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Study of the development of three-dimensional
sets of fluid particles and iso-concentration fields

using kinematic simulation

By F. C. G. A. NICOLLEAU AND A. ELMAIHY

Department of Mechanical Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, UK

(Received 2 February 2003 and in revised form 24 June 2004)

We use kinematic simulation (KS) to study the development of a material line im-
mersed in a three-dimensional turbulent flow. We generalize this study to a material
surface, cube and sphere. We find that the fractal dimension of the surface can be
explained by the same mechanism as that proposed by Villermaux & Gagne (Phys.
Rev. Lett. vol. 73, 1994, p. 252) for the line. The fractal dimension of the line or the
surface is a linear function of time up to times of the order of the smallest characteristic
time of turbulence (or Kolmogorov timescale). For volume objects we describe the
respective role of the Reynolds number and of the object’s characteristic size. Using
the method of characteristics with KS we compute the evolution with time of a
concentration field C(x, t) and measure the fractal dimension of the intersection of this
scalar field with a given plane. For these objects, we retrieve the result of Villermaux &
Innocenti (J. Fluid Mech. vol. 393, 1999, p. 123) that the Reynolds number does not
affect the development of the fractal dimension of the iso-scalar surface and extend
this result to volume geometries. We also find that for volume objects the characteristic
time of development of the fractal dimension is the large scales’ characteristic time
and not the Kolmogorov timescale.

1. Introduction

Mixing is an important and complex problem of fluid mechanics with many prac-
tical applications. One way to look at it is to study interface geometry by measuring
fractal dimensions. This has led to the definition of burning rates using the flamelet
approach (see e.g. Gouldin 1987; Nicolleau & Mathieu 1994). It is believed that the
fractal dimension of a line develops from the smallest turbulence eddies to the largest
(Villermaux & Gagne 1994), but cases of practical interest concern a blob of con-
centration that is three-dimensional objects or sections of such objects and the role
of turbulence eddies in the development of the fractal dimension of these objects has
received less attention.In terms of engineering applications, if surfaces are relevant
to propagation flames and spark engines, compression ignition engines rely on good
volume mixing. Can we find any useful relation between what we know of the
fractal dimension of the line and those of the surface and volume? We try to answer
that question using kinematic simulation to track particles and measure fractal
dimensions of material lines, surfaces and volumes and of a blob of particles evolving
in a turbulence field. Kinematic simulations provide realizations of the Lagrangian
field, a necessary step as there is no possibility of measuring fractal dimensions
from mean quantities. By contrast to direct numerical simulation, they also provide
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large-Reynolds-number computations or, more exactly, large ratios of inertial range
scales, the very range where the fractal dimension is to develop.

The paper is organized as follows: this first section introduces the basics of kinematic
simulation and particle tracking. Section 2 deals with the line, § 3 with the plane and
§ 4 with the volume. Section 5 complements § 4 with the study of an iso-scalar object.
Finally, § 6 concludes this paper.

1.1. Kimematic simulation

Kinematic simulations (KS) are Lagrangian models of turbulent diffusion based on
kinematically simulated turbulent velocity fields which are non-Markovian (not Dirac-
correlated in time), incompressible and consistent with up to second-order statistics
of the turbulence such as energy spectra. (See for instance Fung et al. (1992) for more
details on the assumptions underlying KS.)

Kinematic simulations can reproduce detailed statistics of the Lagrangian velocity
field such as flatness factors of Lagrangian relative velocities (Malik & Vassilicos
1999). By comparison to a Wiener process which causes fluid element pairs to separate
in Lagrangian models of relative diffusion based on Langevin-type equations, the
mechanism by which fluid element pairs separate in KS might be comparable to that
in turbulent flows.

In practice, the KS approach relies on the integration of

dx

dt
= u(x, t), (1.1)

where x is the position of the fluid particle and u a turbulent-like Eulerian velocity
field. Statistics are then performed on the trajectories. Incompressibility is enforced in
the construction of u and the energy spectrum is prescribed according to the type of
turbulence considered.

KS can be used to track particles with inertia (Fung, Hunt & Perkins 2003) and
in some cases it can be extended to no isotropic turbulence (Nicolleau & Vassilicos
2000), but here we will only consider fluid particles released in a three-dimensional
isotropic turbulence.

If u(x, t) is known, solving (1.1) is straight forward; but solving u(x, t) at every point
and time can be difficult. Because of the computational expense of DNS, kinematic
simulations have been proposed to simulate Lagrangian properties of turbulent flow
fields. In KS, random flow fields are generated whose statistics agree with values
obtained from experimental measurements or other reliable numerical simulations.
KS use an analytical formula for u(x, t), therefore they are not grid-based and no
interpolation of the velocity field is needed.

In this paper, we use a three-dimensional KS similar to that of Nicolleau & Yu
(2004). The Eulerian velocity field used in (1.1) is generated as a sum of random
Fourier modes. Incompressibility is enforced by construction of the velocity field in
every realization. The energy spectrum is prescribed to take a −5/3 power law form
(see also Fung et al. 1992; Elliott & Majda 1996; Fung & Vassilicos 1998; Malik &
Vassilicos 1999; Nicolleau & Vassilicos 2003).

1.2. The velocity field

As in Nicolleau & Yu (2004), our three-dimensional KS velocity field is given as a
sum of N random Fourier modes, i.e.

u(x, t) =

N∑

n=1

(an × k̂n) cos(kn · x + ωnt) + (bn × k̂n) sin(kn · x + ωnt), (1.2)
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k̂n defined as k̂n = kn/|kn| is a random unit vector so that

kn = |kn |̂kn = |kn|




sin θn cos φn

sin θn sinφn

cos θn



 , (1.3)

where θn ∈ [0, π] and φn ∈ [0, 2π] are picked randomly in each mode and realization.
an and bn are random and uncorrelated vectors with their amplitudes being chosen
according to a prescribed power law energy spectrum E(k), i.e.

|an|2 = |bn|2 = 2
3
E(kn)�kn (1.4)

and

E(k) =
u2

0

k1

(
k

k1

)−5/3

for k1 � k � kN ,

E(k) = 0 otherwise.





(1.5)

Typical turbulence parameters we vary are the integral length scale

L =
3π

4

∫ kN

k1

E(k)k−1 dk

∫ kN

k1

E(k) dk

(1.6)

in the limit of large Reynolds numbers (i.e. kN → ∞)

L ≃ 3π

10

1

k1

= 3
20

L1,

the turbulent velocity fluctuation intensity, defined by

u′ =

√
2
3

∫
E(k) dk

note that

u′ ≃ u0

for large enough Reynolds numbers and the Kolmogorov length scale, defined by

η =
2π

kN

.

Hence, in KS, rather than the Reynolds number, the natural parameter is the ratio
L1/η = kN/k1 which is input data of the computation. An order of magnitude for the
Reynolds number (Re) can be obtained from the relation

Re ∼
(

L

η

)4/3

.

We will see later on how we can calibrate an equivalent Reynolds number for the KS.
In this paper, the distribution of the wavenumber is geometric, i.e.

kn = k1

(
kN

k1

)(n−1)/(N−1)

. (1.7)
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Figure 1. ln Nb as a function of − ln ǫ for different values of λ. The box-counting was made
at t = 0.057L/u′ for L1/η = 178. Different curves corresponds to +, λ = 0; ×, λ= 0.5; ∗, λ= 1;
�, λ= 5; �, λ= 20. The line corresponds to the best fit curve between the two arrows, i.e.
y = 8.7x1.199.

It is possible to introduce a frequency ωn that determines the unsteadiness associated
with the nth wavemode. Malik & Vassilicos (1999) chose it to be proportional to the
eddy-turnover time of the nth wavemode, i.e.

ωn = λ
√

k3
nE(k), (1.8)

where λ is the unsteadiness parameter and may be expected to be of the order of 1.
It has been shown in isotropic turbulence (Malik & Vassilicos 1999) that for two-
particle diffusion a significant number of statistical properties are insensitive to the
unsteadiness parameter value in the range 0 � λ� 1 in three-dimensional KS. In
accordance with these results, we do not add any unsteadiness term to the KS. This
is particularly justified here as we are not interested in the large-time random walk
regime of the fluid particle diffusion. In this paper, particles are tracked for times
smaller than 2/3 of the characteristic time τd = u′/L. This result is further illustrated
in figure 1. As discussed in § 2, the fractal dimension is measured from the slope of
the line fitting the points between the two arrows in figure 1. We repeat the results for
λ=0, 0.5, 1, 5 and 20. As can be seen, λ has no effect on these points provided that it
is in the range [0, 1]. For λ> 1, the fractal dimension tends rapidly to 1 as λ increases,
i.e. there is no turbulence structure. This is because the velocity field will be flapping
so fast at all scales that the fluid elements do not have the time to experience the
effect of eddying, streaming and straining flow structure (Malik & Vassilicos 1999).

It should also be noted from the constructed velocity field (1.2) that the coefficients
of the nth Fourier mode are normal to kn ensuring the incompressibility of the
velocity field trajectory by trajectory.

In table 1 we summarize the different cases we run varying L and η.

1.3. Fractal dimension from kimematic simulation

Two-dimensional kinematic simulations were used by Fung & Vassilicos (1991) to
compute the fractal dimension of a line. The use of KS allows us to reach large
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�0/η for

Case u′ L η τd = L/u′ kN/k1 (kN/k1)
4/3 Line Plane Cube Iso-scalar

A 0.57 1.21 0.72 2.12 8.74 18 3.6 × 10−4

B 0.57 1.14 0.46 2.00 13.77 33 1.1 × 10−3

C 0.57 1.05 0.17 1.84 36 120 2.9 × 10−3 0.06 6 × 10−3

D 0.57 1.00 6.28 × 10−2 1.76 100 464 8.0 × 10−3 0.16 0.16
E 0.57 0.99 3.53 × 10−2 1.74 178 1000 1.4 × 10−2 0.28 0.28 2 × 10−2

F 0.57 0.98 2.10 × 10−2 1.72 299 2000 2.4 × 10−2 0.48
G 0.57 0.97 1.25 × 10−2 1.71 503 4000 4.0 × 10−2 0.80
H 0.57 0.97 6.25 × 10−3 1.70 1000 10 000 1.60 1.60 1.6 × 10−1

Table 1. Different KS case summary, �0 is the initial distance separating two
neighbouring points.

Reynolds numbers. In this paper, we are more interested in the development of the
fractal dimension of a line or surface than in its final value. As shown by Villermaux &
Gagne (1994), this evolution is linked to the turbulence scales existing in the flow and
this is a good validation for KS.

In practice, particles are released from their initial position at an initial time t0 that
for the sake of simplicity we set to 0, then we use KS to track the particle trajectories.
The line discretization �0 is fixed at t0, the corresponding values for �0/η are reported
in table 1. This initial distance is chosen small enough so that it remains small during
the diffusion process for the fractal dimension to be accurate. In the case of the line,
the r.m.s value of the distance between two neighbour particles is always at least
10 times smaller than the Kolmogorov length scale when we stop the computation.
For other geometries, we could not afford that precision for all Reynolds numbers,
but this was maintained at least for Re< 4000 and no particularities were observed
in the two cases Re> 4000. At any time we can measure the fractal dimension of
the set of points formed by the points where the particles are. We use the modified
box-counting method of Buczkowski et al. (1998) to compute the fractal dimension.
A case is shown in figure 2 where we plot the number of boxes Nb as a function of
the inverse of the size of the box 1/ǫ. There is a fractal dimension if Nb is a power
law of ǫ, that is in a logarithmic plot:

ln Nb = −D ln ǫ + C,

where D is the fractal dimension. Figure 2 is representative of our results, for all
fractal dimensions that we measured we observed the power law over more than 1
decade or a minimum range of [L/3, 3η].

1.4. Evolution of an iso-scalar field

We can also use kinematic simulation to predict the evolution of a blob of concen-
tration released in a turbulent velocity field and compute its fractal dimension as a
function of time.

We use the method developed in (Flohr & Vassilicos 2000) to obtain concentrations
as functions of space and time when molecular diffusion is neglected. This is studied
in § 5.
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Figure 2. Precision of the box-counting method used in the computation of the fractal
dimension. ln Nb as a function of − ln ǫ at t = 0.057L/u′ for L1/η =178.

2. Fractal dimension of an initially one-dimensional line

The development of a fractal line was studied in (Nicolleau 1996); numerical re-
sults from a large eddy simulation were compared to experiments and theory from
Villermaux & Gagne (1994). A general formula was proposed for the fractal dimension
of the line Dl:

Dl − 1

0.088Re1/2
=

t

τd

, (2.1)

where τd =L/u′ is the turnover time. However, this was only validated for a limited
range of Reynolds numbers and the numerical method then used was an LES which
by construction does not resolve small-scale turbulence.

However, two-particle statistics are very significantly influenced by the entire range
of flow structures (see e.g. Batchelor 1952). So, it is important to validate (2.1) with
large Reynolds numerical experiments that involve large ratios of length scales and
KS can do that.

Initially, the particles are released in the horizontal plane z = −0.25L on a line from
point (−2.5L, 0.25L) to point (2.5L, 0.25L) as shown in figure 3. The parameters of
the different turbulences considered are reported in table 1.

In figure 4, we plot (Dl − 1)/0.088Re0.5 as a function of t/τd for experimental, LES
and KS results. KS results in figure 4 correspond to the cases A, B, C, D, E, F and
G described in table 1. For experimental cases, we use for the Reynolds numbers
the values provided in Villermaux & Gagne (1994). For KS, we define the Reynolds
number as

Re = 30.25

(
L

η

)4/3

= 2.61

(
L1

η

)4/3

. (2.2)
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Figure 3. Evolution of a line embedded in turbulence as a function of time.
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Figure 4. Evolution of the normalized fractal co-dimension of a line (Dl − 1)/0.088Re1/2 as
a function of t(u′/L): KS for (L1/η)4/3 = 18 (+), 33 (×), 120 (∗), 464 (�), 1000 (�), 2000 (�)
and 4000 (�); Villermaux’s experiment Re =18 (�) and 33 (�); LES for Re =120 (�).

This is because in the demonstration for (2.1), what matters is the range of scales over
which the fractal process occurs. This range is the range over which the spectral −5/3
power law is observed, that is [L1, η] in the case of KS. Whereas for experimental
spectra, the power law k−5/3 is observed over a range shorter than [L, η]. So for the
same values of L and η, KS have a wider range of scales over which the fractal
dimension can develop and we have to account for this difference. In (2.2), we define
the KS Reynolds number such that the line results match the experimental curves
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Figure 5. (a) +, non-dimensional time τml/τd at which the maximum fractal dimension of
the line is obtained as a function of (L1/η)4/3; ×, re-scaled non-dimensional time (τms/τd )/2 at
which the maximum fractal dimension of the square is obtained as a function of (L1/η)4/3

(see § 3.2). Interpolating line is τml/τd = 2.77(L1/η)−2/3. (b) Maximum fractal dimension Dmax

reached by the line as a function of (L1/η)4/3.

from Villermaux & Gagne (1994). From now on, Reynolds numbers associated to a
KS will use definition (2.2).

We observe that:
(i) The line’s fractal dimension obeys (2.1) with Re given by (2.2). It even catches

the theoretical curve at small times better than the lines computed with LES. This is
because the turbulence structures acting at small times have the smallest length scales
and are the ones most likely to be influenced by the LES subgrid.

(ii) KS predicts an asymptotic value Dl ≃ 1.37 (see figure 5b).
(iii) Equation (2.1) is still valid for large Reynolds numbers (up to L1/η = 503)

and figure 5b validates the fact that the time necessary to reach the asymptotic value
Dl ≃ 1.37 τml is proportional to 1/

√
Re. With KS we find

τml = 2.77

(
η

L1

)2/3
L

u′ = 0.81
( η

L

)2/3 L

u′ ≃ τη. (2.3)

Having the line’s maximum dimension reached in such a short time may be surprising
but, as a comparison, if we put the obvious upper bound Dl = 3 in (2.1) then we
obtain:

t(Dl = 3) = 22.7τη.

Hence, from the multiplicative approach adopted in Villermaux & Gagne (1994), the
maximum fractal dimension has to be reached by few Kolmogorov time scales. Though
there is no way to know this value from this theory. Earlier works by Meneveau &
Sreenivasan (1990) (Sreenivasan, Ramshankar & Meneveau 1989) propose 1.33 � Dl �

1.36. Another approach by Queiros-Conde (1999, 2000) using the concept of entropic
skins leads to the same order of magnitude for τml .

(iv) The line’s dimension reaches a maximum value and then decreases. The de-
crease is due to the decrease in the resolution of the line at large times. The number of
points discretizing the line is fixed at t = 0, therefore owing to particle pair separation
the line’s resolution cannot be maintained for times larger than τml .
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Figure 6. Shear and strain of an elementary square.

3. Fractal dimension of an initially two-dimensional surface

3.1. Theoretical analysis

Equation (2.1) was derived for a line using one-dimensional arguments. It was mainly
derived from covering the line with segments and using the relation:

ǫ ≃ δu(r)3

r
, (3.1)

where ǫ is the turbulence dissipation rate, δu(r) the average velocity difference over
a structure of size r (see e.g. Mathieu & Scott 2000, for the derivation of (3.1)). To
generalize this result we investigate the fractal dimension of a two-dimensional object.
Particles are released at t = 0 from an horizontal plane at z = −0.1L on a square of
size L see figure 7. The Villermaux & Gagne (1994) demonstration can easily be
generalized to a plan. The difference in velocity at two points separated by a distance
r is written as

δu(r) = f

(
r

η

)
(ǫr)1/3, (3.2)

with

f

(
r

η

)
→ 1 if

r

η
≫ 1,

f

(
r

η

)
→

(
r

η

)2/3

if
r

η
< 1.





(3.3)

A convenient form is

f

(
r

η

)
= 1 − exp

(
−(r/η)2/3

)
. (3.4)

If we consider the initial plan square of area A0, it can be covered with elementary
squares of area a0 = |r1 × r2|. After a small interval of time τ each elementary square
becomes distorted (figure 6) and the area of the distorted element is now

a(τ ) = |r1(τ ) × r2(τ )| = r1(τ )r2(τ ) cos θ(τ ) = r1(τ )r2(τ )

{
1 − 1

2

(
dr2

dr1

1

r2

τ

)2
}

, (3.5)

that is at first order in τ

a(τ ) = (r1(0) + δu1(0)τ ) × (r2(0) + δu2(0)τ )) (3.6)
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or as |r2(0)| = |r1(0)| = r0 = a
1/2
0

a(τ ) ≃ a0 +

(
∂u1

∂x1

(0)r0
2 +

∂u2

∂x2

(0)r0
2

)
τ = a0

{
1 +

(
∂u1

∂x1

(0) +
∂u2

∂x2

(0)

)
τ

}
. (3.7)

This is where the plane development differs from the lines. Here we have to take into
account the continuity equation

∂u1

∂x1

+
∂u2

∂x2

+
∂u3

∂x3

= 0. (3.8)

The stretchings along r1 and r2 have to be accounted together. Apart from that
constraint, if we set

α =
∂u1

∂x1

(0) +
∂u2

∂x2

(0) = β
1

r0

δu0, (3.9)

we can generalize the approach used in Villermaux & Gagne (1994) for a line to the
plane: equation (3.7) becomes

a(τ ) ≃ a0 + βδu0r0τ. (3.10)

The total area of the square is then

A(τ ) = N0a(τ ) = N0(a0 + βδu0r0τ ),

where N0 is the initial number of elementary squares of area a0 needed to cover the
square at initial time t =0. That is if we use equation (3.2),

A(τ ) = N0

(
a0 + βf

(
r0

η

)
ǫ1/3r

4/3
0 τ

)
. (3.11)

If we do the covering at time τ , we will need

Nτ (a0) =
A(τ )

a0

= N0

(
1 + βf

(
r0

η

)
ǫ1/3r

−2/3
0 τ

)

of such elementary squares. For an interval of time t , this mechanism is reproduced
t/τ times so that:

Nt (a0) = N0

(
1 + βf

(
r0

η

)
ǫ1/3r

−2/3
0 τ

)t/τ

. (3.12)

The dimension of the object is defined as

Ds(t) = − d ln(Nt (a0))

d ln(r0)

∣∣∣∣
r0=η

(3.13)

with τ = τη. Using (3.4) we have:

Ds = 2 +
2

3

β

1 + β

e − 2

e − 1

t

τη

, (3.14)

or using the relation τη = (L/u′)(η/L)2/3

Ds = 2 +
2

3

β

1 + β

(
1 − 2/e

1 − 1/e

)(
L

η

)2/3

t
L

u′ . (3.15)

Relations (3.14) and (3.15) cannot predict the maximum fractal dimension and are,
of course, valid only up to that maximum dimension that is for small times.
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The plane deformation is a three-dimensional process constrained by the continuity
equation, but we can try to set some boundaries for the value of β . According to (3.8),
there is at least one positive and one negative value for ∂ui/∂xi . Betchov (1956) has
shown that, on average, there are two positive values and one negative. Though in
each particular realization of the velocity field there can be two negative values, such
a situation would lead to the formation of an elongated one-dimensional structure
and a smaller area and fractal dimension. We can first discard these cases and use
the average picture where there are two positive and one negative values for ∂ui/∂xi ,
this will provide an upper bound for β and the fractal dimension. Let us set

∂u3

∂x3

<
∂u2

∂x2

<
∂u1

∂x1

. (3.16)

There are three possible configurations:
(i) All the stretching effects on the surface are positive i.e. the surface is subjected

to

αi =
∂u1

∂x1

+
∂u2

∂x2

. (3.17)

(ii) There is one negative stretching effect and the second one is the larger of the
positive stretching effects:

αii =
∂u1

∂x1

+
∂u3

∂x3

. (3.18)

(iii) The second one is the smaller of the positive stretching effects:

αiii =
∂u2

∂x2

+
∂u3

∂x3

. (3.19)

In addition to the continuity equation, we also have the relation

δu2
0

r2
0

=

(
∂u1

∂x1

)2

+

(
∂u2

∂x2

)2

+

(
∂u3

∂x3

)2

. (3.20)

In case (i) (3.20) can be re-written as

δu2
0

r2
0

=

(
∂u1

∂x1

)2

+

(
∂u2

∂x2

)2

+

(
∂u1

∂x1

+
∂u2

∂x2

)2

, (3.21)

that is

δu2
0

r2
0

= 2α2
i − 2

∂u1

∂x1

∂u2

∂x2

or

α2
i =

1

2

δu2
0

r2
0

+
∂u1

∂x1

∂u2

∂x2

.

Furthermore, in case (i) we have

0 �
∂u2

∂x2

�
∂u1

∂x1

,

so that

0 �
∂u2

∂x2

∂u1

∂x1

�

(
∂u1

∂x1

)2

,
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the upper bound is found for ∂u2/∂x2 = ∂u1/∂x1 and, in this case, a combination of
(3.8) and (3.20) yields

(
∂u1

∂x1

)2

=
1

6

δu2
0

r2
0

. (3.22)

So that

1√
2

δu0

r0

� αi �

√
2

3

δu0

r0

. (3.23)

Similarly, in case (ii) (3.20) can be re-written as

δu2
0

r2
0

=

(
∂u1

∂x1

)2

+

(
∂u3

∂x3

)2

+

(
∂u1

∂x1

+
∂u3

∂x3

)2

, (3.24)

that is
δu2

0

r2
0

= 2α2
ii − 2

∂u1

∂x1

∂u3

∂x3

or

α2
ii =

1

2

δu2
0

r2
0

+
∂u1

∂x1

∂u3

∂x3

. (3.25)

Furthermore, in case (ii) we have
(

∂u1

∂x1

)2

�

∣∣∣∣
∂u1

∂x1

∂u3

∂x3

∣∣∣∣ �

(
∂u3

∂x3

)2

,

the upper bound is found for ∂u1/∂x1 = − ∂u3/∂x3 and ∂u2/∂x2 =0 so that in this
case (

∂u3

∂x3

)2

=
1

2

δu0
2

r2
0

.

The lower bound is found for ∂u1/∂x1 minimum, that is ∂u1/∂x1 = ∂u2/∂x2, and we
can use (3.22). As αii and (∂u1/∂x1)(∂u3/∂x3) are negative, (3.25) leads to

− 1√
6

δu0

r0

� αii � 0. (3.26)

Case (iii) is similar to (ii) and we can deduce

α2
iii =

1

2

δu2
0

r2
0

+
∂u2

∂x2

∂u3

∂x3

(3.27)

and

0 �

∣∣∣∣
∂u2

∂x2

∂u3

∂x3

∣∣∣∣ �

∣∣∣∣
∂u1

∂x1

∂u3

∂x3

∣∣∣∣ ,

but now the upper bound is found for ∂u2/∂x2 maximum, that is ∂u2/∂x2 = ∂u1/∂x1,
in this case, we have already seen in (3.22) that (∂u2/∂x2)

2 = (δu2
0/r

2
0 )/6 so that

(
∂u3

∂x3

)2

=
2

3

δu2
0

r2
0

.

As αiii and (∂u1/∂x1)(∂u3/∂x3) are negative, (3.27) leads to

− 1√
2

δu0

r0

� αiii � − 1√
6

δu0

r0

. (3.28)
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Figure 7. Evolution of a set of particles released from an horizontal square in the plane
z = −0.1L, turbulence case E at time t = 0.09L/u′.

If all the three cases (i), (ii) and (iii) were as likely to occur, then an average value
for α would be

α = 1
3
(〈αi〉 + 〈αii〉 + 〈αii〉),

and then, using previous results, we can give an upper and lower bound for α

− 1

3
√

6

δu0

r0

� α �
1

3
√

6

δu0

r0

, (3.29)

that is in terms of K defined as follows:

Ds = 2 + K0.088

(
L

η

)2/3

t
L

u′ − 0.23 � K � 0.23. (3.30)

However, this picture is unlikely, Batchelor (1952) and Girimaji & Pope (1990) showed
that elementary surfaces align with the directions of maximum strain, hence case
(i) is much more likely to occur than cases (ii) or (iii). We obtain an upper bound of
all the possibilities when only (i) is present, which leads to

0.83 < K < 0.90. (3.31)

So even in the best case for area increase, the increase is smaller than for the lines by
at least 10%. From our KS results we find K ≃ 0.5, indicating something in-between
the two extreme cases total isotropic distribution of the elementary squares (3.30) or
total alignment (3.31).

3.2. KS analysis of a plane

We use KS to compute the fractal dimension of a set of particles released on a square
at t = 0. The initial square is in the plane z = −0.1L centred on (0, 0, 0) and has a
side length of L. Each particle from the square is tracked so that we can follow
the evolution of the square as a function of time. Figure 7 shows this evolution at
t = 0.15τd for the case referred to as E in table 1.

We can then measure the fractal dimension of the set of particles using our box-
counting algorithm. In figure 8, we plot the non-dimensional fractal co-dimension
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Figure 8. Evolution of the normalized fractal co-dimension 2(D2 − 2)/0.088Re1/2 of an
initially plane square as a function of tu′/L. Different ratios are: +, L1/η = 36; ×, 100;
∗, 178; �, 299; �, 503; ⊙, 1000.

2(D2 − 2)/0.088Re1/2 as a function of the non-dimensional time tu′/L varying the
Reynolds numbers. All the curves collapse, indicating a universal law similar to (2.1):

(i) The surface fractal dimension of an initial plane obeys (3.32)

Ds − 2

0.088Re1/2
=

1

2

t

τd

, (3.32)

where Re is still defined by (2.2), that is

Ds = 2 + 0.044Re1/2 t
u′

L
(3.33)

or

Ds = 2 + 0.071

(
L1

η

)2/3

t
u′

L
.

This is verified for Reynolds numbers up to L1/η =1000.
(ii) KS predicts the asymptotic value Ds ≃ 2.4 (figure 9).
(iii) In figure 5, we plot τms/2 as a function of (L1/η)4/3, where τms is the time

necessary to reach the maximum fractal dimension for the square Ds ≃ 2.4. We
observe that

τml = 1
2
τms . (3.34)

(iv) As in the case of the line, we can see that the surface resolution decreases after
τms , resulting in a decrease of the surface dimension.
From all these results we can conclude that the plane surface dimension still follows
the pattern underlying (2.1).
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Figure 9. Maximum fractal dimension reached by our KS for the square
as a function of (L1/η)4/3.

We can deduce the formula for the area of the initial square as a function of time,
by definition of the fractal dimension:

A(t) ≃ L2
s

(
Ls

η

)Ds−2

= L2
s

(
Ls

η

)0.071(Ls/η)2/3t(u′/L)

, (3.35)

where Ls is the smaller of L1 and the size of the square.

4. Fractal dimension of an initial volume object

Investigating a volume leads to a very different picture. The mechanisms leading
to the line and surface development rely on the two positive eigenvalues of the
velocity tensor (Girimaji & Pope 1990). Whereas in the case of the volume, we have
to take into account the three eigenvalues of the velocity tensor and in the case of an
incompressible flow, the total volume has to be conserved.

We released particles from cubes of different size s and a sphere of diameter
d = 0.2L, use KS to track the particles and then measure the fractal dimension Dv of
the set of particles as a function of time. For a three-dimensional object, there is both
stretching and contraction and eventually the volume tends to contract to a sheet, as
shown in figure 10.

We can apply our box-counting method to the cube to find the evolution of its
fractal dimension as a function of time.

(i) Here, because of the contraction of the cube, the fractal dimension is decreas-
ing. In figure 11, we plot Dv the fractal dimension of what was initially a cube of size
s as a function of tu′/L for different ratios L1/η = 100, 178 and 1000 and different
cube sizes s = 0.2L, 0.25L and 0.3L

(ii) By contrast to the line and surface, we can see from figure 11 that the
evolution of the fractal dimension of the three-dimensional object is independent of
the Reynolds number but depends on the ratio s/L, that is, on the range of inertial
scales embedded in the object. This is consistent with the results of Villermaux,
Innocenti & Duplat (1998) and Villermaux & Innocenti (1999) on the iso-scalar
section, as we will see in § 5. These authors experimentally studied the evolution of a
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Figure 10. Evolution of a set of particles released from a cube in turbulence case E.
(a) Initial cube, (b) particle cloud at time t = 0.17L/u′.
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Figure 11. Evolution of the fractal dimension Dv of an initial cube as a function of tu′/L.
(a) For a given cube size s = 0.2L, the Reynolds number is varied; +, L1/η = 100; ×, 178;
∗, 1000. (b) For a given Reynolds number L1/η = 1000 the size of the cube is varied; +,
s = 0.2L; ×, s = 0.25L; ∗, s = 0.3L.

blob of concentration and concluded that the mixing time associated with the blob
of concentration was independent of the Reynolds number, but a function of the size
of the blob.

(iii) In figure 12, we plot s(3 − Dv)/tu
′ as a function of tu′/L for different Reynolds

numbers and different ratios s/L. With this latter normalization, and using a logari-
thmic plot, all the curves collapse onto a single line so that

s
3 − Dv

tu′ = 0.25

(
tu′

L

)−2/3

. (4.1)

In this figure, we also plot, with the same normalization, the fractal dimension obtained
when the source is a sphere of diameter d = 0.2L. The results are independent of the
initial shape of the object sphere or cube. Furthermore, it is worth noting that the
larger tu′/L, the better the collapse.
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L1/η = 1000: +, s = 0.2L; ×, s = 0.25L; ∗, s = 0.3L. s = 0.2L: �, L1/η = 100; �, L1/η = 178;
spherical source with d = 0.2L and L1/η =1000. The fitting curve represented is y =0.25x−2/3.

(iv) Equation (4.1) can be rearranged so that the fractal dimension of the initial
cube Dv obeys

Dv = 3 − 1

4

L

s

(
tu′

L

)1/3

. (4.2)

(v) The fractal dimension Dv is found to decrease towards 2 as tu′/L and L/s

increase.

5. Fractal dimension of an iso-scalar field

In practice, it is difficult to follow a three-dimensional object and most experi-
mentalists look at iso-scalar surfaces (see, e.g. Lane-Serff 1993; Catrakis & Dimotakis
1996.) Villermaux & Innocenti (1999) made a detailed analysis of the evolution of the
fractal dimension as a function of time.

Here, we study the evolution of a scalar whose initial concentration is

C(x, t) = 1 if |x| < d/2,

C(x, t) = 0 otherwise.

}
(5.1)

d is the source size. We use the method developed by Flohr & Vassilicos (2000) to
obtain the points of the plane z = 0 such that C(x, t) = 1, as shown in figure 13. The
scalar diffusion is neglected so that the concentration field is governed by

∂C

∂t
+ uj

∂C

∂xj

= 0.

With no diffusion term, we can use the method of characteristics: C(x, t) is constant
on a particle trajectory and we propose to use kinematic simulation (KS) to predict
particle trajectories. At time t and point x we construct the particle’s trajectory
backward in time in order to find its initial position. As KS relies on an analytical
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Figure 13. Evolution of the region of concentration c = 1 in the plane z = 0 as a function of
time. (a) Initial concentration, (b) concentration c = 1 at time t =0.17τd .
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Figure 14. Di as a function of tu′/L. (a) Different sources of a given size d = 0.15; spherical
source, (+) L1/η = 36, (×) 178, (∗) 1000 and cubical source, ( ) L1/η =1000. (b) L1/η = 1000,
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formula for the Eulerian velocity field, there is no problem in reversing the tracking
method. Then, the concentration at x and t is the concentration that was at t =0 and
x(0) the particle initial position:

C(x, t) = C(x(0), 0). (5.2)

In practice, we compute the fractal dimension on a section that is the intersection
of the fractal object with the plane z =0, then owing to isotropy, we assume that the
fractal dimension of the fractal object embedded in the three-dimentional space is that
of the section plus one. The advantage of this method is that while tracking the same
number of points, we will obtain better resolution of the iso-scalar surface section. In
figure 14 we show the fractal dimension as a function of the non-dimensional time
tu′/L for different Reynolds numbers Re, cases C, E and H in table 1.

In figure 15 we plot in a logarithmic graph the normalized co-dimension d(3 − Di)/
tu′ as a function of tu′/L for case H reported in table 1 and varying the ratio d/L. We
observe a good collapse of the different cases on a line indicating that d(3 − Di)/tu

′

is a universal power law of tu′/L. The law we find is d(3 − Di)/tu
′ = 0.13(tu′/L)−2/3,
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that is

Di = 3 − 0.13

(
tu′

L

)1/3
L

d
. (5.3)

This result has to be compared with (4.2) obtained for the cube. The two results
are similar except for the coefficient 0.13 instead of 0.25. We should expect to find
the same results when no diffusion is accounted for when considering the iso-scalar
object. The discrepancy we find between the two coefficients is due to the method we
use for computing the fractal dimension of the iso-scalar field. Tracking backward a
complete three-dimensional field is too time consuming and we choose to consider only
a section of the object, this may explain the ratio of 2 between the two coefficients.
The assumption usually made that the dimension of the total object is that of a
section plus one is not validated by our kinematic simulation.

It is worth commenting at this point on the form of (4.2) and (5.3) implying a
different process from that involved in making the fractal dimension in lines and
surfaces. As already mentioned, these equations are consistent with experimental
results (Villermaux & Innocenti 1999) showing no dependence on the Reynolds
number, but clear dependence on the source’s size. The dependence on the ratio L/s

is consistent with having L/u′ as the characteristic time for the dimension’s growth.
Indeed, if we consider a box of size L according to (4.2), it will need a time L/u′ to
reach its full fractal potential, that is, the maximum fractal co-dimension 3 − Dv over
the range of scales it contains, η to L. A portion d/L of this box will need a much
smaller time as it must reach its fractal potential over a smaller range of scales.

6. Conclusion

In this paper, we use kinematic simulation to track clouds of fluid particles from
lines, planes and three-dimensional geometries. We then measure the evolution of their
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fractal dimensions as functions of time. KS results for the line agree with previous
experimental and numerical results. Dimensions of lines and planes vary linearly with
time at least for times smaller than, or of the order of, the Kolmogorov timescale τη.

The fractal dimension Ds of a material surface obeys a law similar to that found
for a material line:

Ds = 2 + 0.044
t

τη

.

This is observed up to a time τms = 2τη and a maximum dimension Ds ≃ 2.4. At any
time t < τml , the surface fractal co-dimension’s increase (Ds − 2) is half that predicted
for the line. The characteristic time for the dimension’s growth is the Kolmogorov
time micro-scale τη.

The fractal dimension of an initially three-dimensional object does not depend on
the turbulence Reynolds number, but on the range of inertial scales it contains, that
is, on the ratio L/s or L/d where s is the cube’s size and d the sphere’s diameter. The
fractal dimension then obeys:

Dv = 3 − 1

4

L

s

(
tu′

L

)1/3

.

The law is the same for a spherical or cubical source and the dimension’s growth is
governed by the turbulence large-scale characteristic time L/u′.

Similar properties are observed for the evolution of the dimension of a section of
an iso-scalar field. This is consistent with the experimental work of Villermaux &
Innocenti (1999). However, KS does not validate the usual assumption that the
dimensions of a three-dimensional object can be obtained by adding 1 to the dimension
of a section of this object.
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