) = RELi (σ )[HOSTi (τ )/α]
(3) UNFi (t[τ/α]) = UNFi (t)[HOSTi (τ )/α]

4.5 Main Results

We are now ready to inalize the plan set out in Section 4.1. The following facts in Lemma 17 are
stated and proved in the delicate order prescribed there. Fact (4) corresponds to part of (F3) (the
remaining parts being covered by Lemmas 15 and 16). Moreover, (2) corresponds to (F2), (3) to (F1),
and (5) to (MS). Finally, (1) states deducibility of the translated nonemptiness statement, identiied
in Section 4.1 as an intermediate fact leading from (MS) to (F2).

Lemma 17. Let i ∈ {1, . . . , n}. The following hold for all σ , τ ∈ Type
Σi
, t , t ′ ∈ TermΣi

and
φ ∈ FmlaΣi :

(1) If τ ≡ t is a type deinition in Di with t : σ ⇒ bool, then ⊢∆i ∃xHOSTi (σ ). RELi (σ ) x ∧
UNFi (t) x

(2) ⊢∆i ∃xHOSTi (σ ). RELi (σ ) x
(3) If t : σ , then ⊢∆i RELi (σ ) UNFi (t)
(4) If t ′ : σ , then ⊢∆i UNFi (t[t

′/xσ ]) = UNFi (t)[UNFi (t ′)/xHOSTi (σ )]
(5) If Di ⊢Σi φ, then ⊢∆i UNFi (φ)

Proof. The facts follow by induction on i . More precisely, let (j)i denote fact (j) for a given layer i .
We prove:

• that (1)1 holds;
• that, for any i ∈ {1, . . . , n}:
ś (1)i implies (2)i implies (3)i implies (4)i ;
ś (2)i and (4)i imply (5)i ;
• that, for any i ∈ {1, . . . , n − 1}, (5)i implies (1)i+1.

(1)1: By the well-formedness of D (Def. 2), we have that t ∈ Term∆i and σ ∈ Term∆i , hence
HOST0(σ ) = σ , ⊢∆i REL0(σ ) = λxσ . true and ⊢∆i UNF0(t) = t . From this, we obtain that the fact to
be proved is equivalent to ⊢∆i ∃xσ . t x , which is again true by the well-formedness of D.
Next, we ix i ∈ {1, . . . , n}.

(1)i implies (2)i : Assuming (1)i , we prove (2)i by structural induction on σ . The only interesting
case is when the type is deined, i.e., has a deined type constructor on top (dealt with in clause
(R4)). We need to show ⊢∆i ∃xHOSTi (σ ′). RELi (σ

′) x ∧ UNFi (t ′) x , where (α1, . . . , αm) k ≡ t is in
Di and t : σ ⇒ bool, σ ′ = σ [(σj/α j )j ], and t

′
= t[(σj/α j )j ].

By (1)i , we have ⊢∆i ∃xHOSTi (σ ). RELi (σ ) x ∧ UNFi (t) x . By the type substitution rule (T-Inst)
applied m times (once for each HOSTi (σj )/α j ), we have ⊢∆i ∃xHOSTi (σ )[(HOSTi (σj )/α j )j ]. RELi (σ )
[(HOSTi (σj )/α j )j ] x ∧ UNFi (t)[(HOSTi (σj )/α j )j ] x . Using Lemma 16m times (once for each σj/α j ),
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we obtain ⊢∆i ∃xHOSTi (σ [(σj /α j )j ]). RELi (σ [(σj/α j )j ]) x ∧ UNFi (t[(σj/α j )j ]) x , which implies ⊢∆i
∃xHOSTi (σ ′). RELi (σ

′) x ∧ UNFi (t ′) x , as desired.

(2)i implies (3)i : Assume (2)i . Then (3)i follows by rule induction on the deinition of typing. For
the variable case, we use (2)i and the Choice axiom, which ensure us that ⊢∆i RELi (σ )(ϵ RELi (σ ))
holds, hence ⊢∆i RELi (σ )(UNFi (xσ )) holds.

(3)i implies (4)i : Assume (3)i . Then (4)i follows by well-founded induction on t w.r.t.▶i . The only
interesting case is in the variable case (clause (U1)), when the variable coincides with the to-be substi-
tuted variable xσ . Thus, t = xτ . Here, we need to show ⊢∆i UNFi (t

′) = if˙t˙e (RELi (σ ) UNFi (t ′))
(UNFi (t ′)) (ε RELi (σ )). This follows from the fact that, thanks to (3)i and t ′ : σ , we have ⊢∆i
RELi (σ ) UNFi (t ′).

(2)i and (4)i imply (5)i : Assume (2)i and (4)i . By induction on the deinition of HOL deduction
(⊢), we prove a slight generalization of (5)i , namely: We assume Γ ∪ {φ} ⊆ FmlaΣi and Di ; Γ ⊢Σi φ,
and prove ∅; UNFi (Γ) ⊢∆i UNFi (φ). We distinguish diferent cases, according to the last applied
rule in inferring Γ ∪ {φ} ⊆ FmlaΣi :
(Fact): We need to prove ∅; UNFi (Γ) ⊢∆i UNFi (φ), assuming φ ∈ Ax ∪ Di . First, assume φ ∈ D.

Then φ = u ≡ t ∈ Di . We have two subcases:
(A) u is a constant cσ . Then UNFi (φ) is the formula UNFi (cσ ) = UNFi (t). And since UNFi (cσ )

and UNFi (t) are (syntactically) equal, the desired fact follows by the HOL relexivity rule.
(B) u is a type τ of the form (α1, . . . , αm) k and t : σ ⇒ bool. Then, by the deinition of UNFi

and of the ∀ and ∃ constructs, UNFi (φ) is equivalent (modulo HOL deduction) to the formula

∃repHOSTi (σ )⇒HOSTi (σ )
. (∀xHOSTi (σ ). RELi (σ ) x ∧ UNFi (t) x −→ RELi (σ ) (rep x))

∧

∀xHOST(σ ), yHOST(σ ). RELi (σ ) x ∧ UNFi (t) x ∧ RELi (σ ) y ∧ UNFi (t) y ∧ rep x = rep y −→ x = y

∧

∀yHOSTi (σ ). RELi (σ ) y −→ (UNFi (t) y ←→ (∃xHOSTi (σ ). RELi (σ ) x ∧ UNFi (t) x ∧ y = rep x))

where the irst conjunct comes from the relativization of τ ⇒ σ , the second from unfolding
One˙Onerep, and the third from unfolding ∀yσ . t y ←→ (∃xτ . y = rep x) (in Def. 1). This states
the following (in a verbose fashion): There exists rep : HOSTi (σ ) ⇒ HOSTi (σ )which is one-to-one
on the intersection of RELi (σ ) and UNFi (t) and the image of this intersection through rep is the
intersection itself. This is of course deducible in HOL, taking rep as the identity function.

Now, assume φ ∈ Ax. Then φ ∈ FmlaΣinit , hence, by Lemma 14(3), ⊢∆i UNFi (φ) = φ. And since
also ∅; UNFi (Γ) ⊢∆i φ is true by (Fact), the desired fact follows using the HOL equality rules.
(Assum): Follows by applying (Assum).
(T-Inst): Courtesy of UNFi commuting with type substitution (Lemma 16(3)) and preserving

freshness (Lemma 15(3)).
(Inst): Courtesy of UNFi commuting with substitution (point (4)i ) and preserving freshness

(Lemma 15(3)).
(Beta), (Ext), (ImpI) and (MP): Courtesy of UNFi commuting with substitution, preserving

freshness, and distributing (by deinition) over abstractions, applications and implications.
Next, we ix i ∈ {1, . . . , n − 1}.

(5)i implies (1)i+1: Assume (5)i and letσ , t be as in the formulation of (1)i+1, namely, def i+1 = σ ≡ t .
By the well-formedness of D (Def. 2), we have Di ⊢Σi ∃xσ . t x . Applying (5)i , we obtain ⊢∆i
UNFi (∃xσ . t x). By the deinition of the ∃ quantiier and the deinition of UNFi , the above is equiv-
alent to ⊢∆i ∃xHOSTi (σ ). RELi (σ ) xHOSTi (σ ) ∧ UNFi (t) t ′, where t ′ is if˙t˙e (RELi (σ ) xHOSTi (σ )) x
(ε RELi (σ )). By the deinition of the if-then-else operator, we can replace t ′ by x . So the above
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is further equivalent to ⊢∆i ∃xHOSTi (σ ). RELi (σ ) x ∧ UNFi (t) x . By Lemma 12 and the fact that

∆
i ⊆ ∆

i+1, the above implies ⊢∆i+1 ∃xHOSTi+1(σ ). RELi+1(σ ) x ∧ UNFi+1(t) x , as desired. □

Note that, in our sequence of translations, each translation unfolds not only the i’th deinition,
but all deinitions up to the i’th. One might wonder if the proof could not go more smoothly if
we unfolded only the i’th deinition and worked with a base theory consisting of all previous
deinitions, on which we maintained an invariant. That would make a more elegant alternative, but
we cannot ind an invariant apart from łbase theory is deinitional,ž which does not seem to help.

As a particular case of Lemma 17(5), we have:

Theorem 18. D is a meta-safe extension of HOL-with-declarations.

Thus, we can compile away all the deinitions of D, which leaves us with types and terms over
the signature ∆ containing declarations only. With the deinitions out of our way, it remains to
show that declarations are conservative, which is much easier:

Lemma 19. If φ ∈ FmlaΣinit and ⊢∆ φ, then ⊢Σinitφ.

Proof. Assume ⊢∆ φ. In the proof tree for this fact, we replace:

(1) all occurrences of any declared constant instance cσ by a fresh variable xσ
(2) all occurrences of any declared type constructor k of aritym by a built-in type expression of

aritym, e.g., (σ1, . . . , σm)k is replaced by σ1 ⇒ . . .⇒ σm

When performing the indicated replacements, all applications of the HOL rules remain valid; in
particular, the application of (Fact) remains unchanged, since the underlying theory D is empty
and no HOL axiom (in Ax) refers to declared-only constants or types. Hence these replacements
yield a valid proof tree. Since φ, being in FmlaΣinit , is not afected by the replacements, this proof
tree constitutes a proof of ⊢Σinitφ. □

Finally, we can prove overall conservativity:

Theorem 20. D is a conservative extension of initial HOL.

Proof. Assume D ⊢Σ φ, where φ ∈ FmlaΣinit . By Theorem 18, we have ⊢∆ UNF(φ). Moreover, by
Lemma 14(3), we have ⊢Σinit UNF(φ) = φ, hence, a fortiori, ⊢∆ UNF(φ) = φ. From these two, we
obtain ⊢∆ φ. With Lemma 19, we obtain ⊢Σinitφ, as desired. □

4.6 Abstract Constant Definition Mechanisms

As deinitional schemes for constants, we have only looked into the traditional equational ones,
implemented in most HOL provers. Two non-equational schemes have also been designed [Arthan
2014], and are available in HOL4, HOL Light and ProofPower-HOL: łnew speciicationž and łgen
new speciication.ž They allow for more abstract (under)speciication of constants.
However, these schemes have been shown not to increase expressiveness: łnew speciicationž

can be over-approximated by traditional deinitions and the use of the Choice operator, and łgen
new speciicationž is an admissible rule in HOL with łnew speciicationž [Arthan 2014; Kumar et al.
2014]. Hence our results cater for them.

5 CONSERVATIVITY OF ISABELLE/HOL DEFINITIONS

As mentioned in the introduction, Isabelle/HOL allows more lexible constant deinitions than
HOL, in that it enables ad hoc overloaded deinitions. For example, one can declare a polymorphic
constant, such as ≤ : α ⇒ α bool, and at later times (perhaps after some other type and constant
deinitions and declarations have been performed) deine diferent, non-overlapping instances of it:
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≤nat as the standard order on natural numbers, ≤bool as implication, etc. Even recursive overloading
is allowed, e.g., one can deine ≤α list as the component-wise extension of ≤α to α list:

xs ≤α list ys ≡ length xs = length ys ∧ (∀i < length xs. xsi ≤α ysi )

This means that now constant deinitions no longer require the constant to be fresh. In fact, we are
no longer speaking of constant deinitions, but of constant instance deinitions: The above examples
do not deine the overall constant ≤, but various instances of it, ≤nat, ≤bool and ≤list.

Definition 21. Given a non-built-in constant c , a type σ ≤ tpOf(c) and a closed term t : σ ,
we let cσ ≡ t denote the formula cσ = t . We call cσ ≡ t a constant-instance deinition provided
TV(t) ⊆ TV(cσ ).

To compensate for the lack of freshness from constant-instance deinitions, the Isabelle/HOL
system performs some global syntactic checks, making sure that deined instances do not overlap
(i.e., deinitions are orthogonal) and that the dependency relation ⇝n from Def. 8, terminates
[Kunčar 2015; Kunčar and Popescu 2015, 2017a].4 (Recall that D = Dn , hence⇝n is the dependency
induced by D, i.e., by all the considered deinitions.) Formally:

Definition 22. An Isabelle/HOL-well-formed deinitional theory is a set D of type and constant-
instance deinitions over Σ such that:

• It satisies all the conditions of Def. 2, except that it is not required that, in condition (1.2), c
be fresh, i.e., it is not required that c < Σi

• It is orthogonal: For all constants c , if cσ and cτ appear in two deinitions in D, then σ # τ
• Its induced dependency relation⇝n is terminating

We wish to prove meta-safety and conservativity results similar to the ones for traditional HOL.
To this end, we ix an Isabelle/HOL-well-formed deinitional theory D and look into the results of
Section 4 to see what can be reusedÐas it turns out, quite a lot.

First, the (type-translated) declaration signatures ∆i and the translation functions HOSTi , RELi
and UNFi are deined in the same way. The orthogonality assumption in Def. 22 ensures that, in
clause (U4) from the deinition of UNFi , the choice of t is unique (whereas before, this was simply
ensured by c appearing on the left in at most one deinition). The notion of meta-safety is then
deined in the same way. Thanks to⇝n being terminating, all the dependency relations⇝i , which
are included in⇝n , are also terminating. Then all the results in Section 4.3 hold, leading to the
totality of the translation functions. Furthermore, almost all the lemmas in Section 4.4 go through
undisturbed, because they do not need the freshness assumption c < Σi .
The only losses are parts of Lemmas 12 (extension of the translations from i to i + 1) and 16

(commutation with type substitution), namely, points (2) and (3) of these lemmasÐwhich deal with
RELi and UNFi . We irst look at Lemma 16.

WhileHOSTi still commuteswith substitution, this is no longer the case forRELi andUNFi . Essen-
tially,UNFi (σ [τ/α]) = UNFi (σ )[HOSTi (τ )/α] now fails becauseUNFi (σ [τ/α]) gets to unfold more
constant-instance deinitions than UNFi (σ ). So the diference is that, for the constant instances cσ ′

occurring in σ that happen to have a deinition of one of their instances, say, cσ ′′ ≡ t with σ
′′ ≤ σ ′,

activated by the substitution τ/α (meaning we have σ ′[τ/α] ≤ σ ′′, but σ ′ ≰ σ ′′),UNFi (σ [τ/α])will
unfold cσ ′ into the corresponding instance of UNF(t), whereas UNFi (σ )[HOSTi (τ )/α] will replace
cσ ′ with if˙t˙e (RELi (σ ′) cHOSTi (σ ′)) cHOSTi (σ ′) (ε RELi (σ

′)). (And since RELi depends recursively
on UNFi , the former will also fail to commute with type substitution.)

4These syntactic checks are part of Isabelle/HOL’s logical kernel, just like the local checks for standard HOL deinitions are

part of HOL’s kernel.
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Example 23. To Example 4’s signature, we add a declared constant c of polymorphic type α and
a deinition of its nat-instance, cnat ≡ z. We have UNF(cα [nat/α]) = UNF(cnat) = UNF(z), whereas
UNF(cα ) [HOST(nat)/α] = (if˙t˙e (REL(α) cHOST(α )) cHOST(α ) (ε REL(α))) [ind/α] = (if˙t˙e true
cα (ε (λx . true))) [ind/α] =HOL cα [ind/α] = cind, where we wrote =HOL for HOL-provable equality
(in the current signature). We do not need to evaluate UNF(z) in order to see that it cannot be equal,
not even HOL-provably equal, to cind. Indeed, the constant c was not even present in the signature
when z was deined, so UNF(z) cannot be connected to cind.

Fortunately, we can amend this mismatch łafter the factž by replacing cHOSTi (σ ′′) with UNFi (cσ ′′)
in UNFi (σ )[HOSTi (τ )/α] for all instances cσ ′′ (with σ ′′ ≤ σ ′) of all deined constant instances cσ ′ .
In the above example, this means replacing cind with UNF(cnat), i.e., with UNF(z). To express this
formally, we deine a constant-instance substitution to be a function γ : CInst•

∆i
⇒ Term∆i such

that, for all cσ ∈ CInst•∆i , γ (cσ ) is a closed term and TV(γ (c)) ⊆ TV(c)Ðthus assigning a term to

any instance of a non-built-in, i.e., declared constant in ∆
i . Using a notation similar to variable

substitution, we write σ [[γ ]] and t[[γ ]] for the efect of performing γ everywhere inside the type σ
or the term t .

Lemma 24. There exists a constant-instance substitution γ such that:

(1) ⊢∆i RELi (σ [τ/α]) = RELi (σ )[HOSTi (τ )/α] [[γ ]]
(2) ⊢∆i UNFi (t[τ/α]) = UNFi (t)[HOSTi (τ )/α] [[γ ]]

Now, the question is whether the partial consolation ofered by Lemma 24, a quasi-commutativity
property for RELi and UNFi , can replace full commutativity towards the central goal in Lemma 17,
namely, point (5) (which ensures meta-safety). Answering this will require some proof mining.
The only usage of Lemma 16 was for (1)i implies (2)i (which is part of an implication chain

leading to (4)i ; and both (2)i and (4)i are used for (5)i ). There, we used Lemma 16 m times to
infer ⊢∆i ∃xHOSTi (σ ′). RELi (σ

′) x ∧ UNFi (t ′) x from ⊢∆i ∃xHOSTi (σ ). RELi (σ ) x ∧ UNFi (t) x . So
we actually need a weaker statement:

Lemma 25. If ⊢∆i UNFi (φ), then ⊢∆i UNFi (φ[σ/α]).

For Lemma 12, the situation is quite similar to that of Lemma 16. This time, it is not substitution
that can enable additional unfoldings, but a newly added instance deinition cσ ≡ t at layer i + 1 for
a constant c that already existed at layer i . Moreover, when we look at how we employed Lemma
12 in the proof of our main chain of results in Lemma 17, we discover a similar pattern: We only
use that UNFi+1 and RELi+1 extend UNFi and RELi in the proof of (5)i implies (1)i+1, where we
needed that deduction at layer i + 1 is implied by deduction at layer i . By a similar trick as before,
this can be proved using a weaker quasi-commutativity property.

Lemma 26. If φ ∈ FmlaΣi , and ⊢∆i UNFi (φ), then ⊢∆i+1 UNFi+1(φ).

Lemma 25 and 26 relect a concession made to Isabelle/HOL’s ad hoc overloading: We can
no longer exhibit a precise structural relationship between UNFi (φ) on the one hand and and
UNFi (φ[σ/α]) or UNFi+1(φ) on the other, but we can prove that the latter are łat least as deducible
as the former.ž This would not have been possible had we not treated declared constants in a
guarded fashion in the UNFi clause (U3) (see the discussion on page 14).
Thus, we were able to recover Lemma 17’s point (5), leading to meta-safety. And since the

other ingredients in the proof of Theorem 20 are also available (including Lemma 19, which is
independent of the deinitional mechanisms), we infer conservativity. We obtained:

Theorem 27. Theorems 18 and 20 still hold if we assume that D is an Isabelle/HOL-well-formed
deinitional theory.
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A Note on Model-Theoretic Conservativity

Let us revisit some of the aspects of model-theoretic conservativity listed in the introduction’s
Figure 1. The reason why, for Isabelle/HOL constant instance deinitions, model-theoretic conser-
vativity over arbitrary base theories fails is the following: Say we add a constant instance deinition
cσ ≡ t over a base theory Θ1 with signature Σ1, such that Σ1 contains the constant c : τ (with
σ ≤ τ ) but the formulas in Θ1 do not refer to cσ or to any instance of c that is non-orthogonal to
cσ . Thus, Σ2 = Σ1 and Θ2 = Θ1 ∪ {cσ ≡ t}. Then we can easily build a standard model of Θ1 where
cσ ≡ t does not hold, implying that it cannot be extended to a model of Θ2Ðwhich contradicts
model-theoretic conservativity. (And (proof-theoretic) conservativity fails for a similar reason:
cσ ≡ t is provable from Θ2 but not from Θ1.)

We also mentioned in the introduction that, for constant deinitions over initial HOL, model-
theoretic conservativity follows from conservativity. Here is how the argument goes: Say Θ is a
conservative extension of initial HOL with a inite collection of constant (instance) deinitions. Then
Θ proves a formula φ that encodes these deinitions as a conjunction of existentially quantiied
formulas, where the deined constants (or constant instances) become existentially quantiied
variables of corresponding types. By conservativity, initial HOL also proves φ. Then any standard
model M (of initial HOL) satisies φ, which implies that the desired constants and types can be
deined inM , leading to an extension ofM to a standard model of ΘÐwhich proves model-theoretic
conservativity.
When trying to apply a similar trick for the case of Θ extending initial HOL with constant and

type deinitions, we face the problem that in HOL we are not allowed to quantify existentially over
type variables, to account for the deined types in Θ. Instead, we could appeal to the machinery
developed in this paper to perform a more direct proof of model-theoretic conservativity. Namely,
starting with a standard model (of initial HOL)M , we could build an extension to a standard model
of Θ by well-founded recursion on the terminating relations underlying the deinitions of HOST,
REL and UNF. The necessary types in M would be introduced taking advantage of the fact that
REL(σ ) : HOST(σ ) ⇒ bool and REL(σ ) is provably nonempty. Thus, for mixed constant-type
deinitions over initial HOL, model-theoretic conservativity would follow not from conservativity,
but from the machinery we developed to prove conservativity. We leave a rigorous proof of this as
future workÐuntil then, we will not haste to declare the problem closed.

In very recent work, Gengelbach andWeber [2017] prove a form of model-theoretic conservativity
for Isabelle/HOL over deinitional base theories. However, they do not work with standard models,
but employ the ground semantics we had developed for proving Isabelle/HOL’s consistency [Kunčar
and Popescu 2015]. The connection between ground-model conservativity and standard-model
conservativity is yet to be understood.

6 CONCLUDING REMARKS

We have resolved an open problem, relevant for the foundation of HOL-based theorem provers,
including our favorite one, Isabelle/HOL: We showed that the deinitional mechanisms in such
provers are meta-safe and conservative over pure HOL, i.e., are truly łdeinitional.ž Our result has
for HOL a foundational status analogous to strong normalization results for type theory.
Our translations compile away the constant and type deinitions, the latter being signiicantly

more problematic due to the lack of HOL infrastructure for unfolding them. In previous work
[Kunčar and Popescu 2017a] we address this infrastructure problem by introducing HOLC, an
extension of HOL with comprehension/reinement types. HOL type deinitions can be naturally
unfolded into HOLC types, yielding a HOL to HOLC translation that was suicient for showing
the consistency of Isabelle/HOL deinitions. However, that translation would be too coarse for the
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stronger results we proved here. Indeed, it is not even conservative, due to HOLC being able to
perform type deinitions inside proof contexts, unlike HOL. We conjecture that the translation
becomes conservative if we enrich HOL with the łlocal typedefž rule we proposed recently as a
non-invasive enhancement of HOL [Kunčar and Popescu 2016].
Our relativization predicates perform an encoding of types as terms, which bears a technical

resemblance to the intensional type analysis translations for programming languages introduced
in [Crary and Weirich 1999; Crary et al. 1998]. However, they map all (built-in) types to terms,
essentially by a structurally recursive traversal. On the other hand, we focus on representing HOL’s
deined reinement-like types only. Our recursion has a łvertical,ž structural component (relecting
the structure of the host, built-in types), but also a łhorizontalž component, given by unfolding the
type deinitions.

Our statement of meta-safety is calibrated to what we believe is the key desirable property: that
deinitions can all be compiled away, without loss of provability. An even more general statement
would involve compiling away some deinitions E ⊆ D only, and translating any statement involving
all deinitions into one involving all deinitions but those in E.
However, even the formulation of meta-safety seems problematic here: Say we deine the poly-

morphic type α k as the subset if˙t˙e (cardinal α = 3) {true, false} {true} of bool. Then we deine
the type l as the subset {1, 2, 3} of ind. Stating that l ’s deinition is meta-safe over k’s deinition
would require us, e.g., to ind a host type for l k without being allowed to unfold k . The only
sensible choice for the host would be ind k , which is not suitable since l k is larger than ind k :
The former has two elements, whereas the latter has one. This means that we cannot relativize
l k as a predicate on ind k . Abstractly, the problem is that we cannot lift relativization predicates
from the types with which α k may be instantiated (such as l ). If each HOL type constructor had
the structure of a relator (endofunctor on the category of sets having relations as morphisms), the
lifting would be possible in a canonical way. And most useful types in HOL, e.g., all combinations
of inductive and coinductive datatypes and function spaces, are in fact relators [Traytel et al. 2012].
However, typedef can introduce (rather strange looking) non-relators: k is an example of a type
constructor that cannot be organized as a relator.
Also, if k were merely declared, we would not have a problem, since then we could treat it as a

black box that renders ind k and l k indistinguishable; so we could take the latter’s relativization
predicate to be vacuously true. In our meta-safety theorems, we employed this trick to cover
declarations intermixed with deinitions.

Notwithstanding the diiculty with formulating a more general meta-safety, we believe conser-
vativity holds more generally, but requires a diferent proof technique.
A worthwhile future endeavor will be to certify our results on the foundations of HOL-based

proof assistants (in this and our previous papers) by formalizing them in a proof assistant. The
main diiculty will involve the notion of recursion for syntax with bindings. The state of the art in
recursion principles modulo alpha (as in Nominal Logic) only ofers structural recursion, hence is
not applicable to our functions REL and UNF, which need a more general, well-founded recursion.
So we could either take a low-level approach (such as working with raw, non-quotiented terms and
then prove compatibility with alpha), or use these functions as an inspiration to irst design and
formalize more powerful principles ourselves, e.g., extending the Horn-based approach to recursion
for binders and swapping/substitution [Gheri and Popescu 2017; Norrish 2004; Popescu and Gunter
2011]. Another alternative would be to use higher-order abstract syntax (HOAS), as implemented
in Twelf [Pfenning and Schürmann 1999] or Beluga [Pientka and Dunield 2010]Ðbut this would
still leave behind an informal residuum: a pen-and-paper proof of adequacy. We will also explore
the possibility to deploy łHOAS on top of FOASž [Popescu et al. 2010], a framework that enables
HOAS while also formalizing adequacy (in the Isabelle/HOL prover).
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A MORE DETAILS ON HOL

It is well-known (and easy to prove) that substitution respects typing:

Lemma 28. If t : σ , then t[ρ] : σ [ρ].

When writing concrete terms or formulas, we take the following conventions:

• We omit redundantly indicating the types of the variables, e.g., we shall write λxσ . x instead
of λxσ . xσ .
• We omit redundantly indicating the types of the variables and constants in terms if they can
be inferred by typing rules, e.g., we shall write λx . (yσ⇒τ x) instead of λxσ . (yσ⇒τ x) or
ε(λxσ . P x) instead of ε(σ⇒bool)⇒σ (λxσ . Pσ⇒bool x).
• We write λxσ yτ . t instead of λxσ . λyτ . t
• We apply the constant = in an inix manner, i.e., we shall write tσ = s instead of = tσ s .

The formula connectives and quantiiers are deined as abbreviations in the usual way, starting
from the implication and equality primitives:

true = (λxbool. x) = (λxbool. x)

allσ = λpσ⇒bool. p = (λxσ . true)

(in what follows, we write ∀xσ . t instead of allσ (λxσ . t))

and = λpbool qbool. ∀fbool⇒bool⇒bool. f p q = f true true

implies = λpbool qbool. and p q = p

(in what follows, we write p −→ q instead of implies p q)

exσ = λpσ⇒bool. ∀qbool. (∀xσ . p x −→ q) −→ q

false = ∀pbool. p

not = λpbool. p −→ false

or = λpbool qbool. ∀rbool. (p −→ r ) −→ ((q −→ r ) −→ r )

As customary, we write:

• ∃xσ . t instead of exσ (λxσ . t)
• ¬ φ instead of not φ
• φ ∧ χ instead of and φ χ

• φ ∨ χ instead of or φ χ

The HOL axioms, forming the set Ax, are the following:

• Equality Axioms:
refl: xα = x

subst: xα = y −→ p x −→ p y

• Ininity Axioms:
suc˙inj: suc x = suc y −→ x = y

suc˙not˙zero: ¬ suc x = zero
• Choice:

some˙intro: pα⇒bool x −→ p (ε p)

Above, refl and subst axiomatize equality. suc˙inj and suc˙not˙zero ensure that ind is an ininite
type. some˙intro regulates the behavior of the Hilbert Choice operator. The primciple of excluded
middle, (b = true) ∨ (b = false), follows from the axiom of choiceÐthis makes HOL a classical logic.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 24. Publication date: January 2018.



24:28 Ondřej Kunčar and Andrei Popescu

B DETAILED DEFINITION OF THE OPERATORS USED IN THE DEPENDENCY

RELATION

Note that the types• operator is overloaded for types and terms.

types•(α) = {α }

types•(bool) = ∅

types•(ind) = ∅

types•(σ1 ⇒ σ2) = types•(σ1) ∪ types•(σ2)
types•(σ k) = {σ k}, if k ,⇒, bool, ind

types•(xσ ) = types•(σ )
types•(cσ ) = types•(σ )

types•(t1 t2) = types•(t1) ∪ types•(t2)
types•(λxσ . t) = types•(σ ) ∪ types•(t)

cinsts•(xσ ) = ∅

cinsts•(cσ ) =

{

{cσ } if cσ ∈ CInst•

∅ otherwise
cinsts•(t1 t2) = cinsts•(t1) ∪ cinsts•(t2)

cinsts•(λxσ . t) = cinsts•(t)

C PROOF SKETCHES

In the proofs, we use several induction schemas, it for the purpose:

• Well-founded induction on types and/or terms with respect to one of the (known to be
terminating) relations ▶▶i and ▶i : Given u, we can assume the property holds for all items
u ′ such that u ▶▶i u

′ (or u ▶i u
′) and need to prove it for u. So whenever we indicate a proof

by well-founded induction, we will implicitly refer to one of these two, namely, to the irst
when proving something about HOSTi and to the second when proving something about
RELi and/or UNFi .
• Structural induction on types and/or terms: Given u, we can assume the property holds for all
immediate subtypes/subterms of u and need to prove it for u.
• Rule induction with respect to the deinition of typing or the deinition of HOL deduction: To
conclude that typing or deduction implies a property, we prove that the property is closed
under the rules deining typing or deduction.

In all these schemas, (IH) denotes the induction hypothesis.

Proof of point (1) of Prop. 7. We irst deine, for any type constructor k ∈ Σi , the operator
depthk : Type

Σi
⇒ N to return, for any type, the length of the longest nesting of k’s appearing in

it, namely:

depthk (α) = 0
depthk ((σ1, . . . , σm) l) =

{

1 +max{depthk (σi ) | i ∈ {1, . . . ,m}} if l = k
max{depthk (σi ) | i ∈ {1, . . . ,m}} if l , k

Let Ki and Ki be the sets of type constructors of Σ1 ∪
⋃i

i′=1 Σ
i′ ∖ Σi′−1 and Σi , respectively. Note

that Ki ⊆ Ki and that Ki ∖ Ki contains the deined type constructors, whereas Ki contains the
declared and built-in ones (up to moment i). We chose an arbitrary total order ≻ on Ki , and then
extend it to a homonymous total order on Ki , as follows:

• If k ∈ Ki and l ∈ Ki , then l ≻ k

• If k1, k2 ∈ Ki , then k1 ≻ ki if k1 was introduced later than k2, i.e., if the unique j1 ≤ i such
that k1 appears in the lefthand side of def j1 is greater than the unique j2 ≤ i such that k2
appears on the lefthand side of def j2
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Since Ki is inite, it has the form {k1, . . . , kp } with k1 ≻ . . . ≻ kp . We deine the measure meas :
Type

Σi
→ N

p by meas(σ ) = (depthk1 , . . . , depthkp ). Finally, we note that ▶▶i decreases this

measure w.r.t. the lexicographic order on Np (which ensures its termination). Indeed, we consider
the two cases in the deinition of ▶▶i :

• In the irst case (given by recursive clause (U3)), all depthkj remain the same or decrease, and

depthk decreases by 1
• In the second case (given by recursive clause (U4)), we know from the well-foundedness of D
that σ only contains type constructors l with k ≻ l . Therefore, we have:

depthk ((σ1, . . . , σm) k) = 1 +max {depthk (σj ) | j ∈ {1, . . . ,m}} >
max {depthl (σj ) | j ∈ {1, . . . ,m} ∧ αi ∈ TV(σ )} = depthk (σ [σ1/α1, . . . , σm/αm])

Moreover, for any l such that l ≻ k , we have:

depthl ((σ1, . . . , σm) k) = max {depthl (σj ) | j ∈ {1, . . . ,m}} ≥
max {depthl (σj ) | j ∈ {1, . . . ,m} ∧ αi ∈ TV(σ )} = depthl (σ [σ1/α1, . . . , σm/αm])

Thus, depthk decreases strictly and, for l ≻ k , depthl remains the same or decreases; this
ensures that meas decreases. □

Proof of Lemma 9. We proceed similarly to the proof of termination for the call graph of HOSTi ,
but considering Σi -constants in addition to Σi -type constructors. Similarly to there, for each
e ∈ Ki∪Consti , we deine depthe : Type

Σi
∪TermΣi

⇒ N, theu-depth of a type or term, to the length
of the longest nesting ofu’s appearing in it.We similarly order the items inKi∪Consti by a relation ≻
asking that all deined items are greater than all non-deined ones and a later deined item is greater
than an earlier deined one. Assuming Ki ∪ Consti has the form {e1, . . . , ep } with e1 ≻ . . . ≻ ep ,
we deine the measure meas : Type

Σi
∪ TermΣi

→ Np by meas(v) = (depthe1 (v), . . . , depthep (v)).

We show that meas decreases with⇝↓i w.r.t. the lexicographic order on N
p (which makes⇝

↓
i

terminating). Assume u ⇝
↓
i v . Then there exists u ′,v ′, ρ such that u = u ′[ρ], v = v ′[ρ] and

u ′ ⇝i v
′. Then u ′ is either a type of the form (α1, . . . , αm)k with k ∈ Ki , or a constant instance cσ ;

meaning u is either (ρ(α1), . . . , ρ(αm))k or cσ [ρ]. We let e denote either k or c . In both cases, we
have v ′ ∈ types•(t) ∪ cinsts•(t) for some t ∈ TermΣi

. Hence v ∈ types•(t[ρ]) ∪ cinsts•(t[ρ]). By
the well-formedness of D, e is greater than all the type constructors and constants in t (w.r.t. ≻).
Then depthe (u) > depthe (v) and, for all e

′ such that e ′ ≻ e , depthe ′(u) ≥ depthe ′(v). This ensures
meas(u) > meas(v). □

Proof of Lemma 10. By routine structural induction on t . □

Proof of Lemma 11. Let us assume by absurd that ▶i does not terminate. Then there exists an

ininite sequence (wp )p∈N such thatwp ▶i wp+1 for allp. Since▶i is deined as≡
↓
i ∪ ▷ and▷ clearly

terminates, there must exist an ininite subsequence (wpj )j ∈N such thatwpj ≡
↓
i wpj+1 ▷

∗ wpj+1 for

all j. Since from the deinition of ≡
↓
i we havewpj ∈ Type

•
Σi
∪ CInst•

Σi
, we obtain from Lemma 10

thatwpj ⇝
↓
i wpj+1 for all p. This contradicts the termination of⇝

↓
i . □

Proof of Lemma 12. (1): By an easy well-founded induction on σ w.r.t.▶▶i , distinguishing between
the diferent cases in the deinition of HOSTi and HOSTi+1. The deinitions are identical for the
two functions, and for the deined type case (clause (H3)), we know that k is in Σi , ensuring that
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(σ1, . . . , σm)k ≡ t is in Di .
(2) and (3): Similar to (1), by an easy well-founded induction on σ and t w.r.t. ▶i . □

Proof of Lemma 13. By well-founded induction on σ and t , distinguishing between the diferent
cases in the deinitions of RELi and UNFi . The proof is routine. We only show the two slightly less
obvious cases, where we employ the local notations used in the deinitions (e.g., σ ′, t ′):
The deined type case for RELi (clause (R4)): We know that (σ1, . . . , σm)k ▶i σ ′ and also that
(σ1, . . . , σm)k ▶i t

′. Moreover, from t : σ we obtain t ′ : σ ′. Hence, by (IH), we have RELi (σ ′) :
HOST(σ ′) ⇒ bool and UNFi (t ′) : HOST(σ ′). From this, the deinition of RELi and the HOL typing
rules, we obtain RELi ((σ1, . . . , σm)k) : HOSTi (σ ′) ⇒ bool. Finally, from the deinition ofHOSTi we
have HOSTi (σ ′) = HOSTi ((σ1, . . . , σm)k), hence RELi ((σ1, . . . , σm)k) : HOSTi ((σ1, . . . , σm)k) ⇒
bool, as desired.
The deined constant case for UNFi (clause (U4)): We know that cσ ▶i t[ρ]. Moreover, since
σ = τ [ρ] and t : τ , by Lemma 28 we have that t[ρ] : σ . By (IH), we have UNF(t[ρ]) : HOST(σ ); and
since UNFi (cσ ) = UNFi (t[ρ]), we obtain UNFi (cσ ) : HOST(σ ), as desired. □

Proof of Lemma 14. (1) and (2): Immediate by structural induction on σ .
(3): Immediate by structural induction on t . For the variable case, we use point (2) to obtain
⊢Σ0 UNFi (xσ ) = xσ from the behavior of if-then-else.
(Since Σinit has no deined or declared items, the recursive cases that deal with such items do

not occur when applying the translations, and in particular RELi does not depend recursively of
UNFi . This is why structural induction does the job, so there is no need for the more powerful
well-founded induction.) □

Proof of Lemma 15. Immediate well-founded induction, using the property that deinitions do
not introduce free term variables or type variables. □

Proof of Lemma 16. By routine well-founded induction, using the properties of type substi-
tution. For example: In the deined type cases for HOSTi and RELi (clauses (H3) and (R4)), we
use that, if TV(σ ) ⊆ {α1, . . . , αm} (as it is guaranteed by Def. 1), σ [σ1/α1, . . . , σm/αm][τ/α] =
σ [(σ1[τ/α])/α1, . . . , (σm[τ/α])/αm]; in the deined constant case for UNFi (clause (U4)), we use
that t[ρ][τ/α] = t[ρ · (τ/α)]. (Recall that · is the composition of substitutions.) □

Proof of Lemma 24. We will write t1 =∆i t2 instead of ⊢∆i t1 = t2. We deine γ to map each
cHOSTi (σ ) to UNFi (cσ ). Thanks to Lemma 15(3), γ is indeed a constant-instance substitution. Now,
points (1) and (2) follow by well-founded induction on the mutually recursive deinitions of RELi
and UNFi . The only interesting case is that of deined constants (clause (U4) for UNFi ). Assume
σ [τ/α] = σ ′[ρ], such that cσ ′ ≡ t ∈ Di . We have two cases:

First, assume σ ≤ σ ′, say, σ = σ ′[ρ ′] for some ρ ′. Then ρ and ρ ′ · (τ/α) are equal on TV(σ ′),
a fortiori, on TV(t). Hence t[ρ] = t[ρ ′ · (τ/α)]. i.e., t[ρ] = t[ρ ′][τ/α] (*). Both UNFi (cσ [τ/α]) and
UNFi (cσ ) will unfold the deinitions of their corresponding instances of c , allowing us to infer the
desired fact from the induction hypothesis:

UNFi (cσ [τ/α]) = UNFi (cσ [τ /α ]) = UNFi (cσ ′[ρ]) = (by (U4)) =
UNFi (t[ρ]) = (by (*)) = UNFi (t[ρ ′][τ/α]) =∆i
(by the induction hypothesis)
UNFi (t[ρ ′])[HOSTi (τ )/α][[γ ]] = (by (U4)) =
UNFi (cσ ′[ρ′])[HOSTi (τ )/α][[γ ]] = UNFi (cσ )[HOSTi (τ )/α][[γ ]]
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Next, assume σ ≰ σ ′. Then only UNFi (cσ [τ/α]) unfolds the deinition of c ′σ , but γ repairs the
mismatch. To ease readability, we will write ˙[•] instead of ˙[HOSTi (τ )/α].

UNFi (cσ [τ/α]) =∆i
(since ⊢∆i RELi (σ [τ/α]) UNFi (cσ [τ /α ]) holds)
if˙t˙e (RELi (σ [τ/α]) UNFi (cσ [τ /α ])) UNFi (cσ [τ /α ]) (ε RELi (σ [τ/α])) =
(by the deinition of γ )
if˙t˙e (RELi (σ [τ/α]) γ (cHOSTi (σ [τ /α ]))) γ (cHOSTi (σ [τ /α ])) (ε RELi (σ [τ/α])) =
(by the deinition of constant substitution)
if˙t˙e (RELi (σ [τ/α]) cHOSTi (σ [τ /α ])[[γ ]]) cHOSTi (σ [τ /α ])[[γ ]] (ε RELi (σ [τ/α])) =
(by (IH) for RELi and HOSTi ’s commutation with substutition)
if˙t˙e (RELi (σ )[•][[γ ]] cHOSTi (σ )[•][[γ ]]) cHOSTi (σ )[•][[γ ]] (ε[•][[γ ]] RELi (σ )[•][[γ ]]) =
(by the deinition of constant substitution)
(if˙t˙e (RELi (σ ) cHOSTi (σ )) cHOSTi (σ ) (ε RELi (σ ))) [•][[γ ]] =
(by (U3))
UNFi (cσ )[•][[γ ]] □

Proof of Lemma 25. By Lemma 24(2), we have a constant-instance substitution γ such that
UNFi (φ[σ/α]) = UNFi (φ)[HOSTi (σ )/α][[γ ]]. And since ⊢∆i UNFi (φ)[HOSTi (σ )/α] follows from
⊢∆i UNFi (φ) by the type substitution rule (T-Inst), it would suice to have the following: For
all constant-instance substitutions γ and ∆

i -formulas φ, ⊢∆i φ implies ⊢∆i φ[[γ ]]. In words, if
we substitute some (undeined) constant instances with terms of the same type we do not lose
provability. This follows by routine induction on the deinition of deduction. □

Proof of Lemma 26. If def i+1 is a type deinition, then UNFi+1 and RELi+1 do extend UNFi and
RELi , so the desired fact follows trivially. Now, assume def i+1 is a constant-instance deinition
cσ ≡ t . Similarly to the proof of Lemma 24(2), we obtain a constant-instance substitution γ such
that UNFi+1(φ) = UNFi (φ)[[γ ]], namely, γ maps each dHOST(τ [ρ]) to UNFi+1(s[ρ]) where dτ ≡ s are
the constant deinitions in Di+1. (We need to do this replacement to all deined constant instances,
not just cσ , since other deinitions from Di may have already relied on cσ .) And since, as we have
seen, constant-instance substitution preserves deduction, we obtain our desired fact. □
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