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Abstract 

Anosognosia in Alzheimer’s disease (AD) is defined as a lack of awareness for 

cognitive deficits or severity of disease.  Previous studies have highlighted the link 

between anosognosia and damage to prefrontal functioning, i.e., executive functions.  

This study investigated the neuropsychological and neurostructural substrates of domain 

specific anosognosia in early AD. 

Fifty-three patients with a clinical diagnosis of early-AD and a trustworthy informant 

were administered the Measurement of Anosognosia Instrument, a validated tool to 

quantify anosognosia.  Linear models were devised to test the association between the 

patient-informant discrepancy scores in the memory and non-memory domains and 

clinical profiles inclusive of cognitive scores and maps of grey matter. 

Total anosognosia scores were associated with episodic memory, semantic memory, 

visuoconstructive skills and volume of the anterior cingulate cortex (ACC), lingual 

gyrus, fusiform gyrus and thalamus.  Memory anosognosia was associated with episodic 

memory and visuoconstructive skills.  Non-memory anosognosia was associated with 

episodic and semantic memory and with volume of the ACC, precentral gyrus, superior 

frontal gyrus, postcentral gyrus, fusiform gyrus and lingual gyrus.   

Known as a region responsible for self-regulation and monitoring, reduction of grey 

matter in the frontal lobe was highlighted as crucial for the presence of anosognosia.  

Based on our findings, we argue that specific regions based in the frontal lobe could 

contribute to the functioning of the mnemonic comparator systems postulated by 

theoretical models of anosognosia.  The cross-domain variability of cognitive correlates 

indicates that various computational mechanisms are at play in the presence of 

anosognosia.    
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1. Introduction  

Introduced more than one century ago (Babinski, 1914), the term “anosognosia” can be 

recognised as a neurological symptom that is characterised by a lack of self-awareness of 

the presence of a disorder or disability such as disease-associated deficits, cognitive 

alterations or behavioural changes (Mograbi & Morris, 2018).  Anosognosic patients are 

unaware of their neurological impairments or are unable to judge how severe these are 

(Morris & Mograbi, 2013).  It is a common symptom in Alzheimer’s disease (AD), with 

an onset observable since the mild cognitive impairment stage (Vannini et al., 2017b; 

Vogel et al., 2004) and prevalence rates ranging from 20% to 80% (Starkstein, 2014). 

In AD patients, anosognosia is associated with the deposition of amyloid peptides in the 

brain (Marshall et al., 2004; Vannini et al., 2017a) and tends to affect awareness of 

memory dysfunction in parallel with other symptomatic manifestations, such as 

behavioural changes (Sunderaraman & Cosentino, 2017).  However, with disease 

progression, multiple domains may become affected by an anosognosic trait (often in an 

unpredictable way), resulting into considerable clinical heterogeneity (Gambina et al., 

2015; Avondino & Antoine, 2016). Notably, the presence of low cognitive awareness 

has been demonstrated to serve as a potential preclinical marker for AD (Cacciamani et 

al., 2017).  

Anosognosia in AD can be described according to clinical or theory-informed 

approaches.  Clinical taxonomies focus on the various domains of clinical relevance that 

can be affected by an anosognosic trait, i.e., awareness of behavioural problems vs. 

awareness of cognitive deficits (Starkstein, Sabe, Chemerinski, Jason, & Leiguarda, 

1996).  The latter can be further divided into a memory and an executive sub-

component (Agnew & Morris, 1998) and additional domains have been proposed, e.g., 

awareness of skill in activities of daily living or in socioemotional interactions (Clare et 
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al., 2012) . It is well-established today that dysfunction of awareness in AD is multi-

domain (Leicht, Berwig, & Gertz, 2010). 

Theory-informed classifications are instead based on computational models that are 

characterised by modular information processing.  A first framework, the Conscious 

Awareness System (Schachter, 1990) posits that sensory information processed by 

higher-order parietal regions would be brought to awareness as a result of the perception 

of other domains within each cognitive module (i.e., knowledge, memory and learning).  

This information would then be transmitted to an executive system in charge of 

computing a metacognitive output.  According to this framework, anosognosia would be 

the result of disruption of one or more modules along the computational pathway that 

links the outcome of aware processing to the executive unit (Schachter, 1990). 

A second framework, the Cognitive Awareness Model, focuses instead on the role 

played by memory and mnemonic comparators of executive nature (Agnew and Morris, 

1998).  The rationale of this model is a continuous evaluative processing of episodic and 

semantic memories, carried out in constant concomitance with the inflow of sensory 

input.  Sensory information would be firstly processed by short-term memory 

(triggering a first episode of awareness) and would then be subsequently transferred to 

long-term memory systems (triggering a second episode of awareness).  After that, an 

executive-based mnemonic comparator would compare memory information with a 

database of personal experiences containing semantic portrayals of individuals’ own 

capacities.  Following such comparison, finally, the information reaches conscious 

awareness through the Metacognitive Awareness System (Agnew and Morris, 1998).  

Based on the Cognitive Awareness Model, therefore, memory retrieval must be 

supported by executive resources and anosognosia would be the result of a mismatch 

between the information stored in the personal knowledge database and that resulting 

from the processing of newly-received sensory information. 
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Various theory-informed types of anosognosia have been postulated based on these two 

theoretical frameworks.  Primary anosognosia would be due to dysfunction of the 

Conscious Awareness System and would result in severe clinical manifestations 

affecting multiple cognitive and behavioural domains.  Secondary anosognosia, on the 

other hand, would be caused by dysfunction of the Cognitive Awareness System and 

would result in executive anosognosia (when damage is to the comparator system) or 

memory anosognosia (when damage affects the information updating system) 

(Hannesdottir & Morris, 2007; Morris & Mograbi, 2013). 

Other studies, finally, have proposed that anosognosia in AD can also be due to 

poor/failed recollection and consolidation of semantic knowledge about the self or to an 

outdated version of an individual’s self-recognition (Mograbi, Brown, & Morris, 2009). 

The conceptual elements laid out by both clinical evidence and theoretical models of 

anosognosia have led to the exploration of the neurological mechanisms responsible for 

this highly disruptive symptom.  Since AD is a neurodegenerative disease characterised 

by widespread brain atrophy, the neuroanatomical correlates are of particular interest.  

Significant associations have been found between the presence of symptoms of 

anosognosia and grey matter volumes in a set of regions that include the prefrontal 

cortex (Ford et al., 2014; Fujimoto et al., 2017; Hornberger et al., 2014; Shany-Ur, Lin, 

Rosen, Sollberger, Miller & Rankin, 2014; Spalletta et al., 2014), cingulate cortex 

(Guerrier et al., 2018; Hanyu et al., 2008; Spalletta et al., 2014), medial temporal lobe 

(Hornberger et al., 2014; Spalletta et al., 2014; Tondelli et al., 2018), subcortical 

structures (Shany-Ur et al., 2014) and cerebellum (Guerrier et al., 2018; Spalletta et al., 

2014).  The majority of these studies highlight an association between anosognosia in 

AD and the volume of the forebrain (prefrontal and antero-limbic regions).  

Accordingly, the cognitive domain most distinctively associated with anosognosia in 

AD is executive functioning (Starkstein, 2014); however, this is not a consistent finding 
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within the literature and memory may be associated with the presence of this symptom 

(Orfei et al., 2010; Clare et al., 2013, Senturk et al. 2017).  

The evidence emerging from neuroimaging aligns with the theoretical models 

previously outlined. Prefrontal regions such as the anterior cingulate and the medial 

prefrontal cortex may serve as a core hub in support of the executive comparator system 

and dysfunctional connections in these pathways may result in executive anosognosia 

(Guerrier et al., 2018). Similarly, other studies postulate that memory anosognosia could 

find its pathological substrates in regions responsible for autobiographical conceptual 

memory such as medial temporal lobe structures that are damaged by the characteristic 

pathophysiology of AD (Morris & Mograbi, 2013; Tondelli et al., 2018). The clinical 

manifestations of memory or executive anosognosia are associated with degeneration of 

densely interconnected fronto-temporal structures which are thought to be responsible 

for the integrity of the cognitive awareness system (Chavoix & Insausti, 2017). 

Moreover, since anosognosia in AD can be expressed in multiple clinical domains, it is 

unknown whether the mechanisms are the same for each domain affected by the trait.  

In this respect, the current study explored anosognosia in two clinical domains: memory 

and non-memory (i.e., including activities of daily living and executive functioning).  

Specifically, we studied the association between domain-specific anosognosia and total  

anosognosia scores with: 1) cognitive profiles and 2) voxel-based volumetric properties 

of the brain. Therefore, based on neuroimaging and theoretical frameworks we 

hypothesised that domain-specific anosognosia would reflect the detrimental effects of 

grey matter loss in frontal lobe regions that support the mnemonic comparator system 

performance and associated cognitive functions. 
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2. Methods and Materials  

We report how we determined our sample size, all data exclusions (if any), all 

inclusion/exclusion criteria, whether inclusion/exclusion criteria were established prior 

to data analysis, all manipulations, and all measures in the study.  No part of the study 

procedures or analyses was pre-registered in an institutional registry prior to the 

research being conducted. 

2.1. Participants 

Study recruitment was carried out as part of the EU-funded Virtual Physiological 

Human – DementiA Research Enabled by IT (VPH-DARE@IT) initiative, a multicentre 

project clinically coordinated by the Department of Neuroscience, Royal Hallamshire 

Hospital in Sheffield, UK (http://www.vph-dare.eu/).  Fifty-four candidate patients were 

initially enrolled.  All candidates had received either a clinical diagnosis of AD, n = 25 

following the National Institute of Aging criteria (McKhann et al., 2011) or a diagnosis 

of MCI due to AD, n = 29 (Albert et al., 2011) as part of a sole continuum of AD 

severity.  Longitudinal follow ups for at least four years in patients labelled as MCI 

showed a clinical course supportive of an AD aetiology.  The set of exclusion criteria 

included evidence of other significant neurological conditions (e.g., acute or chronic 

cerebrovascular disease or history of transient ischaemic attacks), uncontrolled brain 

seizures or history of epilepsy, peripheral neuropathy, presence of significant 

behavioural symptoms or radiological evidence which could otherwise account for the 

symptoms, cardiovascular and gastroenterological conditions (e.g., sick-sinus syndrome 

or peptic ulcer), metabolic disorders (e.g., abnormal levels of vitamin B12, folates or 

thyroid-stimulating hormone), major pharmacological interventions (e.g., treatment with 

psychotropic medication other than AD-related drugs, pharmacological components 

displaying important organic adverse effects or medications used in other research 

http://www.vph-dare.eu/
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protocols) and presence of major disabilities.  Moreover, since the main predictor (see 

Section 2.2) was dependent on the score obtained in a questionnaire administered to 

patient-caregiver dyads, participants were not approached if no reliable informant was 

available.  Each informant was briefly screened to rule out neurological or 

psychological factors that would prevent them from answering all study questions in a 

reliable way.  One dyad was excluded due to incomplete testing, giving a final sample 

of 53 patients (Table 1). 

 

--- Please insert Table 1 about here --- 

 

In compliance with the description of data-collection procedures approved by the 

European Union, local ethical approval was granted by relevant ethics committees at 

recruitment sites.  Written informed consent was obtained from all participants.  The 

conditions of our ethics approval do not permit the sharing of any data supporting this 

study with any individual outside the author team under any circumstances 

 

2.2. Anosognosia and neuropsychological assessment 

Levels of self-awareness were measured with the Measurement of Anosognosia 

Instrument (Stewart, McGeown, Shanks, & Venneri, 2010).  This questionnaire consists 

of 15 binary “yes-no” questions assessing cognitive performance in daily-life settings.  

All questions need to be answered independently by the patient and by the informant.  

By doing so, two scores are obtained: that provided by the informant as a “standard-of-

truth” objective assessment of the patient’s abilities and that provided by the patient as 

self-evaluative measure.  The Measurement of Anosognosia Instrument explores two 
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functional domains of awareness: “memory” (9 questions) and “non-memory” 

(inclusive of executive functioning and activities of daily living; 6 questions).  The 

informant-based and the patient-based responses were compared to quantify the number 

of discrepant answers provided by the patient.  Discrepancy scores were used to 

quantify presence of anosognosia across two cognitive domains: “memory” and “non-

memory”, with an additional “total” score (the sum of both domains) (Migliorelli, 1995; 

Stewart et al., 2010). 

Finally, each participant underwent a neuropsychological examination to obtain a 

clinical profile that included the Mini Mental State Examination, the Raven Progressive 

Matrices test, the Token test, the Digit Span Forward and the WAIS Similarities test.  

Furthermore, in consistency with the conceptual background, tests of experimental 

interest were chosen to assess the behavioural association of anosognosia with memory 

(Category Fluency test and Prose Memory delayed recall test), executive functions 

(Letter Fluency test and Stroop test) and Visuospatial abilities (Rey–Osterrieth Complex 

Figure test) (Table 2). 

 

--- Please insert Table 2 about here --- 

 

2.3. MRI acquisition and processing 

A three dimensional T1-weighted image was obtained for each participant.  MRI 

Images were acquired and analysed following a shared protocol with the acquisition and 

modelling steps set up by the VPH-DARE@IT consortium for Philips scanners 

(http://www.vph-dare.eu/index.php/project/work-packages/WP2): voxel size: 1 mm3, 
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flip angle: 8°, matrix size: 256 × 256, repetition time 7.4 ms; echo delay time 3.4 ms; 

field of view 250 mm [see Venneri, Mitolo and De Marco (2017) for details]. 

A voxel-based morphometry analysis was carried out using the Statistical Parametric 

Mapping (SPM) software 12 (Wellcome Centre for Human Neuroimaging, London, 

UK) on processed MRI T1 weighted scans.  Scans were initially reoriented and 

segmented into grey matter, white matter and cerebrospinal fluid tissue maps.  These 

were quantified in volumetric terms (using the get_totals script: 

http://www0.cs.ucl.ac.uk/staff/g.ridgway/vbm/get_totals.m) to compute total 

intracranial volumes and account for overall head size differences among participants 

(Peelle, Cusack, & Henson, 2012).  Grey matter maps were then normalised and 

registered to the Montreal Neurological Institute space.  Finally, spatial smoothing (8 

mm full-width half maximum Gaussian kernel) was carried out. 

2.4. Statistical analyses 

Three sets of inferential models were devised to test the association between measures 

of anosognosia and indices of cognitive functioning and brain structure.  To define these 

associations, all models were corrected for a series of confounding factors.  First, age 

was used to control for decrease of grey matter volume due to normal ageing (Fox & 

Schott, 2004).  Second, education levels (in years) were included as a proxy of cognitive 

reserve (Fratiglioni & Wang, 2007).  Third, normalised hippocampal volumes (Cardoso 

et al., 2013) were used as a way to control for disease severity, given the extensive 

disease-dependent atrophy this structure is subjected to in AD. 

Neuropsychological data were analysed with IBM SPSS Statistics 24 software for 

Windows (SPSS Inc., Chicago, IL, USA).  Coefficients of non-linear partial correlation 

were run between the three indices of anosognosia and the neuropsychological scores 
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(Spearman’s ρ).  The statistical threshold to define significance of these associations 

was set to p < 0.007 to correct for multiple comparisons. 

Regression models were carried out to infer the linear association between voxel-by-

voxel maps of grey matter and levels of anosognosia in SPM 12.  Total intracranial 

volumes were included as fourth covariate in these models.  This served to account for 

the inter-individual variability in head size (Peelle, Cusack, & Henson, 2012) and brain 

reserve (Van Loenhoud, Groot, Vogel, Van der Flier & Ossenkoppele, 2018).  An 

uncorrected p < 0.005 was selected as cluster-forming threshold.  Clusters surviving a 

Family-Wise Error p < 0.05 were considered significant.  Peak stereotactic coordinates 

were converted to the Talairach atlas space using the mni2tal Matlab function.  

Coordinates in the Talairach space were interpreted using the Daemon Client (Lancaster 

et al., 1997; Lancaster et al., 2000). 

 

3. Results  

3.1. Association with neuropsychological functioning 

The total anosognosia score was associated with scores on the following tests: delayed 

recall of the Prose Memory test (ρ = -0.467, p = 0.002), the copy and recall of the Rey-

Osterrieth figure (ρ = -0.424, p = 0.005; ρ = -0.419, p = 0.006, respectively), the 

Category Fluency test (ρ = -0.492, p = 0.001) and the Mini Mental State Examination (ρ 

= -0.525, p = 0.001).  The index of memory anosognosia was associated with the scores 

achieved on the Prose Memory Test (ρ = -0.429, p = 0.005) and Category Fluency Test 

(ρ = -0.449, p = 0.003) and on the Mini Mental State Examination (ρ = -0.563, p = 

0.001).  Finally, the index of non-memory anosognosia showed no significant 

associations (Table 3). 
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--- Please insert Table 3 about here --- 

 

3.2. Association with brain structure 

A significant negative association was found between the total anosognosia score and 

volumes of the bilateral anterior cingulate cortex, left lingual gyrus, left fusiform gyrus 

and left thalamus.  Likewise, a significant negative association was found between the 

non-memory anosognosia score and volumes of the bilateral anterior cingulate cortex, 

bilateral precentral gyrus, bilateral lingual gyrus, bilateral fusiform gyrus, right superior 

frontal gyrus and right postcentral gyrus (Table 4; Figure 1). No significant 

associations were detected between memory anosognosia scores and grey matter 

volumes. 

--- Please insert Table 4 and Figure 1 about here --- 

 

4. Discussion  

The purpose of this study was to characterise the neuropsychological and 

neurovolumetric correlates of anosognosic profiles in the early stage of AD (prodromal 

to mild), differentiating between memory and non-memory anosognosia. Cognitive and 

anatomical analyses performed in the MCI and mild AD samples separately 

demonstrated similar patterns of results, although in both groups statistical power was 

low. Given the similarity in the pattern of findings, these clinical profiles were, 

therefore, merged to increase statistical power.  

4.1. Association between anosognosia and neuropsychological functioning 
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Total anosognosia scores were associated with a series of measures of episodic memory, 

semantic memory and visuoconstructive skills. Overall, we cannot rule out the 

possibility that these total-anosognosia scores were driven by the distribution of scores 

on the non-memory section of the test (hence, the similar pattern of findings). However, 

the total score was significantly associated with both memory and non-memory sub-

scores (both r scores > 0.8) suggesting equal dependence on both sub-scores. After 

splitting the construct into its two components, memory anosognosia showed an 

association with the Category Fluency Test (a measure of semantic memory) and the 

Prose Memory Test.  This latter is a test of episodic memory based on the retrieval of 

material characterised by semantic relatedness (Carlesimo et al., 1998; Venneri et al., 

2019).  Semanticisation processes are an essential trait for the integration of episodic 

autobiographical memory (Westmacott, Black, Freedman & Moscovitch, 2004; Morris 

& Mograbi, 2013).  This domain has a significant influence on the representation of the 

self.  In this respect, patients with anosognosia constantly try to reorganise their self-

representation without success, and this leads to a progressive deterioration of their own 

identity (Mograbi, Brown & Morris., 2009; Toffle & Quattropani, 2015).  On the other 

hand, deficits in episodic memory are central clinical hallmarks in AD and are 

associated with disease severity (Reitz et al., 2009).  Notably, these results are 

consistent with those of other studies focusing on anosognosia in AD (Orfei et al., 2010; 

Clare et al., 2013, Senturk et al. 2017). In line with our results, Gambina et al., (2015) 

characterised anosognosia patients using a quantitative-qualitative method in which 

unawareness of memory deficits was particularly visible at the initial clinical stages of 

disease, while later clinical stages were characterised more distinctively by executive 

unawareness, displaying dissociation with the cognitive performance in the memory and 

executive domain, respectively. To minimise the likelihood of obtaining spurious 

results, all of the inferential models involving neuropsychological tests were controlled 
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for normalised hippocampal size, an established measure of neuronal injury in AD (Jack 

Jr et al., 2018). 

The total anosognosia score was also associated with performance on visuospatial skills.  

Visuoconstructive abilities are an essential trait of self-awareness, in that they enable 

the individual to shift from a first-person to a third-person perspective (Vogeley et al., 

2004).  These abilities would also serve to update information processing by projecting 

allocentric (object-to-object) and egocentric (self-to-object) spatial representations, 

prerequisite components of global awareness (Serino & Riva, 2017).  Based on this 

view, our findings indicate that patients with higher total anosognosia scores would be 

less able to achieve this “mental frame syncing”; or, in other words, the ability to update 

properly previously experienced scenarios stored in episodic memory.  Therefore, these 

patients may not be able to understand the mental scenarios of their first-person 

orientation, which could lead to unawareness of the perceived space in contrast with the 

one remembered. 

Lastly, overall cognitive severity of disease was associated with the total anosognosia 

scores and the memory anosognosia scores. This finding has been reported in the 

literature (Migliorelli et al., 1995; Derouesne et al. 1999: Harwood, Sultzer & Wheatley, 

2000; Leicht et al., 2010) and may reflect the direct detrimental effects of the 

proteinopathies on the awareness system through the progression of the disease 

(Vannini et al., 2017a). However, the scientific literature indicates that there is no well-

defined link between severity of disease and anosognosia, with studies that support a 

link (such as those referenced in the section above) and studies that do not (Reed, Jagust 

& Coulter, 1993; Weinstein, Friedland & Wagner, 1994; Almeida & Crocco, 2000, 

Gambina et al., 2015). The AD pathophysiological progression may impact directly on 

the severity of the disease, but is not an essential variable for the onset of anosognosia, 

which explains the heterogeneity between disease stage and the initial symptomatic 
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expression of anosognosia that displays worsening with disease progression 

characterised initially by memory disconnection (Avondino & Antoine, 2016). 

 

4.2. Association between anosognosia and brain structure 

The total anosognosia score was associated with volume in the anterior cingulate cortex 

(ACC).  This region has been associated with disease awareness in other studies 

involving AD patients (Hanyu et al., 2008: Amanzio et al., 2011: Spalletta et al., 2014; 

Guerrier et al., 2018).  Progressive neuronal loss in the anterior cingulate leads to 

decline of executive metacognitive processes that involve cognitive regulation (Cohen, 

Botvinick, & Carter, 2000) through continual internal error processing and monitoring  

(Van Veen & Carter, 2002: O’Connell et al., 2007; Amanzio & Palermo, 2014).  In this 

study, the ACC was associated with both total anosognosia scores and non-memory 

domain anosognosia scores, the latter consisting mostly of decreased awareness of 

activities dependent on executive functions.  Likewise, Amanzio et al. (2011) showed 

decreased activation of the ACC in a task-based fMRI study consisting of a paradigm 

based on a response-inhibition go/no-go task, proposing anosognosia as a dysfunction 

of the executive system in charge of abilities such as self-monitoring.  Lastly, Guerrier 

et al. (2018) found, in a structural and metabolic study, alterations of the ACC related to 

anosognosia, interpreting it as an area involved in executive processing and self-

monitoring affecting the comparator mechanisms of mnemonic functions. 

The involvement of the ACC can be interpreted as that of a gateway region sustaining 

conflict resolution within the framework of the Cognitive Awareness Model (Agnew 

and Morris, 1998).  The ACC is a region responsible for the integration of cognitive and 

emotional stimuli (Bush, Luu, & Posner, 2000) and is also a major hub of the salience 

network, a functional circuit responsible for processing and integrating external and 
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internal inputs for decision making (Seeley et al., 2007).  In coherence with the 

Cognitive Awareness Model, the ACC may provide the executive resources necessary 

to the mnemonic comparator to verify the authenticity of the processed information.  

Total anosognosia scores and non-memory anosognosia scores also showed a 

significant association in the fusiform gyrus and lingual gyrus.  The involvement of the 

fusiform gyrus in anosognosia does not come as a novel finding (Guerrier et al. 2018).  

Dysfunction in this area is linked to awareness deficits for bodily representations.  In 

fact, hemiplegic patients with lesions extending to the fusiform gyrus show impaired 

mentalisation of the body (Besharati et al. 2016).  Moreover, the pathway linking the 

fusiform gyrus with the ACC was found to be abnormally upregulated in patients with 

amnestic MCI (Cai et al., 2015). 

The lingual gyrus is instead a region essential for visual perception (Yang, Deng, Xing, 

Xia, & Li, 2015), but it also plays an executive role, as shown in a study that reported 

activation during a divergent thinking paradigm (Zhang et al., 2016).  Moreover, 

atrophy of a set of regions including the lingual gyrus is linked to faster decline in AD 

dementia (Kinkingnehun et al., 2008) suggesting a plausible link between anosognosia 

and faster disease progression. 

The non-memory anosognosia domain showed additional significant negative 

associations with the precentral, postcentral and superior frontal gyrus that runs in 

parallel with the findings of other studies related to the field of AD.  The precentral 

gyrus was found to be associated with anosognosia of executive functions in a structural 

MRI study (Tondelli et al., 2018).  In this context, Morita and colleagues (2008) 

proposed the precentral gyrus to serve as a key region of self-recognition of facial 

features.  The postcentral gyrus showed less activation in a comparative analysis of 

aware vs unaware AD patients based on a response-inhibition go/no-go task (Amanzio 
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et al., 2011).  Lastly, the superior frontal gyrus was also associated with anosognosia in 

another structural study (Fujimoto et al., 2017), a region that has shown to be essential 

in self-awareness (Goldberg, Harel & Malach, 2006).  Therefore, we argue that specific 

frontal regions could serve as crucial components for the modulation of executive-

function-related awareness processes.  

In spite of the importance of executive resources in this process, however, no 

association was found between indices of anosognosia and measures of executive 

functioning.  Arguably, however, a dysfunctional comparator may result in subtle 

executive deficits that will not necessarily emerge with standardised executive tests. 

A number of published structural and functional neuroimaging studies found that 

anosognosia was associated with medial temporal structures (e.g., Chavoix and Insausti, 

2017; Tondelli et al., 2018).  To this end, Salmon and colleagues (2006) suggested that 

the mediotemporal hypometabolism seen in anosognosic patients may result in impaired 

comparison mechanisms, highlighting a primary role of memory functions based on 

these structures, and not executive resources for this comparatory function.  Our 

findings, however, seem not to support this suggestion, since no association was found 

between hippocampal volume and anosognosia scores.  Associations between 

anosognosia and semantic and episodic memory were identified in the current study, but 

these associations did not appear to be mediated by hippocampal volume.  In this 

respect, the findings by Avondino and colleagues (2016) highlight memory as a 

supportive element in anosognosia rather than the prime cause.  Therefore, we argue 

that mediotemporal structures most likely provide a supportive mnemonic input to the 

structures that provide comparatory resources, and it is possible that this link could be 

spurious and driven by disease severity, which is known to affect harshly this part of the 

brain.  Based on our findings, comparatory resources would be more consistently linked 

with the ACC instead. 



19 

 

A broader neuroimaging-based perspective suggests that damage to frontal-circuitry 

precedes loss of grey matter, and this would account for how the clinical symptoms 

present in relation to multi-domain anosognosia (Mondragon, Maurits & Deyn, 2019). 

According to this view, reduced connectivity of the default mode network (DMN), seen 

in the early phases of AD (Klaassens et al., 2017), may act as a marker of progression 

associated with anosognosia (Therriault et al., 2018). In fact, the bases of impaired self-

awareness and anosognosia have been heavily intertwined to the functionality of the 

DMN in AD (Antoine et al., 2019; Mondragon, Maurits & Deyn, 2019) and other 

neurological conditions, such as anosognosia for hemiplegia (Pacella et al., 2019). On 

these grounds, the DMN could be conceived as a translational construct to justify a 

routine assessment in the preclinical stage of AD (Cacciamani et al., 2017). In turn, 

damage to the DMN could then hinder other frontal pathways of connectivity that 

would lead to a dysfunctional use of the central executive comparator and other 

neuronal systems such as those in charge of attention or emotional processing (Shany-

Ur et al., 2014).  

The mismatch found between anatomical findings and behavioural outcomes could be 

due to the inherent relation of unawareness to the functional domain controlled by it.  

The consistency of association of visuospatial abilities to the behavioural and 

neuroimaging outcomes sheds light into the essential role of these functions in global 

awareness.  Dissecting anosognosia study by domains in the very early stages of the 

disease could lack of evident association between the broad neuronal anatomical 

conformation to the specific function mediated by that region. 

 

4.3. Limitations  
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Limitations might arise from the choice of instrument to measure anosognosia.  In fact, 

failing to acknowledge the presence of symptoms or a poor performance could in part 

be due to a defensive mechanism of denial, triggered by individual socioemotional 

factors (Ecklund-Johnson & Torres, 2005).  This possibility, however, is an intrinsic 

factor in this type of measurement and would affect any questionnaire/scale.  On this 

note, it is desirable to confirm each diagnosis of anosognosia with a clinical qualitative 

judgment.  Secondly, the use of discrepancy scores depends on the answers given by 

both patient and informant.  Caregiver burden may inadvertently shift the perception of 

the patient’s abilities into an over/underestimation.  To rule out this possibility, we 

chose to rely on a robust instrument that has undergone methodological validation, but 

acknowledge that there are other ways to assess anosognosia, such as the discrepancy 

between estimation and actual performance on a task. Lastly, although the total 

anosognosia score was strongly correlated with both the memory (r = 0.895) and non-

memory (r = 0.818) sub-scores, we cannot completely rule out the possibility that one of 

the two sub-scales may have had a larger impact on the total score than the other. 

 

 

5. Conclusions 

Our findings highlight the ACC as the main structure associated with total scores and 

non-memory anosognosia scores in patients with early AD.  Additionally, volumes in 

the fusiform and lingual gyri were also associated with the total scores and non-memory 

anosognosia scores. The precentral gyrus, postcentral gyrus and superior frontal gyrus 

show further involvement in non-memory anosognosia.  Behavioural findings 

foregrounded the role played by semantic memory, episodic memory and visuospatial 

abilities.  All in all, these findings indicate that anosognosia is a complex symptom in 
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which executive resources seem to play a crucial role.  Moreover, and as pointed out by 

previous research (Chapman et al., 2018), different theoretical elements appear to be at 

play depending on the cognitive domain affected by anosognosia in AD.  
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Figure caption 

Figure 1. Regions of significant negative correlation between a) total anosognosia 

scores and b) non-memory anosognosia scores and grey matter volume values. 

 

 


