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Abstract

We define a semigroup S to be right ideal Howson if the intersection of any two

finitely generated right ideals, or, equivalently, any two principal right ideals, is again

finitely generated. We give many examples of such semigroups, including right

coherent monoids, finitely aligned semigroups, and inverse semigroups. We investi-

gate the closure of the class of right ideal Howson semigroups under algebraic

constructions. For any n 2 N0 we give a presentation of a right ideal Howson

semigroup possessing an intersection of principal right ideals that requires exactly

n generators that is, in a particular sense, universal. We give analogous presentations

for commutative, and for commutative cancellative, (right) ideal Howson semigroups.

Keywords Semigroup � Monoid � One-sided ideal � Presentations

1 Introduction

An algebra exhibits the Howson property if the intersection of two finitely generated

subalgebras is also finitely generated. This term is in honour of the author of [15],

who showed that the intersection of finitely generated subgroups of free groups is

finitely generated. There have been a number of investigations of the Howson

property for other classes of algebras. In particular, the Howson property for inverse

semigroups has been studied by several authors such as Jones and Trotter [16, 17],

Lawson and Vdovina [20] and Silva and Soares [25]. By contrast to the situation for
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groups, free inverse semigroups have the Howson property if and only if they are

free on a one-element set [17].

The aim of this article is to change tack and to consider the Howson property for

semigroups regarded as semigroup acts over themselves, so that the right (left)

subacts of a semigroup S are precisely its right (left) ideals. We consider ; as being a
right (left) ideal with empty set of generators.

Definition 1.1 A semigroup S is right (left) ideal Howson if the intersection of any

two finitely generated right (left) ideals of S is finitely generated.

Note that since intersection distributes over union, a semigroup is right (left)

ideal Howson if and only if the intersection of principal right (left) ideals is finitely

generated; we use this fact throughout this article. We remark that a monoid is right

ideal Howson if and only if it is finitely aligned [7]; for semigroups being finitely

aligned is a stronger condition, as we demonstrate. From this point we will

explicitly refer to and give results for right ideal Howson semigroups; clearly, the

dual results hold for left ideal Howson semigroups. Certainly for a commutative

semigroup, the notions of right ideal Howson and left ideal Howson coincide;

similar remarks apply to related definitions.

The property of being right ideal Howson is a finiteness condition for a

semigroup; that is to say any finite semigroup is right ideal Howson. In Sect. 3 we

show how it is connected to other finiteness conditions that have been studied

recently, such as that of being right coherent [10, 11] or right Noetherian [22].

Semigroups that are right ideal Howson abound. We list some examples here,

that may easily be verified by consulting any standard semigroup text such as

[5, 14]: groups, inverse semigroups, completely (0-)simple semigroups, free

semigroups and free monoids. We present many others subsequently in this paper.

The reader may note that any of the semigroups in the previous list display the extra

condition that the intersection of principal right ideals is empty or principal.

Monoids that satisfy this extra condition have been well-studied by Clifford,

Cherubini and Petrich: the latter authors referring to this condition (for left ideals) as

Clifford’s condition [3]. Indeed, Clifford [4] showed that bisimple inverse monoids

can be viewed as inverse hulls of right cancellative monoids satisfying Clifford’s

condition. This connection has been developed by a number of authors such as

Lawson [19], McAlister [21] and Reilly [24]. The notion of being finitely aligned [7]

is closely connected with that of being right ideal Howson, being a stronger

condition (Lemma 2.1); and coincides for many semigroups, including monoids.

Indeed, it is noted in [7] that finitely aligned semigroups may be called right

Howson. However, the situation for semigroups is more subtle; as we show in

Remark 5.8, a right ideal Howson semigroup need not be finitely aligned. We

introduce the term right ideal Howson to distinguish from that of being finitely

aligned, and to make clear we are talking of right ideals and not right congruences.

Explicit connections between finitely aligned semigroups, higher rank graphs and

constructions of C�-algebras are given in [7].

This article has several aims. One is to give natural, universal, examples of right

ideal Howson semigroups such that the intersection of principal right ideals may
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require any fixed, finite number of generators. The second is to examine closure

properties of the class of right ideal Howson semigroups under standard algebraic

and semigroup theoretic operations. The third is to consider connections with other

natural finiteness conditions. In this way we build a broader understanding of the

class of right ideal Howson semigroups.

We organise this paper as follows. In Sect. 2 we recall essential terminology and

fundamental results. In Sect. 3 we provide examples of right ideal Howson

semigroups, with a particular focus on bands and coherent monoids. For each

variety of bands, we give an explicit presentation of a right ideal Howson band

belonging to the variety, and show that the lattice of varieties of bands splits into

two with regard to Clifford’s condition. We show that any semigroup given by a

commutative presentation with finite set of relations is (right) coherent, and hence

certainly (right) ideal Howson. In Sect. 4 we explore a number of closure results for

the classes of right ideal Howson monoids and semigroups. We show that both the

classes of right ideal Howson semigroups and right ideal Howson monoids are

closed under free products. Right ideal Howson semigroups are not closed under

direct products but, on the other hand, right ideal Howson monoids are closed under

direct but not semidirect products. Finally, in Sect. 5, we consider a number of

semigroup presentations, reflecting those given for bands in Sect. 3. We give

presentations of right ideal Howson semigroups (which are also cancellative),

commutative (right) ideal Howson semigroups and commutative cancellative (right)

ideal Howson semigroups, all of which are universal in a given sense.

2 Preliminaries

We denote the natural numbers by N and put N0 ¼ N [ f0g. For any n 2 N we

define n :¼f1; . . .; ng and n0 :¼ n [ f0g. Throughout this paper S denotes a

semigroup and S1 is the monoid obtained from S by adjoining an identity if

necessary (so that S1 ¼ S if and only if S is a monoid). For any element a 2 S, the

principal right ideal generated by a is aS1 ¼ fag [ aS, so that aS1 ¼ aS if and only

if a 2 aS. A right ideal is finitely generated if it is the finite union of principal right

ideals. Our first observation will be useful in what follows.

Lemma 2.1 Let S be a semigroup such that for all a; b 2 S we have

aS \ bS ¼ u1S [ � � � [ unS

where ui 2 aS1 \ bS1 for all i 2 n. Then S is right ideal Howson.

Proof Let S be as given. Then, for any a; b 2 S, we may write

aS1 \ bS1 ¼
�

fag \ fbg
�

[
�

fag \ bS
�

[
�

aS \ fbg
�

[ ðaS \ bSÞ:

Clearly, if a�Rb then aS1 \ bS1 ¼ aS1 (the case where b�Ra is entirely dual).

However, if a£
R
b and b£

R
a then we have by the above that aS1 \ bS1 ¼ aS \ bS.

Therefore, for such an a; b 2 S, we have
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aS1 \ bS1 ¼ u1S [ � � � [ unS � u1S
1 [ � � � [ unS

1 � aS1 \ bS1

which gives us that aS1 \ bS1 ¼ u1S
1 [ � � � [ unS

1 as required. h

Semigroups satisfying the hypothesis of Lemma 2.1 are called finitely aligned in

[7]. However, as we show in Remark 5.8, a right ideal Howson semigroup need not

be finitely aligned. For semigroups that are right factorisable, that is, semigroups S

such that sS ¼ sS1 for any s 2 S, the two notions coincide. This is the situation for

monoids, inverse semigroups and bands (semigroups of idempotents), for example,

but not for free semigroups.

The next observation we make follows quickly from the definition of a semigroup

being right ideal Howson.

Lemma 2.2 A semigroup S is right ideal Howson if and only if the monoid S1 is

right ideal Howson.

We will say a right ideal I of S is exactly n-generated for some n 2 N0, if there

are n elements of S that generate I, but no n� 1 elements will suffice. With this in

mind, we note that I ¼ ; if and only if I is exactly 0-generated.

Definition 2.3 A semigroup S satisfies (Rn) for n 2 N0 if there exists some a; b 2 S

such that aS1 \ bS1 is exactly n-generated. The condition (Ln) is defined dually.

2.1 Semigroup presentations

For an equivalence relation h on a set A we denote the h-class of a 2 A by ½a�h, or [a]
if h is understood.

Let X be a non-empty set, whose elements we will refer to as letters. We denote

by Xþ (X�) the free semigroup (free monoid) on X. We take Xþ to be the set of all

non-empty words over X with operation concatenation, and to obtain X� we adjoin

the empty word, often denoted by �.
The length of a word w 2 X�, denoted by jwj, is the number of letters in w,

counting repeats. The context of w, written c(w), is the set of letters that appear in w.

For a number of results in this paper, it will be useful to let aðwÞ and xðwÞ denote
respectively the first and last letter of w 2 Xþ.

For a subset q of Xþ � Xþ, the smallest congruence relation on Xþ containing q

is denoted by q]. For any w; x 2 Xþ we have that ðw; xÞ 2 q] if and only if w ¼ x or

there exists a finite sequence of the form

w ¼ z0; z1; . . .; zn ¼ x ð1Þ

where zi�1 ¼ cipidi and zi ¼ ciqidi with ðpi; qiÞ 2 q [ q�1 and ci; di 2 X� for all

i 2 n [14]. We say that zi�1 ! zi an elementary q-transition. The q]-class ½w�q] of

w 2 Xþ will be denoted by ½w�q (or [w] if q is understood).

Definition 2.4 A semigroup presentation hX : qi consists of non-empty set X and a

subset q of Xþ � Xþ, and defines the semigroup Xþ=q]. By standard convention, we

123

S. Carson, V. Gould



may denote ðu; vÞ 2 q by the equality u ¼ v. Moreover, we may we identify the

semigroup presentation with the semigroup that it defines.

Similarly, monoid presentations are given by the same notation hX : qi where

q � X� � X� and define the monoid X�=q]. In the case where juj ¼ jvj for every

ðu; vÞ 2 q, and hence for every ðw; xÞ 2 q], we say that the corresponding

presentation is homogeneous. In this article we will also need the notion of

commutative semigroup and monoid presentations. To this end we denote by CXþ

and CX� the free commutative semigroup and free commutative monoid on X,

respectively. We view CXþ as consisting of all unordered non-empty words over

X under concatenation; similarly, CX� consists of all unordered words over X.

Definition 2.5 A commutative semigroup presentation hX : qi consists of non-

empty set X and a subset q of CXþ � CXþ, and defines the commutative semigroup

CXþ=q].

In Definition 2.5 we may think of q as a subset of Xþ � Xþ, if convenient.

Commutative monoid presentations are defined in the obvious way.

2.2 Monoid actions

Throughout this subsection we let M be a monoid. We briefly present the basic

notions surrounding M-acts, in order to facilitate later discussions on coherency.

Further details may be found in [18].

A set A is a (right) M-act if there exists a map A�M ! A : ða;mÞ7!a � m such

that for any a 2 A and s; t 2 M we have a � 1 ¼ a and ða � sÞ � t ¼ a � ðstÞ. An M-

subact of an M-act A is a subset B of A closed under the action of M; a congruence

on A is an equivalence relation h on A that is closed under the action of M, that is,

for any a; b 2 A and s 2 M, if a h b then as h bs. If h is a congruence on A then we

may form the quotientM-act A=h ¼ f½a� : a 2 Ag with action ½a�s ¼ ½as�. Clearly,M
may be regarded as an M-act where the action is the multiplication in M and the M-

subacts are then precisely its right ideals. To avoid confusion, if h is a congruence

on the M-act M, then we refer to h as a right congruence. Of course, if M is

commutative, then right congruences coincide with (monoid) congruences on M.

A congruence h on anM-act A is finitely generated if it is the smallest congruence

containing a given finite set of elements of A� A. An explicit formula for obtaining

h from its generators may be found in a way analogous to that in Equation (1). Note

that the identity relation is always finitely generated. The notions of being free,

finitely generated and finitely presented for an M-act A are the standard ones from

universal algebra, translated to the context of M-acts. Explicitly, (finitely generated)

free M-acts are disjoint unions of (finitely many) copies of the M-act M; an M-act A

is finitely generated if A ¼ a1M [ . . . [ anM for some ai 2 A, n 2 N0, and finitely

presented if A ffi F=h for some finitely generated freeM-act F and finitely generated

congruence q on F.

For any M-act, say A, and for every a 2 A we define the right congruence rðaÞ on
M by
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rðaÞ ¼ fðu; vÞ 2 M �M : au ¼ avg:

2.3 Coherency and noetherianity

A semigroup is weakly right Noetherian if every right ideal is finitely generated.

This is a weaker condition than that of being right Noetherian, which means that

every right congruence is finitely generated (a fact easily witnessed by considering a

group). These are well-established notions, recently attracting new attention [22].

The following remark is worth stating explicitly.

Remark 2.6 Any weakly right noetherian semigroup is right ideal Howson.

In fact, we can weaken the hypothesis of Remark 2.6 much further.

Definition 2.7 [9, 26] A monoid M is weakly right coherent if every finitely

generated right ideal is finitely presented and right coherent if every finitely

presented M-subact of every finitely presented M-act is finitely presented.

Any right noetherian monoid is right coherent, but weakly right noetherian

monoids need not even be weakly right coherent [9]. We are interested in these

notions here due to the result below, which may be regarded as analogous to that of

Chase for rings [2].

Theorem 2.8 [9, Corollary 3.3, 3.4] A monoid M is weakly right coherent if and

only if for any a; b 2 M the right congruence rðaÞ is finitely generated, and the right

ideal aM \ bM is finitely generated.

A monoid M is right coherent if and only if for any finitely generated right

congruence h on M and any ½a�; ½b� 2 M=h we have the right congruence rð½a�Þ is
finitely generated and the M-subact ½a�M \ ½b�M of M=h is finitely generated.

Corollary 2.9 A weakly right coherent monoid is right ideal Howson.

3 Examples of right ideal Howson semigroups

We begin by summarising some previous remarks.

Remark 3.1 Any finite semigroup, (weakly) right noetherian semigroup or

semigroup S such that S1 is (weakly) right coherent is right ideal Howson.

There are many examples of right coherent monoids [6, 9]. Rédei’s Theo-

rem states that the free commutative monoid CX�, for any finite set X, is (right)

noetherian [23]. Gould used this result to show that for any set X, the free

commutative monoid CX� is (right) coherent [9, Theorem 4.3]. Our next result is a

significant extension of the latter fact. The proof makes essential use of the fact that

for a commutative monoid, right congruences and congruences coincide.

Theorem 3.2 Let M be a monoid given by a commutative presentation hX : si,
where s is finite. Then M is (right) coherent.
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Proof Let q] be a finitely generated congruence on M ¼ CX�=s]. We have that

q ¼ fð½a�s; ½b�sÞ : ða; bÞ 2 rg

for some finite subset r of CX� � CX�. We let m ¼ s [ r so that m] is a finitely

generated congruence on CX�. Taking care with the generators, it follows from the

second isomorphism theorem [14, Theorem 1.5.4] that there exists a monoid

isomorphism

h : M=q] ! CX�=m] : ½½w�s�qh ¼ ½w�m:

For convenience we denote the q]-class of ½w�s 2 M by ½w�s:q.

We are considering the monoid M acting on the right of the M-act M=q]. To this

end, note that for ½u�s 2 M and ½w�s:q 2 M=q] we have

½w�s:q½u�s ¼ ½½w�s�q½u�s ¼ ½½w�s½u�s�q ¼ ½½wu�s�q ¼ ½wu�s:q:

Similarly, CX� acts on CX�=m] by ½w�mu ¼ ½wu�m. h

Proposition 3.3 Let ½w�s:q 2 M=q] and ½u�s; ½v�s 2 M, where w; u; v 2 CX�. Then

ð½u�s; ½v�sÞ 2 rð½w�s:qÞ () ðu; vÞ 2 rð½w�mÞ:

Proof Let w; u; v 2 CX�. From remarks above we have

ð½u�s; ½v�sÞ 2 rð½w�s:qÞ () ½wu�s:q ¼ ½wv�s:q
() ½wu�m ¼ ½wv�m
() ðu; vÞ 2 rð½w�mÞ

as required. h

Let w 2 CX�. Since m is finite and CX� is coherent, it follows that there exists a

finite symmetric set of generators j for rð½w�mÞ, say

j ¼ fðui; viÞ : i 2 ng

for some n 2 N0. We define

g ¼ fð½ui�s; ½vi�sÞ : i 2 ng;

so that g is also finite and symmetric.

Proposition 3.4 If w 2 CX� then, with the notation above, rð½w�s:qÞ ¼ hgi.

Proof That g � rð½w�s:qÞ follows from Proposition 3.3.

Suppose for the converse that ð½u�s; ½v�sÞ 2 rð½w�s:qÞ, so that ðu; vÞ 2 rð½w�mÞ, again

by Proposition 3.3. Since j generates rð½w�mÞ there exists ‘ 2 N0 and a finite

sequence of the form
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u ¼ z0; z1; . . .; z‘ ¼ v

where zi�1 ¼ cipi and zi ¼ ciqi with ðpi; qiÞ 2 j and ci 2 CX� for all i 2 ‘. It follows
that there is a sequence

½u�s ¼ ½z0�s; ½z1�s; . . .; ½z‘�s ¼ ½v�s

where ½½zi�1�s ¼ ½cipi�s ¼ ½ci�s½pi�s and ½zi�s ¼ ½ciqi�s ¼ ½ci�s½qi�s� with ð½pi�s; ½qi�sÞ 2
g for all i 2 ‘. Thus rð½w�s:qÞ � hgi and we therefore have equality as desired. h

Let a; b 2 CX� and let I ¼ ½a�s:qM \ ½b�s:qM and J ¼ ½a�mCX
� \ ½b�mCX

�. We

proceed to show that I is finitely generated.

Proposition 3.5 If w 2 CX� then ½w�s:q 2 I () ½w�m 2 J.

Proof Suppose that w; u; v 2 CX�. Then

½w�s:q ¼ ½a�s:q½u�s ¼ ½b�s:q½v�s () ½w�s:q ¼ ½au�s:q ¼ ½bv�s:q
() ½w�m ¼ ½au�m ¼ ½bv�m
() ½w�m ¼ ½a�mu ¼ ½b�mv

as required. h

Since m is finitely generated, and CX� is coherent, J is generated by a set f½ac�m :

c 2 Yg for some finite subset Y of X�. Proposition 3.5 then gives us that I is finitely

generated by the set f½ac�s:q : c 2 Yg and this completes the proof of Theorem 3.2.h

From Corollary 2.9 and Theorem 3.2 we immediately deduce the following.

Corollary 3.6 Let M be a monoid given by a commutative presentation hX : si,
where s is finite. Then M is (right) ideal Howson.

In particular, any finitely presented commutative semigroup or monoid is (right)

ideal Howson.

Changing tack, the following is well known.

Lemma 3.7 Let S be an inverse semigroup. Then S is right ideal Howson and

satisfies (Ri) if and only if i ¼ 1.

Proof For any a; b 2 S we have aS ¼ aa�1S and bS ¼ bb�1S. Since idempotents

commute it follows that

aS \ bS ¼ aa�1S \ bb�1S ¼ aa�1bb�1S:

h

Since the free band on a finite set is finite (see [14]), any finitely generated band

is finite. Hence:

Lemma 3.8 Every finitely generated band is right ideal Howson.
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Let X be a countable set. For some x; y 2 Xþ, we say that a semigroup S satisfies

an identity x ¼ y if for every choice of homomorphism h : Xþ ! S we have

xh ¼ yh. A semigroup variety denotes a class of semigroups containing all

semigroups that satisfy a given collection of identities.

Throughout we let V be a variety of bands. We recall the variety of right regular

bands RR (variety of rectangular bands RB) is determined by the identities x2 ¼ x

and xy ¼ yxy (x2 ¼ x and x ¼ xyx) (in addition to the identity guaranteeing

associativity).

Theorem 3.9 Let V be a variety of bands. If V � RR or V � RB, then every band

B 2 V is right ideal Howson. Further, B satisfies (Ri) if and only if i ¼ 1, that is,

B satisfies Clifford’s condition.

Proof Suppose that B 2 V. Since B is a band, we note that for any a; b 2 B we have

aB \ bB � abB. If B 2 RR then we have ab 2 aB and ab ¼ bab 2 bB, so that in

this case aB \ bB ¼ abB is principal. On the other hand, if B 2 RB then for all

a; b 2 B we have aB \ bB is either principal if aR b or empty else. h

In order to prove the next therorem, we must draw upon Fennemore’s result [8]

concerning the defining identities of varieties of bands. This yields that if V is a

variety of bands not contained in RR or RB, then V is defined by an identity

V :¼ p ¼ q with the property that aðpÞ ¼ aðqÞ and cðpÞ ¼ cðqÞ.

Theorem 3.10 Let V be a variety of bands not contained in RR or RB. Then there

exists a band B1 2 V that is not right ideal Howson, and for each n 2 N0 a band

Bn 2 V that satisfies (Rn).

Proof Fix some n 2 N0 and let Xn ¼ fa; b; ui; vi : i 2 ng. If n ¼ 0 then we simply

put X0 ¼ fa; bg. Define two subsets qn and rn of Xþ
n � Xþ

n as follows

qn ¼ fðaui; bviÞ : i 2 ng and rn ¼ fðw;w2Þ : w 2 Xþ
n g:

In this way, if n ¼ 0 then q0 ¼ ;. Suppose V is the defining identity for V (as above)

and let Bn be the band with semigroup presentation hXn : qn [ rn [ Vi. From this

point we will write X, q, r and B instead of Xn, qn, rn and Bn respectively.

Moreover, for ease of notation we will let s ¼ q [ r [ V .

It follows immediately from Lemma 3.8 that B is right ideal Howson since it is

finitely generated. Hence, it remains to show that B satisfies (Rn). We achieve this

by showing that I ¼ ½a�B \ ½b�B is exactly n-generated.

Firstly, we suppose that there exist some s; t 2 X� such that ðas; btÞ 2 s]. This

implies that there exists a finite sequence of the form

as ¼ z0; z1; . . .; z‘ ¼ bt

where zi�1 ¼ cipidi and zi ¼ ciqidi with ðpi; qiÞ 2 s [ s�1 and ci; di 2 X� for all

i 2 ‘.
If zi�1 ! zi is an elementary r- or an elementary V-transition for all i 2 ‘, then

we immediately reach a contradiction since ðw; xÞ 2 ðr [ VÞ] implies aðwÞ ¼ aðxÞ.
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Therefore, we may assume that zi�1 ! zi is an elementary q-transition for some

i 2 ‘, and, in order to avoid a similar contradiction, we may also assume that for at

least one such i 2 ‘, we have ci ¼ �. Thus, we have shown zi ¼ aujdi or bvjdi for

some i 2 ‘ and j 2 n. It follows that

I �
[

i2n

½aui�B;

the reverse inclusion is clear from the form of the presentation.

To show that I is exactly n-generated, we note that if w s] x for some w; x 2 X�

and ui 2 cðwÞ then fui; vig \ cðxÞ 6¼ ;, since any elementary s-transition has this

property. Thus if i; j 2 n with i 6¼ j, then for no t 2 X� do we have that aui s
] aujt.

Thus ½aui�B 6� ½auj�B and so I requires n generators as claimed.

The existence of B1 is proved in an entirely similar manner, starting with

q1 ¼ fðaui; bviÞ : i 2 Ng;

it is easy to see that I ¼ ½a�B \ ½b�B cannot be finitely generated. h

We end this section with a brief discussion of another finiteness condition for a

monoid M, namely R [12]. This condition arises from axiomatisability properties of

classes of right M-acts and states that for any a; b 2 M the subact of the direct

product right M-act M �M given by

Rða; bÞ ¼ fðu; vÞ 2 M �M : au ¼ bvg

is finitely generated. It was shown that R is independent of being weakly right

noetherian [12].

Lemma 3.11 If M is a monoid satisfying R then M is right ideal Howson.

Proof Let a; b 2 M. It is clear that if H is a finite set of generators for Rða; bÞ, then
aK is a finite set of generators for aM \ bM, where K is the set of first co-ordinates

of elements of H. h

On the other hand, there certainly exist examples of semilattices that do not

satisfy R [10]; since semilattices are inverse they are right and left ideal Howson.

The next corollary comes from Lemma 3.11 and the results of [10].

Corollary 3.12 The free inverse monoid, the free ample (restriction) monoid, and

the free left ample (restriction) monoid on any set is right and left ideal Howson.

4 Closure results

In this section, we explore a number of closure results regarding the class of right

ideal Howson semigroups. Our first result is immediate, since any free semigroup

Xþ is right ideal Howson.

Proposition 4.1 The class of right ideal Howson semigroups is not closed under

morphic image.

123

S. Carson, V. Gould



4.1 Free products

Let K be a non-empty set and let Sk be a semigroup (monoid) for every k 2 K. Let

X ¼
[

k2K

Sk;

we write the product of x; y 2 Xþ or X� as x 
 y. Consider the subsets l and m of

Xþ � Xþ and X� � X�, respectively, where

l ¼
�

ðx 
 y; xyÞ : x; y 2 Sk for some k 2 K
�

and m ¼ l [
�

ð1Sk ; 1SsÞ : k; s 2 K
�

;

where ISk denotes the identity of Sk in the case of monoids. The free product of

semigroups Sk; k 2 K, may be given by the quotient Xþ=l], and the free product of

monoids Sk; k 2 K, may be given by the quotient X�=m]. If K ¼ n for some n 2 N,
we may write S1 
 � � � 
 Sn for the semigroup or monoid free product, where the

distinction will be clear from the context.

Proposition 4.2 The class of right ideal Howson semigroups is closed under free

products of semigroups.

Proof Let S be the semigroup free product of right ideal Howson semigroups

Sk; k 2 K. Let ½a�; ½b� 2 S where ½a� ¼ ½a1 
 � � � 
 an� and ½b� ¼ ½b1 
 � � � 
 bm� and put
I ¼ ½a�S1 \ ½b�S1. We show that I is finitely generated. We may assume that n, m are

least, so, for example, there does not exist an i 2 n� 1 such that aiaiþ1 2 Sk for

some k 2 K.

Either I ¼ ;, ½a�S1 � ½b�S1, ½b�S1 � ½a�S1, or there exists some ½u�; ½v� 2 S such

that ½a 
 u� ¼ ½b 
 v�. In the second and third cases I is principal: we consider the

final case. Here we take

½u� ¼ ½u1 
 � � � 
 uk� and ½v� ¼ ½v1 
 � � � 
 v‘�

for some least k; ‘ 2 N, so that

½a�½u� ¼ ½a1 
 � � � 
 an 
 u1 
 � � � 
 uk� and ½b�½v� ¼ ½b1 
 � � � 
 bm 
 v1 
 � � � 
 v‘�:

Let us assume n�m and proceed with a case-by-case consideration.

(i) If n\m then ai ¼ bi for all i 2 n� 1 and bn ¼ an or bn ¼ anu1. In either

case, I ¼ ½b�S1 is principal. Dually if m\n.

(ii) If n ¼ m then again ai ¼ bi for all i 2 n� 1. Suppose that an; bn 2 Sk; if

an ¼ bn, an ¼ bnw or bn ¼ anw for some w 2 S1k, then clearly I is principal.

If this is not the case, then anu1 ¼ bnv1. Let J ¼ anS
1
k \ bnS

1
k. Since Sk is

right ideal Howson this intersection is finitely generated, say

J ¼
[

i2r

anwiS
1
k:

Clearly
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[

i2r

½a1 
 . . . 
 anwi�S
1
k � I:

On the other hand, anu1 ¼ anwiw for some i 2 r;w 2 Sk, so that ½a� 
 ½u� 2
½a1 
 . . . 
 anwi�S

1 for some i 2 r. Thus
[

i2r

½a1 
 . . . 
 anwi�S
1 ¼ I

so that I is finitely generated as required.
h

The corresponding result hold for the free product of monoids.

Proposition 4.3 The class of right ideal Howson monoids is closed under free

products.

Proof The argument runs along the same lines as that of Proposition 4.2, but with

added technicalities due to the extra relations in m.

Let S be the (monoid) free product of right ideal Howson monoids Sk; k 2 K. Let
½a�; ½b� 2 S and put I ¼ ½a�S \ ½b�S. We show that I is finitely generated. If [a] is the

identity of S, or an element that has a right inverse, then the result is clear. Thus we

may suppose ½a� ¼ ½a1 
 . . . 
 an� where n 2 N; ai 2 Ski ; ai 6¼ ISki for i 2 n and ki 6¼

kiþ1 for i 2 n� 1 . Now observe that if n0 is greatest such that an0 is not right

invertible, then ½a�R ½a1 
 . . . 
 an0 �. We may therefore assume from the outset that

an 2 Skn is not right invertible. Similarly, we can assume ½b� ¼ ½b1 
 . . . 
 bm� where
m 2 N; bj 2 Ssj ; bj 6¼ ISsj for j 2 m, sj 6¼ sjþ1 for j 2 m� 1 and bm 2 Ssm is not right

invertible.

If I ¼ ;, or if ½a� ¼ ½b�½v� or ½b� ¼ ½a�½u� for some ½u�; ½v� 2 S, then we are done.

Suppose therefore that ½a�½u� ¼ ½b�½v� for some ½u�; ½v� 2 S. Given the fact that an; bm
are chosen to be not right invertible, the proof proceeds as in that of Proposition 4.2.

h

4.2 Direct and semidirect products

We begin with a negative result for direct products of semigroups.

Proposition 4.4 The class of right ideal Howson semigroups is not closed under

direct products.

Proof To see this, consider the free monogenic semigroup S ¼ hai. Clearly S is

right ideal Howson since S is (right) coherent, by Remark 3.1. Indeed, for any

n;m 2 N we have that anS1 \ amS1 ¼ akS1 where k ¼ maxfn;mg. Let T ¼ S� S.

One may then easily verify that the intersection I ¼ ða; aÞT1 \ ða; a2ÞT1 is

generated by the set K ¼ fða2; akÞ : k� 3g of R-incomparable elements, and every

generating set for I must contain K. h

On the other hand we have a positive result for right factorisable semigroups.
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Proposition 4.5 The class of right factorisable right ideal Howson semigroups is

closed under direct products.

Proof Let S and T be right factorisable right ideal Howson semigroups. Notice that

for any s 2 S and t 2 T we have sS ¼ sS1, tT ¼ tT1 and also

ðs; tÞðS� TÞ1 ¼ ðs; tÞðS� TÞ ¼ sS� tT ¼ sS1 � tT1:

It then follows easily that S� T is right ideal Howson. h

If S is free monogenic, then S1 � S1 is right ideal Howson from Proposition 4.5,

but Proposition 4.4 tells us that S� S is not right ideal Howson. Hence:

Corollary 4.6 The class of right ideal Howson semigroups is not closed under

taking subsemigroups.

We now turn our attention to semidirect products. Let S and T be semigroups

such that S acts on the left of T via morphisms; we denote the resulting semidirect

product by ToS. If the action of S on T is trivial, then ToS is simply the direct

product T � S. Proposition 4.4 therefore tells us that the class of right ideal Howson

semigroups is not closed under semidirect products. Considering now the case for

monoids S and T, where S acts as a monoid on T by monoid morphisms, the

semidirect product T � S becomes a monoid. In view of Proposition 4.5 we know

that the direct product of right ideal Howson monoids is right ideal Howson. By way

of contrast we have the following.

Proposition 4.7 The class of right ideal Howson monoids is not closed under

semidirect product.

Proof Let X ¼ fa; b; ai : i 2 Ng and A ¼ fai : i 2 Ng. We consider the left action

of X� on PðXÞ where, for all U 2 PðXÞ, we have b � U ¼ ; ¼ ai � U for all i 2 N
and

a � U ¼
; U \ A ¼ ;

fa; bg [ U otherwise

�

:

One may verify that this is a left action of X by monoid endomorphisms on the

semilattice PðXÞ under union. The only case that needs thought is that of a � ðU [
VÞ where U \ A 6¼ ; but V \ A ¼ ; (or the dual). In this case

a � ðU [ VÞ ¼ fa; bg [ U [ V ¼ fa; bg [ U ¼ a � U [ ; ¼ a � U [ a � V ;

the second equality following since V � fa; bg. We may then extend the action of X

to that of the monoid X�.

Let S ¼ PðXÞoX� and let

I ¼
�

fag; a
�

S \
�

fbg; a
�

S:

We claim that I is not finitely generated.

To see this, notice that for any i 2 N we have
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Zi :¼
�

fa; b; aig; a
�

¼
�

fag; a
��

faig; �
�

¼
�

fbg; a
��

faig; �
�

2 I:

Further, if ðW ;wÞ 2 I then it is easy to see that W ¼ fa; bg [ ðW \ AÞ where

W \ A 6¼ ;, and w ¼ aw0 for some w0 2 X�. Then if ai 2 W we have

ðW ;wÞ ¼
�

fa; b; aig; a
�

ðW ;w0Þ:

Since Zi£RZj for any i 6¼ j, it follows that I cannot be finitely generated. h

5 Semigroup presentations

In Corollary 3.6 we show that a commutative semigroup presentation hX : si, where
s is finite, gives rise to a (right) ideal Howson semigroup. In fact, one can show that

both conditions - commutativity and the fact s is finite - are strictly necessary. We

illustrate this by way of the examples below.

Example 5.1 Let S be given by the commutative semigroup presentation

S ¼ ha; b; ui; vi; i 2 N : aui ¼ bvi; i 2 Ni:

Then S is not ideal Howson.

Proof This presentation is the commutative semigroup version of the band

presentation of B1 given in Theorem 3.10. It is easy to see from the form of the

presentation that

½a�S1 \ ½b�S1 ¼
[

i2N

½aui�S
1

and is not finitely generated. h

It is also easy to see that the (non-commutative) semigroup on the same

presentation as that in Example 5.1 is not right ideal Howson; the presentation,

however, is not finite. We now give an example of a finitely presented semigroup

that is not right ideal Howson.

Example 5.2 Let S be given by the semigroup presentation

S ¼ ha; b; c; d; p; q; u; v : auvc ¼ bpqd; au ¼ ua; ub ¼ bp; uv ¼ u2v2i:

Then S is not right ideal Howson.

Proof Let X ¼ fa; b; c; d; p; q; u; vg and define subsets q and r of Xþ � Xþ by

q ¼
�

ðauvc; bpqdÞ
�

and r ¼
�

ðau; uaÞ; ðub; bpÞ; ðuv; u2v2Þ
�

and let s ¼ q [ r. First, we note that for any t 2 X� we have ½auhvc� ¼ ½aukvct� if
and only if h ¼ k and t ¼ �. This is a fact witnessed by verifying, by induction on

the length of a s-sequence, that
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½auhvc� ¼ futauhþ‘�tv‘þ1c; urbpsqd : ‘� 0; 0� t� hþ ‘; r� 0; s� 0; r þ s ¼ hg:

It follows that ½auhvc� and ½aukvc�, for any distinct h; k 2 N are incomparable under

the R-order. Furthermore notice that ½auhvc� 2 I ¼ ½a�S1 \ ½b�S1 for any h 2 N,
since

auhvc r] uh�1auvc q] uh�1bpqd r] bphqd:

To complete the proof, we must show that if aw s] bx for some w; x 2 X� then

½aw� 2 ½auhvc�S1 for some h� 1. Suppose therefore that aw s] bx, so there exists a

finite sequence of the form

aw ¼ z0; z1; . . .; zn ¼ bx

where zi�1 ¼ cisidi and zi ¼ citidi with ci; di 2 X� and ðsi; tiÞ 2 s [ s�1 for all i 2 n.

We claim that at least one elementary s-transition must be of the form

zi ¼ ukauvcdi; ziþ1 ¼ ukbpqddi;

where k� 0; di 2 X�. Suppose for contradiction that this is not the case; we show

that for each i 2 n0 we have zi ¼ ukiaz0i for some ki � 0; z0i 2 X�. Clearly this is true

for i ¼ 0. Suppose for induction that zi ¼ ukiaz0i as given where i 2 n0. Avoiding the

elementary s-transition of the form above, our possibilities for zi ! ziþ1 are

zi ¼ ukiaz0i ! uki�1auz0i ¼ ziþ1; zi ¼ ukiaz0i ! ukiþ1az00i ¼ ziþ1 in case zi ¼ uz00i

or

zi ¼ ukiaz0i ! ukiaz0iþ1 ¼ ziþ1

where z0i ! z0iþ1under an elementary s-transition. Thus aðznÞ 2 fa; ug, a contra-

diction. Thus for some i we must have zi ¼ ukauvcdi where k� 0, and then

½ax� ¼ ½ukauvcdi� 2 ½auhvc�S

where h ¼ k þ 1 2 N. This completes the proof. h

5.1 Semigroup presentations of right and left ideal Howson semigroups

We now turn to positive results, constructing semigroup presentations that are right

(left, right and left) ideal Howson, which are, by construction, universal in a specific

sense. The semigroups we construct in this subsection are also all cancellative.

For n;m 2 N0 we define an alphabet Xnm by

Xnm ¼
�

a; b; ui; vi; pj; qj : i 2 n; j 2 m
�

and a relation qnm on Xþ
nm by
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qnm ¼
�

ðaui; bviÞ; ðpja; qjbÞ : i 2 n; j 2 m
�

and, as a convention, let Sqnm be the semigroup with presentation hXnm : qnmi. If
n ¼ 0 then we simplify our ingredients considerably; we have

X0m ¼
�

a; b; pj; qj : j 2 m
�

and q0m ¼
�

ðpja; qjbÞ : j 2 m
�

and similarly if m ¼ 0. If m ¼ n ¼ 0 then X ¼ fa; bg and q00 ¼ ;. In this case,

Sq00 ¼ fa; bgþ, being free, is certainly right and left ideal Howson, with intersec-

tions of right (left) ideals being empty or principal.

Since n;m 2 N0 are fixed, we simplify notation and denote Xnm; qnm and Sqnm by

X; q and S, respectively. To proceed we consider a specific factorisation of elements

of Xþ.

Let UðnÞ ¼ fui; vi : i 2 ng and PðmÞ ¼ fpj; qj : j 2 mg where we regard U(n) and
P(m) to be empty if n ¼ 0 and m ¼ 0 respectively. Let

CðqÞ ¼
�

pc; cu; pcu : c 2 fa; bg; u 2 UðnÞ; p 2 PðmÞ
�

and notice that CðqÞ is closed under q]. For any w 2 Xþ we may uniquely factorise

w as

w ¼ w0r1w1. . .wp�1rpwp

for p 2 N0 and subject to the following conditions for all i 2 p and j 2 p0:

(i) ri 2 CðqÞ;
(ii) wj 2 X� does not contain an element of CðqÞ as a subword;

(iii) if aðriÞ 2 fa; bg then xðwi�1Þ 62 PðmÞ;
(iv) if xðriÞ 2 fa; bg then aðwiÞ 62 UðnÞ.

We call such a factorisation the q-factorisation of w with corresponding q-length

equal to p. Notice that jrij ¼ 2 or 3 for all i 2 p.

Claim 5.3 For w; x 2 Xþ have w q] x if and only if w, x have q-factorisations

w ¼ w0r1w1. . .wp�1rpwp and x ¼ w0s1w1. . .wp�1spwp

where ri q
] si for every i 2 p.

Proof If w and x are as given and ri q
] si for every i 2 p, then clearly w q] x.

For the converse, suppose that w is as given and w ! y is an elementary q-

transition. then, (from the definition of q-factorisation) we must have y ¼
w0s1w1. . .wp�1spwp where, for all but one i 2 p, we have si ¼ ri and for a single

j 2 p we have rj; sj 2 CðqÞ with rj q
] sj. Therefore y has the form required. The

result then follows by induction on the length of a q-sequence starting from w and

ending at x. h

Claim 5.4 The semigroup S is right and left ideal Howson.
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Proof We show that S is right ideal Howson, the argument for left ideals being

dual.

Let w; x 2 Xþ and put I ¼ ½w�S1 \ ½x�S1. Suppose that I 6¼ ;, so that wh q] xk for

some h; k 2 X�. By Claim 5.3 we have q-factorisations wh ¼ w0r1w1. . .wp�1rpwp

and xk ¼ w0s1w1. . .wp�1spwp for some p 2 N0 where ri q
] si for all i 2 p. Without

loss of generality we may assume jwj � jxj and then consider all possible cases for

the q-factorisation of h.

(i) Suppose that w ¼ w0r1w1. . .ri�1s and h ¼ tri. . .wp�1rpwp where wi ¼ st for

some i 2 p0 and s; t 2 X�. Since x ¼ w0s1w1. . .si�1sy for some y 2 X�, we

have that

wy ¼ w0r1w1. . .ri�1sy q
] w0s1w1. . .rsi�1sy ¼ x

and so I ¼ ½x�S1 is principal.

(ii) Suppose now that w ¼ w0r1w1. . .wi�1s and h ¼ twi. . .wp�1rpwp where ri ¼
st for some i 2 p and s; t 2 X�. We write x ¼ w0s1w1. . .wi�1siy for some

y 2 X� and see

wty ¼ w0r1w1. . .wi�1sty ¼ w0r1w1. . .wi�1riy q
] w0s1w1. . .wi�1siy ¼ x;

so that I ¼ ½x�S1 is principal.

(iii) Lastly, we suppose that w is as in case (ii) and x ¼ w0s1w1. . .wi�1u where

si ¼ uv for some i 2 p and u; v 2 X� with jsj � juj. If s ¼ u then ½w� ¼ ½x�

and we are done. Otherwise, let us define

RðqÞ ¼
�

ðp; qÞ : ðsp; uqÞ 2 q] \
�

CðqÞ � CðqÞ
��

:

It follows that RðqÞ is finite since CðqÞ is finite and certainly wp q] xq for

all ðp; qÞ 2 RðqÞ. Since ðt; vÞ 2 RðqÞ we have

I ¼
[

ðp;qÞ2RðqÞ

½wp�S1

and so I is finitely generated. h

Claim 5.5 The semigroup S satisfies (Rn) and (Lm). Moreover, the intersection of

any two principal right (left) ideals of S requires at most n (m) generators.

Proof Again we only give the proof for right ideals. Let w; x 2 Xþ; we show the

intersection I ¼ ½w�S1 \ ½x�S1 requires at most n generators. The only situation

where I is not empty or principal is in the second situation of (iii). Here we consider

all the possibilities for ðp; qÞ 2 RðqÞ; we can have jrij ¼ jsij ¼ 2 with jsj ¼ juj ¼ 1

or jsj ¼ 1 and juj ¼ 2, or jrij ¼ jsij ¼ 3 with jsj ¼ juj ¼ 1 or jsj ¼ 1 and juj ¼ 2, or

3, or jsj ¼ 2 and juj ¼ 2 or 3. A case-by-case analysis for all the possibilities, paying

special attention to the case where m ¼ 0 or n ¼ 0 or both, now gives the result. In

particular, when n� 1 with w ¼ a and x ¼ b we have
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I ¼
[

i2n

½aui�S
1

which achieves the bound n as required. h

We are now in a position to given the main result of this subsection.

Theorem 5.6 Let n;m 2 N0. The semigroup Sqnm is cancellative, right and left ideal

Howson, and satisfies (Rn) and (Lm). Further, the intersection of any two principal

right (left) ideals of S requires at most n (m) generators.

Proof Cancellativity follows from the conditions given by Adjan in [1] for a

semigroup given by a presentation to be embeddable into a group. The remainder of

the result comes from Claims 5.3, 5.4 and 5.5. h

We now show that our semigroup Sqnm is in a specific sense universal.

Proposition 5.7 Let n;m 2 N0. Suppose U is a semigroup containing elements a; b

such that aU1 \ bU1 and U1a \ U1b are each exactly n- and m-generated,

respectively, by ac1 ¼ bd1; . . .; acn ¼ bdn and l1a ¼ p1b; . . .; lma ¼ pmb, respec-

tively. Then there is a homomorphism h : Sqnm ! U such that

½a�h ¼ a; ½b�h ¼ b; ½ui�h ¼ ci; ½vi�h ¼ di; ½pj�h ¼ lj and ½qj�h ¼ pj

for all i 2 n and j 2 m.

Proof Let w : Xþ
nm ! U be given by determining its values on the elements of Xnm

by

aw ¼ a; bw ¼ b; uiw ¼ ci; viw ¼ di; pjw ¼ lj and qjw ¼ pj

for all i 2 m and j 2 n. Clearly qnm � kerw so that w induces a morphism h :

Sqnm ! U as in the statement of the proposition. h

Remark 5.8 Let n� 1. The semigroup Sq1m is not finitely right aligned. To see this,

suppose that

½a�S \ ½b�S ¼ ½w1�S [ . . . [ ½w‘�S

for some wk 2 Xþ such that ½wk� 2 ½a�S1 \ ½b�S1 for all k 2 ‘. We have

½au1� ¼ ½bv1� 2 ½a�S \ ½b�S, so that ½au1� ¼ ½bv1� ¼ ½wk�½z� for some k 2 ‘ and

z 2 Xþ. We must have that wkz ¼ aui or bvi. If wk ¼ a then we would not have

wk 2 ½b�S1 and similarly if wk ¼ b, a contradiction.

In fact, an easier approach to obtain a semigroup presentation that satisfies (Rn)

and (Lm) for some fixed n;m 2 N0, but producing a less tight result, runs as follows.

For n;m 2 N0 we define an alphabet Ynm by

Ynm ¼
�

a; b; c; d; ui; vi; pj; qj : i 2 n; j 2 m
�

and a relation rmn on Yþ
mn by
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rnm ¼
�

ðaui; bviÞ; ðpjc; qjdÞ : i 2 n; j 2 n
�

and, as a convention, we let Trnm be the semigroup with presentation hYnm : rnmi. If
n ¼ 0 then (as before) we have

Y0m ¼
�

a; b; c; d; pj; qj : j 2 m
�

and r0m ¼
�

ðpjc; qjdÞ : j 2 m
�

and similarly when m ¼ 0. If in fact n ¼ m ¼ 0 then we simply have Y00 ¼
fa; b; c; dg and r00 ¼ ;. The proof for the following theorem is similar to that of

Theorem 5.6 but rather simpler, since the complications of overlapping generators

for r]nm do not occur.

Theorem 5.9 Let n;m 2 N0. The semigroup Trnm is cancellative, right and left ideal

Howson, and satisfies (Rn) and (Lm). Further, the intersection of any two principal

right (left) ideals of S requires at most n (m) generators.

There is also a corresponding universal type result for Trnm , analogous to that of

Proposition 5.7. Namely, if U is a semigroup containing elements a; b; c and d such

that aU1 \ bU1 and U1c \ U1d are each exactly n- and m-generated respectively,

then U1 contains a morphic image of Trnm obtained as in Proposition 5.7.

5.2 Commutative semigroup presentations of (right) ideal Howson

semigroups

For any n;m 2 N0, the semigroup Sqnm is not commutative. In this section, we

provide a commutative semigroup presentation that satisfies (Rn), which now

coincides with (Ln), for any fixed n 2 N. Unlike the case for Sqnm we do not

automatically have that the semigroups we construct are cancellative. However, we

can construct natural quotients that satisfy (Rn) and are cancellative.

For a fixed n 2 N0 we define the alphabet Xn by

Xn ¼ fa; b; ui; vi : i 2 ng

and the relations sn and tn on Xþ
n by

sn ¼
�

ðaui; bviÞ : i 2 n
�

; tn ¼
�

ðaui; bviÞ; ðuivj; ujviÞ : i; j 2 n; i 6¼ j
�

:

Similarly to the conventions in Sect. 5.1, we let Ssn and Stn be the semigroups with

commutative presentations hXn : sni and hXn : tni respectively. If n ¼ 0 then we

simply put X0 ¼ fa; bg and

s0 ¼
�

ðab; baÞ; ðba; abÞ
�

¼ t0:

Since n 2 N0 is fixed, we will write X, s, t, Ss and St instead of Xn, sn, tn, Ssn and

Stn respectively. Also, note that we will continue to refer to words but we now mean

elements of CXþ rather than Xþ.

Theorem 5.10 The commutative semigroups Ssn and Stn satisfy ðRðnþ 1ÞÞ.
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Proof From Corollary 3.6, we have that both Ss and St are right and left ideal

Howson. A straightforward argument, using the fact that both presentations are

homogeneous, verifies that

½a�jS
1
j \ ½b�jS

1
j ¼ ½ab�jS

1
j [

[

i2n

½aui�jS
1

for j ¼ s or j ¼ m. Further, in each case, no given generator is redundant. h

Notice that in Ss for any i; j 2 n we have ½auivj�s ¼ ½aujvi�s but if i 6¼ j then

½uivj�s 6¼ ½ujvi�s, so that if n� 2 the semigroup Ss is not cancellative. However, we

now set out to show that St is cancellative.

We begin by making some immediate observations about words in the same s]-

class or t]-class.

Remark 5.11 For w; x 2 CXþ with w s] x or w t] x we notice that

(i) jwj ¼ jxj since the presentations are homogeneous;

(ii) we may write w ¼ ap0bq0u
p1
1 v

q1
1 . . .upnn v

qn
n for some pi; qi 2 N

0 for all i 2 n0.

With this in mind, for w 2 Xþ we define K(w) and kiðwÞ to be

KðwÞ ¼ jwjb þ
X

i2n

jwjui ; k0ðwÞ ¼ jwja þ jwjb and kiðwÞ ¼ jwjui þ jwjvi

for all i 2 n. Notice that for any w; x 2 CXþ we have

KðwxÞ ¼ KðwÞ þ KðxÞ and kiðwxÞ ¼ kiðwÞ þ kiðxÞ

for any i 2 n0. We say that w; x 2 CXþ are balanced if kiðwÞ ¼ kiðxÞ for all i 2 n0.

The next claim is clear from the definition of s and t.

Claim 5.12 If w; x 2 Xþ are such that w s] x or w t] x, then w and x are balanced

and KðwÞ ¼ KðxÞ.

Any easy argument gives:

Claim 5.13 If w; x 2 Xþ are such that k0ðwÞ; k0ðxÞ[ 0, then w s] x if and only if

w t] x.

Since s and t are homogeneous relations on CXþ, the question follows of when

w s] x or w t] x is decidable for w; x 2 CXþ. To enable our proof of cancellativity, we

establish explicitly the existence of a normal form in each s]-class and t]-class.

First, we introduce a linear order on words in CXþ. Let w; x 2 CXþ where

w ¼ ap0bq0u
p1
1 v

q1
1 . . .upnn v

qn
n and x ¼ ar0bs0u

r1
1 v

s1
1 . . .urnn v

sn
n :

We say that w� x if and only if there exists some i 2 n0 such that pj ¼ rj for all j\i

and pi\ri (or in fact p0\r0). One may verify the following.

Claim 5.14 The relation � is a partial order on CXþ.
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In particular, � is a partial order when restricted to any set of balanced words;

certainly any s]-class or t]-class. Hence, let ws and wt be the unique words in ½w�s
and ½w�t that are greatest under � . We now draw upon some well-known results

regarding rewriting systems to obtain ws and wt. For basic definitions surrounding

rewriting systems we refer the reader to the work of Gray and Malheiro [13].

Claim 5.15 The rewriting system on ½w�s for all w 2 Xþ, given by the rewriting

rules bvk ! auk and aviuj ! auivj for all i; j; k 2 n with i\j, is confluent.

Proof If w ¼ ybvk and x ¼ yauk for some y 2 X�, then clearly w s] x and w\x.

Correspondingly, if w ¼ yaviuj and x ¼ yauivj for some y 2 X� with i\j then again

w s] x and w\x. It follows that this is a noetherian rewriting system. It is routine to

check that it is also locally confluent and thus confluent. h

Consequently, if w 2 CXþ, then applying the rewriting rules to w yields a unique

reduced word x 2 ½w�s, and x is independent of the choice of w. We know that

x�ws and we deduce from ws � xs ¼ x that x ¼ ws. We say that ws is the word in

normal form in ½w�s. An entirely similar argument can be made for a rewriting

system consisting of rewriting rules bvk ! auk and viuj ! uivj (for all i; j; k 2 N
such that i� j) on elements of ½w�t for any w 2 CXþ.

Claim 5.16 If ws is in normal form in the s]-class of w, then it must be one of the

following types:

(F1a) ws ¼ ap0u
p1
1 u

p2
2 . . .u

pi�1

i�1u
pi
i v

qi
i v

qiþ1

iþ1 . . .vqnn for p0[ 0 and qi[ 0 or i� 1 ¼ n;

(F2) ws ¼ ap0bq0u
p1
1 u

p2
2 . . .upnn for q0[ 0;

(F3) ws ¼ u
p1
1 v

q1
1 . . .upnn v

qn
n .

Similarly, if wt is in normal form in the t]-class of w, then either it is type (F1b) or

(F2) where

(F1b) wt ¼ ap0u
p1
1 u

p2
2 . . .u

pi�1

i�1u
pi
i v

qi
i v

qiþ1

iþ1 . . .vqnn for qi[ 0 or i� 1 ¼ n.

To see this, one can verify that it is not possible to apply a rewriting rule (from

their respective rewriting systems) to ws or wt as above. We now give a partial

converse to Claim 5.12.

Claim 5.17 Suppose w; x 2 Xþ are in normal form and balanced with

k0ðwÞ ¼ k0ðxÞ[ 0.

(i) If jwja\jxja then jwju‘ � jxju‘ for all ‘ 2 n and KðwÞ � KðxÞ[ 0;

(ii) if jwja ¼ jxja and jwjuk[ jxjuk for some k 2 n, then jwju‘ � jxju‘ for all ‘ 2 n

and KðwÞ � KðxÞ[ 0.

Proof Suppose that w; x 2 Xþ as in the statement above.

(i) If jwja\jxja, then as k0ðxÞ[ 0, we must have that
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w ¼ ap0bq0u
p1
1 u

p2
2 . . .upnn for q0[ 0

is of type (F2). Either

x ¼ ar0bs0u
p1
1 u

p2
2 . . .upnn for s0[ 0

is also of type (F2) or

x ¼ ar0u
p1
1 u

p2
2 . . .u

pi�1

i�1u
ri
i v

si
i v

piþ1

iþ1 . . .vpnn for r0[ 0; si[ 0 or i� 1 ¼ n

is of type (F1a). In both cases we see that certainly jwju‘ � jxju‘ for all ‘ 2 n.

Since jwja\jxja if and only if jwjb[ jxjb it is then clear that

KðwÞ � KðxÞ[ 0.

(ii) Suppose that jwja ¼ jxja and jwjuk[ jxjuk for some k 2 n. Since jwja ¼ jxja,

either w and x are both of type (F1a) or both of type (F2). In the latter case, it

is easy to see that w ¼ x, contradicting the hypothesis. Thus

w ¼ ap0u
p1
1 u

p2
2 . . .u

pi�1

i�1u
pi
i v

qi
i v

qiþ1

iþ1 . . .vqnn for p0[ 0; qi[ 0 or i� 1 ¼ n

and

x ¼ ap0u
r1
1 u

r2
2 . . .u

rj�1

j�1u
rj
j v

sj
j v

sjþ1

jþ1. . .vsnn for p0[ 0; sj[ 0 or j� 1 ¼ n

are of type (F1a). We know that jwjuk[ jxjuk for some k 2 n, and the only

way this can occur is if i[ j or i ¼ j and pi[ ri. In either case, jwju‘ � jxju‘
for all ‘ 2 n. Again, it is clear that KðwÞ � KðxÞ[ 0. h

The next claim is now immediate.

Claim 5.18 Suppose w; x 2 Xþ are in normal form and balanced with

k0ðwÞ ¼ k0ðxÞ[ 0. Then w ¼ x (equivalently w s] x) if and only if KðwÞ ¼ KðxÞ.

Theorem 5.19 The semigroup St is cancellative.

Proof To see that St is cancellative, suppose that ½w�t; ½x�t; ½h�t 2 St with

½w�t½h�t ¼ ½x�t½h�t. We may assume that w, x, h are in normal form.

We have wh t] xh so that

kiðwÞ þ kiðhÞ ¼ kiðwhÞ ¼ kiðxhÞ ¼ kiðxÞ þ kiðhÞ;

giving kiðwÞ ¼ kiðxÞ for all i 2 n0 and, similarly, KðwÞ ¼ KðxÞ.

If k0ðwÞ ¼ k0ðxÞ[ 0, then by Claim 5.13 we have w s] x if and only if w t] x, so

that w ¼ x from Claim 5.18.

Suppose therefore that k0ðwÞ ¼ k0ðxÞ ¼ 0; it follows that w, x have form (F1b).

Using the fact that w, x are balanced and KðwÞ ¼ KðxÞ a now familiar analysis

again gives us that w ¼ x. Certainly in each case we have ½w�t ¼ ½x�t. h

Our semigroups Ss and St have universal properties corresponding to those for Ss
in Proposition 5.7.
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Proposition 5.20 Let S be a commutative (commutative and cancellative)

semigroup such that S contains two principal right ideals aS1 and bS1 such that

aS1 \ bS1 has exactly n generators ac1 ¼ bd1; . . .; acn ¼ bdn. Then there is a

homomorphism h : Ss ! S (h : St ! S) such that ½a�h ¼ a; ½b�h ¼ b; ½ui�h ¼ ci and

½vi�h ¼ di for all i 2 n.
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