
This is a repository copy of The latitudinal diversity gradient of tetrapods across the 
Permo-Triassic mass extinction and recovery interval.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/161099/

Version: Accepted Version

Article:

Allen, BJ orcid.org/0000-0003-0282-6407, Wignall, PB orcid.org/0000-0003-0074-9129, 
Hill, DJ orcid.org/0000-0001-5492-3925 et al. (2 more authors) (2020) The latitudinal 
diversity gradient of tetrapods across the Permo-Triassic mass extinction and recovery 
interval. Proceedings of the Royal Society B: Biological Sciences, 287 (1929). 20201125. 
ISSN 0962-8452 

https://doi.org/10.1098/rspb.2020.1125

© 2020 The Author(s). Published by the Royal Society. All rights reserved. This is an 
author produced version of an article published in Proceedings of the Royal Society B: 
Biological Sciences. Uploaded in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Title: The latitudinal diversity gradient of tetrapods across the Permo-Triassic mass 

extinction and recovery interval 

 

Authors: Bethany J. Allen1*, Paul B. Wignall1, Daniel J. Hill1, Erin E. Saupe2 and Alexander 

M. Dunhill1 

1 School of Earth and Environment, University of Leeds, Leeds, UK 

2 Department of Earth Sciences, University of Oxford, Oxford, UK 

* Corresponding author: eebja@leeds.ac.uk 

 

Abstract: 

The decline in species richness from the equator to the poles is referred to as the latitudinal 

diversity gradient (LDG). Higher equatorial diversity has been recognised for over 200 years, 

but the consistency of this pattern in deep time remains uncertain. Examination of spatial 

biodiversity patterns in the past across different global climate regimes and continental 

configurations can reveal how LDGs have varied over Earth history and potentially 

differentiate between suggested causal mechanisms. The Late Permian–Middle Triassic 

represents an ideal time interval for study, because it is characterised by large-scale 

volcanic episodes, extreme greenhouse temperatures, and the most severe mass extinction 

event in Earth history. We examined terrestrial and marine tetrapod spatial biodiversity 

patterns using a database of global tetrapod occurrences. Terrestrial tetrapods exhibit a 

bimodal richness distribution throughout the Late Permian–Middle Triassic, with peaks in the 

northern low latitudes and southern mid latitudes around 20-40°N and 60°S , respectively. 

Marine reptile fossils are known almost exclusively from the Northern Hemisphere in the 

Early and Middle Triassic, with highest diversity around 20°N. Reconstructed LDGs contrast  

strongly with the generally unimodal terrestrial gradients of today, potentially reflecting high 

global temperatures and prevailing Pangean super-monsoonal climate system during the 

Permo-Triassic. 
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Background 1 

The latitudinal diversity gradient (LDG) is one of the largest-scale and longest-known 2 

patterns in ecology [e.g.1-7]. Modern biodiversity (i.e., richness) gradients are broadly 3 

defined as unimodal, with high biodiversity near the equator and low biodiversity at the poles 4 

[4,6]. The specifics of these gradients differ among taxonomic and ecological groups [2-4,6], 5 

and research over the last decade has revealed greater variation in modern LDGs than 6 

previously recognised. For example, benthic marine species richness appears to peak at 10-7 

20°N, whereas pelagic species richness appears bimodal, with peaks at 10-40° on either 8 

side of the equator [8-11].  9 

Study of the fossil record suggests the shape of LDGs has also changed through time 10 

[5,12]. Dinosaur diversity may have been greatest at temperate latitudes throughout the 11 

Mesozoic [13], North American mammal diversity may have been distributed evenly across 12 

latitudes for much of the Cenozoic [14,15], and peaks in marine animal diversity may have 13 

drifted from the Southern to Northern Hemisphere over the course of the Phanerozoic 14 

[16,17]. 15 

Numerous drivers of LDGs have been proposed [e.g.2,3,18-22]. Interaction between key 16 

processes, the complexity of feedback cycles, and the covariance of many environmental 17 

variables with latitude complicate efforts to isolate causal mechanisms [2-4,6,23]. Climate 18 

and landmass distribution, however, have been put forward consistently as potential 19 

explanatory variables. Climate, particularly temperature and water availability, has long been 20 

considered a key control on spatial patterns of terrestrial biodiversity [5,12,14,15,17,24-26] 21 

because the distributions of species are limited by climatic tolerance [22,24,27-30]. 22 

LDG studies in deep time have suggested palaeoclimate regime is a major control on the 23 

shape and slope of LDGs. Icehouse periods have been associated with a sharp, unimodal 24 

equatorial richness peak, and greenhouse periods with a bimodal distribution, characterised 25 

by shallow peaks at mid-latitudes of both the Northern and Southern Hemispheres [5,17,31]. 26 

This contrast has been attributed to the strength of the pole-to-equator temperature gradient 27 

between the two climate regimes [5,13,17], but may also reflect spatio-temporal variations in 28 

precipitation [14,22,25]. The distribution of continental landmasses may also structure global 29 

patterns of biodiversity by controlling the spatial distribution of relevant habitats, particularly 30 

shallow continental shelf area in marine ecosystems [32-35]. Although studies of modern 31 

LDGs continue to provide insight into potential generative mechanisms [e.g.36-39], 32 

examination of LDGs during intervals when climate and landmass distribution were 33 

considerably different to today may provide new perspectives on global biodiversity patterns 34 

and their associated processes [5,13,31]. 35 



The Late Permian to Middle Triassic (~260-239 Ma) represents a period in Earth history 36 

that contrasts considerably with the present day. Large-scale volcanism associated with the 37 

Siberian Traps drove extreme climate change, which was exacerbated by amalgamation of 38 

most landmasses into the supercontinent Pangea [40-42]. This drove environmental 39 

perturbations that resulted in the most catastrophic mass extinction event of all time at the 40 

end of the Permian, around 252 Ma [43]. A prolonged interval of extremely high 41 

temperatures, which peaked in the Olenekian (late Early Triassic) [44], along with ocean 42 

anoxia and acidification have been identified as key extinction mechanisms [43,45], with 43 

persistence of these conditions extending well into the Middle Triassic, delaying full 44 

structural recovery of marine ecosystems for as long as 50 million years [46]. On land, high 45 

temperatures and seasonal precipitation in central Pangaea resulted in drought [40,47-49], 46 

while purported ozone depletion, brought about by halogen gas release from the Siberian 47 

Traps, resulted in high UV-B levels that caused plant sterilisation and extinction [e.g.50,51]. 48 

Early Triassic temperatures at low latitudes are considered to have been beyond the 49 

tolerable long-term threshold for both plants and animals, driving extinction and poleward 50 

migration [44,52]. The climate of the Middle Triassic has received less attention, but is 51 

thought to have been characterised by continued aridity in lower latitudes, with cyclical 52 

temperature fluctuations overprinting a general trend of steady cooling after the final 53 

eruptions of the Siberian Traps in the Olenekian [41,42]. 54 

Tetrapods were profoundly affected by the Permo-Triassic mass extinction (PTME). In 55 

the immediate aftermath, Early Triassic tetrapod communities were composed almost 56 

entirely of ‘disaster fauna’ such as Lystrosaurus, a herbivorous burrowing synapsid [47,53-57 

55]. Following recovery from the PTME, archosauromorphs (Sauria), a group that appeared 58 

in the Middle Permian, became the dominant terrestrial animals [55]. The first marine reptile 59 

fossils are known from the Olenekian and were highly diverse by the Anisian, including basal 60 

sauropterygians and ichthyosaurs [56].  61 

Two previous studies have offered perspectives on the distribution of tetrapods across 62 

the Permo-Triassic boundary. Sun et al. [44] used oxygen isotopes in conodont apatite to 63 

examine sea surface temperature (SST) change across the Late Permian and Early Triassic, 64 

recovering remarkably high SSTs throughout the interval but particularly during the 65 

Smithian–Spathian Thermal Maximum (~248 Ma), when equatorial SSTs may have 66 

approached 40°C. Their qualitative analysis of tetrapod occurrences revealed an equator ial 67 

‘tetrapod gap’ in the Early Triassic, hypothesised to have occurred due to the extreme warm 68 

temperatures that may have approached or exceeded the thermal tolerances of both 69 

terrestrial and marine vertebrates (around 42°C [57]). Bernardi et al. [52] also exa mined the 70 

distribution of individual tetrapod skeletal and footprint occurrences through the extinction 71 



and recovery interval, finding evidence for a poleward shift in tetrapod abundance in the 72 

Northern Hemisphere, but only in the Induan (earliest Triassic). This biogeographic pattern is 73 

congruent with a study of tetrapods immediately prior to the PTME, which found higher 74 

tetrapod diversity at temperate than equatorial latitudes during the Middle – Late Permian 75 

[58]. 76 

Here, we explore further the terrestrial and marine Permo-Triassic fossil tetrapod record 77 

by comparing species-level tetrapod biodiversity across latitudinal bins. We apply coverage-78 

based interpolation and squares extrapolation to reconstruct LDGs from the Late Permian 79 

(before the PTME), Early Triassic (in the aftermath of the PTME) and Middle Triassic (during 80 

recovery). These LDGs are then assessed in light of the hypothesis that higher diversity will 81 

be found in the cooler refugia of the mid to high latitudes during extreme greenhouse 82 

conditions, such as during the Late Permian to Middle Triassic. 83 

 84 

Methods 85 

We conducted an in-depth literature review to maximise the completeness and robustness of 86 

our Late Permian to Late Triassic dataset for tetrapods. All tetrapod fossils from the 87 

Wuchiapingian (early Late Permian) through Carnian (early Late Triassic) were downloaded 88 

from the Paleobiology Database (PBDB). Genus names from this download were used to 89 

conduct a systematic literature search in Google Scholar, and any new taxa and 90 

occurrences were added to the PBDB. Once completed, the same criteria were used to 91 

download the enlarged dataset (in October 2018) [59]. We reviewed each ‘collection’, 92 

representing fossils from a particular locality and considered to be of a similar age, to 93 

increase temporal resolution. A literature search for formation names was conducted, with 94 

publications that listed the ages of specific beds or members further refining the geological 95 

date of collections, where possible [59]. We streamlined the mode of preservation and taxon 96 

habitat categories, reduced to either ‘body’ or ‘trace’, and ‘marine’ or ‘terrestrial’, 97 

respectively. Finally, the modern latitude and longitude of fossil localities were rotated to 98 

their palaeo-position at the time of deposition by filtering occurrences on a stage-by-stage 99 

basis then using the PALEOMAP Global Plate Model [60], implemented in G-Plates (version 100 

2.1.0) [61]. The final dataset constituted 3563 unique tetrapod occurrences assigned to 101 

stage level, with our search efforts contributing 490 of these occurrences (13.8%). 102 

All subsequent data manipulation and plotting was carried out in R [62] utilising the 103 

‘tidyverse’ suite of packages [63]. The final dataset was filtered to include only records 104 

representing unique species, comprising those identified to species level and those identified 105 

to coarser taxonomic levels but representing a clade not already within their spatiotemporal 106 



bin. Since abundance data in the Paleobiology Database are relatively incomplete and 107 

inconsistently applied, the presence of a species within any given collection was treated as a 108 

single occurrence. Fossil occurrences dated to a single geological stage were used to 109 

produce raw sampled-in-bin tetrapod richness curves.  110 

To compare tetrapod richness patterns across space between the Late Permian, Early 111 

Triassic, and Middle Triassic, stage-level occurrences were binned using 20° latitudinal 112 

bands, from 90°S to 90°N (the central bin includes the equator, from 10°N t o 10°S ). 113 

Terrestrial and marine body fossils were analysed separately, with ‘marine tetrapods’ 114 

referring to species whose morphology indicates life in marine habitats. This informal group 115 

is polyphyletic and includes basal ichthyosaurs, sauropterygians, tanystropheids and 116 

thalattosaurs.  117 

When reconstructing historical spatial biodiversity patterns, allowances must be made for 118 

the spatiotemporal unevenness of the fossil record [5,56,64-70]. LDGs in deep time can be 119 

estimated if sampling rates in the clade of interest are relatively high, and consideration is 120 

given to partitioning variation in richness likely attributable to sampling biases versus that 121 

likely attributable to biological patterns [71]. Furthermore, subsampling and extrapolation 122 

methods can help alleviate issues of sampling heterogeneity. Coverage-based approaches 123 

are currently the most effective approach for mitigating the effects of fossil record bias in 124 

large-scale biodiversity analyses [72,73]. 125 

We applied two analytical approaches to account for spatiotemporal sampling biases 126 

in occurrence data: coverage-based interpolation [74,75] and squares [76]. Both were 127 

applied to collections within latitudinal bins for the Late Permian, Early Triassic, and Middle 128 

Triassic time intervals (analyses were repeated for individual stages, Figure S2). Only body 129 

fossils were used for these analyses, due to the biological non-equivalence of trace fossil 130 

and body fossil species; one animal can produce multiple trace fossils, and traces are not 131 

easily allied to individual body fossil species. 132 

Richness estimates were generated using coverage-based interpolation following the 133 

approach of Dunne et al. [77] using the R package iNEXT [75]. This approach conducts 134 

coverage-based rarefaction using the equations of Chao & Jost [74] (analogous to 135 

shareholder quorum subsampling [64,72]) and extrapolation based on the Chao1 estimator. 136 

Extrapolated estimates were discarded if more than three times the observed sample size, 137 

as this suggests a high species-to-occurrence count ratio that indicates the bin under 138 

consideration is likely to be undersampled [75]. Bins containing fewer than three species 139 

were incompatible with subsampling and therefore excluded from analyses (Table S1). 140 

Coverage-based rarefaction curves are also presented (Figure S3) to illustrate the 141 



relationship between coverage and coverage-standardised diversity estimates in each bin 142 

[72,77].  143 

In addition to coverage-based interpolation, richness estimates were generated using 144 

the squares method [76]. Squares is an extrapolater based on the proportion of singletons in 145 

a given sample, and is considered more robust to biases arising from small sample sizes 146 

and uneven abundance distributions than other interpolation methods [73,76]. Squares 147 

richness estimates were produced using the equation stated by Alroy [76]. 148 

Finally, we tested whether variation in sampling intensity among time bins influenced 149 

richness estimates, particularly given the expected reduction in Early Triassic tetrapod 150 

occurrences following the PTME. We subsampled to the same number of collections in each 151 

time interval (Late Permian, Early Triassic and Middle Triassic) using a bootstrap routine. 152 

For each time bin, we randomly sampled 250 collections for terrestrial tetrapods and 30 153 

collections for marine tetrapods. Collections were allocated to their corresponding latitudinal 154 

bin and species richness was quantified across collections within each bin. This process was 155 

repeated 100 times. Diversity curves were produced using the mean species diversity in 156 

each latitude bin across the 100 replicates, allowing for comparison of LDGs among time 157 

bins given an artificially-fixed sampling intensity.   158 



159 

Figure 1 160 

Tetrapod diversity by latitude in the Late Permian, Early Triassic and Middle Triassic. The 161 

grey bars indicate 30-60°N and S. 162 

a. Palaeo-rotated occurrence locations plotted over maps from Scotese [59]; maps represent 163 

the Lopingian, Induan-Olenekian, and Ladinian. 164 

b. Raw occurrences within 20° latitude bins (e.g. central bin is 10°N-10°S). 165 

c. Squares diversity by latitudinal bin for terrestrial (green) and marine (blue) tetrapods. 166 

d. Interpolated diversity by latitudinal bin for terrestrial tetrapods. Bins with < 3 species have 167 

been plotted as ‘0’, while missing points indicate an estimated diversity of more than three 168 

times the observed value. Error bars indicate 95% confidence intervals. 169 

e. Interpolated diversity by latitudinal bin for marine tetrapods. Bins with < 3 species have 170 

been plotted as ‘0’, while missing points indicate an estimated diversity of more than three 171 

times the observed value. Error bars indicate 95% confidence intervals. The oldest marine 172 

tetrapod fossils are Olenekian (late Early Triassic; 251-247Ma) in age.  173 



Results 174 

Sampling 175 

Raw richness, squares and interpolation estimates produced similar diversity-through-time 176 

curves (Figure S1). The number of collections with terrestrial tetrapod body fossils was 177 

relatively consistent through time (Late Permian, 291; Early Triassic, 307; Middle Triassic, 178 

354), while the number of collections containing marine tetrapods increased from the Early 179 

to Middle Triassic (Early Triassic, 32; Middle Triassic, 207). Curves of raw species richness 180 

by latitude bin produced by bootstrapping to the same number of collections for each time 181 

interval were near-identical to those using the full datatset (Figure S4).  182 

Terrestrial distribution 183 

Terrestrial tetrapod occurrences were broadly distributed but clustered throughout the 184 

studied interval (Figure 1a). Both squares and interpolation analyses of terrestrial tetrapods 185 

by latitude (Figure 1c) show a consistent bimodal richness distribution throughout the Late 186 

Permian to Middle Triassic, with a persistent dip in diversity in the low southern latitudes. In 187 

the Northern Hemisphere, diversity peaked at 40°N in the Late Permian. By the Early 188 

Triassic, the peak in species diversity had shifted to the 20°N bin (Figure 1b), with stage-189 

level analyses indicating this occurred in the Olenekian (Figure S2b). In the Middle Triassic, 190 

the Northern Hemisphere peak returned to 40°N. The gradient in the Southern Hemisphere 191 

remained relatively unchanged throughout the Late Permian to Middle Triassic, 192 

characterised by a consistent 60°S diversity peak. 193 

Marine distribution 194 

Marine tetrapods were generally restricted to the Northern Hemisphere during the Early 195 

and Middle Triassic, despite having a relatively broad longitudinal distribution (Figure 1a). 196 

Early Triassic marine tetrapods were most diverse in the 20°N  bin, with the only other 197 

occurrences found in the 40°N  bin (Figure 1d). The 20°N  peak in biodiversity persisted into 198 

the Middle Triassic, but with new occupation of the equatorial and 20°S bins. The stage-level 199 

analyses generally show comparable trends to those seen in the epoch-level time bins, but 200 

often with fewer bins occupied, producing patchier and less constrained gradients (Figure 201 

S2). 202 

Comparison with modern LDGs 203 

The Early Triassic terrestrial LDG produced by interpolation was compared to LDGs of 204 

modern birds, mammals and amphibians (Figure 2; modern data derived from 205 

BiodiversityMapping.org, as used by Saupe et al. [22]). The modern curves have unimodal 206 



distributions that peak at low latitudes (maximum diversity at 9.5°S for birds and amphibians, 207 

2.5°N for mammals), whereas the Early Triassic terrestrial curve peaks at higher latitudes , 208 

with a clear bimodal distribution (maximum diversity at 32.5° N and 62.5° S).  209 



 210 

Figure 2 211 

Smoothed latitudinal gradients for species of modern birds (a), mammals (b), and 212 

amphibians (c), compared with Early Triassic terrestrial tetrapods (as an example) based on 213 

interpolation analyses (d). Modern gradients derive from data obtained from 214 

BiodiversityMapping.org. Silhouettes are from Phylopic.org.  215 



Discussion 216 

In contrast to gradients for modern terrestrial tetrapods, the Permo-Triassic terrestrial 217 

tetrapod gradient was likely bimodal with reduced diversity at low latitudes (10ºN-30ºS) 218 

(Figure 1) [4,6]. The general shape of the terrestrial tetrapod richness gradient, particularly 219 

its bimodality, remained relatively constant throughout the Late Permian to Middle Triassic, 220 

and may reflect the prevailing climate regime (greenhouse versus icehouse) [5,17,31]. 221 

Interestingly, the shape of the gradient did not seem affected by the PTME or even higher 222 

temperatures of the Early Triassic (equatorial SSTs increased from ~24°C in the latest 223 

Permian to ~40°C during the late Smithian [44]). Marine tetrapods, by contrast , maintained a 224 

diversity peak at low latitudes in the Northern Hemisphere from the Early to Middle Triassic 225 

(Figure 1). The bimodal terrestrial LDG obtained here is comparable to the distribution of raw 226 

Early Triassic tetrapod occurrences from Sun et al. [44] and Bernardi et al. [52], and 227 

suggests continuity of LDG shape from the Middle Permian [58]. The shape of the gradient is 228 

also broadly comparable to the gradient of Mesozoic dinosaurs, which Mannion et al. [13] 229 

attributed to the distribution of land area during the break-up of Pangaea. This congruence 230 

suggests LDGs may have been bimodal for much of the Permian to mid Cenozoic, with 231 

modern LDGs only developing as global climate gradually cooled through the late Paleogene 232 

and early Neogene [5,14,15,31]. 233 

Although latitude is a reasonable proxy for temperature in the modern, this 234 

relationship does not hold for the Triassic [41]. The latitudinal temperature gradient today 235 

largely reflects the operation of Hadley cells, but these cells may have collapsed in the Late 236 

Permian to give way to a more zonally asymmetric atmospheric system, with strong 237 

seasonal variation in temperature and precipitation [40,41,49]. Although the Tethyan coastal 238 

regions experienced supermoonsoons, considerably less precipitation reached the 239 

continental interior, resulting in high aridity, particularly in the southern low to mid latitudes 240 

[40,43]. Climate model reconstructions for the latest Permian suggest large areas of central 241 

Pangea were desert, with seasonal average temperatures up to 45°C in the arid subtropics  242 

at 20-25°N and S [78]. Late Permian palaeoenvironmental evidence from localities in  South 243 

Africa indicates considerable drought even at relatively high latitudes (~65°S) [47]. Thus, 244 

much of the supercontinent interior may have been uninhabitable in the Late Permian, which 245 

could explain the bimodal, asymmetric tetrapod LDG reconstructed here. However, in 246 

contrast to Permian climates, Triassic climates have not been well studied [41,42], and the 247 

development of high-resolution climate models for the Triassic is essential for determining 248 

the key drivers of tetrapod extinction and migration during this interval. 249 



We cautiously interpret the bimodal richness distributions found here as biologically 250 

meaningful, particularly given the agreement between the different sampling methodologies 251 

employed. In addition, collections from southern low latitude regions are consistently of low 252 

alpha diversity throughout the entire Late Permian to Middle Triassic, in comparison with 253 

some very high levels of alpha diversity in mid-latitude collections during the same intervals 254 

(Table S2). However, the spatial and temporal resolution of the analyses, and our certainty 255 

in the observed distributions representing biological patterns, would benefit from better 256 

geographic spread and higher density of samples [67-69]. New discoveries from the 257 

southern low to mid latitudes could particularly help to distinguish between low biodiversity 258 

and poor sampling, but fossiliferous outcrops of this age and palaeolatitude are uncommon, 259 

particularly from terrestrial environments (Figure S5) [41,49,67]. Although extensive shallow 260 

and marginal marine deposits, such as those in Oman, are rich in invertebrate fossils 261 

[e.g.79], vertebrate fossils are known only from a handful of localities, such as Gour Laoud in 262 

Algeria (Jesairosaurus lehmani, Odenwaldia sp., indeterminate amphibians; palaeolatitude 263 

9°S [80]) and Mariakani in Kenya (Kenyasaurus mariakaniensis; palaeolatitude 42°S [81]). 264 

Unfortunately, the age of fossils from these localities is poorly constrained and were 265 

therefore not included in our analyses.  266 

Although broad stasis in bimodal richness gradients was observed over the ~23 267 

million year interval considered here (Late Permian – Middle Triassic), smaller-scale 268 

variability can be detected among time bins. Both squares and interpolation analyses 269 

suggest a shift in peak diversity in the Northern Hemisphere towards the equator in the Early 270 

Triassic, before returning to mid-latitudes in the Middle Triassic. This shift is also supported 271 

by the relatively high number of trace fossil occurrences in the equatorial and 20°N bins 272 

during the Early Triassic (Figure 1b). An Early Triassic equatorward shift in diversity in the 273 

Northern Hemisphere seems surprising given that global temperatures were increasing at 274 

the time [44]. Instead, this shift may reflect differential sampling bias. Most of the 275 

interpolation rarefaction curves are exponential in shape, but the Early Triassic 20°N bin has 276 

a more asymptotic curve (Figure S3), indicating sampling completeness may be substantially 277 

higher in this bin relative to the others, inflating diversity estimates [72]. This peak in diversity 278 

corresponds to the high density of tetrapod fossils known from the Olenekian of Eastern 279 

Europe [82].280 



Conclusions 281 

Our results suggest terrestrial tetrapods exhibited a bimodal richness distribution and 282 

were most diverse at mid-latitudes during the Late Permian – Middle Triassic. In contrast, 283 

marine tetrapods were generally restricted to northern low latitudes in the Early and Middle 284 

Triassic. Tetrapods were not excluded from equatorial regions during this interval, but were 285 

reduced in diversity at low southern latitudes. The bimodal LDG for terrestrial tetrapods 286 

during the Late Permian – Middle Triassic contrasts with the unimodal, equatorial diversity 287 

peaks exhibited by most terrestrial tetrapod clades in the modern, including birds, mammals 288 

and amphibians (Figure 2). Permo-Triassic LDGs were likely shaped by the extreme climatic 289 

conditions of the time, particularly high global temperatures and heterogeneous precipitation. 290 

As is often the case regarding the vertebrate fossil record, our data are insufficient to 291 

determine conclusively whether observed patterns predominantly reflect true biological 292 

signal or heterogeneous spatial sampling. Further examination of Triassic climates and 293 

increased sampling intensity may advance our understanding of this time interval, providing 294 

greater insight into the potential influence of extreme greenhouse conditions on global 295 

patterns of biodiversity. 296 
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