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Abstract 

A new one-dimensional coordination polymer [(N2H5)2Co(HPO4)2] was synthesized by slow 

evaporation method and characterized by means of single-crystal X-ray diffraction, Fourier 

Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TGA). Its 

catalytic activity was tested using UV-visible absorption measurements. The compound 

crystallizes in the monoclinic system (S.G: P21/c) with the cell parameters (Å, °): a= 

5.3665(3), b= 11.1271(6), c= 7.7017(4), β= 104.843(4), V= 444.55(4) Å3 and Z= 2. The 

crystal structure, consisting of a linear chain, is made of rings of [CoN2O4] octahedra and 

[PO3(OH)] tetrahedra sharing vertices via oxygen atoms coordinated to cobalt centers. The 

rings are linked to chains running along [100] and form thereby polymeric chains that are 



connected by hydrogen bonds in a three-dimensional arrangement. The FTIR spectroscopy 

shows the expected bands of hydrazine and phosphate groups. The thermal behavior consists 

mainly of the loss of hydrazine moieties leading thus to the formation of anhydrous cobalt 

phosphate. The phosphate complex exhibits efficiency in catalytic oxidation and degradation 

of methylene blue dye. The ac magnetic susceptibility shows a peak indicating 

antiferromagnetic order with a Neel temperature of 5.5 K. Fitting the Curie-Weiss equation to 

the ac magnetic susceptibility above 50 K gives the  average Curie-Weiss Constant to be -11.8 

K.    
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I. Introduction 

The synthesis of transition metal phosphates has been the focus of much scientific research 

owing to their interesting electrical, magnetic properties and their conventional applications as 

absorbents, ion exchangers and catalysts [1-5]. The metal phosphates for the most part exhibit 

three-dimensional layer structures comparing with those with one-dimensional structures [6-

10]. Structures with this dimensionality result either as edge-shared ladders or corner-shared 

linear chains. The use of organic amines as structure-directing agents or templates in the 

synthesis of open-framework metal phosphates is well documented [1]. In some metal 

phosphates, amine molecules either act as ligands and bond via nitrogen to the metal centers 

to form MOxNy units within the framework or by H-bonds. Hence, several metal phosphates 

containing such units have been prepared using amines molecules [11-16]. Bridging ligands 

like hydrazine are widely used in coordination polymers and have been found to be very 

effective in the formation of various interesting extended structures [17]. The self-assembly of 

these structures leads to the formation of coordination polymers which are an important class 



of materials because of their potential application in advanced materials [18]. In this context, 

we report herein on the synthesis, crystal structure, spectroscopic characterization, thermal 

behavior and magnetic study of a new CoII one-dimensional coordination polymer. As matter 

of application, the new hybrid phosphate was tested as a catalyst for the oxidation and 

degradation of methylene blue (MB) dye with hydrogen peroxide.  

 

II. Experimental  

II.1. Crystal synthesis   

All reagents were acquired from commercial sources and used without further purification. 

Single crystals of [(N2H5)2Co(HPO4)2] were synthesized under ambient conditions. The 

reaction mixture was prepared with 20 mL of distilled water, 10 mmol (0.6 mL) of H3PO4 

acid (85%, M = 98 g/mol) (Prolabo) and 2 mmol (0.48 g) of CoCl2.6H2O (Prolabo). To the 

pink solution, 10 drops of (NH2)2 (1M) were added, final pH = 5. The mixture was left at 

room temperature. After three weeks, pink rod-like crystals were collected, washed with 

distilled water and dried in air. 

II.2. infrared spectroscopy analysis and Thermal Analysis  

Infrared spectrum of the compound was recorded on a VERTEX 70 FTIR Spectrometer in the 

range 4000-400 cm-1 using the ATR technique at 4 cm-1 resolution. Thermogravimetric 

analysis (TGA) data were recorded on an SDT-Q600 analyzer from TA instruments. The 

temperature varied from RT to 1000 ºC at a heating rate of 10 ºC.min-1. Measurements were 

carried out on samples in open platinum crucibles under air flow. 

II.3 Magnetization and AC susceptibility Measurements 

A MPMS-3 VSM-SQUID magnetometer was used to measure the magnetization and ac 

susceptibility of the sample as a function of magnetic field and temperature. The 

magnetization as a function of magnetic field was measured at 2.5 K, 10 K and 300 K. The 



magnetization and ac susceptibility were measured as a function of temperature between 2 K 

and 300 K, with a detailed measurement carried out below 60 K. The sample was cooled 

down in zero magnetic field, to 2 K, where a DC field of 100 Oe was applied. The 

magnetization and ac susceptibility were then measured as a function of temperature up to 

300 K, this is the zero-field cooled (ZFC) data, the measurement was repeated from 300 K to 

2 K for the field cooled (FC) data. The ac susceptibility was measured at 10, 100 and 1000 

Hz. 

II.4. Catalytic activity   

The catalytic efficiency of cobalt phosphate complex was evaluated for the oxidation and 

degradation of an organic dye by following an experimental protocol as defined previously in 

literature [19]. In a typical experiment, 45 mL of methylene blue (MB) (5 ppm), 5 mL of 

hydrogen peroxide (30%), and 0.1 g of (N2H5)2Co(HPO4)2 were mixed and kept under 

constant magnetic stirring at room temperature. The reaction was followed by ultraviolet-

visible (UV-Vis) spectrophotometer. 

II.5. Crystal structure determination 

II.5.1. Single crystal study 

A crystal of dimensions 0.46 × 0.21 × 0.18 mm was selected for X-ray diffraction analysis. 

Data were collected at room temperature with an Oxford diffraction CCD diffractometer 

Gemini using graphite-monochromated MoKα radiation (λ= 0.7173 Å), registered with an 

Atlas S2 CCD area detector. Data were processed with the program Crysalis RED [20]. The 

phase problem was solved by direct methods using Superflip [21] and the structure was 

refined with Jana2000 [22]. The structural graphics were created using DIAMOND program 

[23]. Data collection and refinement details of [(N2H5)2Co(HPO4)2]  are reported in Table 1. 

The atomic coordinates are reported in Table 2, while Table 3 contains the basic geometrical 

data and hydrogen bonds in Table 4. Hydrogen atoms were kept in an ideal geometry for NH3 



group while for NH2 and OH their position was refined using bond restraint 0.87 Å for N-H 

and 0.86 Å for O-H. The temperature parameters of all H atoms were constrained to a 1.2 

multiple of the equivalent isotropic temperature parameter of the parent atom. CIF files have 

been deposited [CCDC 1836791], and can be obtained free of charge using the link: 

www.ccdc.cam.ac.uk or from the CCDC, 12 Union Road Cambridge CB2 1EZ, UK; fax: +44 

1223 336033; E-mail: deposit@ccdc.cam.ac.uk].  

 

III. Results and discussion 

III.1. Complex identification and characterization 

III.1.1. Structural description 

The unit cell of [(N2H5)2Co(HPO4)2] contains 8 non hydrogen atoms with the 

crystallographically distinct Wyckoff site 2a for Co2+ (Fig. 1). As shown in Fig.2, Co atom 

lies thus in an octahedral coordination made of four adjacent O atoms belonging each the 

symmetry-related PO3(OH) tetrahedrons forming the base, while two N atoms, from two 

symmetrical hydrazinium ions, site on the remaining trans apices of the octahedron. The Co–

O bond lengths are in the range 2.0903(2)˗2.1011(17) Å [av. 2.0957 Å] and the Co–N bonds 

have an average distance of 2.137 Å,  which might be compared to  2.093(2) Å reported for 

(NH4)[Co(H2O)6]3(HPO3)4 [24], or 2.092 Å for 

(DACH)0.5Co3(H2O)(OH)(PO4)(HPO4)(3+x)H2O [25]. The square planar arrangement around 

the Co atom is slightly distorted, with O2−Co−O2i and O3-Co-O3i angles both of 180.0(5)° 

(Table 3). According to the formula Δoct = 1/6*Σ[(di-dm)/dm]2 [26, 27], the bond-length 

distortions for the Co atom amount 32.6·10-3 , which indicates heavy distortion of the Co 

octahedron as to compare with the value 4.532·10-3 found in the hybrid hypophosphite 

[Co(H2PO2)(C12N4H16)]Cl2 [28].  

mailto:deposit@ccdc.cam.ac.uk


The P atom has a tetrahedral connectivity and possesses one terminal P–OH bond. The P–O 

bonds exhibit a mean value of 1.521 Å for three non-hydroxyl oxygen atoms, and slightly 

longer bond 1.598(24) Å for the hydroxyl. The hydrazine N2H4 molecule is protonated to 

N2H5
+ and acts as a monodentate terminal ligand, which is confirmed by the slight short 

distance between the two nitrogen atoms (1.443 Å). The hydrazinium ions participate in 

hydrogen bonds towards oxygen atoms of PO3(OH) anions. There is also a moderate 

hydrogen bond connecting two symmetry-related PO3(OH) anions via hydrogen of the 

hydroxyl. The complex compound of [(N2H5)2Co(HPO4)2] might be described in terms of 

rings of [CoN2O4] octahedra and [PO3(OH)]-tetrahedra sharing vertices via oxygen atoms 

coordinated to cobalt. The rings form an infinite chain running along b direction (Figure 3) 

and give rise to a one-dimensional coordination polymer. The polymeric chains are further 

connected by hydrogen bonds N-H…O and O-H…O into a three-dimensional extended 

network (Table 4, Figure 4). 

For testing purity of the bulk sample used for the other measurements, we recorded a powder 

XRD pattern of the grounded crystals of the title compound and compared with simulated 

diffraction pattern (Fig. 5). The two spectra match well, indicating that the spectroscopic, 

thermal and magnetic results of [(N2H5)2Co(HPO4)2] should be fully correlated with the 

crystal structure data.   

III.1.2. Fourier Transform Infrared Spectroscopy  

As shown in Figure 6, the infrared spectrum of the complex compound exhibits bands 

corresponding to the vibration modes of hydrazine and phosphate moieties. The broad band at 

3474 cm-1 is due to the stretched vibration of primary amine [29]. The set of bands occur in 



the range 3180–3320 cm-1 correspond to the asymmetric stretching mode of υas(N-H), while 

the absorption located at 2659 cm-1 can be assigned as a stretching mode of υ(NH3
+) in 

hydrazinium cation [30]. The medium peak observed near to 1612 cm-1 corresponds to the 

bending vibration of δ(NH2), whilst the intensities at 1140 cm-1 and 1283 cm-1 are associated 

to their twisting and wagging modes respectively [31]. These bands confirm the presence of 

the hydrazine molecule in its protonated form in the structure [29]. The Absorption frequency 

centered at 2424 cm-1
 is due to the combination of phosphate bands [32]. The set of bands 

appearing in 1140-800 cm-1 can be attributed to asymmetric and symmetric stretches of P-O 

bonds [33], whereas the weak band at 1492 cm-1 is assigned to the bending mode of the (PO-

H) group [34].  

III.1.3. Thermal behavior  

In order to examine the thermal stability of [(N2H5)2Co(HPO4)2], a TGA experiment was 

performed under air atmosphere. The experimental analysis (Fig. 7) shows two separated 

steps of weight loss in a total of 34 %. The weight loss depicted in the temperature region 

220-520 °C is attributed to the decomposition of amine molecules and phosphate groups. The 

first mass loss of 30 % in the range of 200-500 °C is accompanied by an endothermic signal 

in DTA trace at 240 °C. The sharp peak indicates a vigorous and continuous weight loss 

which can be attributed to the dehydrazination of the cobalt complex (calculated weight loss 

29.3 %). The second stage (observed 4 %) starting at about 520 °C and ending at 560 °C 

corresponds to the formation of Co(PO3)2 cobalt phosphate compound. This phenomenon is 

coupled with a small exothermic curve at 520 °C (calculated weight loss 5 %). To confirm 

this result, the infrared spectrum depicted on Figure 8 shows the solid residue heated at 600 

°C, which reveals characteristic bands corresponding to the vibration modes of the 

metaphosphate material which has been identifying as Co(PO3)2.   

 



III.1.4. Oxidation of methylene blue test 

The complex compound was tested as a catalyst that degrades the methylene blue dye with 

hydrogen peroxide under ambient conditions. The variation of methylene blue concentration 

as a function of time after adding [(N2H5)2Co(HPO4)2] catalyst and without a catalyst was 

measured by a UV-visible absorption spectrophotometer, and presented in Figure 9. After one 

day of reaction, the concentration of pure methylene blue has not changed. While, the 

oxidation of the methylene blue by hydrogen peroxide without catalyst has a small 

advancement of about 4 % in the first contact and stay unchanged during the time.  

However, the absorbance at 665 nm corresponding to the methylene blue decreases until 10% 

and 3 % during 2 hours for 0.1 g and 0.15 g of the cobalt phosphate complex respectively 

inducing the oxidation of methylene blue. The action of the catalyst was also followed by the 

change the color of the solution. In fact, a gradual decrease from dark blue to light pink, was 

observed leading thus to a total discoloration. This result exhibits a good catalytic efficiency 

of the synthesized compound. In order to complete the catalytic activity, we propose to study 

the possible reaction mechanism.  

It was found that the complete oxidative mineralization of MB by H2O2 in the presence of a 

catalyst produced CO2, HNO3, H2SO4 and HCl [35]. Therefore, the stoichiometric equation 

(1) can be written as: 

On the other hand, during the oxidation experiment of MB, it is worthwhile to mention that 

some color change on the surface of the catalyst with the change of the pH of solution. In fact, 

the pH of the MB solution was 6.5 before the addition of the H2O2 and decreased to 4.2 once 

the H2O2 was added. However, the pH increased to 6.35 after the addition of the catalyst 

accompanied with a color change from light pink to light blue. When the oxidation of the MB 

C16H18N3SCl + 52H2O2            16CO2 + 0.5O2 + 58H2O + 3HNO3 + H2SO4  + HCl      (1) 
 [(N2H5)2Co(HPO4)2]  



solution was completed (after 2 hours), the pH decreased to 4.95, and the catalyst resumed its 

native color.  On another side, no color change was observed when the [(N2H5)2Co(HPO4)2] 

was mixed either with H2O2 or with MB.   

Indeed, the formation of the colored intermediate on the surface of the catalyst has an 

inhibiting effect on the decomposition of H2O2. This peroxo-intermediate can attack 

methylene blue to give methylene blue radical species, MB.OOH•, which in turn decomposes 

to give the reaction products as indicated by the following mechanism: 

 

 

 

This mechanism is supported by three facts. First, the pH decreases with the progress of the 

reaction (according to Eq. (2)) having a constant value at the end of the reaction. Second, the 

reaction can proceed even if the catalyst is removed from the reaction mixture after few 

minutes from the start of the reaction. This confirms the formation of highly reactive species 

in the aqueous solution, which might be MB.OOH• radicals according to Eq. (3). Thirdly, the 

color change from light pink to light blue during the reaction confirms that the cobalt was the 

catalytic site of activation and changes its oxidation degree from +2 to +1 according to Eg.(3). 

At the end of reaction, the solution is colorless, while the particles of [(N2H5)2Co(HPO4)2] 

resume a light pink color according to Eqs. (4) and (5). Salim and El-Maazawi also proposed 

the same mechanism during the study of the kinetics and mechanism of color removal of 

methylene blue with hydrogen peroxide catalyzed by some supported alumina surfaces [35]. 

III.1.5. Magnetic study  

 [(N2H5)2Co2+(HPO4)2] + H2O2                             [(N2H5)2Co2+(HPO4)2] (OOH) + H+           (2) 

         peroxo-complex 
[(N2H5)2Co2+(HPO4)2] (OOH)  + MB      MB(OOH•.) + [(N2H5)2Co+(HPO4)2]        (3) 
MB(OOH•.)          oxidation products                   (4) 
  
[(N2H5)2Co+(HPO4)2] + H2O2                              [(N2H5)2Co2+(HPO4)2] + 0.5O2 + H2O     (5) 



Magnetic measurements were used to determine whether spontaneous magnetization, such as 

ferromagnetism, ferrimagnetism or antiferromagnetism occurs with the sample. As the shape 

of the temperature dependence of magnetization M(H) is indicative of the origin of the 

magnetic properties. However, it is necessary to correlate the magnetic susceptibility χ vs(T) 

curves and isothermal M(H) plots for a complete analysis of the magentic properties of the 

sample [36]. 

The magnetisation of the sample was measured as a function of magnetic field and 

temperature. From Figure 10, the change in magnetisation as a function of temperature is 

given. From this data at temperatures above 100 K, the Curie constant can be determined, 

from  , taking H = 100 Oe. Thus fitting to the data gives C = 2.94 emu.K/G.mol. The 

inset of Figure 10, gives the M vs H loops at 300 K, 5 K and 2.5 K. At 300 K, the sample is 

paramagnetic, hence the linear response with field. Using , again with this time T = 

300 K, gives C = 3.12 emu.K/G.mol. Thus there is good agreement between the 

measurements. At 2.5 K and 5 K, the sample is antiferromagnetic, thus the M vs H loop 

shows a linear dependence of the magnetisation with field up to 40 kOe, then above 40 kOe, 

“saturation” occurs. From equation (2), the effective magnetic moment can be calculated from 

the measured Curie constant, this gives µeff = 4.99 µB (M-H data, Figure 10 inset) and µeff = 

4.85 µB (M-T data, Figure 10). 

From the high temperature ac susceptibility data (Figure 11), Curie-Weiss Law given by: 

     (1) 

Where o is the temperature-independent susceptibility and cw  is the Curie-Weiss Constant. 

This equation can either be fitted to the high temperature ac susceptibility data (Figure 11), 

between 150 K and 300 K or the T  verus temperature data (Figure 12). From figure 11, this 



gives o = -2.93e-4 emu/mol/Oe, cw  = -12.2 K and C = 3.17 emu.K/G.mol. Thus the Curie 

constant is in good agreement with those measured from the magnetisation data. If the Curie 

constant determined from the magnetisation data, 3.12 is used in equation (1) for the fitting of 

the data, then o = -1.75e-4 emu/mol/Oe, and cw  = -10.5 K. From Figure 12, fitting equation 

(1) in the temperature range 100 K to 300 K, gives C = 3.11 emu.K/G.mol and cw  = -12.6 K, 

again in good agreement with the values calculated using the other data. Therefore an average 

Curie Constant and Cuire-Weiss constant can be calculated from the three different fitted data 

sets. This gives the average Curie constant to be 3.09 emu.K/G.mol and the average Curie-

Weiss constant to be –11.8 K. 

It is also observed from the zero-field cooled data (Figures 10 and 11), that the magnetisation 

peaks at 5 K and the ac susceptibility (’) peaks at 5.3 K. From Figure 11 inset, there is no 

difference in the peak position between the different frequencies measured. From the 

imaginary ac susceptibility (’’) (Figure 12 inset), it is observed that ’’ is positive and 

roughly constant between 300 K and 45 K, before decreasing and becoming negative with a 

minimum at 5.3 K. Only the 1000 Hz data are shown, as the signal to noise ratio on the 10 Hz 

and 100 Hz was too small, such that it was not possible to determine the trends, as observed in 

the 1000 Hz  ’’ data. 

The effective magnetic moment can be determined using the equation , 

where T is the temperature and  is the susceptibility thus taking T between 150 K and 300 

K from Figure 12 for all three frequencies, µeff = 4.85 µB. This is in excellent agreement with 

effective magnetic moment determined from the Curie constants above. Previous 

measurements of Co2+ ions gave the mean effective magnetic moment to be 4.8 µB, when the 

Co2+ ions are in an isolated high spin state. The measured effective moment for 



[(N2H5)2Co(HPO4)2] is in good agreement with these previous measurements of Co2+ ions, 

thus they can be taken to be isolated, with the ions in a high spin state.  

From theory, the Curie constant is given by: 

   (2) 

Where µB is the Bohr magnetron, kB is the Boltzmann constant, n is number of magnetic 

atoms per unit volume, g is the Lande g-factor, J is the angular momentum quantum number 

and µeff is the effective magnetic moment. Thus the effective magnetic moment and the Curie 

constant can be calculated for the sample, for n = 1, and assuming g = 2 and J = 3/2 with the 

Co ions being in a 2+ state. This gives C = 1.87 emu.K/G.mol and µeff = 3.87 µB. Thus both 

the calculated Curie constant and the effective magnetic moment are smaller than the 

measured values. This is expected, as previous measurements of Co2+ ions in the high spin 

state, have had effective moments between 4.3 – 5 µB, which is where the measured effective 

moment for our sample lies. This is because the orbital angular moment is assumed to be 

“quenched” within these systems, but there could be a small contribution, so an increase in 

the effective magnetic moment.  

 

Conclusions 

The coordination complex [(N2H5)2Co(HPO4)2] was synthesized by slow evaporation method. 

Its crystal structure consists of CoN2O4 and PO3(OH) alternating units connected through 

their vertices in 4-membered rings, which are further linked via their corners in an infinite 

one-dimensional (1D) chain running along [100]. The 3D framework resulting from the 

stacking of parallel chains is stabilized via hydrogen bond interactions between the hydrazine 

ligands and phosphate O atoms. The IR spectrum showed the expected bands of hydrazine 



and phosphate anion. The thermogravimetric analysis shows that the dehydrogenation of 

phosphate takes place in one step consisting mainly of the loss of hydrazine moieties and 

water molecules coming from dehydration of phosphate groups and leading to the formation 

of cobalt phosphate. The cobalt phosphate complex exhibits a promising catalytic activity in 

the oxidation and decomposition of methylene blue (MB) dye with hydrogen peroxide under 

ambient conditions only for 2 hours. The ac magnetic susceptibility shows a peak indicating 

antiferromagnetic order, with a Neel temperature of 5.5 K.  Above 50 K, the fit of the Curie-

Weiss equation to the ac magnetic susceptibility gives an average Curie-Weiss constant of -

11.8 K.   
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Figures and Tables Caption 

Figure 1: Unit cell in the crystal structure of [(N2H5)2Co(HPO4)2]. 

Figure 2: Coordination of Co in the framework of [(N2H5)2Co(HPO4)2] (thermal ellipsoids 

are shown at 50% probability). 

Figure 3: The [010]-parallel chain of [(N2H5)2Co(HPO4)2] molecules. 

Figure 4: Projection along [100] of the crystal structure of [(N2H5)2Co(HPO4)2] emphasizing 

the hydrogen bonding (dashed lines) between the chains. 



Figure 5. Simulated (red) and experimental (black) powder X-ray diffraction patterns of 

[(N2H5)2Co(HPO4)2]. 

Figure 6. FTIR spectrum of [(N2H5)2Co(HPO4)2]. 

Figure 7. TG-DTA curves of [(N2H5)2Co(HPO4)2] complex. 

Figure 8 : FTIR spectrum of [(N2H5)2Co(HPO4)2] after treatment at 600°C. 

Figure 9: The change of methylene blue concentration as a function of time after adding the 

cobalt phosphate complex. 

Figure 10: Magnetisation as a function of temperature, for zero-field cooled (blue) and field-

cooled (red), with applied field of 100 Oe. Inset: Magnetisation as a function of 

magnetic field, for 2.5 K (black), 5 K (blue) and 300 K (red). 

Figure 11: AC susceptibility (’) as a function of temperature, at 10 Hz (blue), 100 Hz (red) 

and 1000 Hz (black). Inset: Zoom in on the low temperature AC susceptibility (’) data. 

Figure 12: Susceptibility*temperature (’T)  as a function of temperature for 10 Hz (blue 

circles), 100 Hz (red squares) and 1000 Hz (black triangles). The solid black line is the 

Curie-Weiss law fitted to the data. Inset: AC susceptibility (’’) as a function of 

temperature for 1000 Hz. 

Table 1: Experimental data collections details for [(N2H5)2Co(HPO4)2]. 

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement 

               parameters (Å2). 

Table 3: Selected bond lengths and angles (Å, º) for [(N2H5)2Co(HPO4)2].  

Table 4: Hydrogen-bond geometry (Å, º) for [(N2H5)2Co(HPO4)2]. 
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Table 1: Experimental data collections details for [(N2H5)2Co(HPO4)2]. 

Crystal data 

Chemical formula                                              CoH12N4O8P2 
Formula weight Mr(g/mol); F(000)                   316.79; 322 
Crystal system, S.G                                           Monoclinic, P21/c 
a, b, c (Å) ;  (°)                                                5.3665(3), 11.1271(6), 7.7017 (4) ; 104.843(4) 
V (Å3) ; Z                                                                   444.55 (4) ; 2                      

Crystal size (mm);  (mm-1)                               0.46 × 0.21 × 0.18; 2.33 

Data collection  
Diffractometer                                                   Xcalibur, AtlasS2, Gemini ultra  
Absorption correction                                       Analytical from crystal shape combined with   
                                                                           spherical harmonics 
                                                                          CrysAlis PRO 1.171.39.9g (Rigaku Oxford   
                                                                           Diffraction, 2015)  
Tmin, Tmax                                                      0.502, 0.703 
No. of measured, independent and                   6460, 1164, 1089  
observed [I > 3σ(I)] reflections 
 
Rint                                                                    0.018 
 
Refinement  
R[F2 >3σ(F2)], wR(F2), S                              0.019, 0.070, 1.77 a 
No. of reflections                                             1164 
No. of parameters                                            80 
No. of restraints                                              5 
H-atom treatment                                           H atoms treated by a mixture of independent and  
                                                                       constrained refinement      
Δρmax, Δρmin (e Å−3)                                  0.27, -0.27                         
 
 

a JANA2006 does not refine the weighting scheme. Therefore, the goodness of fit is usually 
fairly above 1, especially for well-exposed data bearing information about bonding electrons. 

 

Table 2: fractional atomic coordinates and isotropic or equivalent isotropic displacement 
               parameters (Å2) 
 

 x y z Uiso*/Ueq 

Co1 0  0 0 0.00923 (12) 

P1 0.60215 (7) −0.04778 (4) 0.26355 (5) 0.00936 (13) 

O1 0.64645 (19) −0.12978 (11) 0.43920 (16) 0.0151 (3) 



O2 −0.17371 (19) −0.07833 (10) 0.18625 (16) 0.0138 (3) 

O3 0.34337 (18) −0.08322 (10) 0.14178 (15) 0.0145 (3) 

O4 0.6047 (2) 0.08400 (10) 0.32536 (16) 0.0148 (3) 

N5 0.0739 (2) 0.16063 (13) 0.15688 (19) 0.0137 (4) 

N6 −0.1505 (2) 0.23451 (12) 0.1462 (2) 0.0167 (4) 

H1n6 −0.102117 0.307025 0.181772 0.0201* 

H2n6 −0.243646 0.236625 0.035696 0.0201* 

H3n6 −0.240894 0.204448 0.21469 0.0201* 

H1n5 0.191 (3) 0.2007 (15) 0.121 (3) 0.0164* 

H2n5 0.136 (3) 0.1466 (19) 0.2710 (6) 0.0164* 

H1o1 0.547 (3) −0.1104 (19) 0.506 (2) 0.0181* 

                                                                                                                                                                                              

Table 3:  Bond distances and angles (Å, º) for [(N2H5)2Co(HPO4)2]   

Co1—O2 2.0903 (15) O1—H1o1 0.860 (18) 

Co1—O2i 2.0903 (15) N5—N6 1.4430 (16) 

Co1—O3 2.1011 (11) N5—H1n5 0.873 (18) 

Co1—O3i 2.1011 (11) N5—H2n5 0.870 (6) 

P1—O2ii 1.5114 (14) N6—H1n6 0.8702 

P1—O3 1.5151 (11) N6—H2n6 0.8699 

P1—O4 1.5407 (13) N6—H3n6 0.8698 

O2—Co1—O2i 180.0 (5) Co1—O3—P1 138.57 (7) 

O2—Co1—O3 86.88 (5) N6—N5—H1n5 110.3 (9) 

O2—Co1—O3i 93.12 (5) N6—N5—H2n5 104.8 (12) 

O2i—Co1—O3 93.12 (5) H1n5—N5—H2n5 106.8 (17) 

O2i—Co1—O3i 86.88 (5) N5—N6—H1n6 109.46 

O3—Co1—O3i 180.0 (5) N5—N6—H2n6 109.47 

O2ii—P1—O3 113.17 (8) N5—N6—H3n6 109.46 



O2ii—P1—O4 113.00 (7) H1n6—N6—H2n6 109.46 

O3—P1—O4 111.90 (6) H1n6—N6—H3n6 109.47 

Co1—O2—P1iii 135.77 (7) H2n6—N6—H3n6 109.5 

Symmetry codes:  (i) -x, -y, -z;  (ii) x+1, y, z;  (iii) x-1, y, z. 

 

Table 4 : Hydrogen-bond geometry (Å, º) for [(N2H5)2Co(HPO4)2]   

D—H···A D—H H·· ·A D· · ·A D—H···A 

N6—H1n6·· ·O2iv 0.87 2.02 2.8074 (16) 149.90 

N6—H3n6·· ·O4iii 0.87 1.89 2.7137 (19) 157.42 

N5—H1n5·· ·O1v 0.873 (18) 2.174 (14) 2.9678 (17) 150.9 (13) 

N5—H2n5·· ·O1vi 0.870 (6) 2.246 (6) 3.107 (2) 170.4 (16) 

O1—H1o1·· ·O4vi 0.860 (18) 1.725 (18) 2.572 (2) 168.2 (15) 

Symmetry codes:  (iii) x-1, y, z;  (iv) -x, y+1/2, -z+1/2;  (v) -x+1, y+1/2, -z+1/2;  (vi) -x+1, -y, -z+1.  
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