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Abstract

It is widely accepted that Lithium-Iron Phosphate (LFP) cathodes are the safest chemistry for Li-ion cells, however the

study of them assembled in to battery modules or packs is lacking. Hence, this work provides the first computational study

investigating the potential of thermal runaway propagation (TRP) in packs constructed of LFP 18650 cells. Utilizing a 2D

model of a battery pack in which one cell is assumed to experience an internal short circuit, it is found that TRP does not

occur even under extreme environmental conditions. This shows the potential that LFP cells have at enabling safe and abuse

resilient large scale batteries.

c⃝ 2020 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the scientific committee of the 4th Annual CDT Conference in Energy Storage and Its Applications, Professor

Andrew Cruden, 2019.
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1. Introduction

Lithium-ion batteries (LIBs) are widely used due to their superior performance over other battery chemistries [1,

2]. However, LIBs do present a significant safety concern as they have the potential to go into catastrophic and

hazardous failure through a process known as thermal runaway (TR) [3–5], depicted in Fig. 1.

Further, when cells are assembled into modules and packs the potential hazards are more severe, as the TR

of a single cell presents a serious hazard to the surrounding cells [6,7], as the heat released by a single cell can

dissipate to the neighbouring cells, which can in turn lead to these surrounding cells to heat up to the point that they

themselves go into TR. Thus, this can be the start of a chain reaction of TR from cell-to-cell occurring throughout

the entire module, known as thermal runaway propagation (TRP) [8].
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Fig. 1. Thermal runaway process within a single cell.

The severity of TR is, in part, a property of li-ion cell chemistry. With regards to this, LFP is reported to be the

safest cathode composition for LIBs [9]. Even so, LFP batteries, including those in EV buses, have been reported

to undergo TR [10–13]. Hence, it is important to develop the current limited research on LFP cell safety. As, to

the authors’ knowledge, only one study has been carried out on LFP packs, in which a module of pouch cells is

studied [14]. Evidently, there is a need to expand the understanding of the TR behaviour of LFP packs when abused,

to facilitate its wider adoption.

TR models for Li-ion cells have been developed by several authors, for different chemistries, based on describing

the heat generated (by the decomposition of the cell) through Arrhenius equations, relating the reaction rate to

temperature [15–22]. The determination of TRP or potential propagation of non LFP packs has been most accurately

studied computationally by modelling the decomposition reactions in all cells, allowing for the propagation path

and severity to be quantified [23–28].

The initiation of TR is typically done by simulating an internal short, modelled by an initial high tempera-

ture [23,24,26], or by modelling a percentage of the cell electrochemical energy been released over a prescribed

time i.e. 10 s in a specified volume [25,27].

0D [27], 2D [26,29–31] and 3D [23,24,28,32,33] have all been utilized in modelling propagation. Typically, with

regards to cylindrical cells, 2D geometry can be utilized to simplify relative long cylindrical cells. This is done in

cases were the cells are arranged radially and when electrical connections are not considered (i.e. tabs) or other

heating/cooling along the axis is not considered. 3D modelling provides the ability to model these assumptions.

With regards to the inclusion of tabs, it has been shown that they are a significant heat transfer path, and can mean

the difference between predicting a safe out come if not considered and predicting an unsafe, TRP, outcome if

considered [26].

TRP is more likely to occur when a cell initiated into TR is in contact with the least number of neighbouring

cells, and also when these neighbouring cells are also in the least contact with other cells [23,26]. Additionally,

cells packed closer together lead to greater TRP severity. Electrical connections are important for both heat and

charge transfer, while cells connected in parallel can experience Joule heating in a failed cell [7].

The time to failure of subsequent cells in TRP reduces due to the preheating from the previous cells undergoing

TR [28]. Gas venting is shown to be a significant heat transfer mechanism, especially if it ignites and if the cells

are contained within a rigid air tight casing, which also leads to TRP sooner [28,34].

Here, the aim is to investigate the TRP potential of battery packs constructed of 18650 LFP cells. First, a

heuristic parameter estimation technique is used to develop a TR model in 1D, based on the classic 4 reaction

system, of a single LFP cell. From this, a 2D model of an LFP 18650 cell is built, compared to the 1D model

and validated against experimental data. Finally, a small 3-by-3 battery pack, modelled in 2D, is investigated under

several initiation criteria and environmental criteria. The results of which are discussed in terms of TRP potential

and suitability of LFP cells for packs of larger sizes.
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Fig. 2. Schematic of simulated geometry.

2. Methodology

To study the potential of TRP in LFP battery packs, a pack containing 9 cylindrical 18650 (LFP 1.5Ah 3.2V)

cells (arranged in a 3-by-3 matrix) is considered as a case study, and represented by a 2D planar geometry. A

schematic of the simulated geometry is presented in Fig. 2, while the dimensions of the pack components are given

in Table 1.

The model is built in COMSOL Multiphysics 5.2a [35], in which the Heat Transfer module is used to implement

the governing equations of conduction, convection and radiation. The model considers heat transfer by conduction

within the cells, the pack case and the air surrounding the cells. Surface-to-surface radiation between the cells and

the internal surface of the pack case is also considered, along with radiation from the outer surface of the pack case

to the environment. The outer surface of the pack case is also subject to heat transfer by convection with a fixed

heat transfer coefficient, while convection of the air in the pack is ignored.

Although 18650 cells are not symmetric along their length, due to the end cap at the positive terminal, the high

thermal conductivity along the cells length allows the 2D planar assumption to be acceptable [36]. Electrochemical

reactions, electrical connections between the cells and current flow between cells (which can occur when cells in

parallel fail) are not considered. Further, gas venting and heat transfer by the flow of gases or their combustion is

also not considered.

The geometry of each individual cell is represented by a mandrel, jelly roll and cell casing, see Fig. 2. Although

the cells are represented by these three major domains, the cells are modelled as homogeneous material with average

properties. The density and heat capacity values are equal to the average values calculated by Bugryniec et al.

(2019), while average the radial thermal conductivity is estimated within literature values. These properties, and

other thermo-physical and heat transfer properties, including those describing the air and the pack case (assumed

to be acrylic plastic) are presented in Table 1. The construction of the cell domains in this manner is so that the

volume specific heat generation by the decomposition of the jelly roll materials is only applied over the jelly roll

region, thus leading to a more accurate calculation of overall heat generation.

The governing equations for the SEI, NE, PE and electrolyte decomposition reactions and the resulting heat

generation used within this work follow those outlined by Refs. [15,17], and hence are not presented here.

The values of the parameters describing the decomposition reactions are determined through heuristic parameter

estimation techniques and presented in Table 1. The parameter estimation was carried out through the comparison

of simulations of a single cell under oven exposure to experimental data from Bugryniec et al. (2019) of the same

test [37]. The resulting oven test simulation (in 2D) compared to the experimental data for a single cell is presented

in Fig. 3. As the figure shows, while the abuse model does not predict features such as venting, time to peak

temperature and post TR heat generation well, the model does predict severity very well. Hence, the model is

applicable for preliminary investigation of LFP pack hazards.
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Table 1. Model parameters.

Parameter (units) Value Parameter (units) Value

Cell radius, rcell (mm) 9 Frequency factor PE, Ape (1/s) 2.000E08

Mandrel radius, rman (mm) 2 Frequency factor electrolyte, Ae (1/s) 5.140E25

Cell case thickness, dcan (mm) 0.3 Heat of reaction SEI, Hsei (J/kg) 5.780E05

Cell height, hcell (mm) 65 Heat of reaction NE, Hne (J/kg) 3.428E06

Pack case thickness, dpack (mm) 2 Heat of reaction PE, Hpe (J/kg) 2.414E05

Average heat capacity of cell, Cp,cell (J/kg K)d 1005 Heat of reaction electrolyte, He (J/kg) 3.410E05

Average density of cell, ρcell (kg/m3)d 2418 Reaction species initial value SEI, Csei,0(1)c 0.15

Radial thermal conductivity of cell, κr (W/m K)a 0.5 Reaction species initial value NE, Cne,0(1)c 0.75

Heat capacity of pack casing, Cp,pack_casing (J/kg K)b 1470 SEI layer thickness initial value, tsei,0(1)c 0.033

Density of pack casing, ρpack_casing (kg/m3)b 1190 Reaction species initial value PE, Cpe,0(1)c 0.04

Thermal conductivity of pack casing, κpack_casing (W/m K)b 0.18 Reaction species initial value electrolyte, Ce,0(1)c 1.00

Emissivity cell surface, εcell(1)e 0.8 Reaction species exponent m SEI, msei(1)c 1

Emissivity pack case surface, εpack(1)a 0.5 Reaction species exponent n SEI, nsei(1)c 0

Convective heat transfer coefficient, hconv (W/m2 K) 5 Reaction species exponent m NE, mne(1)c 1

Heat capacity of air, Cp,air (J/kg K)b Eq. (1) Reaction species exponent n NE, nne(1)c 0

Density of air, ρair (kg/m3)b Eq. (2) Reaction species exponent m PE, mpe(1)c 1

Thermal conductivity of air, κair (W/m K)b Eq. (3) Reaction species exponent n PE, npe(1)c 1

Activation energy SEI, Ea,sei (J/mol) 1.490E05 Reaction species exponent m electrolyte, me(1)c 1

Activation energy NE, Ea,ne (J/mol) 1.418E05 Reaction species exponent n electrolyte, ne(1)c 0

Activation energy PE, Ea,pe (J/mol) 0.963E05 Specific mass of carbon, Wc (kg/m3) 385

Activation energy electrolyte, Ea,e (J/mol) 3.014E05 Specific mass of LFP, Wp (kg/m3) 615

Frequency factor SEI, Asei (1/s) 1.667E15 Specific mass of electrolyte, We (kg/m3) 510

Frequency factor NE, Ane (1/s) 2.500E13

aEstimated.
bCOMSOL Multiphysics 5.2a built in values [35].

C p,air = 1047.63657 − 0.372589265T + 9.45304214 × 10−4T 2 − 6.02409443 × 10−7T 3 + 1.2858961 × 10−10T 4
. (1)

κair = −0.00227583562 + 1.15480022 × 10−4T − 7.90252856 × 10−8T 2 + 4.11702505 × 10−11T 3 + 7.43864331 × 10−15T 4 (2)

ρair =
P Mdr yair

RT
, where Mdr yair (kg/mol) is the molar mass of dry air and P (Pa) is the pressure. (3)

cRef. [17].
dRef. [38].
eRef. [15].

Fig. 3. 2D simulation of a single cell under oven exposure compared to experimental findings. Comparison of cell surface temperatures.
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Fig. 4. Abuse of Cell 7 simulating heat released by short circuit, pack under adiabatic conditions. (a) Average cell temperature, (b) average

cell decomposition fraction.

2.1. Abuse scenarios of battery pack

The abuse of the battery pack is considered to occur under a worst case scenario, i.e. the pack is initially at

a high temperature, 60◦C which is representative of the maximum operating temperature of the cell as stated

by the manufacture [38], and under adiabatic external boundary conditions. If TRP is predicted under adiabatic

conditions then external boundary condition considering convective and radiation heat transfer are also investigated.

Two initiation scenarios are considered for the abused cell; (1) a release of 100% of a single cell’s electrochemical

energy (17.28 kJ) over 10 s representing an external short on the cell, (2) assume an instantaneous temperature rise

of 250◦C. A corner cell (in this case cell 7) is taken to be the cell abused by an initiation scenario. Again this is

to study a worst case scenario, as the literature suggests that the cell in contact with the pack case (environment

boundary) and that is also neighbour to the least amount of cells will cause the worst TR event.

3. Results and discussion

3.1. Abuse scenario 1

Fig. 4(a) shows the average cell temperatures against time within the pack when Cell 7 is abuse by an external

short and the pack is under adiabatic conditions, while Fig. 4(b) shows the average reaction species of each cell

with time. The average reaction species is calculated according to Eq. (4), and is used to allow for clear analysis

between multiple cells. Due to symmetry cells 1 and 9, 2 and 6, and 4 and 8 have identical values within their

pairs. It can be seen from Fig. 4(a) that TR propagation does not occur. In fact, Fig. 4(b) shows that there is no

decomposition present in any cell. Hence, the increase in temperature is purely due to the energy released by the

short circuit in Cell 7 and the heat dissipating to the surrounding cells. Fig. 4(b) also shows that the electrochemical

energy available in one cell is not enough to increase the abused cells temperature to the point of decomposition

reaction onset. Hence, it can be summarized that packs of LFP cells not electrically connected are resilient to TR

propagation under the external shorting of a single cell.

Cave =

Csei

Csei,0
+ Cne

Cne,0
+

1−C pe

1−C pe,0
+ Ce

Ce

4
(4)

3.2. Abuse scenario 2

Under abuse by an instantaneous temperature rise of 250◦C in Cell 7 (to ensure TR occurs in the abused cell)

Fig. 5(a) shows that TR throughout the pack does occur when the pack is under adiabatic conditions. Due to the
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Fig. 5. Abuse of Cell 7 by instantaneous heating to 250◦C, pack under adiabatic conditions. (a) Average cell temperature, (b) average cell

decomposition fraction.

high initiation temperature of Cell 7, the cell entirely decomposes almost instantaneously, whilst reaching an average

temperature of approximately 675◦C. Due to the large resulting temperature in Cell 7, leading to large thermal fluxes

from the cell, the heat of Cell 7 rapidly disperses to the two cells it is in contact with, i.e. Cells 4 and 8. These cells

rapidly decompose by approximately 40% leading to an initial small TR event, after which the cells decompose

more slowly as they cool down as heat is lost to the rest of the pack. The remaining cells (i.e. excluding Cells 4, 7

and 8) heat up more slowly, with temperature rates and decomposition rates inversely proportional to their distance

from Cell 7.

At approximately 2.5 h the cells within the pack are all equal in temperature, as can be seen from Fig. 5(a),

while Fig. 5(b) shows that at 3.5 h all cells excluding 4, 7 and 8 have decomposed by the same degree (i.e. they

have the same Cave value), while at 4 h rapid decomposition occurs in Cells 1–3, 5, 6, and 9 almost simultaneously

followed by Cell 4 and 8 slightly later. The simultaneous decomposition of Cells 1–6, 8 and 9 is due to the slow

behaviour of the decomposition reactions and also their relative stability (i.e. high onset temperature). Hence the

heat generated by the decomposition of the cells has the ability to be more evenly dissipated leading to uniform

pack temperatures. In this case study, without heat transfer paths through tab connections, this leads to all but the

initiation cell to go into TR simultaneously, and not a propagation of cells one after the other going into TR. It

should be noted that the time scales leading to TRP are most probably are large over estimate compared to what

would occur in a physical pack or if the cell tabs were considered in the model.

Following this, a more realistic scenario is studied, in which the external boundary of the pack considers

convection and radiation heat transfer to an extreme environment at 60◦C, replacing the former adiabatic boundary

condition. The results of this simulation are shown in Fig. 6, where Fig. 6(a) shows the temperature profile and

Fig. 6(b) the reaction species profiles. It can be clearly seen from Fig. 6 that TR propagation does not occur.

Similarly to the adiabatic case, the high initial temperature in Cell 7 leads to it fully decomposing almost instantly,

reaching the same maximum temperature, while Cells 4 and 8 initial decompose rapidly due to the heat transfer

from Cell 7, leading to rapid self-heating. However, due to the heat loss from the pack, the initial decomposition (by

15%) of Cells 4 and 8 is less than the adiabatic case as they reach a lower peak temperature than before. Further the

remaining cells do not reach a temperature to lead and decomposition of the cells, as seen by the lack of significant

change in there average reaction species, hence no TRP.

This shows that even under extreme environmental conditions the heat generated by a single cell under TR is not

great enough to lead to TR propagation. This work indicates the potential LFP cells have at providing an inherently

safe and abuse resilient technology for large scale batteries.
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Fig. 6. Abuse of Cell 7 by instantaneous heating to 250◦C, pack subject to external environment at 60◦C. (a) Average cell temperature, (b)

average cell decomposition fraction.

4. Conclusion

A 2D model of an LFP battery pack has been modelled to study its resilience to TRP when one cell in the

pack is assumed to undergo a short circuit. It is shown that, when attempting to initiate TR by releasing 100%

of a cells electrochemical energy in the shorted cell, the cell does not reach a temperature that leads to cell TR,

hence pack TRP does not occur. Under conditions where the shorted cell is forced into TR, by a high initial cell

temperature, then the pack goes into TRP if it is under adiabatic conditions. However, when boundary heat transfer

is considered, even under extreme external conditions, TRP does not occur. This outlines the potential LFP cells

have for facilitating safe and abuse resilient large scale batteries.

Further work is required to validate and improve the predictions of these simulations. This includes extending the

model to three-dimension, such that critical heat transfer paths through electrical tab connections can be included,

as well as utilizing a more accurate abuse model of a single cell.
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