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ABSTRACT

Studies investigating the relationship between AGN power and the star formation rates
(SFRs) of their host galaxies often rely on averaging techniques – such as stacking – to
incorporate information from non-detections. However, averages, and especially means,
can be strongly affected by outliers and can therefore give a misleading indication of
the “typical” case. Recently, a number of studies have taken a step further by binning
their sample in terms of AGN power (approximated by the 2-10keV luminosity of
the AGN), and investigating how the SFR distribution differs between these bins.
These bin thresholds are often weakly motivated, and binning implicitly assumes that
sources within the same bin have similar (or even identical) properties. In this paper,
we investigate whether the distribution of host SFRs – relative to the locus of the
star-forming main sequence (i.e., RMS) – changes continuously as a function of AGN
power. We achieve this by using a hierarchical Bayesian model that completely removes
the need to bin in AGN power. In doing so, we find strong evidence that the RMS

distribution changes with 2-10keV X-ray luminosity. The results suggest that higher
X-ray luminosity AGNs have a tighter physical connection to the star-forming process
than lower X-ray luminosity AGNs, at least within the 0.8 < z < 1.2 redshift range
considered here.

Key words: galaxies: statistics – galaxies: evolution – methods: statistical

1 INTRODUCTION

The proportion of galaxies that show evidence of Active
Galactic Nuclei (i.e., AGN) ranges from a few percent to a
few tens of percent, depending on galaxy mass (e.g., Kauff-
mann et al. 2003; Best et al. 2005; Mullaney et al. 2012;
Kaviraj et al. 2019). What this implies is that an individ-
ual supermassive black hole (SMBH) spends most of cosmic
time in a âĂIJdormantâĂİ state during which it accretes at
such a low rate as to make it unidentifiable as an AGN (e.g.
Heckman et al. 2004). What is clear from their high masses,
however, is that all SMBHs âĂŞ irrespective of their current
accretion rate âĂŞ must have undergone periods of rapid
growth at earlier times (e.g. Soltan 1982). Since BH growth

⋆ E-mail: lpgrimmett1@sheffield.ac.uk

is not a constant, it raises the question of what external fac-
tors cause a SMBH to transition from a dormant state to
an active state (and vice versa). Or, more succinctly, what
galaxy properties, if any, dictate AGN power?

Recent observations of the inner few (tens of) parsecs
of galaxies hosting AGNs have revealed evidence of bars and
spiral structures that may be funnelling material toward the
central SMBH (e.g. Shlosman et al. 1989; Storchi-Bergmann
et al. 2007; Audibert et al. 2019; Shimizu et al. 2019). While
such studies are important for revealing how gas and dust
are transferred from the host galaxy, they do not address
the question of what “macroscopic” galaxy properties help
to trigger black hole growth. This is important because,
since the energy released by AGNs is thought to impact on
galaxy scales, it is crucial that we understand what large-
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scale galaxy properties make them susceptible to triggering
SMBH growth.

A key means of investigating what galaxy-scale factors
govern SMBH growth rates is by quantifying the properties
of AGN-hosting galaxies and attempting to identify correla-
tions between these host properties and AGN power. How-
ever, this is hampered by the fact that, compared to most
other galactic processes (e.g., star-forming events, mergers),
AGNs are extremely variable and short-lived. As demon-
strated by Hickox et al. (2014), this stochastic duty cycle
tends to dilute the underlying connections between AGN
power and other galactic properties, such that plots of mean
galaxy star formation rate (SFR) vs. AGN power, for exam-
ple, show a flat (i.e., independent) relationship (e.g. Harrison
et al. 2012; Rosario et al. 2012; Mullaney et al. 2012; Stan-
ley et al. 2015, 2017; Suh et al. 2017; Ramasawmy et al.
2019). Recently, some studies have instead investigated the
distribution of star forming properties (as opposed to simple
means) in bins of AGN power (e.g. Scholtz et al. 2018; Bern-
hard et al. 2019). Specifically, Scholtz et al. (2018) compared
the distribution of specific SFR in two X-ray luminosity (LX)
bins, but did not find any significant evidence of a difference
between the two bins (43 < log10(LX/ergs s−1) < 44 and
44 < log10(LX/ergs s−1) < 45). Bernhard et al. (2019, B19
from hereon in) compared the distribution of the RMS statis-
tic (RMS = SFR/SFRMS, where SFRMS is the expected SFR
for a galaxy of identical mass and redshift, should it lie on
the locus of the star-forming main sequence) in bins of low
LX (i.e., 42.53 < log10(LX/erg s−1) < 43.3) and high LX (i.e.,
43.3 < log10(LX/erg s−1) < 45.09), and only found “tenta-
tive” evidence of a dependency. Note that, the RMS statistic
is often referred to as the “starburstiness” of a galaxy (El-
baz et al. 2011; Schreiber et al. 2015); we shall also use this
notation throughout the rest of the paper.

So whilst the use of distributions has allowed us to in-
vestigate the star-forming properties of AGNs in more detail
than using simple averages, no study has demonstrated that
the distribution of star-forming properties is dependent on
LX.

1 Of course, this may be because no intrinsic connection
exists. It could, however, be due to an often unaddressed lim-
itation in the analysis: the use of arbitrarily-constructed bins
of LX. Beyond being somewhat arbitrary, weakly-motivated
and possibly impacting results (Lanzuisi et al. 2017), bin-
ning has several further limitations. One problem is how to
classify a source which, when considering errors, could fall
in two or more bins (i.e., if there was a bin boundary at
log10 LX = 44, can a source with log10 LX = 43.8 ± 0.3 be
accurately classified?). In an attempt to deal with sources
that, within their errors, cross a bin boundary, some studies
choose to discard ambiguous sources (e.g. Grimmett et al.
2019), whereas other studies assign them to a particular bin
based only on their measured value (e.g. Delvecchio et al.
2015; Aird et al. 2018; Bernhard et al. 2019). Both of these
approaches have intrinsic problems. Information is lost when
sources are just discarded and by just using the measured
value, uncertainties in the binning axis are not fully appreci-
ated. A second limitation is the implied assumption that all

1 Note, here we use “dependence” in the strict mathematical
sense, rather than suggesting that SFR physically depends on

AGN power.

sources in the same bin have identical properties, yet sources
just either side of the bin boundaries are different. Both of
these limitations constitute a loss of information from the
data in hand.

In this study, to investigate the implications of bin-
ning on our investigations of the relationship between star-
forming properties and AGN power, we analyse the RMS

distribution as a continuous function of LX. To do this,
we have developed a comprehensive Bayesian hierarchical
model which has two substantial benefits over binning.
Firstly, it allows us to eliminate the possibility of binning-
dependent results. Secondly, the model allows us to accu-
rately account for all uncertainties (including, where nec-
essary, upper limits) on the independent variable (i.e., in
our case LX).

2 Specifically, this paper aims to quantify the
dependence between the RMS distribution and LX, without
the need for binning or averaging. In doing so, we extract
all available information from our data and find strong evi-
dence of a relationship between the star-forming properties
of AGN-hosting galaxies and LX.

The outline of the paper is as follows. In Section 2 we
briefly summarise how the dataset was constructed. In Sec-
tion 3 we summarise the hierarchical Bayesian model, ex-
plain how we eliminate the need for binning and briefly in-
troduce our MCMC model switching algorithm, which will
test whether the RMS distribution is dependent on LX. In
Section 4 we present the output of the analysis and discuss
the limitations and implications in Section 5. Where nec-
essary, we adopt a WMAP-7 year cosmology Larson et al.
(2011) and assume a Chabrier (2003) initial mass function.
Finally, in Appendix A we give the full details of the MCMC
model switching algorithm.

2 DATA

So that we can compare the results of our new method with
previously found results, we decide to reuse the same dataset
as constructed in B19. This will ensure that any differences
are the direct result of the analysis method, rather than from
differences between two independent data sets. We provide
a summary of the sample derivation in this section, but refer
interested readers to B19 for a fuller explanation.

Briefly, we take the 541 X-ray detected sources with
a redshift between 0.8 < z ≤ 1.2 from the COSMOS

Legacy Survey (Civano et al. 2016; Marchesi et al. 2016).
This small redshift range (∼ 75 per cent have spectroscopic
redshifts) is chosen to minimise any potential redshift ef-
fects. These sources have rest-frame 2-10 keV, absorption-
corrected X-ray luminosities spanning the range 42.53 <

log10(LX/erg s−1) < 45.09 (see Marchesi et al. 2016 for details
on how they calculated LX, including how they corrected for
absorption). We should note that in order to remain con-
sistent with B19 for the aforementioned purposes, we do
not include those sources with upper limits on LX nor ac-
count for redshift variation, although it would be straight-
forward to do so as explained in Section 3.2.1. Uncertainties

2 Multiple dependent data sources can easily be adopted in to
the framework, but for this study we choose only to model LX as
a demonstration of the technique.

MNRAS 000, 1–13 (2017)



Binning-free continuous relationship 3

on LX values are derived by converting the percentage er-
ror on the flux measurement presented in Marchesi et al.
(2016). On comparing these errors to the upper and lower
LX bounds in Marchesi et al. (2016), we find that our uncer-
tainties are generally more conservative. We then derive a
SFR for each source using the DECOMPIR code (see Mul-
laney et al. 2011 for full details) on the super-deblended pho-
tometry presented in the catalogue of Jin et al. (2018)which
used the deblending technique of Liu et al. (2018). The cata-
logue contains data from various sources such as Spitzer and
Herschel and covers the 24-1200µm range.

In total, our sample contains 148 AGNs with mea-
sured SFRs, and 393 with upper limits on their SFRs. Stel-
lar masses are calculated using the multi-wavelength spec-
tral energy distribution fitting code CIGALE (Noll et al.
2009; Serra et al. 2011; Ciesla et al. 2015; Boquien et al.
2019), using the same parameter prescription as Grimmett
et al. (2019). The stellar mass parameters were chosen to
maximise the accuracy according to the testing presented
in Ciesla et al. (2015). Next, we use the prescription of
Schreiber et al. (2015), together with each galaxy’s redshift
and mass, to predict the SFR that it would have if it were
on the star-forming main sequence (i.e., SFRMS). Finally, we
calculate the “starburstiness” statistic, RMS, of each galaxy
in our sample via RMS =

SFR
SFRMS

. The RMS value of a galaxy
aims to provide an indication of the star-forming properties
of a galaxy after taking into account the mass and redshift
dependence of the SFR of the dominant population of so-
called main sequence galaxies (e.g. Brinchmann et al. 2004;
Noeske et al. 2007; Elbaz et al. 2007; Magdis et al. 2010;
Schreiber et al. 2015). While we appreciate that the pre-
cise nature of the mass and redshift of the main sequence
is still the matter of some debate (e.g. Speagle et al. 2014;
Ilbert et al. 2015; Whitaker et al. 2015; Popesso et al. 2019),
the main aim of this study is to demonstrate a new analysis
technique, so we choose to the use the definition of Schreiber
et al. (2015) to remain consistent with B19. This again en-
sures that any differences in results are a direct consequence
of the analysis technique, as oppose to differences in the
sample.

3 THE CONTINUOUS MODEL, MODEL

SELECTION AND MCMC ALGORITHM

In this section we describe how we model the RMS data, in
such a way to remove the need for binning, which enables us
to investigate whether (and, if so, how) the RMS distribution
changes as a continuous function of LX. In subsection 3.1, we
introduce the log-normal distribution we use to model the
RMS distribution and explain why we must use a “hierarchi-
cal” Bayesian approach to allow this to vary continuously
with LX. Next, in subsection 3.2 we describe our Bayesian
priors and how these provide a mechanism to include all
uncertainties on each individual LX value. Finally, in sub-
section 3.3, we introduce our bespoke MCMC sampler that
explores the posterior parameter space in a way that allows
us to test whether the RMS distribution depends on LX.

3.1 RMS distribution and likelihood function

In order to test the continuous relationship between the
RMS distribution and LX we assume a functional paramet-
ric form for the RMS distribution. In this work, we choose
to model the RMS distribution as a log-normal distribution
(i.e., that log10(RMS) is normally distributed). A log-normal
distribution is primarily chosen to remain consistent with
B19. Although recent studies have found the scatter around
the main sequence to be well modelled by a log-normal dis-
tribution (Rodighiero et al. 2011; Sargent et al. 2012; Guo
et al. 2013; Chang et al. 2015; Mullaney et al. 2015; Caplar
& Tacchella 2019; Davies et al. 2019) there is likely a“bump”
in the high-RMS end of the distribution caused by starburst
galaxies. Indeed, it is also true that there is likely an addi-
tional component at lower RMS values due to the population
of quiescent galaxies. Therefore the accuracy of using a log-
normal distribution could be questioned. However, we leave
devising a more flexible model for a future work, where we
intend to include all three populations (i.e., quiescent, main
sequence and starburst galaxies) in our model (Grimmett et
al., in prep). Therefore we stress that this study is working
under the assumption that the deviation from the main se-
quence of star formation is log-normally distributed, at least
for AGNs. In future studies, this model could be made more
flexible to account for an additional second component, but
the primary motivation of this work is to test the ability of
the method to remove the need for binning and therefore we
choose a log-normal RMS distribution to remain consistent
with B19.

As we choose to use a Bayesian approach, we wish to de-
rive the posterior distribution, which is proportional to the
product of the data-driven likelihood function (assuming a
log-normal RMS distribution) and the prior distributions. We
are then interested in sampling parameter values from this
posterior distribution. The prior distributions are essential
for including the uncertainty on LX and are fully explained
in Section 3.2. The remainder of this section, therefore, de-
scribes how we derive the likelihood function.

The likelihood function is given by the product of the
probability density functions (PDFs) of all the detected RMS

values, and the cumulative distribution functions (CDFs) of
all undetected sources. The PDF of a given detected RMS,i

value with parameters µ (representing the mode) and σ (rep-
resenting the width), is given by

f (log10(RMS,i)|µ, σ) = (2πσ2)−
1
2 exp

(

−
(log10(RMS,i) − µ)2

2σ2

)

.

(1)

For upper limits (i.e., non-detected RMS values, which ulti-
mately comes from an upper limit on the infrared flux) the
PDF is replaced by the CDF. The CDF is the integral of the
PDF and can therefore be written as,

F(log10(RMS)|µ, σ) =
∫ RMS

−∞
f (X |µ, σ)dX

=

1

2

(

1 + erf

(

log10(RMS) − µ
σ
√

2

))

,

(2)

where f (X |µ, σ) is given by Equation 1.

MNRAS 000, 1–13 (2017)



4 L. P. Grimmett et al.

In other words, for a given galaxy, F(log10(RMS)) is close
to 1 if most of the RMS distribution with given µ and σ
values lies below the value of the upper limit. By contrast,
F(log10(RMS)) is close to 0 if most of the distribution lies
above the upper limit, meaning those µ and σ values are
incompatible with that limit.

By combining both our m detections, RMS,1, ..., RMS,m,
and n − m non-detections, RMS,m+1, ..., RMS,n, the likelihood
function is given by the product of the PDFs (for the detec-
tions) and the CDFs (for the upper limits),

L(log10(RMS)|µ, σ) =
m
∏

i=1

f (log10(RMS,i)|µ, σ)

n
∏

i=m+1

F(log10(RMS,i))|µ, σ).
(3)

If we were going to assume no dependence of RMS on LX,
and no uncertainty on LX, then at this stage we could sim-
ply find the best-fitting values for µ and σ, as has been used
previously in “Bayesian”-style studies that use bins. Such
studies derive the likelihood function in different bins, use
parameter-maximisation techniques to find the best fitting
value for µ and σ within each bin, and then compare how pa-
rameters change between different bins (e.g. Mullaney et al.
2015; Scholtz et al. 2018; Bernhard et al. 2019). However, in
order to analyse the RMS distribution as a continuous func-
tion of LX, wemust use a hierarchical model, since this allows
the parameters that control the shape of the RMS distribu-
tion (i.e., µ, σ) to vary as a function of LX. As the true rela-
tionship between the µ and σ parameters and the LX values
is unknown, the choice of relationship is arbitrarily specified.
However, in order to test the case of no dependence (i.e.,
that RMS and LX are independent of one another), it is suffi-
cient to show that a simple model that allows dependence is
preferable to one that imposes independence. Therefore, we
choose to use simple functions to relate the parameters of
the RMS distribution and the LX values (hereafter referred
to as the “functional relationships”), given by:

µi = θ0 + θ1 log10

(

LX,i

1040

)

and σi = e
θ2+θ3 log10

(

LX, i

1040

)

. (4)

The rescaling of the LX values ensures that the hyperparam-
eters are not orders of magnitude different, which could lead
to problems in the analysis. Note that, throughout this pa-
per, we are only considering the effect of LX on the RMS dis-
tribution and hence our functional relationships only factor-
in LX. If other parameters, such as redshift or stellar mass
were also to be considered, they could be added to the func-
tional relationships as described in Equation 4. Such an ex-
pansion of the model is, however, beyond the scope of the
current study, but would remove the need for binning in
both redshift and stellar mass.

By introducing these functional relationships, we have
essentially related the mode and width of the RMS distri-
bution to the LX values. Additionally, we have changed the
parameters of interest from µ and σ to the parameters given
by θ = {θ0, θ1, θ2, θ3} (hereafter, our hyperparameters); this
is what makes the approach “hierarchical”. Note that we
specify an exponential form for the functional relationship
between σi and LX,i as σi cannot be negative. The focus of

this analysis is to now find the posterior distributions for θ.
By considering these posteriors, the functional relationships
allow us to test whether the RMS distribution is dependent
upon LX. For example if θ1 = θ3 = 0, the functional rela-
tionships are no longer a function of LX and therefore imply
that the RMS distributions are independent of LX. Addition-
ally, relating the mode and width of the RMS distribution
to the LXvalues has completely removed the need to bin the
data in LX. The question of independence now becomes how
likely is θ1 = θ3 = 0, given the data observed. More details
of which are contained in Section 3.2.2.

As a result of adapting the mode and width of the dis-
tribution so that binning is not required, the likelihood func-
tion changes slightly and is now given by,

L(θ, LX |RMS) =
m
∏

i=1

f (log10(RMS,i)|θ, LX,i)

n
∏

i=m+1

F(log10(RMS,i)|θ, LX,i).
(5)

3.2 Prior and posterior distributions

3.2.1 Prior distribution on LX

We have now expressed the parameters as functions of the
independent data (in this case, LX) and the hyperparame-
ters, θ. The next step we must now consider is how to fully
account for uncertainties on LX. In our hierarchical model,
we are able to treat the LX values as parameters, and can
therefore place informative Bayesian priors on their values.
The prior distribution on each LX,i can be constrained by the
measured value LX,i,meas and uncertainty ξi and modelled as
a log-normal (here, we are assuming that our errors are sym-
metric in log space). This means that the prior distribution
on a specific log10(LX,i) is given by,

f (log10(LX,i)| log10(LX,i,meas), ξi) =

(2πξi)−
1
2 exp

(

−
(log10(LX,i) − log10(LX,i,meas))2

2ξ2
i

)

.

(6)

where ξi is derived by converting the percentage error on the
flux measurement presented in Marchesi et al. (2016). This
can be thought of as the probability density of observing the
true LX given we have observed a measurement, LX,i,meas and
error ξi . It should be noted that in this study we are working
with only detected X-ray luminosities to remain consistent
with B19 and we assume all uncertainties are modelled with
a log-normal. One could, however, replace this prior distri-
bution with any probability distribution. Note that in this
study, we have not accounted for the uncertainties on the
RMS values. This is largely to remain consistent with the
modelling approach of B19. In future studies, uncertainties
on the dependent variable (in our case, RMS) can be included
using a similar method as the one applied to the uncertain-
ties on LX. Whilst we do not believe that excluding these
uncertainties has a major impact on our results, it is a lim-
itation of this study. However, it is not a limitation of the
methodology.

At this stage, we have specified our likelihood function

MNRAS 000, 1–13 (2017)



Binning-free continuous relationship 5

(Equation 5) and our priors on LX. The final terms we must
consider are the prior distributions on the hyperparameters,
which we discuss in the next subsection.

3.2.2 Prior distribution on hyperparameters

Because our primary scientific aim is to determine whether

the RMS distribution changes with LX, we are most inter-
ested in the (posterior) probability that the hyperparame-
ters θ1 and θ3 are equal to 0 or whether they are non-zero
(i.e., there is a dependence on LX). We therefore choose the
prior distributions of these hyperparameters to be a “spike
and slab distribution”. This type of prior allows us to join
two distributions; one defined in discrete space (the spike)
and one in continuous space (the slab). This is necessary so
that we can ensure that there is a defined prior probabil-
ity that θ1 = 0 and θ3 = 0 (i.e., there is a prior probability
of independence between RMS and LX), as oppose to a just
a probability density. If we have a defined prior probabil-
ity then we can calculate a posterior probability, again as
opposed to just to a probability density. 3

Our spike and slab prior distributions take the form,

f (θ1 |ω) = (1 − ω)N(θ1; mean = 0, S.D. = 1) + ωδθ1=0,

f (θ3 |ω) = (1 − ω)N(θ3; mean = 0, S.D. = 1) + ωδθ3=0,
(7)

where ω is the prior probability that θ1, θ3 = 0 and δθi=0

is the delta function. For our analysis, we choose ω = 0.5

so that our prior probability favours neither the case of in-
dependence, p(θ1 = 0) = p(θ3 = 0) = 0.5, nor the case of
dependence p(θ1 , 0 = p(θ3 , 0) = 0.5. As we are not inter-
ested in the posterior probabilities that θ0, θ2 = 0, the prior
distributions on these parameters are Gaussian distributions
with mean 0 and standard deviation 1.

This means that by using spike and slab prior distribu-
tions we have constructed four potential models:

• Model 1: θ1 = 0, θ3 = 0, no dependence on LX at all
• Model 2: θ1 , 0, θ3 = 0, mode depends on LX, width

does not
• Model 3: θ1 = 0, θ3 , 0, width depends on LX, mode

does not
• Model 4: θ1 , 0, θ3 , 0, both mode and width depend

on LX.

Note that as we have chosen ω = 0.5 our prior dis-
tributions give no preferential weight to any of the model
scenarios (according to the prior, they all have a probability
of 0.25). Having now derived the likelihood function and all

3 A probability density is a “relative” likelihood as opposed to an
absolute one. For a distribution over a continuous space, the ab-
solute probability of any one particular occurrence is 0, whilst the
probability density can be non-zero. For a distribution over a dis-
crete space, the probability mass function (the discrete equivalent
of the density) is an absolute probability.

needed prior distributions we can construct the final poste-
rior distribution,

f (θ, log10(LX)|log10(RMS), log10(LX,meas)) =
L(log10(RMS)|θ, log10(LX))
× f (log10(LX)|log10(LX,meas), ξ)
× f (θ |ω)

(8)

3.3 MCMC algorithm and model switching

As our posterior distributions cannot be derived analytically,
we have written a purpose-built MCMC sampler in order to
sample from the posterior distributions of each given hyper-
parameter (i.e., θ0, θ1, θ2, θ3). However, in addition to sam-
pling from the posterior distributions to find the most likely
hyperparameter values, we also use our sampler to determine
the posterior probability of each of our four models (i.e., for
model comparison). The posterior probability of the mod-
els can be calculated analytically, however even advanced
sampling methods (e.g. Nested Sampling, see Buchner et al.
2014) struggle to accurately calculate them due to the high
dimensionality of our parameter space (i.e., up to 545 dimen-
sions as a result of including the LX values as parameters).
Instead, we use “model switching” to compute the posterior
model probabilities. In this subsection, we summarise our
MCMC sampler, including the model switching component;
a full description is, however, given in Appendix A.

For the most part, our MCMC sampler adopts a stan-
dard Metropolis-Hastings (MH) algorithm (Metropolis et al.
1953; Hastings 1970) to explore the parameter space. On
each iteration, the MH algorithm proposes a new set of pa-
rameter values, which are then accepted or rejected. For
efficiency, we propose new values for two parameters at
a time, and accept them based on their “acceptance ra-
tio” (see Equation 9). Our parameter vector is given by
θ = (θ0, θ1, θ2, θ3, log10(LX,1), ..., log10(LX,1)) and therefore we
sample θ0, θ1 together and θ2, θ3 together. This is important
as the value of θ0 is dependent on the value of θ1; similarly,
the value of θ2 is dependent on θ3. Proposing the dependent
hyperparameters together can allow us to take into account
the dependency and therefore propose more sensible values.

If we were only considering one model, and simply
wished to sample the posterior distributions, then we would
simply iterate the above process. However, in our case we
wish to compare the relative probability of four different
models. As mentioned above, we do this using a technique
known as“model switching”, which we describe next. For the
purposes of this explanation, we will assume that the current
state of the MCMC algorithm is such that it is in Model 1
(i.e., θ1 = θ3 = 0; however, for simplicity we will ignore θ3 for
the rest of this explanation). We then propose, with proba-
bility 0.5, that the new value of θ1 remains at zero. If it does,
we remain within Model 1 and the MH algorithm progresses
as usual.

If, however, the new value of θ1 is chosen to be non-zero,
then this implies that the MCMC algorithm has proposed
a switch to a different model (in this case, Model 2). If this
happens, we cannot retain the value for θ0, since the value
of θ0 in Model 1 is likely very different to the value of θ0
in Model 2, as we are now including the θ1 parameter. This
means that, when we propose a model switch, we cannot
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simply keep θ0 as before, as it is unlikely to be in a region
of high posterior probability. Therefore, we need to propose
“reasonable” values for both θ0 and θ1, given that we have
proposed Model 2.4 Given the two new proposed values (i.e.,
θ ′ = (θ ′

0
, θ ′

1
)), the acceptance probability, α is given by,

α = min

(

π(θ ′)q(θ ′, θ)
π(θ)q(θ, θ ′) , 1

)

, (9)

where π(θ) is the full conditional of θ and q(θ, θ ′) is the pro-
posal density (i.e., the probability density of proposing θ ′

given the current θ). Usually, the proposal density is a sym-
metric function (e.g. a Gaussian), so q(θ, θ ′) = q(θ ′, θ) and
the two q values cancel in Equation. 9. However, as we ex-
plain in Appendix A, this is not the case when we propose
a switch between models (Gottardo & Raftery 2008). We
also explain in Appendix A how we calculate the values for
q(θ, θ ′) and q(θ ′, θ). The final stage is the same whether we
have proposed a model switch or not: we accept the pro-
posed values with probability equal to the acceptance ratio,
otherwise we re-accept the current values (as is standard in
an MH algorithm).

The above process is replicated for θ2 and θ3 (in this
case, a change from θ3 = 0 to θ3 , 0, or vice versa, repre-
sents a switch between models) and then the sampler works
through the rest of the parameter vector, individually. The
process is more straightforward for the LX values as the pro-
posal distribution is centered on the current value and no
switching is required, so our process reverts to the standard
MH sampler. As we describe fully in our Appendix, by the
construction of our MCMC algorithm, the models that we
can switch to depends on the current model. For example,
if the chain is currently in Model 1 it cannot jump to Model
4, as that would require a change in the dependency on µ
and σ at the same time, whereas we only consider changes
in these dependencies one at a time. Again, by construction,
we have ensured that over the entire chain, all models are
proposed equally (i.e, with a probability of 0.25).

In one iteration we sample through the full parameter
vector and we run five chains in parallel for 25,000 itera-
tions.5 Each chain has the first 5000 iterations removed as a
burn-in, then the remaining iterations from each chain are
combined to form the final sample of 100,000 posterior draws
for each parameter. The posterior probability of each of the
four models presented in Section 3.2.2 is then straightfor-
ward to calculate from the combined chain: all we need to
do is calculate the fraction of accepted samples from each
model in the combined chain.

4 RESULTS

Given that we now have 100,000 independent draws from
the posterior distribution from each parameter, we can be-
gin to investigate the relationship between the RMS distribu-
tion and LX. Recall that we modelled the RMS distribution

4 How we obtain a “reasonable” values is explained in full in Ap-
pendix A
5 The choice of five chains for 25,000 iterations is arbitrary, but
these values ensured that the combined chain contained a suffi-
ciently high number of samples from the posterior.

as a log-normal distribution and set a relationship between
the mode and width, and the LX values as outlined in Equa-
tion 4. We proposed values such that our sample was forced
to consider θ1 = 0 and θ3 = 0 respectively, effectively al-
lowing for the MCMC sampler to switch between models
of dependence or independence. In this Section, we present
the posterior distributions of the hyperparameters and the
posterior model probabilities.

4.1 Posterior distributions

4.1.1 Posterior model probabilities

As a result of implementing model switching in the MCMC
algorithm we can easily calculate the posterior model prob-
abilities by considering the fraction of samples of each chain
within each model. The posterior model probabilities along-
side the Bayes Factor comparison to the independent Model
1 are given in Table 1. The Bayes Factor, which can be accu-
rately used to compare two models (Kass & Raftery 1995),
is given as the ratio of the posterior model probability of
the more complex model to the posterior model probabil-
ity more simple one. Naturally, the Bayes Factor includes a
“penalty” for the number of parameters used. In our case, as
a result of including LX values as a parameters our models
have vastly different numbers of parameters. Model 1, which
ignores LX values only has 2, whereas Models 2, 3 and 4 have
544, 544 and 545 respectively. This can help explain the very
small posterior probabilities of Models 2 and 3, where the
chain either prefers the simple Model 1, or for the sake of
1 extra parameter Model 4, which comprehensively outper-
forms them. The Bayes Factor comparing Model 4 to Model
1 gives us a value of 15.285, which can be seen as “strong”
evidence in favour of Model 4 (Kass & Raftery 1995). Using
this model comparison model technique, the posterior model
probability is not equal to the probability that the model is
true, as the sum of all posterior model probabilities in the
analysis must be equal to 1. It is therefore important to con-
sider the Bayes Factor approach for comparing the models,
rather than using the posterior model probabilities as they
are.

4.1.2 Hyperparameters

In Figure 1 we present the posterior distributions for the hy-
perparameters as computed by the MCMC algorithm out-
lined in Section 3.3. The off-diagonal plots show the joint
posterior distributions. As described in Section 4.1.1, we
have strong evidence that a model of the RMS distribution
with a dependence on LX is preferred to the independent
model. The rest of this paper therefore, works with the as-
sumption that Model 4 is the most suitable model.

We present summary statistics for the posterior distri-
butions of the hyperparameters in Table 2. The coefficients
of LX in the functional relationships (see Equation 4) are
given by θ1 and θ3, which from Table 2 and Figure 1 are
positive and negative respectively. This implies that as LX

increases, the mode and width of the RMS distribution in-
crease and decrease respectively. The relationship between
the mode and width of the log-normal RMS distribution and
LX can be seen in Figure 2, where the posterior distributions
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Model Value of µ Value of σ Posterior probability Bayes Factor vs. Model 1

1 θ0 eθ2 0.06102 -

2 θ0 + θ1 log10

(

LX

1040

)

eθ2 0.00477 0.0781

3 θ0 e
θ2+θ3 log10

(

LX

1040

)

0.00148 0.02425

4 θ0 + θ1 log10

(

LX

1040

)

e
θ2+θ3 log10

(

LX

1040

)

0.93273 15.285

Table 1. The posterior model probabilities given for each model. These are calculated by considering the amount of time the MCMC
chain spent in each of the models. Also shown is the Bayes Factor, which is used to judge, out of two models, the model considered to
be the most likely.

of the hyperparameters have been sampled 1000 times and
combined with LX to provide samples of µ and σ.

4.2 RMS as a function of LX

In this paper, we have used a hierarchical Bayesian frame-
work to remove the need for binning and stacking when mod-
elling the RMS distribution of galaxies hosting AGN of dif-
ferent LX. In doing so, and in contrast to B19, we find strong

evidence that there is relationship between the RMS distri-
bution and LX (i.e., AGN power) as oppose to just tentative
evidence.

In Figure 3 we show how the RMS distribution, when
modelled as a log-normal distribution, changes as a func-
tion of LX in the range 42.53 ≤ log10(LX/ergs s−1) ≤ 45.09.
As LX increases, the mode of the RMS distribution increases,
whilst the width decreases. This is also shown in Figure 1, as
θ1 takes positive values (i.e., µ increases with increasing LX)
and θ3 takes negative values (i.e., σ decreases with increasing
LX). These results, albeit with more evidence, are still con-
sistent with the tentative findings of B19, which showed that
more luminous X-ray AGNs have RMS distributions closer
to those of main sequence galaxies compared to lower LX

AGNs. This is also consistent with the findings of Schulze
et al. (2019), who noticed no difference in the SFR distribu-
tion of 20 z ∼ 2 quasars and the SFR distribution of main
sequence galaxies.

With our new analysis showing stronger evidence of a
dependence of RMS on LX, it is natural to ask whether this is
consistent with the observed flat relationship between SFR
and LX reported by some other studies (e.g. Rosario et al.
2012; Stanley et al. 2015). We are able to explore this issue
by generating synthetic SFRs using our LX-dependent RMS

model, together with the measured LX, redshifts, and stellar
masses of our sample. To do this we:

(i) randomly generate a sample from the joint posterior
distribution of the hyperparameters, θ∗

0
, θ∗

1
, θ∗

2
, θ∗

3
. This in-

volves taking a random point from each of the off-diagonal
plots in Figure 1 (and therefore respecting any correlations
between parameters);

(ii) for each of the 541 sources in our sample we use their
detected LX values, alongside the aforementioned randomly
sampled hyperparameters, to calculate the mode and width
of the predicted RMS distribution. Recall, we reuse the func-
tional relationships we chose earlier so that we have a pre-

dicted mode, µpred and predicted width, σpred:

µpred = θ
∗
0 + θ

∗
1 log10

(

LX

1040

)

and

σpred = e
θ∗

2
+θ∗

3
log10

(

LX

1040

)

.

(10)

(iii) we then sample an RMS value from the log-normal
distribution with the parameters µpred and σpred;

(iv) we then repeat steps 1-3 10,000 times so that we have,
for each source in our sample, a set of 10,000 predicted RMS

values constrained by our hyperparameter posterior distri-
butions and the assumption of our functional relationships;

(v) we next multiply each of the sampled RMS values by
the corresponding main sequence SFR, calculated by us-
ing the stellar masses, redshifts and the prescription from
Schreiber et al. (2015). This leaves us with a sample of 10,000
predicted SFRs for each source calculated using our func-
tional relationships and posterior distributions.

Figure 4 shows the relationship between SFR and LX

as predicted by our LX-dependent RMS distribution. The red
stars show the mean predicted SFR in bins of LX, using a bin
width of 0.25 dex (with error bars indicating the 3σ standard
error). Over-plotted are the observed mean SFRs (calculated
using survival analysis), also in bins of LX, from Stanley
et al. (2015). The yellow circles represent the SFRs of the
148 AGNs in our sample with measured fluxes, while the
yellow triangles represent the upper-limits on SFRs for the
remaining 393 AGNs. Despite our analysis providing strong
evidence of a relationship between the RMS distribution and
LX, the projected relationship between the average predicted
SFRs and LX is comparable to the observed flat relationship
of Stanley et al. (2015) (i.e., while the means are offset,
they are well within the range of scatter given by the ob-
served measurements). While the incorporation of mass and
redshift information to convert our predicted RMS values to
SFR may contribute to some of the flattening, it is plausi-
ble that averaging over a log-normal distribution within a
particular LX bin could have significantly flattened the rela-
tionship also. This further demonstrates that even if a strong
underlying relationship between star-forming properties and
AGN power exists, it is extremely difficult to extract using
average (or even individually-measured) SFRs in bins of LX.

5 DISCUSSION

5.1 Limitations of our approach

Before discussing the implications of our results, in this Sec-
tion we aim to highlight limitations of our approach and dis-
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Figure 1. The output from our MCMC algorithm. The on-
diagonal plots show the marginalised posterior distributions for
each parameter, with the joint posterior distributions shown by
the off-diagonal contour plots. The figures include results from
the entire MCMC chain, which means that different peaks (on-
diagonal) and contour regions (off-diagonal) illustrate when the

chain is in a particular model. For example, in the plot in the
second row, first column (from top left), the larger of the two

contour regions corresponds to θ1 , 0, which is the case in both
Model 2 and Model 4. From this posterior plot alone, one cannot

distinguish whether the chain is in Model 2 or Model 4, as infor-
mation about the other parameters is needed (i.e., a 4-dimensional
plot would show four discrete model regions). Secondly, there is
a smaller region in the lower-right corner that corresponds to the
region where θ1 = 0, which is the case for both Model 1 and Model
3. Again, one cannot distinguish between these two models from
this plot alone. However, given the negligible amount of time the

chain spends in Model 2 and Model 3, it can be assumed without
much loss of accuracy that the larger region represents the likeli-

hood for Model 4 and the smaller region represents the likelihood
for Model 1. This is analogous to the larger and smaller peaks in
the on-diagonal plot for θ1.

Table 2. Posterior mean and standard deviations for the hyper-
parameters for Model 4.

Parameter Mode Standard Deviation
θ0 -1.191 0.119
θ1 0.276 0.033
θ2 0.540 0.128
θ3 -0.391 0.040

cuss areas for potential improvement. Initially, as we reuse
the same dataset as B19, we have adopted the same set of
initial assumptions as that paper. Namely, the assumption
about the parametric form of the RMS distribution and the
validity of the Schreiber et al. (2015) main sequence. How-
ever by removing the need for binning, we have relaxed the
unstated assumption about sources in the same bins hav-
ing similar properties. The remainder of this Section, there-
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Figure 2. The evolution of the mode, µ, and width, σ, of the
RMS distribution as a function of LX shown for 1000 bootstrapped
samples from the posterior distributions of the hyperparameters,
under the assumption of Model 4. Over-plotted are the results
from B19, with 1-σ errors. Also plotted is the main sequence
values from Schreiber et al. (2015) (solid black lines). The top

plot is the histogram of LX values of the sample for reference.

fore aims to highlight additional limitations and assumptions
with our methodology, as well as those of B19.

Firstly, the analysis is computationally expensive. This
is mostly due to the large number of sampled parameters.
In this case, there are four hyperparameters (θ0, ...θ3) plus,
as described in Section 3.2, 541 LX parameters with a well-
defined (i.e., using by the measured value and its uncertain-
ties) prior distribution. The parameters are sampled pair-
wise throughout the MCMC algorithm, which reduces the
time, but the algorithm is still computationally expensive.
Despite having a large number of parameters, overparame-
terisation is not a concern since the priors tightly constrain
the LX values.
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Figure 3. The evolution of the RMS distributions as a continuous
function of X-ray luminosity, plotted as thin curves. Over plot-
ted are the results from B19 and the Rms distribution for main

sequence galaxies from Schreiber et al. (2015). As the X-ray lu-
minosity of a galaxy increases, the probability density function

for its RMS shifts slightly to higher values and the distribution
narrows, consistent with the findings of B19.

Secondly, in this work, we have imposed simple rela-
tionships between the mode and width (µ, σ, respectively) of
the RMS distribution and LX. Whilst this relationship could
be made more flexible, the aim of this paper was to test
the framework and to determine if there is any dependence
on LX. We therefore chose simple relationships to assess
whether we could rule-out the independent case. In future
studies, more flexible forms of the functional relationships
could be tested and model comparison methods used to de-
termine whether any other functional forms provide a better
representation of the data. In addition to making the func-
tional relationships more flexible, other independent vari-
ables could be added (such as redshift and stellar mass). By
doing so, and allowing for more models to be compared, fu-
ture studies could use the techniques in this paper to probe
deeper into the connection between AGN power and host
galaxy properties. As a result of this paper only investigat-
ing how the RMS distribution changes as a function of LX,
we were cautious that, if there was a significant, systematic
change of LXwith redshift, then a redshift evolution in both
LX and RMS may introduce a spurious positive trend. How-
ever, we see no evidence of a strong systematic change of LX

with redshift. The median and standard deviation of LX for
the lowest and highest redshift quartiles were (43.23, 0.40)
and (43.43, 0.44) respectively. Therefore we have no reason
to believe that our results are being affected by an underly-
ing redshift evolution in both LX and RMS across our redshift
bin. With regards to redshift and stellar mass effects, it may
be interesting to investigate whether assuming alternative
models for the redshift and mass evolution of the Main Se-
quence (e.g. Speagle et al. 2014; Ilbert et al. 2015; Whitaker
et al. 2015; Popesso et al. 2019) has a large effect on the
results.

Thirdly, posterior model probabilities can be dependent
upon the choice of prior distribution chosen for individual
parameters. As the marginal likelihood is the integral of

the likelihood function over all the prior space (effectively
a weighted average of the likelihood function), an analysis
of this sort must make sure that the prior distributions are
reflective of current up to date knowledge. Our prior distri-
butions are influenced by the work of B19. By the construc-
tion of the marginal likelihood, however, overly vague prior
distributions can excessively “penalise” more complex mod-
els. Likewise, prior distributions that are too constrained can
favour more complex models. Therefore, prior distributions
should be carefully chosen and justified.

Finally, we stress again that we have worked under
the assumption that RMS distribution is log-normal. This
is unlikely to be the case. Indeed, it is known that some
AGNs reside in quiescent and starburst galaxies whose com-
bined RMS values do not follow a log-normal distribution
(e.g. the main sequence/starburst population is believed to
follow a bi-modal log-normal distribution in RMS). Having
said that, our focus here is to assess whether, after elimi-
nating the need for binning and averaging (and comparing
to the same dataset in B19), the RMS distribution could be
LX-dependent. It is not immediately clear why a truly LX-
independent RMS distribution would be better modelled by a
LX-dependent log-normal, as opposed to a LX-independent
one. Therefore, we stress we are not suggesting that our
model represents the true RMS relationship, but instead that
an LX-dependent model is strongly favoured when compared
to an LX-independent one.

5.2 Implications of our analysis

The aim of this paper was to introduce a Bayesian hi-
erarchical framework that removes both the need to bin
data (particularly in distribution-style analyses) and the
need to use averaging techniques (or other summary statis-
tics/parameters). To allow us to accurately demonstrate
that any new results were driven by the methodology, we
applied our hierarchical model on the same dataset as B19.
The process involves assuming a distributional form for one
variable (in this case the starburstiness of a galaxy) and
setting a direct dependence between the parameters of this
distribution and some independent variable (in this case,
LX). Uncertainties on the independent variable are also fully
considered by treating them as a parameter and applying an
informative prior, which is derived from the measured values
and their uncertainties.

Our results show that, under the assumption that RMS

is log-normally distributed, there is a strong evidence of a
relationship between RMS and LXwithin the redshift range
0.8 < z < 1.2. This reaffirms, to a stronger degree of signifi-
cance, the result of B19, such that as LX increases, the RMS

distribution is centered at a higher value and the diversity
of RMS values decreases. What this implies is that, within
the constraints of our model, an LX= 1044 erg s−1 AGN is
21 per cent more likely to reside in a galaxy with RMS> 2

than an LX= 1043 erg s−1 AGN. This is in agreement with
other studies that suggested there is a tighter (i.e., more
consistent) connection between more luminous AGNs and
star formation than for lower-luminosity AGNs (e.g. Rosario
et al. 2013; Stanley et al. 2017; Aird et al. 2017; Dai et al.
2018; Masoura et al. 2018; Aird et al. 2019): for example, it
may be that any luminous AGN activity occurs close in time
to the star formation activity while lower-luminosity AGN

MNRAS 000, 1–13 (2017)



10 L. P. Grimmett et al.

42.5 43.0 43.5 44.0 44.5 45.0
log10(LX) erg/s

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

lo
g 1

0(
SF
R)

/M
yr

Data (detected)
Data (upper limit)
Linear Mean (model)
Stanley+15

Figure 4. The predicted relationship between SFR and LX using our functional relationships and hyperparameter posterior distributions.
The red stars show the predicted linear mean SFRs in arbitrarily-chosen bins of LX, calculated using the functional relationships in

Equation 4, the main sequence prescription of Schreiber et al. (2015) and the stellar mass and redshift of our sources. Also plotted in
yellow (circles or triangles) are the SFRs from the raw data (detected and upper limits, respectively). The blue diamonds are the results
from Stanley et al. (2015) for the redshift range 0.8 < z < 1.5, which extends to slightly higher redshifts than our sample. While our
results are systematically offset from those of Stanley et al. (2015), they are broadly consistent with their observed flat relationship. We
include this plot purely to demonstrate that even after including a significant underlying connection between RMS and LX, the we still
obtain a flat relationship between average SFR in bins of LX.

activity can occur when the galaxy is more quiescent (and
hence the broader RMS distribution) in addition to occurring
during the periods of star-formation activity.

In this study, we have investigated the relationship be-
tween the RMS distribution of AGN hosts and LX, and found
strong evidence of a relationship between the two. Recently,
a number of studies have approached this problem from the
other direction; i.e., investigating how AGN power changes
as a function of the star-forming properties of their hosts.
For example, Chen et al. (2013) reported that, when binned
in terms of SFR, the mean LX of star-forming galaxies in-
creases with average SFR (see also Delvecchio et al. 2015,
who also accounted for the effects of galaxy stellar mass).
Further, Rodighiero et al. (2015) found that, when binning
according to stellar mass, the mean LX of starburst galaxies
is higher then that of main sequence galaxies which, in turn,
is higher than that of quiescent galaxies. Both these results
imply that average AGN power is higher in more actively
star-forming systems. More recently, Aird et al. (2019) and
Grimmett et al. (2019) have shown that the distribution of
specific LX (i.e., = LX/M∗, a proxy for Eddington ratio λEdd),
changes as a function of the star-forming activity of their
hosts, with a higher fraction of starbursts hosting AGNs
with λEdd > 10% than their main sequence counterparts. By
exploring how the star-forming properties of galaxies change
as a function of LX, this study (and B19) take the opposite
approach. While there are significant differences between the
properties being considered in each study (not least the ex-

ploration of Eddington ratio in Aird et al. 2019 and Grim-
mett et al. (2019), whereas we only consider LX here) all
appear to support the assertion that more powerful AGNs
(whether expressed in terms of LX or Eddington ratio) are
preferentially found in more actively star-forming systems.

6 CONCLUSIONS

In this work we have introduced a hierarchical Bayesian
framework to assess whether the RMS distribution of AGN-
hosting galaxies changes as a continuous function of an X-
ray luminosity (LX). Our approach removes the need for
both binning and averaging and also allows for full consid-
eration of the uncertainties on the independent variable.

By modelling the RMS distribution as a log-normal, and
proposing simple relationships between its parameters (i.e.,
mode and width) of that log-normal and X-ray luminosity,
we found strong evidence that an LX-dependent model is
preferred over an LX-independent one. By binning the same
data, B19 reported the same overall trend, but without such
strong evidence, thereby highlighting the importance of util-
ising all available information by removing the need for bin-
ning. By using the same dataset and pre-processing as B19,
we ensured that any differences found in contrast to that
paper are a direct result of the new analysis technique.

Despite finding a strong relationship between the RMS

distribution and AGN power, when we convert our LX-

MNRAS 000, 1–13 (2017)



Binning-free continuous relationship 11

dependent distributions back into the mean SFR - LX plane,
we find that the dependent model can reproduce results con-
sistent with previously seen flat relationships (e.g. Stanley
et al. 2015). This further highlights the difficulty in extract-
ing underlying relationships between AGN power and host
galaxy properties when averaging in bins of AGN power.
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APPENDIX A: THE FULL MCMC SAMPLER

In this appendix we describe, in detail, one full step of the
MCMC sampler used to construct the posterior distributions
presented in Section 4, which were then used to compare
our various models. Interested readers should also refer to
the study of Gottardo & Raftery (2008), from which our
sampler is adapted.

A key component of our algorithm is that, when it pro-
poses a switch between models, it proposes “reasonable” pa-
rameters within the proposed model. Otherwise, we run the
risk of never switching models – not because the proposed
model is necessarily worse, but because we always propose
highly unlikely parameter values within that model. What
we mean by “reasonable”, therefore, is likely parameter val-
ues within each proposed model. As such, we need to have
some knowledge of the posterior probability distributions of
each model before we can start proposing switches between
models. One way of achieving this would be to force Model
1, for example, to converge, then force a switch to Model 2,
allow that to converge, and so on. Once all models have con-
verged, we would then allow our sampler to switch between
models by proposing reasonable parameter values (i.e., those
close to the posterior mode). In our case, however, as we
only have four models, we instead run a separate standard
MCMC sampler for each model (i.e., without model switch-
ing), which gives us an indication of the most suitable regions
of the posterior parameter space for each model. Mathemat-
ically, these two approaches are exactly analogous.

With an estimate of the posterior parameter space for
each model in-hand, we can propose reasonable regions of
the parameter space when switching between models. In
what follows, we describe how we switch between various
models. For ease of explanation, we will only consider θ0
and θ1, but same process is applied when sampling θ2 and
θ3. Recalling that we step through the parameters in pairs,

we sample θ0 and θ1 at the same time. This leads to four
possible cases, which are summarised in Table A1, and dis-
cussed in detail below.

Case A: Here, the sampler is currently in the state
where θ1 = 0, and is proposing θ1 = 0 (i.e., it is in a
µ-independent model [Models 1 or 3] and proposes to re-
main within a µ-independent model). However, because we
progress through the vector pairwise, the sampler must still
propose a θ0 value. For this, we use a standard MH proposal
– a value randomly selected from a Gaussian distribution
centered on the current θ0 value. Based on pilot runs, we
choose a value for the width of the Gaussian distribution
that results in good mixing (i.e., the acceptance rate is be-
tween 20–40 per cent). In this case, the q(θ, θ ′) value is the
product of the likelihood of choosing θ ′

1
= 0 (i.e., 0.5) and

the proposed θ0 value (i.e., θ ′
0
= f (θ ′

0
|θ0, s1), where f is the

Gaussian density function). This product is symmetrical on
switching between θ and θ ′, meaning q(θ, θ ′) = q(θ ′, θ), so
the q terms cancel in Equation 9.

Case B: In this case, the sampler is currently in the
state where θ1 = 0, and is proposing θ1 , 0 (i.e., it is in a
µ-independent model [Models 1 or 3] and is proposing to
switch to a µ-dependent model [Models 2 or 4]). As a re-
sult of proposing a switch to a µ-dependent model, we must
propose values for both θ0 and θ1. To do this, we use a bi-
variate Gaussian distribution, centered on the “reasonable”
values obtained using the process described above. Based
on pilot runs, we choose a value for the widths of the bivari-
ate Gaussian distribution that results in good mixing (i.e.,
the acceptance rate is between 20–40 per cent). In addition
to the widths, the bivariate Gaussian distribution accounts
for the correlation between θ0 and θ1 by using the calcu-
lated covariance matrix. In this case, the q(θ, θ ′) value is the
product of the likelihood of choosing θ ′

1
, 0 (i.e., 0.5) and

the proposed θ values (i.e., θ ′ = f2([θ ′0, θ
′
1
] | [θ̂0, θ̂1], Σ1), where

f2 is the bivariate Gaussian density function, θ̂0, θ̂1 are the
estimates of the posterior mode from the original chains and
Σ1 is the covariance matrix. This product is not symmetri-
cal on switching between θ and θ ′, since the inverse process
involves sampling from a univariate Gaussian. This means
q(θ, θ ′) , q(θ ′, θ), so they must be accounted for in the ac-
ceptance ratio.

Case C: Here, the sampler is currently in the state
where θ1 , 0, and is proposing θ ′

1
= 0 (i.e., it is in a

µ-dependent model [Models 2 or 4] and is proposing to
switch to a µ-independent model [Models 1 or 3]). As a re-
sult of proposing a switch to a µ-independent model, we
again must propose a “reasonable” value of θ0 within the
proposed model. To do this, we use a distribution, centered
on the “reasonable” values obtained using the process de-
scribed above. Based on pilot runs, we choose a value for
the width of the Gaussian distribution that results in good
mixing (i.e., the acceptance rate is between 20–40 per cent).
In this case, the q(θ, θ ′) value is the product of the likelihood
of choosing θ ′

1
= 0 (i.e., 0.5) and the proposed θ0 value (i.e.,

θ ′
0
= f (θ ′

0
|θ̂0, s2), where f is the Gaussian density function,

θ̂0, θ̂1 are the estimates of the posterior mode from the origi-
nal chains and Σ1 is the covariance matrix). This product is
not symmetrical on switching between θ and θ ′ for the same
reason as in Case B (i.e., the inverse process involves sam-
pling from a bivariate Gaussian distribution). This means
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Case Current θ1 Proposed θ′
1

Model now Model proposed q(θ, θ′) q(θ′, θ)

A θ1 = 0 θ′
1
= 0

1 1
0.5 × f (θ′

0
|θ0, s1) 0.5 × f (θ0 |θ′0, s1)3 3

B θ1 = 0 θ′
1
, 0

1 2
0.5 × f2( [θ′0, θ

′
1
] | [θ̂0, θ̂1], Σ1) 0.5 × f (θ0 |θ̂0, s2)3 4

C θ1 , 0 θ′
1
= 0

2 1
0.5 × f (θ0 |θ̂0, s2) 0.5 × f2( [θ0, θ1] | [θ̂0, θ̂1], Σ1)4 3

D θ1 , 0 θ′
1
, 0

2 2
0.5 × f2( [θ′0, θ

′
1
] | [θ0, θ1], Σ2) 0.5 × f2( [θ0, θ1] | [θ′0, θ

′
1
], Σ2)4 4

Table A1. Summary of the possible model switches for 1 proposal of the µ-related hyperparameters, θ0 and θ1. There are four potential
cases depending on whether the model is currently in a µ-dependent or a µ-independent state and whether we propose to move to a
µ-dependent or µ-independent state. For the possible cases the value of the proposal density q(θ, θ′) and the inverse q(θ′, θ) are given.

The univariate Gaussian density is given by f and the bivariate Gaussian density is given by f2. The tuned proposal widths are given by
s1 and s2, and the calculated covariance matrices by Σ1 and Σ2. When a model switch is proposed, the “reasonable” values must be used

to sample a proposed parameter value and these are given by θ̂0 and θ̂1.

q(θ, θ ′) , q(θ ′, θ), so they must be accounted for in the ac-
ceptance ratio.

Case D: In this final case, the sampler is currently in
the state where θ1 , 0, and is proposing θ ′

1
, 0 (i.e., it is

in a µ-dependent model [Models 2 or 4] and is proposing to
remain in a µ-dependent model). As a result we need to pro-
pose values for both θ0 and θ1. To do this, we use a bivariate
Gaussian distribution, centered on the current values. Based
on pilot runs, we choose a value for the width of the Gaussian
distribution that results in good mixing (i.e., the acceptance
rate is between 20–40 per cent) and calculate the appropri-
ate covariance matrix. In this case, the q(θ, θ ′) value is the
product of the likelihood of choosing θ ′

1
, 0 (i.e., 0.5) and

the proposed θ value (i.e., θ ′ = f2( [θ ′0, θ
′
1
] | [θ0, θ1], Σ1), where

f2 is the bivariate Gaussian density function, and Σ2 is the
covariance matrix). This product is symmetrical on switch-
ing between θ and θ ′, meaning q(θ, θ ′) = q(θ ′, θ) and so the
terms cancel.

This process is then repeated for the next pair of hy-
perparameters (i.e., θ2 and θ3) followed by one sampling
through the LX values individually (i.e., not pair-wise), the
latter of which is done by using a standard MH algorithm.

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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