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1  | INTRODUC TION

Criticism of the use of p values (Amrhein, Greenland, & McShane, 2019; 

Halsey, Curran-Everett, Vowler, & Drummond, 2015) has arisen 

mainly due to researchers' past tendency to over focus on statis-

tical significance, rather than a balanced consideration of it along 

with biological importance of model effects. Consequently, there 

is growing movement towards the use of approaches that place 

greater emphasis on biological importance through effect sizes, such 

as model comparisons and Bayesian inference (Burnham, Anderson, 

& Huyvaert, 2011; Cumming, 2014; Halsey, 2019), although care-

ful use of p values alongside effect sizes remains largely supported. 

Nakagawa and Cuthill highlight that ‘All biologists should be ulti-

mately interested in biological importance, which may be assessed 

using the magnitude of an effect, but not its statistical significance’ 

(Nakagawa & Cuthill, 2009, p. 1). Correctly using effect sizes enables 

interpretation of the extent of an effect, allows for comparisons of 

the relative importance of different effects, facilitates the use of re-

sults in meta-analyses and makes it possible to use results to predict 

future outcomes.
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Abstract
1. Because of the nature of social interaction or association data, when testing 

hypotheses using social network data it is common for network studies to rely 

on permutations to control for confounding variables, and to not also control for 

them in the fitted statistical model. This can be a problem because it does not ad-

just for any bias in effect sizes generated by these confounding effects, and thus 

the effect sizes are not informative in the presence of confounding variables.

2. We implemented two network simulation examples and analysed an empirical 

dataset to demonstrate how relying solely on permutations to control for con-

founding variables can result in highly biased effect size estimates of animal social 

preferences that are uninformative when quantifying differences in behaviour.

3. Using these simulations, we show that this can sometimes even lead to effect 

sizes that have the wrong sign and are thus the effect size is not biologically inter-

pretable. We demonstrate how this problem can be addressed by controlling for 

confounding variables in the statistical dyadic or nodal model.

4. We recommend this approach should be adopted as standard practice in the sta-

tistical analysis of animal social network data.

K E Y W O R D S

animal social networks, social behaviour, social network analysis

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 

provided the original work is properly cited.

© 2020 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society



2  |    Methods in Ecology and Evolu
on FRANKS et Al.

While the rest of ecology has been moving towards a balanced con-

sideration of biological significance through careful assessment of effect 

sizes alongside statistical significance, studies of animal social networks 

have tended to focus mainly on statistical significance, and neglect ef-

fect sizes. A key reason for this is that many animal social network stud-

ies focus on permutation approaches for statistical inference; permuting 

data and comparing model results on the observed and permuted data-

sets (Croft, Madden, Franks, & James, 2011; Farine & Whitehead, 2015). 

Network and datastream (pre-network) permutations deal with the 

inherent non-independence of observations related to social network 

data that can violate the assumptions of some conventional statistical 

tests. While network permutations were originally introduced to tackle 

non-independence (Krackhardt, 1987, 1988), they have since been 
adapted in behavioural ecology to also control for a host of confounding 

factors inherent to observations of free-ranging individuals that influ-

ence observed associations between individuals. These include sampling 

effort, location, the number of times individuals are observed and ob-

served group sizes (Bejder, Fletcher, & Brager, 1998; Croft et al., 2011; 
Farine, 2017; Farine & Whitehead, 2015; Whitehead, 2008). Indeed, 
most processes that influence associations between individuals have 

typically been controlled for by imposing constraints on data permuta-

tions in these null models, for example, by constraining swaps of pairs 

of observations to occur only within the same time period (e.g. a day or 

season) or location in which they were observed.

A common procedure in network studies has been to fit a statistical 

model to observed network data, derive a test statistic and then com-

pare this test statistic to statistics derived from constrained permuta-

tions. In this procedure, confounds accounted for in the permutation 

are not controlled for in the fitted model. Thus, while permutations are 

intended to prevent these confounding effects from generating false 

positives or false negatives in the p value, they do nothing to adjust 

for any bias in estimated effect sizes generated by these effects. As 

such, it is even possible for a study to suggest a significantly positive 

effect, yet the effect size reported for the model is negative. For ex-

ample, imagine a scenario where there are multiple locations at which 

associations between individuals are automatically recorded over mul-

tiple sampling periods. The observed associations between individu-

als could be purely the result of social preferences to associate with 

particular other individuals. There are, however, a host of additional 

ecological factors that could increase the probability of observing the 

individuals co-occurring at a given location, such as similarities in space 

use between individuals, uneven sex ratios, etc. (Farine, Firth, et al., 

2015). If, in our example, individuals had a preference for associat-

ing with members of the other sex (disassortative mixing; i.e. males 

prefer to associate with females, and females with males) but males 

preferred one location and females preferred another, then it would 

appear in the observed network that individuals prefer to associate 

with others of the same sex, despite their actual social preferences 

being for individuals of the other sex. Permutations that control for 

location would show us that the observed effect sex on association 

rates is significantly greater than expected from permuted associations 

(i.e. compared to the null model) with the population been significantly 

disassorted. However, despite there being more disassortativity in the 

observed network than expected by chance, the effect size estimated 

by the original model would be negative and thus the opposite to the 

true direction of the effect. The effect size is then not biologically in-

terpretable, and we are left to draw conclusions from the p value and 

direction of the effect alone, without any information on the biological 

importance of the effect.

Ultimately, whether this problem depends on the research question 

(Carter, Lee, & Marshall, 2015). If edges are intended to simply repre-

sent contacts between individuals, then the importance of using ap-

proaches that control for gregariousness or location preferences may 

be diminished because researchers are often more interested in quanti-

fying emergent network structures than uncovering social preferences 

that drive social network structure. This would be the case for example, 

when studying disease or information spread (Farine, Aplin, Sheldon, 

& Hoppitt, 2015; Hamede, Bashford, McCallum, & Jones, 2009; Silk 

et al., 2017), or the impact of social contacts on survival (Ellis et al., 

2017; Silk et al., 2009) or stress (Brent, Semple, Dubuc, Heistermann, 

& MacLarnon, 2011). However, if the question is related to social pref-

erences or behaviour, such as whether individuals have non-random 

social preferences, whether particular types of individuals prefer to as-

sociate with each other (Aplin et al., 2013; Croft et al., 2009), what type 

of social system is in place or how complex a social system is (Fischer, 

Farnworth, Sennhenn-Reulen, & Hammerschmidt, 2017; Ramos-

Fernandez et al., 2018; Weiss, Franks, Croft, & Whitehead, 2019), 
then these factors need to be controlled for. This could be relevant, 

for example, when addressing questions about the evolution of social 

preferences, such as shy individuals preferring to associate with bold 

individuals rather than other shy individuals. However, even where the 

question relates to contact networks, it might be appropriate to con-

trol for certain confounding effects (e.g. bias resulting from individu-

als being monitored for different periods of time or bias resulting from 

being more likely to observe bold individuals over shy).

Many questions in animal behaviour focus on the level of either 

dyads or nodes. The basic idea behind dyadic models is that the out-

come, such as the probability of associating, is affected by the char-

acteristics of both individuals in the dyad. Dyadic regressions—where 

the analysis is at the level of connections between pairs of individ-

uals—are used less in animal social network analysis than in other 

fields. In particular, other fields have developed methods for dyadic 

analysis, termed Actor–Partner Interdependence Models, which tackle 

the problem of interdependence without the use of or need for per-

mutations (Chow, Claxton, & van Dulmen, 2015; Garcia, Kenny, & 

Ledermann, 2015; Kenny, 1996, 2018). In these models, controls can 
be included in the statistical model that examines predictors of the 

strength of connection between the two individuals or predictors of 

node-level network measures. An example of this is shown in a paper 

using dyadic regression that controls for new confounding factors and 

debunks a previous network analysis suggesting that obesity is socially 

transmitted (Cohen-Cole & Fletcher, 2008). Other methods such as ex-

ponential random graph models (ERGMs) (Silk & Fisher, 2017), latent 

space models (Hoff, Raftery, & Handcock, 2002) and Stochastic Actor-

based Models (Fisher, Ilany, Silk, & Tregenza, 2017; Ilany, Booms, & 

Holekamp, 2015) can also be used for dyadic analysis.
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For questions relating to any network-level statistics that rely 

on indirect connections (Brent, 2015), however, such as path length 

or clustering, then we may need to control for these factors in the 

association index itself. This is commonly done for overall gregar-

iousness (Godde, Humbert, Cote, Reale, & Whitehead, 2013), but 

not for other key confounding factors. An underused method is to 

produce generalized affiliation indices (GAIs), which are produced 

from the residuals of a regression of observed contacts on con-

founding variables (Whitehead & James, 2015). GAIs are promising, 

although the biological meaning of these association indices can be 

difficult to interpret, and with values typically being both positive 

and negative it may be difficult to apply many traditional network 

analysis approaches that ecologists are familiar with. In particular, 

most weighted network statistics such as clustering coefficient 

and path length assume that edge weights are strictly positive 

(Newman, 2004).

Here, we focus on dyadic and nodal analysis and use two net-

work simulation examples to demonstrate that relying solely on 

permutations to control for confounding variables can result in 

incorrect and biased effect size estimates of animal social prefer-

ences that are not biologically meaningful. Our second simulation, 

in particular, represents a common scenario where individuals are 

sampled in different locations. We show with our examples that 

this problem can best be addressed by controlling for confound-

ing variables in the statistical model, before demonstrating that 

this approach remains effective when analysing an example using  

real-world data.

2  | MATERIAL S AND METHODS

The code written in R 3.6.3 (R Core Team, 2018) for both simulated 
examples is available in Supporting Information. We have chosen 

two example simulations with each illustrating the effect of a dif-

ferent confounding factor. The first simulation captures observation 

bias and the second captures social preference along with location 

preference. Our simulation framework is inspired by those of Farine 

(2017), Farine and Whitehead (2015) and Whitehead and James 

(2015). We also demonstrate the method using a real-world exam-

ple, with social data on reef manta rays Mobula alfredi from Perryman 

et al. (2019).

2.1 | Simulation 1: Sex differences in 
gregariousness and conspicuousness

We designed our first model to simulate a scenario in which a study 

is testing for a sex difference in gregariousness—a nodal analysis. We 

simulated a population of 100 individuals, with an equal sex ratio, 

in which females were more gregarious than males, but males were 

easier to observe. All individuals were assigned a level of gregarious-

ness g from a truncated normal distribution (bounds 0 and 1) with a 

mean of GF for females and GM for males, and standard deviation of 

0.1. Individuals were also assigned a sighting frequency s from the 

same distribution but with mean SF for females and SM for males. 

Females are assumed to be more gregarious and thus were assigned 

a higher gregariousness than males. Females were also assumed to 

be more difficult to observe than males (perhaps due to conspicu-

ousness, size or behaviour) and thus are assigned a lower sighting 

probability than males. We systematically varied the values of GF, 

SF and SM.

Using the rgraph function in the R package SNA (Butts, 2016), we 

then simulated t = 100 sampling periods. In each sampling period, 

every individual was always observed so that we had a reference case 

of perfect sampling for each run. The probability that any two ob-

served individuals were observed associating was equal to the prod-

uct of their gregariousness scores. Once sampling was complete, we 

generated the association network using the simple ratio index (SRI) 

(Cairns & Schwager, 1987) and measured the sum of the strength 
of connections (weighted degree) for each individual as a measure 

of their observed gregariousness. For each run, we then simulated 

sampling on the network, where each individual was observed with 

probability SM for males and SF for females. We do this by removing 

all associations involving individuals that were not sighted in a given 

sampling period.

We tested for a difference in strength between females and 

males using two different approaches. We expected females to have 

higher strength than males as a result of their higher gregariousness. 

First, we fitted a linear model to test the hypothesis that females 

have a higher strength than males:

Second, we also fitted the same model but included the mean-cen-

tred number of observations as a covariate to control for sampling 

bias. As such, we also included an interaction of observations with sex 

as a covariate to control for sampling bias in the effect size:

In both models, we allowed unequal variance by sex. Sex was also 

included as an interaction with the mean-centred number of observa-

tions. This improved the model fit due to an interaction between gre-

gariousness and sightings: because we know the sexes differ in their 

gregariousness, we would also expect that they would have different 

relationships between sightings frequency and strength. For a fair 

comparison across parameterizations of the model, the model then 

compares the effect of sex at the average level of sightings frequency, 

and we take the ratio there as our effect size. We found that a linear 

relationship with the number of observations was a good fit for this 

model.

We used a permutation procedure to determine the statisti-

cal significance of regression coefficients for the corrected nodal 

model. Although our study is about effect sizes, our intention is to 

demonstrate their use along with permutations. Recent work has 

Si ∼ �0 + �1 sexi + �i.

Strengthi ∼ �0 + �1 sexi + �2 observationsi

+ �3 (observations × sex)i + �i.
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highlighted problems with using datastream permutations with 

standard regression to test hypotheses such as the one we are in-

terested here (Weiss et al., 2020). Thus, we instead use the double 

semi-partialling method outlined by (Dekker, Krackhardt, & Snijders, 

2007) with 10,000 permutations of the residuals, using the pivotal 

statistics (t for quasi-poisson, z for beta) as our test statistics. This 

permutation procedure does not account for sampling or other con-

founding effects, but it does not need to, because we have already 

controlled for them in our statistical model.

2.2 | Simulation 2: Sex assortment and location 
preferences

We designed the second simulation to test the hypothesis that individ-

uals of the opposite sex have stronger social preferences for each other 

than they do for individuals of the same sex. However, we also included 

a sex difference in location preference, that confounded the true social 

preferences of individuals—a dyadic analysis. We simulated 100 indi-

viduals, half of which were female and half of which were male. For all 

dyads of the same sex, we assigned an association preference from a 

truncated normal distribution with a mean SSame = 0.25 and standard 

deviation of 0.1 (boundaries 0 and 1). We did the same for all pairs of 

individuals of a different sex, but used a mean of SDifferent = 0.5. This 

association matrix was assumed to be symmetric. We assumed two 

sampling locations A and B and assigned a preference for location B to 

each individual, using a truncated normal distribution with a standard 

deviation of 0.1 and means of LM = 0.8 for males (strong preference for 
Location B) and LF = 0.2 for females. To examine the effect size without 

bias in location preferences, we also ran the simulation with a mean 

preference of LM = LF = 0.5 for location B (i.e. no preference) for both 

sexes for each set of parameter values for Ssame and Sdifferent.

We then simulated t = 100 sampling periods as before. In each 

sampling period, we assigned each individual to a location (A or B) 

according to their location preference. Individuals could then only 

associate if they were in the same location in that time point, and 

the probability that any two observed individuals were observed as-

sociating was proportional to the product of their association pref-

erences. In each sampling census, we recorded whether each pair of 

individuals was observed associating.

We again used three different ways to test for negative assorta-

tivity by sex, calculating statistical significance by comparison to the 

results from the permutations. First, we fitted a binomial multiple 

membership GLMM with logit link as a dyadic regression to test the 

hypothesis that individuals of the opposite sex have a higher social 

preference for each other than they do for individuals of the same 

sex. We used default priors and the model:

where nodeID is a random factor in the multiple membership model. 

This represents a random gregariousness or sociality effect or, in 

the case of uneven detection, a visibility effect for each individual. 

Note that including nodeIDs as standard random factors without 

the multiple membership model would represent a directed net-

work scenario, but we are dealing with undirected associations here. 

MCMCglmm includes an observation-level random intercept as de-

fault and DyadID is therefore implicitly included as a random inter-

cept. This glmm structure follows some aspects of implementations 

of the Actor-Partner Interdependence Model (Kenny, 1996, 2018) 
and the multiple membership approach is inspired by Rushmore 

et al. (2013).

Second, we fitted the same model, but included the proportion 

of censuses that the two individuals in the dyad were observed in 

the same location (which we centred on 0.5), as a covariate to control 

this non-social influence:

We used the multiple regression quadratic assignment proce-

dure (MRQAP) to calculate significance for this corrected model. 

There are caveats with this approach. First, the GLMQAP deals 

specifically with the non-independence between edges that 

arises because they are connected to the same node, but this is 

already dealt with completely by the multi-membership random 

effect. As such, there is no need to use permutations with this 

approach. Additionally, MCMCglmm is a Bayesian approach, and 

thus p values are not a standard aspect of the analysis. However, 

we have included the permutation procedure here to demon-

strate an appropriate permutation approach, should it be desired. 

MRQAP uses the double semi-partialling permutation method 

(Dekker et al., 2007) with 10,000 permutations. This method 

is equivalent to the multiple regression quadratic assignment 

procedure (MRQAP), but fitting GLMs instead of least squares 

regression. This GLMQAP procedure is available in the ANiNet R 

package, accessible through GitHub (https://github.com/MNWei 

ss/aninet).

2.3 | Reef Manta Ray Data: Sex differences in 
gregariousness

Simulation is the best approach for testing our method because it 

allows us to know what the effect size should actually be. However, 

we also demonstrate the method on complex data. As such, we used 

group-based association data on reef manta rays (for full details, see 

Perryman et al., 2019). Individual reef manta rays were identified by 

standard photo-ID methods, and data on group compositions were 

collected from November 2013 to May 2018 in the Dampier Strait 
region of Raja Ampat, West Papua, by trained researchers diving 

using SCUBA equipment, or freediving, depending on the position 

of rays in the water column. In line with Perryman et al. (2019), we 

removed individuals observed fewer than 10 times to improve data 

reliability (Whitehead, 2008) and derived the SRI using a 15-day 

(assoc, not−assoc)ij ∼ �0 + �1 sameSexij + dyadIDij

+ nodeIDi + nodeIDj + �ij,

(assoc, not−assoc)ij ∼ �0 + �1sameSexij + �1 locationOverlapij

+ dyadIDij + nodeIDi + nodeIDj + �ij.
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sampling period. In the resulting dataset, there are 70 unique fe-

males, 42 unique males, 1,257 female sightings, 643 male sightings, 

17.96 mean sightings per female and 15.31 mean sightings per male. 

As such, there is a clear case of more females or oversampling of 

females.

We fitted a regression model to the network to test the hypoth-

esis that one sex has higher strength than the other:

However, we know that these data are confounded by a bias to-

wards observing females, which can bias the effect size in this re-

spect. We also fitted the same model but included the mean-centred 

number of observations of each individual as a covariate to control 

for sampling bias in the effect size following the approach of our first 

simulation:

We checked the fit of observations, and a linear relationship was ap-

propriate in this case. Unlike our nodal simulation, we did not interact 

sex with observations because there was no difference between the 

sexes in how the observations impacted strength, and it did not im-

prove the model fit.

3  | RESULTS

3.1 | Simulation 1: Sex differences in gregariousness 
and conspicuousness

The simulation created the desired effect that females are more 

gregarious than males, while males appear to be more gregarious 

when females are difficult to observe (Figure 1). Over 20 independ-

ent simulation runs, we found that the mean effect size of sex on 

strength was 29.16 (95% CI = 28.66, 29.65) when sampling was per-
fect and males and females were equally observable (equivalent to 

SF = 1, SM = 1).

For each simulation run, our expected effect size is from the 

perfectly sampled network under the given parameter values and 

the other two effect sizes are from the sampled network with the 

statistical model not accounting for observations and with the sta-

tistical model accounting for observations. Figure 2 shows the re-

sults of our analysis over systematically varied parameters SF and 

SM, where SM > SF and SM + SF = 1 to keep sampling observations 

constant (Figure 2a), and also varying GF (GF > GM) (Figure 2b). The 

results show that not accounting for confounding effects in the sta-

tistical model (and instead relying on permutations to account for 

them) produces effect sizes that are very different from the actual 

effect sizes and for a wide range of conditions. Indeed, this approach 

actually shows the opposite result to the reference model, in that fe-

males are shown to be less gregarious than males (points below the 

dotted line on Figure 2a). However, when we account for sampling in 

the statistical model, the results are extremely similar to the actual 

effect sizes.

Unlike the uncorrected model which would rely on permuta-

tions to correct confounds only in the p value, the effect of the cor-

rected model can be biologically interpreted. For example, when 

SM = 0.7 and SF = 0.3 and GM = 0.5 and GF = 1.0 the corrected mean 

strength ratio can be interpreted as females being 87% more gre-

garious than males (reference 82%). This cannot be done for the 
uncorrected effect size which would be interpreted as males being 

4% more gregarious than females. To demonstrate the use of the 

permutation method with the statistical model, for this example 

the p values for all 20 runs were significant with p < 0.05 in all 

cases.

Strengthi ∼ �0 + �1 sexi + �i.

Strengthi ∼ �0 + �1 sexi + �2 observationsi + �i.

F I G U R E  1   (a) The true gregariousness of individuals of each sex. (b) The measured strength of individuals of each sex from simulated 

observations, where SM = 1 and SF = 0.1. In both cases, GF = 1 and GM = 0.5. Plots are for a single representative run of the simulation. The 

contrast between the two panels (a) and (b) demonstrates that although females are more gregariousness, males incorrectly appear to be 

more gregarious when females are difficult to observe. For all box-and-whisker plots, the bottom and top of the box are the 25th and 75th 

percentiles, the middle band is the median, the upper whisker is Q3 + 1.5 IQR, the bottom whisker is Q1 + 1.5 IQR and open circles show 

outliers

(a) (b)
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3.2 | Simulation 2: Sex assortment and location 
preferences

The simulation created the desired effect that individuals of a dif-

ferent sex are more likely to associate while individuals of the same 

sex are more likely to be in the same location. Over 20 independent 

simulation runs when males and females had location preferences 

from the same distribution, we found that two members of a dyad 

being of the same sex was associated with a decrease in the logit-

transformed dyadic association strength of 0.43 (95% CI = 0.42, 

0.44). This is the mean (over 20 runs) of the mean posterior expected 

odds ratio for each simulation, meaning that individuals of the same 

sex were only 67% less likely to associate than individuals of a differ-

ent sex at a given sampling event.

For each simulation parameterization, our reference/true ef-

fect size is from 20 runs of the network under the given parameter 

values but with location preferences equal for males and females 

(LM = LF = 0.5). Figure 3 shows the results of our analysis over sys-

tematically varied parameter SSame, while SDifferent = 0.5, LF = 0.8 and 
LM = 0.2 (Figure 3a), and over systematically covaried parameters LF 

and LM while SDifferent = 0.5 and SSame = 0.25 (Figure 3b). The results 

show that not accounting for confounding effects in the statistical 

model produces effect sizes that are very different from the actual 

effect sizes. Indeed, for a wide range of conditions, it actually shows 

the opposite result to the reference model, in that individuals of the 

same sex are more likely to associate than individuals of the different 

sex (points above the dotted line for both panels). However, when 

we account for sampling in the statistical model, the results are ex-

tremely similar to the actual effect sizes.

Unlike the uncorrected model, which would rely on permu-

tations to correct confounds only in the p value, the effect of the 

corrected model can be interpreted biologically. For example, when 

SSame = 0.25. SDifferent = 0.5, LF = 0.8 and LM = 0.2 odds ratio of associ-

ating with the same sex is 0.44, which is extremely close to the true 

value of 0.43. This cannot be done for the uncorrected effect size 

which gives a mean odds ratio of 1.02. Under the conditions for this 

example, the p values for all 20 runs were significant with p < 0.05 

in all cases.

3.3 | Reef Manta Ray Data: Sex differences in 
gregariousness

In the basic model (strength ~ sex), the effect size for sex (in this 

case being male) was −0.45 (SE 0.33), suggesting that males are less 
gregarious than females. However, in the second model that con-

trolled for observations (strength ~ sex + number-of-observations), 

the effect size was −0.07 (SE 0.26) and not statistically significant 

(GLMQAP permutation test; p = 0.78). Thus, the second model 
shows that the original effect size was biased by the over sampling 

of females. The full table of results for both models is provided in 

the Supporting Information. This offers further support for our 

F I G U R E  2   The sex effect size (ratio of strength between males and females) from the statistical models. Odds over 1 (dotted line) 

mean that females are more gregarious and have a higher strength than males. Red circles show the true effect size, orange triangles show 

the effect size of the uncorrected statistical model after biased sampling and blue squares show the effect size of the model statistically 

controlling for observation bias after biased sampling. Error bars show standard deviation. Panel (a) shows results when GF = 1.0 and 

GM = 0.5 while covarying SF and SM, and panel (b) shows results when SF = 0.3, SM = 0.7 and GM = 0.5 while varying GF. These figures show 

that failing to account for the bias in the statistical model gives incorrect effect sizes, and that this problem can be addressed by controlling 

for bias in the statistical model
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finding from the first simulation using data with a more complex 

structure.

4  | DISCUSSION

Our study demonstrates that when answering questions related to 

social preferences, controlling for confounding factors in the fitted 

statistical model produces biologically meaningful effect size esti-

mates that greatly help the interpretability of the results. Where 

confounding factors are only controlled for in the null model, as has 

been typical in animal social network analysis, the only information 

about the effect comes from the p value and the tail in which sig-

nificance is found. The latter approach focuses on statistical signifi-

cance and does not facilitate a careful and balanced assessment of 

biological importance. As such, it is not desirable to control for con-

founding factors in permutations alone, and we advocate a return to 

careful consideration of the statistical model specification.

Our study demonstrates examples of how animal social 

network analysis can be performed, in the light of recent work 

highlighting that that datastream permutations do not test the hy-

pothesis that is typically desired with standard regression model-

ling (Weiss et al., 2020). The approach that we have demonstrated 

(a) accounts for confounding factors in the statistical model, (b) 

accounts for the relevant non-independence in the statistical 

model and (c) uses post-network permutations to further account 

for non-independence. Thus, we advocate careful thinking about 

constructing the statistical model to correctly fit the data, includ-

ing confounding effects. Where possible non-independence struc-

ture should also be dealt with in the statistical model, although 

this can also be dealt with using post-network permutations. Our 

approach can help facilitate the use of Bayesian analysis, which 

has possibly been neglected due to the past focus on permutation 

tests and p values.

If confounding factors are controlled for in the statistical model, 

then it is unnecessarily to control for them again in the permutations. 

In some cases, no permutations are needed, such as when using dy-

adic regression with adequate variance/covariance structure (see 

e.g. our example simulation 2). When the structure to be controlled 

for is more complex, such as when performing a nodal analysis on a 

centrality measure, then appropriate permutations can be used, as 

demonstrated here, such as GLMQAP in the ANiNet R package for a 

dyadic analysis (Weiss, 2020).

We found that controlling for confounding factors in the sta-

tistical dyadic model can help to either mitigate or eliminate the 

problem, depending on how well these confounding effects can be 

captured in the model. It often compensates for the extent of the 

bias, except where there are extreme differences in observations 

in the first simulation, where it still performs much better than not 

controlling for confounding factors. Our approach works the same 

with nonlinear approaches such as polynomial regression and GAMs, 

and we recommend careful examination of predicted model fits and 

relationships between variables to assess whether a nonlinear rela-

tionship might be best for the confounding factors.

F I G U R E  3   The effect size (odds ratio of associating with the same sex) from the statistical models. Red circles show the effect size for 

the reference case when males and females share equal location preferences (LM = LF = 0.5). Orange triangles show the effect size of the 

uncorrected statistical model, and blue squares show the effect size of the model statistically controlling for location overlap. Error bars 

show standard deviation. Panel (a) shows results when SSame is varied while SDifferent = 0.5, LF = 0.8 and LM = 0.2. Panel (b) shows results when 

LF and LM are covaried while SDifferent = 0.5 and SSame = 0.25. These figures show that failing to account for the bias in the statistical model 

gives incorrect effect sizes, and that this problem can be addressed by controlling for bias in the statistical model
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When analysing with social preferences, there are many situa-

tions where confounding factors should be controlled for in the sta-

tistical models. Examples of confounding factors include group sizes, 

location, season and any known observation bias. When dealing with 

social preferences, anything that would be controlled for in the null 

model should ideally be controlled for in the statistical model. Even 

where the question relates to contacts, there will still be occasions 

where it is appropriate to control for bias in the effect size. For ex-

ample, here we demonstrated an example of where there is bias for 

observing certain types of individuals over others, which distorts 

our observations of the actual interactions (see simulation 1). In situ-

ations such as this where differences in observation (or analogously 

bio-logger performance) may mask the structure of the true social 

network then controlling for its effect will be important in analysing 

all animal social networks. However, once confounding factors are 

controlled for in the statistical model, in most cases it will not be 

necessary to control for them again in the null model.

Gregariousness is often a key confound for which researchers 

control (Godde et al., 2013). However, in some study systems, gre-

gariousness may be a mechanism underlying both the number of 

observations and the connectedness of individuals in the social net-

work. Where this is the case controlling for the number of observa-

tions of each individual in a statistical model can be problematic and 

including it as a covariate in a model may mask differences in gregar-

iousness between individuals. Another scenario where it is difficult 

to tease apart competing drivers of association is where social pref-

erences drive use of locations (in addition to spatial preferences im-

pacting association patterns). This is a general problem for networks 

constructed using data on spatial and temporal co-occurrence that 

still needs to be resolved, but the key to addressing it is understand-

ing any observation bias and the study system. Simple simulations 

such as those we have presented here are useful tools in examining 

the impact of known confounding factors on social preferences prior 

to any analysis of animal social data, and studying whether they can 

be adequately controlled for.
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