

This is a repository copy of Reconciling proxy records and models of Earth's oxygenation during the Neoproterozoic and Palaeozoic.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/161022/

Version: Accepted Version

Article:

Tostevin, R and Mills, BJW orcid.org/0000-0002-9141-0931 (2020) Reconciling proxy records and models of Earth's oxygenation during the Neoproterozoic and Palaeozoic. Interface Focus, 10 (4). 20190137. ISSN 2042-8898

https://doi.org/10.1098/rsfs.2019.0137

© 2020 The Author(s). Published by the Royal Society. All rights reserved. This is an author produced version of an article published in Interface Focus. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1 Reconciling proxy records and models of Earth's oxygenation during

2 the Neoproterozoic and Palaeozoic

- 3 Rosalie Tostevin¹ and Benjamin J. W. Mills²
- ⁴ Department of Geological Sciences, University of Cape Town, Rondebosch, Cape Town,
- 5 South Africa.
- 6 ²School of Earth and Environment, University of Leeds, Leeds, LS29JT, UK

7

8

Abstract

- 9 A hypothesised rise in oxygen levels in the Neoproterozoic, dubbed the Neoproterozoic
- oxygenation event (NOE), has been repeatedly linked to the origin and rise of animal life.
- 11 However, a new body of work has emerged over the past decade that questions this
- 12 narrative. We explore available proxy records of atmospheric and marine oxygenation, and
- 13 considering the unique systematics of each geochemical system, attempt to reconcile the
- data. We also present new results from a comprehensive COPSE biogeochemical model that
- 15 combines several recent additions, to create a continuous model record from 850–250 Ma.
- 16 We conclude that oxygen levels were intermediate across the Ediacaran and early
- 17 Palaeozoic, and highly dynamic. Stable, modern-like conditions were not reached until the
- 18 Late Palaeozoic. We therefore propose that the terms Neoproterozoic Oxygenation Window
- 19 (NOW) and Palaeozoic Oxygenation Event (POE) are more appropriate descriptors of the rise
- of oxygen in Earth's atmosphere and oceans.

21

22

1. Introduction

Since the Great Oxidation Event, 2.5-2.3 billion years ago (Ga), oxygen has been a persistent feature of Earth's atmosphere¹, but has remained at low levels throughout the Palaeoproterozoic and Mesoproterozoic eras (2.5-1.0 Ga). A hypothesised rise towards modern oxygen levels in the Neoproterozoic (1.0-0.54 Ga) was dubbed the "Neoproterozoic Oxygenation Event" (NOE)². Evidence for the NOE included broad increases in the average molybdenum and vanadium concentrations in black shales³; an increase in the isotope fractionation between sulfate and pyrite ($\Delta^{34}S_{SO4-pyr}$)⁴; and Fe speciation evidence for local deep water oxygenation⁵.

Geochemical data collected over the last decade has disrupted this narrative. Despite an increase in the breadth and depth of proxy data now available, we appear to be further from a consensus on the timing and dynamics of oxygenation. Some proxies support a single, unidirectional step change in oxygen levels, although estimates of the timing span almost 600 Myrs^{6–15}. Other proxy data support a more dynamic system, with large oscillations in oxygen availability^{16–18}.

How can we reconcile these different proxy records? One possibility is that some of the geochemical data do not record ancient redox conditions, because they have been overprinted by diagenesis and metamorphism. While some published data may be need to be revisited, other geochemical signals are reproducible in samples from different basins (e.g., Uranium isotopes^{18,19}, or redox sensitive trace elements^{7,17,20,21}). In addition, geochemical redox analysis can be paired with petrography or other geochemical data to screen for potential alteration. Another possibility is that we are misinterpreting primary geochemical signals. Because today's oceans are largely well-oxygenated, proxy systems are

calibrated in isolated basins and lakes, and these environments may not provide a reasonable analogue for a globally anoxic deep ocean. Alternatively, each proxy may be capturing different parts of a complex transition, depending on the proxy systematics, marine residence time, reduction potential, and sampling density. Here, we critically evaluate current proxy evidence for Neoproterozoic—Palaeozoic oxygenation, attempt to reconcile the various records, and compare them to the latest biogeochemical modelling results.

2. Evaluation of current geochemical evidence

2.1 Local Marine Geochemical Proxies

Local marine redox proxies record progressive changes within a single basin^{5,22}, but if those changes are driven by local hydrodynamics or changes in productivity, they may not reflect global changes in oxygen availability. When sufficient local proxy data are collected from multiple basins, the compiled data may record a statistically significant change in the average oxidation state of the ocean. However, these proxy records are necessarily biased towards shelf and slope environments, as Proterozoic sediments from the abyssal plain are rarely preserved. Proxies preserved in carbonates, such as I/Ca and Ce anomalies, are further biased towards warm, shallow shelf environments at low latitudes.

Iron speciation:

The ratio of highly reactive to total iron preserved in carbonates and shales is indicative of the redox chemistry in the water column directly above the accumulating sediments²³.

Robust calibrations of the proxy in modern sediments allows the differentiation of oxic $(Fe_{HR}/Fe_T < 0.22)$ and anoxic water masses $(Fe_{HR}/Fe_T > 0.38)$, although ambiguous ratios may

be generated under high sedimentation or mixing rates (Fe_{HR}/Fe_T 0.22–0.38). For anoxic water masses, the proportion of pyrite in the highly reactive iron phase can distinguish between Fe-bearing (ferruginous) and sulfidic (euxinic) anoxia (Table 1). Therefore, "oxic" conditions identified by iron speciation could potentially incorporate suboxic and well-oxygenated conditions. Systematic diagenetic biases could be introduced to the iron speciation record through transformation of unsulfidised highly reactive iron minerals to less reactive sheet silicates, producing a false oxic signal.

A transition towards oxic Fe speciation signals ~580 Ma, recorded in shales deposited on a continental slope, was thought to pinpoint permanent oxygenation of the deep ocean⁵.

However, as more data have been collected, an increasingly complex picture of spatial and temporal heterogeneity has emerged. For example, data from basins of the same age in the Canadian cordillera show no such oxygenation^{21,24}, and younger basins record anoxic waters impinging onto the shelf²⁵. A recent statistical analysis of 4,700 Fe speciation measurements from deep water settings across a range of ages and locations has revealed no significant long term (i.e., 100 Myr) trend towards more oxic conditions across the Neoproterozoic and early Palaeozoic (Figure 1 and 2)¹⁴. This study has good spatial and temporal coverage from ~2.1 Ga to 440 Ma, although Silurian—Devonian data come from just two studies and may be subject to sampling biases (Figure 2)^{7,26}.

Table 1: Summary of proxy systematics

	Proxy	Responds to	Redox sensitivity	Archives	Syste matic bias?
Local/ Regio	Iron speciation	Integrated regional water column redox conditions	Ferruginous anoxia and	Shales, carbonate	Variab le
]			euxinia		

		above accumulating			
		sediments			
	I/Ca ratios	Upper ocean oxygen	Hypoxic (<70	Carbonates	False
		gradients	μM O ₂) to		anoxic
			suboxic		
			(between		
			manganous		
			and		
			nitrogenous)		
	Ce	Local–regional water	Suboxic	Carbonates,	False
	anomalies	column redox at site of	(manganous)	phosphorite	anoxic
		carbonate precipitation		s, iron	
				formation	
	Σ Fe ³⁺ /Fe	Regional deep water oxygen	Progressive	Basalts	False
	,	concentrations	with		anoxic
			increasing		
			O ₂ (aq)		
	Marine red	Regional deep ocean oxygen	Ferruginous	Marine red	
	beds	concentrations following	anoxia	beds	
		periods of anoxia			
	δ^{238} U	Area of global seafloor	Anoxia	Carbonates,	False
		bathed in anoxic waters		shales	oxic
	δ^{98} Mo	Area of global seafloor	Euxinia	Shales	False
		bathed in anoxic waters			anoxic
	RSE	Area of global seafloor	Euxinia (Mo);	Euxinic	False
Global marine	enrichmen	bathed in anoxic waters	ferruginous	shales	anoxic
	ts		anoxia (Cr,		
			Re, U, V)		
	δ^{82} Se	Local redox conditions and	Ferruginous	shales	
		size of global–regional	anoxia		
		oxidised SeO _x ² -reservoir.			
	δ^{34} S	Size of global marine sulfate	Euxinia,	Carbonates,	Variab
		reservoir and global	atmospheric	evaporites	le
		proportional pyrite burial	O ₂		
		flux			
Atmospheric	δ^{53} Cr	Atmospheric oxygen	>0.1–1% PAL	Shales,	
				ironstones	
	Wildfire	Atmospheric oxygen	>70% PAL	Charcoal	
	record				
			<u> </u>		

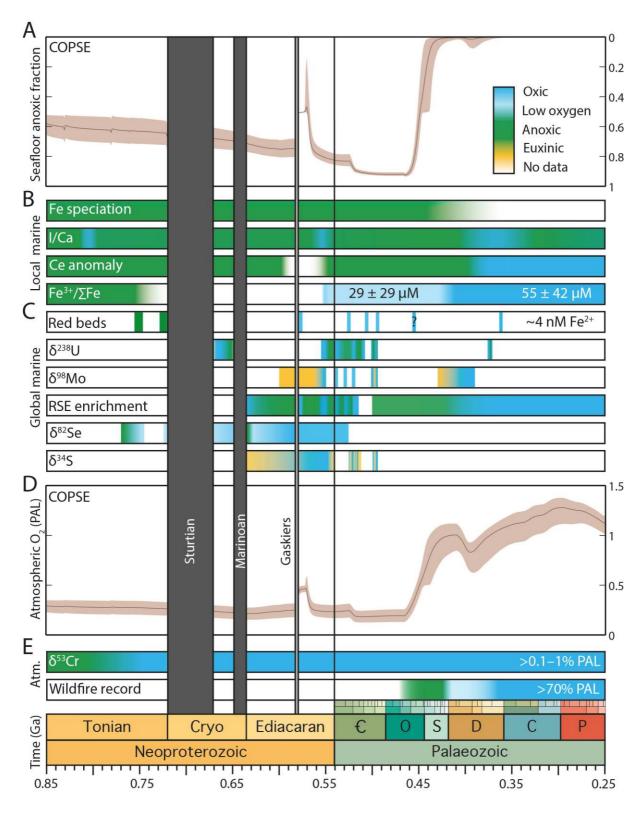


Figure 1. COPSE model predictions of atmospheric and marine redox and inferred redox conditions based on geochemical proxies through the Neoproterozoic and Paleozoic. A.

inferences for local marine oxygenation, indicating dominantly euxinic (yellow), anoxic

(green), low oxygen (light blue), and oxic (dark blue) conditions. Surface waters have

contained some oxygen since the GOE, but these interpretations represent the dominant

redox conditions. Therefore, a green bar does not imply that the entire ocean was anoxic.

For interpretation of each data set, and relevant references, see discussion in the text. C.

Proxy inferences for global marine oxygenation. D. Modelled atmospheric O₂ (PAL). E. Proxy

inferences for atmospheric O₂.

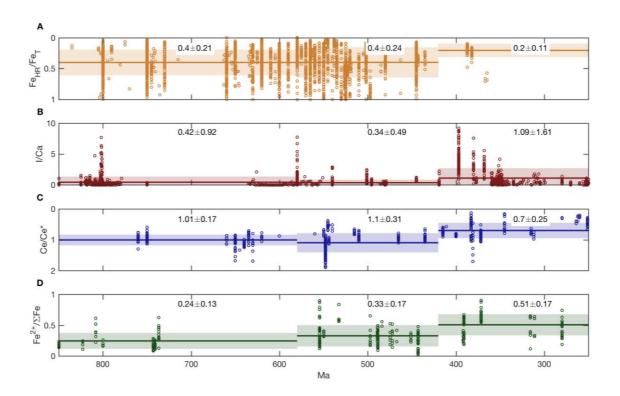


Figure 2: Geochemical data for local–regional redox proxies from 850–250 Ma. Data (open circles) for Fe speciation from shales 14 , I/Ca ratios in carbonate rocks $^{10,27-29}$, Ce anomalies in carbonate rocks $^{30-32}$ and Fe $^{2+}$ / Σ Fe ratios of seafloor basalts 15 . The average (solid line) and an error window of 1 standard deviation (shaded region) is shown for time bins 850–580, 580–420 and 420–250 Ma.

I/Ca ratios:

lodine to calcium ratios in carbonate rocks reflect local water column redox conditions. Since the reduction of iodate (IO_3 -) to iodide (I-) has a relatively high reduction potential, the I/Ca proxy is sensitive to intermediate redox conditions, from hypoxic ($<70-100~\mu M~O_2$) to suboxic (manganous – nitrogenous conditions)³³ (Table 1). lodate is incorporated into carbonate rocks, and so I/Ca ratios reflect the oxidised iodate concentration in the local water column at the depth of carbonate formation, which varies with the concentration of oxygen in surface waters and the depth of the top of the OMZ¹⁰. Due to the slow kinetics of iodide oxidation, water masses with fluctuating redox conditions, or anoxia nearby, may retain a low iodate signature, biasing primary signatures towards anoxic conditions. In addition, diagenesis can reduce the I/Ca ratio, but not increase it, systematically biasing the rock record towards anoxic conditions²⁷.

I/Ca data span a large range at any given location, but if there are sufficient data, then an increases in the maximum I/Ca may indicate oxygenation. Long term compilations reveal variable but low I/Ca across the Neoproterozoic and Early Palaeozoic²⁷ (Figure 2), with notable peaks during the Bitter Springs (~810–800 Ma)²⁹ and the Shuram excursion (~560 Ma)^{27,34}. I/Ca ratios show a significant peak in the Devonian, between ~400 and ~350 Ma, but a return to lower values in the Carboniferous and Permian (Figure 1 and 2)¹⁰. There is no permanent change towards higher I/Ca ratios until the early Mesozoic. The maximum I/Ca recorded in any given time window may evolve as more data are collected.

Ce anomalies

Negative Ce anomalies in rare earth element patterns are indicative of locally oxic water column conditions. Under oxidising conditions, Ce(III) is oxidised to Ce(IV) on the surface of Mn (oxyhydr)oxide minerals, resulting in relative depletion in shale-normalised seawater Ce concentrations compared with the other rare earth elements. The generation of Ce anomalies requires oxidation of Mn and Ce, both of which have relatively high reduction potentials (+1.23 mV and +1.44 mV, respectively). Therefore, Ce anomalies are responsive to the onset of manganous conditions, which may overlap with low oxygen concentrations (<10 µM). Ce anomalies can respond to redox changes over meter scales³⁵, although in the open ocean, local signals may be overprinted by basin-wide signals due to slow kinetics³⁰ (Table 1). The magnitude of any Ce anomaly may correspond to the concentration of oxygen or the thickness of the oxic layer, but can also be influenced by other factors such as local Mn oxide fluxes³⁶. Rare earth elements, and associated Ce anomalies, substitute for Ca²⁺ in the carbonate mineral lattice, and as such, can faithfully record seawater REE at the site of carbonate formation, and are relatively robust to diagenesis and even dolomitisation^{31,37}.

A progressive increase in the magnitude of the Ce anomaly after 551 Ma in carbonate rocks from South China was interpreted to record an increase in oxygen levels in the shallow marine environment during the late Ediacaran Period²². However, reducing signals have since been recorded in contemporaneous rocks from the Nama Group, Namibia³², suggesting oxygenation was not a global phenomenon. Further, long term compilations of Ce anomaly data from eighteen formations show no significant change until the Late Devonian (~383 Ma; Figures 1 and 2)³⁰. However, this broad compilation includes large sample gaps. For example, there is only one sample between ~600 Ma and ~550 Ma.

 $Fe^{3+}/\Sigma Fe$ ratio of submarine basalts

As oxygenated water circulates through seafloor basalts, reduced iron is oxidised to Fe³⁺.

Therefore, the $Fe^{3+}/\Sigma Fe$ ratio of submarine basalts varies with the magnitude of

hydrothermal fluxes and with the oxygen content of bottom waters. As such, seafloor

basalts, preserved as ophiolites, can provide a direct record of deep water oxygen

concentrations (Table 1). Metamorphism acts to reduce Fe³⁺, and so could systematically

bias the $Fe^{3+}/\Sigma Fe$ ratio towards lower values.

Long term compilations of Fe³⁺/ Σ Fe data show no significant change across the Archean and Proterozoic (Archean = 0.20 \pm 0.04; Palaeo–Mesoproterozoic = 0.26 \pm 0.02; Neoproterozoic = 0.26 \pm 0.05), but a progressive increase across the Early Palaeozoic (0.34 \pm 0.08), Late Palaeozoic (0.47 \pm 0.10) and Mesozoic–Cenozoic (0.58 \pm 0.11) (Figure 2)¹⁵. This indicates a progressive increase in oxygen content of the deep ocean from 11 \pm 17 μ molkg⁻¹ in the Neoproterozoic, to 29 \pm 29 μ molkg⁻¹ in the Early Palaeozoic, 55 \pm 42 μ molkg⁻¹ in the Late Palaeozoic, and 80 \pm 53 μ molkg⁻¹ in the Mesozoic–Cenozoic (Figure 1). Due to the distribution of rare ophiolites in the geological record, there are large gaps where no data are available, as well as large uncertainties in the age of some samples. For example, there are no data between 736 \pm 1.7 Ma and 554.5 \pm 136.5 Ma. In the Stolper and Keller (2018) study, the Neoproterozoic time bin is dominated by samples >700 Ma, but samples between 555 and 541 are within range of the Early Palaeozoic average (this is reflected in Figure 1).

Red beds:

The distribution of iron rich rocks through the geological record may reflect ocean redox dynamics and Fe^{2+} concentrations¹³. Iron formation requires Fe^{2+} concentrations >50 μ M,

whereas marine red beds, which are thinner and have lower %Fe, only require >4 nM. Major periods of marine red bed deposition occurred in the mid-Ediacaran, Cambrian, and Late Devonian, with a possible event in the late Silurian¹³ (blue on Figure 1). These sporadic events indicate lower deep water Fe concentrations following anoxic events, which could be consistent with more oxygenated deep oceans. This record is biased towards preserved shelf sediments, and may evolve if more examples are documented.

2.2 Global Marine Geochemical Proxies

U isotopes:

The uranium isotope ratio of seawater (δ^{238} U) is sensitive to the global proportion of seafloor overlain by anoxic bottom waters. During reduction of soluble U(VI) to insoluble U(IV) under anoxic conditions, sedimentary U(IV) is enriched in 238 U, leaving seawater depleted in 238 U. Therefore, when the anoxic sink expands, seawater δ^{238} U decreases, and this signal can be preserved in carbonates. Organic-rich mudrocks also track changes in seawater δ^{238} U, but the signal is offset by a variable local fractionation factor 38 (Table 1). δ^{238} U data can be used to calculate the proportion of anoxic seafloor, although these estimates rely on several calibration factors that were determined in modern lakes (e.g., the Black Sea 39). In particular, the calculations are sensitive to the isotope fractionation during U reduction, but more work is needed to explore how this varies under euxinic and anoxic ferruginous conditions. Above ~20% seafloor anoxia, the proxy begins to saturate 40 , and large changes in the proportion of seafloor anoxia only translate into small changes in δ^{238} U. These small changes are within the error introduced by diagenesis 41 , which can result in positive δ^{238} U offsets of <0.3‰.

Uranium isotope data are available for parts of the Neoproterozoic–Cambrian record (the post-Sturtian interval, and ~560 to ~510 Ma). These data show large oscillations between high, modern-like δ^{238} U, and very low δ^{238} U, suggesting that long term anoxia was punctuated by ocean oxygenation events at ~660, ~560, ~540 and ~520 Ma (Figure 1) 9,18,19,40,42,43 . Some of these oscillations are confirmed by multiple studies in different basins 9,18,19 . Short-term switches towards anoxic conditions are recorded ~497 Ma 44 and 372 Ma 45 . Placing δ^{238} U into a quantitative model suggests seafloor anoxia oscillated from >30% during periods of quiescence, to <1% during oxygenation events 18 .

Mo isotopes:

High δ^{98} Mo values preserved in shales indicate globally widespread oxic conditions, under which large negative isotope fractionations occur during adsorption of Mo onto Mn oxides, leaving seawater enriched (Table 1). In contrast, under euxinic conditions, Mo is rapidly and quantitatively removed. Since all known sedimentary Mo sinks have a δ^{98} Mo below contemporaneous seawater, δ^{98} Mo measurements only provide a minimum constraint on δ^{98} Mosw. Further, interpretations of sedimentary δ^{98} Mo rely on independent proxy evidence for local redox conditions. Changes in δ^{98} Mo could also result from a switch from euxinic to ferruginous anoxia, with no overall increase in oxygenated waters.

Pulses in δ^{98} Mo are recorded in between ~550 and ~520 Ma, each one reaching progressively higher δ^{98} Mo maxima⁶. This was interpreted to indicate progressive marine oxygenation across the Cambrian, but the data contain a lot of scatter, and could also be consistent with discrete oxygenation pulses at ~552, ~540, ~530 and ~521 Ma (Figure 1)^{6,7,9}. Distinguishing between these two scenarios is difficult because the rarity of black shales

deposited under fully euxinic conditions limits the resolution of the record. The magnitude of δ^{98} Mo enrichments increases through time, suggesting each oxygenation event was more significant than the last⁶. δ^{98} Mo reaches stable, modern-like levels between the mid-Silurian and mid-Devonian (~430–390 Ma)⁷. Modelling calculations suggest that oxygenation events in the Neoproterozoic were limited (33% oxic seafloor)^{6,7}, but reached >97% oxic seafloor by ~520 Ma, although many of the parameters in these models are poorly constrained.

Redox sensitive elements:

Because Mo is scavenged from seawater under euxinic conditions, and V, U, Re and Cr are scavenged under ferruginous conditions, an increase in the concentration of redox sensitive elements (RSE) in seawater can indicate the global retreat of anoxic sinks. RSE concentrations in shales are controlled by the size of the global RSE reservoir and an enrichment factor, which varies with the local redox conditions. RSE concentrations are commonly analysed in sediments where there is independent evidence for local euxinia, to ensure a consistent local enrichment factor, meaning any enrichments in RSE can be attributed to an expanded global marine RSE reservoir (Table 1). RSE data typically show large amounts of scatter, but an increase in the average or maximum concentration can be interpreted as evidence for an increase in the area of oxic seafloor.

Long term compilations appeared to show an abrupt increase in Mo, V and U concentrations between 663 and 551 Ma^{3,46}, interpreted to mark widespread oxygenation of the oceans². A recent re-analysis of the U record shows that there is a statistically significant increase in average U concentrations between the Cambrian–Silurian and Devonian–Permian, suggesting any step change towards more permanently oxygenated oceans occurred in the

Palaeozoic (Figure 1)^{14,46}. The precise timing of any change will depend on the positions of relatively long timescale bins used for data analysis. However, a more complete stratigraphic record with higher sampling density, from a demonstrably open ocean section in Wuhe, South China, has revealed pulses of RSE enrichment at regular intervals, representing ocean oxygenation events at ~635, ~580, ~560, ~540, ~530 and ~522 Ma (Figure 1)¹⁷. Similar enrichments are observed in other sections located on different cratons, suggesting a truly global signal^{7,20,21}. In between these oxygenation events, the widespread anoxia that characterises much of the Proterozoic returns. Modelling efforts suggest that relatively limited seafloor euxinia (1–10%) and more extensive seafloor anoxia (>30–40%) are needed to crash the global Mo and Cr reservoirs, respectively⁴⁷.

Se isotopes:

Se isotopes (δ^{82} Se) in marine shales are a novel tracer for ocean–atmosphere oxygenation. Se has a reduction potential between S(–II)/S(IV) and Fe(III)/Fe(II), and a relatively short marine residence time (1,100–26,000 years)⁴⁸. During oxyanion (SeO_x²⁻) reduction under anoxic conditions, isotopically light Se is sequestered into the sediments, driving surface waters isotopically heavy. In addition, an increase in the size of the SeO_x²⁻ reservoir correlates with larger fractionations in locally suboxic sediments (Table 1). Sediments deposited in oxic open oceans, or below well connected OMZs, have lower δ^{82} Se than those from restricted anoxic basins, due to the larger SeO_x²⁻ reservoir. δ^{82} Se yields insight into the local water column redox conditions, with an additional global control. The signal may be further complicated by variations in riverine input, locally enhanced productivity, or basin restriction.

A progressive decrease in δ^{82} Se is recorded in shales across the Ediacaran, reaching a minimum around the end of the Ediacaran Period¹². For the pre-Gaskiers record, the signal is confirmed in multiple sections, suggesting a global control. This is probably a reflection of an increasing SeO_x²⁻ reservoir, which could reflect ocean oxygenation. Overall, the record is difficult to interpret, but suggests a slow but steady shift from fully anoxic to fully oxic deep waters between ~750 and ~540 Ma.

S isotopes:

Under euxinic conditions, microbial sulfate reduction converts sulfate (SO_4^{2-}) into sulfide (HS'), which may be buried as pyrite. The δ^{34} S of seawater sulfate is sensitive to the global pyrite burial flux, and the isotope fractionation associated with that pyrite burial. Both of these parameters are closely tied to ocean—atmosphere redox (Table 1). The δ^{34} S signature of seawater is complex⁴⁹, but higher δ^{34} S_{SO4} could indicate enhanced pyrite burial, which may be driven by expanded euxinia. Large offsets between δ^{34} S_{SO4} and δ^{34} S_{pyr} (Δ^{34} S_{SO4-pyr}) have been interpreted to result from a larger marine sulfate reservoir, as well as complex sulfur cycling associated with oxidative side of the S cycle, both of which are associated with higher oxygen levels. At modern marine sulfate concentrations, the δ^{34} S of seawater should be globally homogeneous, and is preserved in carbonate rocks and evaporites.

Sedimentary records shows a progressive increase in $\Delta^{34}S_{SO4\text{-pyr}}$ across the Ediacaran (635– ~550 Ma)⁸, interpreted to represent an increase in the marine sulfate reservoir, and then the onset of oxidative sulfur cycling. The $\Delta^{34}S_{SO4\text{-pyr}}$ decreases again in the late Ediacaran (~550 Ma), along with an increase in $\delta^{34}S_{SO4}$, suggesting increased pyrite burial and a return to anoxia⁵⁰. However, subsequent work has questioned the link between $\Delta^{34}S_{SO4\text{-pyr}}$ and

oxidative sulfur cycling⁵¹. A series of rapid oscillations in $\delta^{34}S_{SO4}$ are recorded 524–512 Ma¹⁶, coincident with excursions in with $\delta^{13}C_{carb}$, where the rising limbs are associated with periods of ocean anoxia and increased pyrite burial. This increase in net pyrite burial would produce a pulse of atmospheric oxygen, in turn driving anoxia from the shelf. Further $\delta^{34}S_{SO4}$ oscillation are recorded ~500 Ma⁴⁴. Sulfur isotopes therefore support dynamic redox conditions into the Cambrian and beyond.

2.3 Constraints on atmospheric oxygen

Cr isotopes

The oxidation and reduction of Cr between Cr(III) and Cr(IV) results in large fractionations. Cr oxidation occurs through dissolution of Cr(III) in soils and reaction with Mn oxides, the presence of which is linked to free O_2 . This yields dissolved Cr(VI) species (CrO_4^{2-} and $HCrO_4^{-}$) that are more soluble, and enriched in the heavy isotope, compared with Cr(III). Therefore, under reducing conditions, the marine Cr record in shales and ironstones will be dominated by unfractionated crustal Cr(III), whereas under an oxidising atmosphere, the Cr record will be isotopically enriched.

The long term δ^{53} Cr record shows a marked enrichment between 800 and 750 Ma¹¹, recorded in both shales and ironstones, and interpreted to indicate a rise in atmospheric O₂ concentrations. Although the pre-800 record is dominated by low δ^{53} Cr, isolated examples of 53 Cr enrichments have been recorded 52 . Cr(III) oxidation during weathering is dependent on Mn oxide availability. Quantitative modelling suggests Mn oxide formation occurs at low O₂ (>0.1–1% PAL), providing a maximum constraint on pre-800 Ma atmosphere 11 , and suggesting a modest increase in atmospheric O₂ around 800–750 Ma.

Wildfire record

Wildfires can only be sustained when atmospheric oxygen levels are high (>15–17%)⁵³. Charcoal, the geological expression of palaeo-wildfires, is present in the geological record from the latest Silurian onwards⁵⁴. Charcoal is low in abundance across the Silurian and Devonian, but increases by 1–2 orders of magnitude in the late Devonian⁵⁵. This suggests oxygen crossed a critical threshold in the Late Silurian (>15%), but rose further in the Late Devonian (>17%). Wildfires are dependent on the presence of land plants, which evolved ~470 Ma, so the charcoal record cannot constrain pre-Ordovician pO₂.

3. Reconciling proxy records

Direct proxies for atmospheric oxygen are scarce. Chromium isotopic fractionations indicate that O_2 rose above 0.1–1% of present atmospheric levels (PAL) at around 800 Ma¹¹, however earlier evidence for fractionation of chromium has been recorded⁵². More certain is a rise in O_2 to >70% PAL during the Late Silurian, and a final rise towards modern levels in the Devonian (>80% PAL or above)^{55,56}. Regardless of atmospheric oxygen concentrations, substantial spatial and temporal variability is expected in marine redox conditions, as water column O_2 is controlled by a balance between the oxygen supply and its utilization during remineralization. Modelling calculations suggest that widespread deep ocean oxygenation requires atmospheric oxygen to exceed 30–40% PAL, but this depends on the availability of the limiting nutrient phosphate⁵⁷, and on the model itself. That said, to first order, deep water oxygenation would be expected to track a substantial rise in atmospheric oxygen levels.

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

Some global marine geochemical proxies record a permanent change towards widespread oxygenation in the late Palaeozoic, including δ^{98} Mo and U enrichments^{7,14,46}. Similarly, compilations of local marine redox proxies don't detect any statistically significant change in oxygen availability across the Neoproterozoic, and instead pinpoint widespread marine oxygenation later, in the Late Palaeozoic–Mesozoic: post-Ordovician for Fe speciation¹⁴, Late Devonian for Ce anomalies³⁰, Late Palaeozoic for Fe³⁺/ Σ Fe ratios¹⁵, and Early Devonian for I/Ca¹⁰. There is some variability in the precise timing recorded by each proxy, which may be accounted for by their different sensitivity to the spatial extent or location of anoxia, or to increasing redox state. More importantly, the timing of oxygenation in long term data compilations is highly sensitive to sampling density as well as the boundaries of data bins. For example, $Fe^{3+}/\Sigma Fe$ ratio data are necessarily sparse as they are derived from rare ophiolites. Therefore, these techniques can only be used to make broad comparisons between, e.g., the Early Palaeozoic and Late Palaeozoic. Four compilations of local proxy data, re-analysed using consistent time bins, all show a significant increase in oxygenation in the period 420–250 Ma compared with 580–420 Ma (Figure 2).

367

368

369

370

371

372

373

Broadly anoxic Neoproterozoic–Early Palaeozoic oceans could manifest as oxic surface waters overlying fully anoxic deep waters in a 'pancake' structure (Figure 3a), or as shallow, expanded OMZs (Figure 3b and c). A four dimensional transect of local redox conditions across a shelf suggests that OMZ-like structures were established by the Cambrian Period⁵⁸, implying that the deep ocean contained low levels of oxygen. This is consistent with $Fe^{3+}/\Sigma Fe$ ratios¹⁵ and the marine red bed record¹³, which support low levels of oxygen in

deep waters from the mid-Ediacaran onwards. A shallower OMZ could be a reflection of lower atmospheric oxygen levels, but could also result from differences in carbon cycling.

If there were indeed mildly oxidising conditions in the deep ocean, then how do we reconcile this with global redox proxies that suggest widespread marine anoxia? Global redox proxies tend to record the percentage of seafloor, globally, that is overlain by anoxic bottom waters, but don't provide insight into the location of those anoxic waters. This is further complicated by the lack of information available on marine productivity, sinking fluxes and ocean circulation, which are key controls on OMZ characteristics. Shallowing of oxygen minimum zones can result in a much larger contact area between anoxic waters and the continental shelf, translating into a larger area of anoxic seafloor, despite no change in the thickness of the OMZ⁵⁹ (Figure 3c and 3d). If the OMZ also expanded in thickness, the combined effect could result in the estimated >10–30% seafloor anoxia and >1% seafloor euxinia required to generate anoxic δ^{98} Mo, δ^{238} U and U-enrichment signals (Figure 3b). Furthermore, if bottom waters in the deep ocean were oxic, but contained only low levels of oxygen (<10 μ M), then shallow pore waters would be commonly driven anoxic, which may further contribute to anoxic draw down of RSE such as Mo and U.

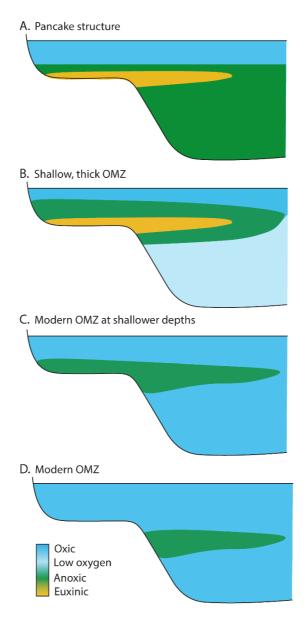


Figure 3. Cartoon showing various possible redox structures for early oceans.

Although large areas of the seafloor remained anoxic or contained only low levels of oxygen through the Neoproterozoic–Lower Palaeozoic, some proxy systems suggest conditions were dynamic, with brief ocean oxygenation events (OOEs). Some OOEs are recorded independently by multiple proxy systems. For example, the transition back towards anoxic conditions following the ~550 Ma OOE is recorded by δ^{98} Mo, δ^{238} U, RSE enrichments, I/Ca ratios and δ^{34} S (Figure 1)^{8,9,17,18,27,50}. In contrast, OOEs are not detected in any compilations

of local proxy data. For I/Ca ratio and Ce anomaly data, this is likely because sample coverage is too sparse to detect them. For Fe speciation or Fe³+/∑Fe ratio data, OOEs would not be detected as data are binned into periods orders of magnitude longer than the duration of OOEs, so OOEs are averaged out or not sampled. Therefore, global redox proxies, analysed in continuous, high resolution sections, detect variability that can be missed by compilations of local redox proxies.

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

400

401

402

403

404

405

4. Modelling the long-term redox transition

Global biogeochemical models can be used to evaluate the processes which have caused the observed oxygenation pattern. The COPSE model⁶⁰ is a non-dimensional system (or 'box model'), which computes the operation of the global C-O-P-S cycles over geological timescales, and is based on the pioneering GEOCARB models^{61,62}. Like GEOCARB, the key considerations for COPSE are the global weathering, burial and degassing processes that control the transfer of key species between the hydrosphere and the crust. The long-term O₂ sources are burial of either organic carbon or pyrite sulfur in sediments (removal of a reductant leads to net oxygenation), and the O2 sinks are the uplift and weathering, or subduction and degassing, of these reduced species which consumes O₂. Importantly, COPSE differs from the GEOCARB models in that it is a 'forwards' model, meaning that it computes all processes via an internally-consistent set of biogeochemical rules^{63,64}, rather than seeking to infer them directly from the geological record. This means that COPSE can produce estimates of key geochemical proxies such as carbonate δ^{13} C, sulfate δ^{34} S and strontium ⁸⁷Sr/⁸⁶Sr, which are then used to test the 'skill' of the model by comparing to geological data.

The model is subject to 'external forcings': the rate of tectonic CO₂ input, continental uplift and paleogeography, exposed lithological classes, and a variety of switches that represent the evolution of different modes of life which affect global biogeochemistry.

Recent reviews are available that describe the latest version of the model^{65,66}. Originally COPSE was built for reconstructing the Phanerozoic Earth system, but in the last decade there have been may extensions to apply the model to the late Precambrian. These extensions have tended to focus on single events such as snowball Earth termination⁶⁷ or the (~580 Ma) Shuram negative carbon isotope excursion⁶⁸. We now bring together the key modifications of the model to produce a complete suite of simulations over the Neoproterozoic and Paleozoic (see supplementary material for full explanation of model parameters and differential equations).

We begin from the model of Mills et al.⁶⁶, which extended the latest major model release⁶⁵ by updating the rates of CO₂ degassing and tectonic uplift with new estimates, as well as revising the link between global climate and chemical weathering rates, informed by Phanerozoic temperature and CO₂ proxies. We then add a function for the evolution of bioturbation during the early Cambrian⁶⁹; a function that represents input of reduced species from the mantle⁷⁰; a deep ocean reservoir of dissolved organic carbon⁶⁸ and an uplift-weathering event of evaporite sulfate coincident with the Shuram negative carbon isotope anomaly⁶⁸. Each of these additions has been made to the model previously in isolation and the reader is referred to the cited work for more details. To summarize: bioturbating animals are assumed to evolve by 520 Ma and are presumed to increase the re-oxidation of sedimentary organic matter, and drawdown of the nutrient phosphorus; reductant input is assumed to scale with the ridge generation rate and consumes O₂; a deep

ocean reservoir of dissolved organic carbon (DOC) is assumed to have built up over the Precambrian and is rapidly oxidised when the deep ocean becomes oxic – driving a sharp negative carbon isotope excursion; and a large sulfate input event occurs at 580 Ma due to the uplift and weathering of Tonian-age evaporite giants. Debate continues about whether an enlarged marine DOC reservoir is required in order to explain Neoproterozoic C isotope dynamics⁷¹, and around the timing of the effects of bioturbation⁷². It is hoped that further analytical and modelling efforts will help to fully resolve these questions. Incorporating these mechanisms into a single consistent model is a part of this process.

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

448

449

450

451

452

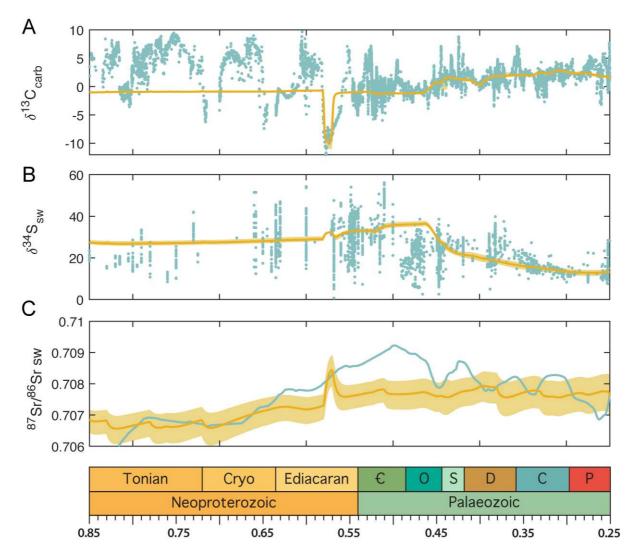
453

454

455

Figure 1 shows the combined COPSE model predictions for atmospheric O₂ and seafloor anoxia over the Neoproterozoic and Paleozoic, and compares them to the proxies discussed earlier. The brown shaded area represents the boundaries of a suite of 10,000 model sensitivity analyses in which the major external forcings (uplift, degassing, lithology) are varied by ±20%. There is some agreement with the proxies for atmospheric O₂: COPSE predicts (far) above 0.1% PAL for the entire Neoproterozoic, a rise to >70% PAL by the Silurian, and to 100% PAL in the Devonian. This broad pattern is controlled by the evolution of land plants, which are assumed to increase the weathering delivery of the nutrient phosphate (which drives marine productivity), and also the burial of terrestrially-derived organic carbon⁵⁵. Other key features of the atmospheric O₂ predictions are a spike between 580–570 Ma, caused by uplift and weathering of evaporite sulfate which stimulates pyrite burial⁶⁸, and a drop during the Cambrian coincident with the evolution of significant bioturbation, which limits organic carbon preservation⁶⁹. The only area of substantial disagreement with proxies is that COPSE does not produce lower atmospheric O₂ before ~800 Ma, whereas the lack of fractionation in the Chromium isotope record suggests O₂

might be below 1% PAL¹¹. It is not currently clear how strong the constraint from the Cr isotope record is, given that fractionations have been found in several pre-800 Ma samples⁵², but it is also possible that a major process is still missing from COPSE, which if included, would result in lower atmospheric O₂. There are several candidates here, including the lack of explicit productivity-remineralization dynamics in the ocean, or a better representation of Precambrian tectonics. Research is ongoing.


The seafloor anoxia prediction from COPSE follows the transitions in atmospheric O₂, with more than 50% of the seafloor anoxic during the Neoproterozoic, and full ventilation during the Devonian. In general agreement with the proxies, there is a period of expanded oxic seafloor immediately post-Gaskiers, which then returns to almost entirely anoxic by the later Cambrian. But there are three major discrepancies between the model predictions and the proxies for seafloor anoxia. Firstly, the model does not produce any of the rapid variability attested to by the proxies (OOEs). Secondly, the model fails to reproduce longer term oxygenation surrounding the Sturtian and Marinoan glaciations. Finally, the model predicts very large anoxic seafloor areas during the later Cambrian and Ordovician, which are not directly supported by any proxies.

The inability of the COPSE model to reproduce the OOEs in the later Ediacaran and Cambrian is probably due to the model's use of a single-box ocean. In COPSE, the shelf environments and (much more vast) deeper ocean are considered to be a single system.

This adds a huge amount of buffering capacity, which may not be realistic. A more sophisticated biogeochemical model^{73,74} splits the ocean into multiple boxes representing areas of the shelf, open ocean and deep ocean. This model shows that OOEs can occur due

to feedbacks between the marginal phosphorus and oxygen cycles, and thus the lack of OOEs in COPSE may be a consequence of limited representation of shelf environments.

The lack of any appreciable oxygen changes around the Sturtian and Marinoan glaciations is also relatively easily explained, as this version of the COPSE model still does not incorporate any of the processes associated with either the initiation or termination of these snowball Earth events. Looking to the model outputs for sedimentary isotope ratios (Figure 4), it is clear that while the Post-Gaskiers predictions are within reason, the model is missing major aspects of Earth system function pre-600 Ma, especially in the carbon cycle. Here, the large and sustained positive carbon isotope excursions that occur before the Sturtian, and during the aftermath of both glaciations, may represent increased productivity and oxygen production, which is supported by the O₂ proxies.

Figure 4. COPSE model isotopic outputs. Geochemical constraints are shown in teal, and model outputs in yellow. A. $\delta^{13}C$ carbonate sediments. B. $\delta^{34}S$ seawater sulfate. C. $^{87}Sr/^{86}Sr$ carbonate sediments.

An argument could be made that the break-up of the Rodinia supercontinent was underway by ~750 Ma 75 and led to enhanced continental weathering 76 , high rates of organic carbon burial, and high δ^{13} C, before driving the system towards the Sturtian snowball Earth. It is then possible that CO $_2$ rose to extremely high levels during the glaciations, meaning that the super-greenhouse period that followed glaciation lasted several 10s of Myrs before CO $_2$ could be reduced to background levels 67 . Adding these ideas into the COPSE model is

possible, but in order to reproduce the timing of isotope excursions, the weathering response to temperature and the effect of erosion on weathering must be very carefully chosen. Thus, we defer further investigation of the dynamics and timing of global glaciations and weathering events in the Cryogenian to spatial models with a better approximation of continental weathering (e.g., GEOCLIM^{77,78}).

The large areas of anoxic seafloor during the Cambrian–Ordovician coincide with carbonate δ^{13} C predictions that sit generally below the data, indicating that the model may be underestimating oxygen production (or incorrectly simulating organic C weathering⁷⁹). This may be due to an over-estimate of the importance of bioturbation in re-oxidising sedimentary organic carbon and burying phosphate. New reaction-transport models of the bioturbation process will hopefully help test this.

5. Assessing the role of oxygen in early animal evolution

The hypothesised rise in oxygen levels across the Neoproterozoic–Palaeozoic has been repeatedly linked to the origin and radiation of early animals $^{5-7,11,16,80}$. Given that oxygen is required by all extant animals, this hypothesis seems intuitive and has proved rather attractive. But a large body of recent work has shown that the role of oxygen in early animal ecosystems is more complex than previously thought 18,81,82 . One issue is that not all geochemical data provide the information needed to address ecologically relevant questions, such as the precise oxygen levels. Waters containing $100~\mu\text{M}$ or $1~\mu\text{M}$ O_2 would be indistinguishable in many proxy systems, but the first could host a complex ecosystem containing skeletal animals and motile predators, and the second would be largely uninhabitable 83,84 . These issues can be partly resolved by considering the systematics of

each geochemical proxy, and exactly what information they provide about the redox structure of ancient environments.

Minimum oxygen levels are necessary, but not sufficient, to explain the appearance of new species or ecological traits. Simple sponge-grade animals have very low oxygen demands (1–10 μ M)⁸¹, and these requirements appear to have been met continuously in surface waters from at least 800 Ma onwards¹¹. During the Neoproterozoic, there may have been progressive increase in the maximum dissolved O₂; enabling the development of more aerobically demanding traits, such as motility and bioturbation. However, for most of the Ediacaran, many proxies suggest widespread anoxic deep waters^{18,19}. Ecosystem dynamics, animal distributions, and migration patterns will be influenced by this reduction in habitable space, but clearly, early animal communities continued to thrive in shallow, well-oxygenated shelf environments where their oxygen demands were met^{25,32}. It is therefore important to constrain the maximum O₂(aq) available in shelf environments, as well as the spatial extent of inhospitable environments.

The marine redox landscape in the Cryogenian and Ediacaran appears to have been highly dynamic. It has been suggested that OOEs could have stimulated evolution, and their frequency appears to increase in the late Ediacaran and Cambrian, coincident with an intense period of diversification¹⁷. Periods of anoxia in between OOEs could even stimulate the development of genetic diversity⁸². Geochemical data and model results suggest that although the Neoproterozoic redox landscape was dynamic, there was no permanent change towards stable, well-oxygenated oceans until at least the Devonian, likely assisted by the evolution of land plants^{7,10,14,15,30,55}.

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

6. Conclusions and future directions

The proxy data are best reconciled in the following way: Atmospheric O₂ reached a concentration of >0.1% PAL by around ~800 Ma, and potentially earlier. Surface waters in contact with this atmosphere contained low levels of dissolved oxygen, but the deep oceans remained anoxic. Atmospheric oxygen probably rose in steps or pulses throughout the Cryogenian and Ediacaran, associated with major events such as the break-up of Rodinia, and the Sturtian, Marinoan and Gaskiers glaciations. The post-Sturtian is also marked by the first brief OOEs, which continue into the Cambrian. There is some evidence for OOE magnitude increasing over time⁶, and a gradual rise in oxygen over the Neoproterozoic is also consistent with selenium isotope data¹². By the start of the Cambrian, pO₂ surpassed 30–40% PAL, but oxygen concentrations in much of the deep ocean remained low and the OMZ was thick and shallow. Atmospheric oxygen rose again in the Late Silurian, surpassing 70% PAL, and rose to modern-like levels in the Devonian, pushing the OMZ back off the shelf and establishing modern, well-oxygenated oceans (Figure 3d). The COPSE model is unable to reproduce the full complexity revealed by geochemical data, but does capture first order patterns of atmospheric and marine oxygenation from the Ediacaran onwards, giving confidence that the behaviour we see in the proxies is reasonable. The hypothesised Neoproterozoic Oxygenation Event (NOE) would be more accurately described as a Neoproterozoic Oxygenation Window (NOW), featuring dynamic pulses of oxygenation against a background of gradually rising oxygen levels, and any step change towards stable, well-oxygenated conditions appears to have been delayed until the Palaeozoic Oxygenation Event (POE).

Moving forward, we need to consider which geochemical data can best capture this transition. To understand the timing, frequency and duration of OOEs, we need to target high resolution continuous successions and analyse multiple global redox proxies. To meaningfully address questions surrounding the role of oxygen in early animal ecosystems, we need to focus on developing quantitative constraints on maximum $O_2(aq)$. These could include proxies for atmospheric oxygen, such as Cr isotopes, or marine redox proxies that respond to intermediate redox conditions, such as Ce anomalies and I/Ca. Detailed 4D maps across shelf ecosystems can reveal the structure of marine anoxia (i.e., pancake vs. OMZ), and be tied directly to the fossil record.

Data accessibility

The geochemical data are all published elsewhere, and discussed in full in the relevant references. Differential equations and fixed parameters from the model are available in the supplementary material. All modelling code and outputs can be obtained from BJWM on request.

Author's contributions

R.T. compiled proxy data, and B.J.W.M. modified the COPSE biogeochemical model. R.T. and B.J.W.M discussed the results and wrote the manuscript together.

Competing interests

The authors declare no competing interests

Acknowledgements

We are grateful to Zunli Lu and Noah Planavsky for reviews that helped to improve this manuscript. We thank the Royal Society for supporting us to attend a meeting in London where these ideas were discussed. R.T. is supported by a grant from the DSI-NRF Centre of Excellence in Palaeosciences and B.J.W.M is funded by the UK Natural Environment Research Council (NE/R010129/1 and NE/S009663/1) and by a University of Leeds Academic Fellowship.

622

623

616

617

618

619

620

621

References

- Farquhar, J., Bao, H. & Thiemens, M. Atmospheric Influence of Earth's Earliest Sulfur
 Cycle. *Science* 289, 756–758 (2000).
- Och, L. M. & Shields-Zhou, G. A. The Neoproterozoic oxygenation event: environmental
 perturbations and biogeochemical cycling. *Earth-Sci. Rev.* 110, 26–57 (2012).
- 3. Scott, C. *et al.* Tracing the stepwise oxygenation of the Proterozoic ocean. *Nature* **452**,
 456–459 (2008).
- 4. Canfield, D. E. & Farquhar, J. Animal evolution, bioturbation, and the sulfate
 concentration of the oceans. *Proc. Natl. Acad. Sci. U. S. A.* 106, 8123–8127 (2009).
- Canfield, D. E., Poulton, S. W. & Narbonne, G. M. Late-Neoproterozoic Deep-Ocean
 Oxygenation and the Rise of Animal Life. *Science* 315, 92–95 (2007).
- 6. Chen, X. *et al.* Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. *Nat. Commun.* **6**, (2015).
- 7. Dahl, T. W. *et al.* Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. *Proc. Natl. Acad. Sci.* **107**, 17911–17915 (2010).

- 8. Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. Oxidation of the Ediacaran
- 640 Ocean. *Nature* **444**, 744–747 (2006).
- 9. Kendall, B. et al. Uranium and molybdenum isotope evidence for an episode of
- widespread ocean oxygenation during the late Ediacaran Period. *Geochim. Cosmochim.*
- 643 *Acta* **156**, 173–193 (2015).
- 10. Lu, W. et al. Late inception of a resiliently oxygenated upper ocean. Science **361**, 174–
- 645 177 (2018).
- 11. Planavsky, N. J. et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed
- rise of animals. *Science* **346**, 635–638 (2014).
- 12. Pogge von Strandmann, P. A. E. *et al.* Selenium isotope evidence for progressive
- oxidation of the Neoproterozoic biosphere. *Nat. Commun.* **6**, 10157 (2015).
- 13. Song, H. et al. The onset of widespread marine red beds and the evolution of
- 651 ferruginous oceans. *Nat. Commun.* **8**, 1–7 (2017).
- 14. Sperling, E. A. et al. Statistical analysis of iron geochemical data suggests limited late
- 653 Proterozoic oxygenation. *Nature* **523**, 451–454 (2015).
- 15. Stolper, D. A. & Keller, C. B. A record of deep-ocean dissolved O₂ from the oxidation
- state of iron in submarine basalts. *Nature* **553**, 323 (2018).
- 16. He, T. et al. Possible links between extreme oxygen perturbations and the Cambrian
- radiation of animals. *Nat. Geosci.* **12**, 468–474 (2019).
- 17. Sahoo, S. K. et al. Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology
- **14**, 457–468 (2016).
- 18. Tostevin, R. et al. Uranium isotope evidence for an expansion of anoxia in terminal
- 661 Ediacaran oceans. *Earth Planet. Sci. Lett.* **506**, 104–112 (2019).

- 19. Zhang, F. et al. Extensive marine anoxia during the terminal Ediacaran Period. Sci. Adv.
- **4**, eaan8983 (2018).
- 20. Kurzweil, F. et al. Coupled sulfur, iron and molybdenum isotope data from black shales
- of the Teplá-Barrandian unit argue against deep ocean oxygenation during the
- 666 Ediacaran. *Geochim. Cosmochim. Acta* **171**, 121–142 (2015).
- 21. Johnston, D. T. et al. Searching for an oxygenation event in the fossiliferous Ediacaran of
- 668 northwestern Canada. *Chem. Geol.* **362**, 273–286 (2013).
- 22. Ling, H.-F. et al. Cerium anomaly variations in Ediacaran—earliest Cambrian carbonates
- from the Yangtze Gorges area, South China: implications for oxygenation of coeval
- 671 shallow seawater. *Precambrian Res.* **225**, 110–127 (2013).
- 23. Poulton, S. W. & Canfield, D. E. Development of a sequential extraction procedure for
- 673 iron: implications for iron partitioning in continentally derived particulates. *Chem. Geol.*
- **214**, 209–221 (2005).
- 675 24. Canfield, D. E. et al. Ferruginous Conditions Dominated Later Neoproterozoic Deep-
- 676 Water Chemistry. *Science* **321**, 949–952 (2008).
- 677 25. Wood, R. A. et al. Dynamic redox conditions control late Ediacaran ecosystems in the
- 678 Nama Group, Namibia. *Precambrian Res.* **261**, 252–271 (2015).
- 679 26. Boyer, D. L., Owens, J. D., Lyons, T. W. & Droser, M. L. Joining forces: Combined
- biological and geochemical proxies reveal a complex but refined high-resolution palaeo-
- oxygen history in Devonian epeiric seas. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* **306**,
- 682 134–146 (2011).
- 27. Hardisty, D. S. et al. Perspectives on Proterozoic surface ocean redox from iodine
- contents in ancient and recent carbonate. *Earth Planet. Sci. Lett.* **463**, 159–170 (2017).

- 28. Uahengo, C.-I., Shi, X., Jiang, G. & Vatuva, A. Transient shallow-ocean oxidation
- associated with the late Ediacaran Nama skeletal fauna: Evidence from iodine contents
- of the Lower Nama Group, southern Namibia. *Precambrian Res.* 105732 (2020)
- 688 doi:10.1016/j.precamres.2020.105732.
- 689 29. Lu, W. et al. Iodine proxy evidence for increased ocean oxygenation during the Bitter
- 690 Springs Anomaly. *Geochem. Perspect. Lett.* **5**, 53–57 (2017).
- 691 30. Wallace, M. W. et al. Oxygenation history of the Neoproterozoic to early Phanerozoic
- and the rise of land plants. *Earth Planet. Sci. Lett.* **466**, 12–19 (2017).
- 693 31. Nothdurft, L. D., Webb, G. E. & Kamber, B. S. Rare earth element geochemistry of Late
- Devonian reefal carbonates, Canning Basin, Western Australia: confirmation of a
- seawater REE proxy in ancient limestones. *Geochim. Cosmochim. Acta* **68**, 263–283
- 696 (2004).
- 697 32. Tostevin, R. et al. Low-oxygen waters limited habitable space for early animals. Nat.
- 698 *Commun.* **7**, (2016).
- 699 33. Lu, W. et al. Refining the planktic foraminiferal I/Ca proxy: Results from the Southeast
- 700 Atlantic Ocean. *Geochim. Cosmochim. Acta* (2019) doi:10.1016/j.gca.2019.10.025.
- 701 34. Macdonald, F. A. et al. The stratigraphic relationship between the Shuram carbon
- isotope excursion, the oxygenation of Neoproterozoic oceans, and the first appearance
- of the Ediacara biota and bilaterian trace fossils in northwestern Canada. *Chem. Geol.*
- 704 **362**, 250–272 (2013).
- 35. De Carlo, E. H. & Green, W. J. Rare earth elements in the water column of Lake Vanda,
- 706 McMurdo Dry Valleys, Antarctica. *Geochim. Cosmochim. Acta* **66**, 1323–1333 (2002).

- 36. O'Connell, B., Wallace, M. W., Hood, A. v. S., Lechte, M. A. & Planavsky, N. J. Iron-rich
- 708 carbonate tidal deposits, Angepena Formation, South Australia: A redox-stratified
- 709 Cryogenian basin. *Precambrian Res.* **342**, 105668 (2020).
- 37. Banner, J. L., Hanson, G. N. & Meyers, W. J. Rare Earth Element and Nd Isotopic
- 711 Variations in Regionally Extensive Dolomites From the Burlington-Keokuk Formation
- 712 (Mississippian): Implications for Ree Mobility During Carbonate Diagenesis. *J. Sediment.*
- 713 Res. **58**, (1988).
- 38. Lau, K. V., Romaniello, S. J. & Zhang, F. The Uranium Isotope Paleoredox Proxy. *Elements*
- 715 in Geochemical Tracers in Earth System Science /core/elements/uranium-isotope-
- 716 paleoredox-proxy/200458FA5D3F890D690C8907FEF738D7 (2019)
- 717 doi:10.1017/9781108584142.
- 718 39. Rolison, J. M., Stirling, C. H., Middag, R. & Rijkenberg, M. J. A. Uranium stable isotope
- fractionation in the Black Sea: Modern calibration of the 238U/235U paleo-redox proxy.
- 720 *Geochim. Cosmochim. Acta* **203**, 69–88 (2017).
- 40. Lau, K. V., Macdonald, F. A., Maher, K. & Payne, J. L. Uranium isotope evidence for
- temporary ocean oxygenation in the aftermath of the Sturtian Snowball Earth. Earth
- 723 Planet. Sci. Lett. **458**, 282–292 (2017).
- 724 41. Chen, X. et al. Diagenetic effects on uranium isotope fractionation in carbonate
- sediments from the Bahamas. *Geochim. Cosmochim. Acta* 237, 294–311 (2018).
- 42. Dahl, T. W. Reorganisation of Earth's biogeochemical cycles briefly oxygenated the
- 727 oceans 520 Myr ago. *Geochem. Perspect. Lett.* **3**, 210–220 (2017).
- 43. Wei, G.-Y. et al. Marine redox fluctuation as a potential trigger for the Cambrian
- 729 explosion. *Geology* **46**, 587–590 (2018).

- 730 44. Dahl, T. W. et al. Uranium isotopes distinguish two geochemically distinct stages during
- the later Cambrian SPICE event. Earth Planet. Sci. Lett. 401, 313–326 (2014).
- 45. White, D. A., Elrick, M., Romaniello, S. & Zhang, F. Global seawater redox trends during
- the Late Devonian mass extinction detected using U isotopes of marine limestones.
- 734 Earth Planet. Sci. Lett. **503**, 68–77 (2018).
- 735 46. Partin, C. A. et al. Large-scale fluctuations in Precambrian atmospheric and oceanic
- oxygen levels from the record of U in shales. *Earth Planet. Sci. Lett.* **369–370**, 284–293
- 737 (2013).
- 738 47. Reinhard, C. T. et al. Proterozoic ocean redox and biogeochemical stasis. Proc. Natl.
- 739 *Acad. Sci.* **110**, 5357–5362 (2013).
- 740 48. Fernández-Martínez, A. & Charlet, L. Selenium environmental cycling and bioavailability:
- 741 a structural chemist point of view. Rev. Environ. Sci. Biotechnol. 8, 81–110 (2009).
- 49. Fike, D. A., Bradley, A. S. & Rose, C. V. Rethinking the Ancient Sulfur Cycle. *Annu. Rev.*
- 743 *Earth Planet. Sci.* **43**, 593–622 (2015).
- 744 50. Ries, J. B., Fike, D. A., Pratt, L. M., Lyons, T. W. & Grotzinger, J. P. Superheavy pyrite
- 745 (δ34Spyr > δ34SCAS) in the terminal Proterozoic Nama Group, southern Namibia: A
- consequence of low seawater sulfate at the dawn of animal life. *Geology* **37**, 743–746
- 747 (2009).
- 748 51. Sim, M. S., Bosak, T. & Ono, S. Large Sulfur Isotope Fractionation Does Not Require
- 749 Disproportionation. *Science* **333**, 74–77 (2011).
- 750 52. Canfield, D. E. et al. Highly fractionated chromium isotopes in Mesoproterozoic-aged
- shales and atmospheric oxygen. *Nat. Commun.* **9**, 1–11 (2018).
- 752 53. Belcher, C. M. & McElwain, J. C. Limits for Combustion in Low O2 Redefine
- Paleoatmospheric Predictions for the Mesozoic. *Science* **321**, 1197–1200 (2008).

- 754 54. Glasspool, I. J., Edwards, D. & Axe, L. Charcoal in the Silurian as evidence for the earliest
- 755 wildfire. *Geology* **32**, 381–383 (2004).
- 756 55. Lenton, T. M. et al. Earliest land plants created modern levels of atmospheric oxygen.
- 757 *Proc. Natl. Acad. Sci.* **113**, 9704–9709 (2016).
- 758 56. Glasspool, I. J. & Scott, A. C. Phanerozoic concentrations of atmospheric oxygen
- reconstructed from sedimentary charcoal. *Nat. Geosci.* **3**, 627–630 (2010).
- 57. Canfield, D. E. A new model for Proterozoic ocean chemistry. *Nature* **396**, 450–453
- 761 (1998).
- 58. Guilbaud, R. et al. Oxygen minimum zones in the early Cambrian ocean. Geochem.
- 763 *Perspect. Lett.* **6**, 33–38 (2018).
- 59. Lau, K. V. et al. Marine anoxia and delayed Earth system recovery after the end-Permian
- 765 extinction. *Proc. Natl. Acad. Sci.* **113**, 2360–2365 (2016).
- 766 60. Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: a new model of biogeochemical
- 767 cycling over Phanerozoic time. *Am. J. Sci.* **304**, 397–437 (2004).
- 768 61. Berner, R. A. (Yale U. GEOCARB II: A revised model of atmospheric CO2 over phanerozoic
- 769 time. Am. J. Sci. U. S. **294:1**, (1994).
- 770 62. Berner, R. A. (Yale U. A model for atmospheric CO2 over phanerozoic time. Am. J. Sci. U.
- 771 *S.* **291:4**, (1991).
- 772 63. Cappellen, P. V. & Ingall, E. D. Benthic phosphorus regeneration, net primary
- production, and ocean anoxia: A model of the coupled marine biogeochemical cycles of
- carbon and phosphorus. *Paleoceanography* **9**, 677–692 (1994).
- 775 64. Lenton, T. M. & Watson, A. J. Redfield revisited: 2. What regulates the oxygen content of
- the atmosphere? *Glob. Biogeochem. Cycles* **14**, 249–268 (2000).

- 777 65. Lenton, T. M., Daines, S. J. & Mills, B. J. W. COPSE reloaded: An improved model of
- 5778 biogeochemical cycling over Phanerozoic time. *Earth-Sci. Rev.* **178**, 1–28 (2018).
- 779 66. Mills, B. J. W. et al. Modelling the long-term carbon cycle, atmospheric CO2, and Earth
- surface temperature from late Neoproterozoic to present day. Gondwana Res. 67, 172–
- 781 186 (2019).
- 782 67. Mills, B., Watson, A. J., Goldblatt, C., Boyle, R. & Lenton, T. M. Timing of Neoproterozoic
- glaciations linked to transport-limited global weathering. *Nat. Geosci.* **4**, 861–864
- 784 (2011).
- 785 68. Shields, G. A. et al. Unique Neoproterozoic carbon isotope excursions sustained by
- coupled evaporite dissolution and pyrite burial. *Nat. Geosci.* **12**, 823–827 (2019).
- 787 69. van de Velde, S., Mills, B. J. W., Meysman, F. J. R., Lenton, T. M. & Poulton, S. W. Early
- 788 Palaeozoic ocean anoxia and global warming driven by the evolution of shallow
- 789 burrowing. *Nat. Commun.* **9**, 1–10 (2018).
- 790 70. Williams, J. J., Mills, B. J. W. & Lenton, T. M. A tectonically driven Ediacaran oxygenation
- 791 event. *Nat. Commun.* **10**, 1–10 (2019).
- 792 71. Husson, J. M. et al. Large isotopic variability at the micron-scale in 'Shuram' excursion
- 793 carbonates from South Australia. Earth Planet. Sci. Lett. 538, 116211 (2020).
- 794 72. Tarhan, L. G. The early Paleozoic development of bioturbation—Evolutionary and
- 795 geobiological consequences. *Earth-Sci. Rev.* **178**, 177–207 (2018).
- 73. Alcott, L. J., Mills, B. J. W. & Poulton, S. W. Stepwise Earth oxygenation is an inherent
- 797 property of global biogeochemical cycling. *Science* (2019).
- 74. Slomp, C. P. & Van Cappellen, P. The global marine phosphorus cycle: sensitivity to
- oceanic circulation. *Biogeosciences Discuss.* **3**, 1587–1629 (2006).

- 75. Li, Z. X. et al. Assembly, configuration, and break-up history of Rodinia: A synthesis.
- 801 *Precambrian Res.* **160**, 179–210 (2008).
- 76. Donnadieu, Y., Goddéris, Y., Ramstein, G., Nédélec, A. & Meert, J. A 'snowball Earth'
- climate triggered by continental break-up through changes in runoff. *Nature* **428**, 303–
- 804 306 (2004).
- 77. Goddéris, Y. et al. Onset and ending of the late Palaeozoic ice age triggered by
- tectonically paced rock weathering. *Nat. Geosci.* **10**, 382–386 (2017).
- 78. Goddéris, Y., Donnadieu, Y., Le Hir, G., Lefebvre, V. & Nardin, E. The role of
- palaeogeography in the Phanerozoic history of atmospheric CO2 and climate. *Earth-Sci.*
- 809 Rev. **128**, 122–138 (2014).
- 79. Daines, S. J., Mills, B. J. W. & Lenton, T. M. Atmospheric oxygen regulation at low
- Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon.
- 812 *Nat. Commun.* **8**, 1–11 (2017).
- 813 80. Nursall, J. Oxygen as a prerequisite to the origin of the Metazoa. *Nature* **183**, 1170–1172
- 814 (1959).
- 81. Mills, D. B. et al. Oxygen requirements of the earliest animals. Proc. Natl. Acad. Sci. 111,
- 816 4168–4172 (2014).
- 82. Wood, R. & Erwin, D. H. Innovation not recovery: dynamic redox promotes metazoan
- 818 radiations. *Biol. Rev.* (2017) doi:10.1111/brv.12375.
- 83. Levin, L. A., Gage, J. D., Martin, C. & Lamont, P. A. Macrobenthic community structure
- within and beneath the oxygen minimum zone, NW Arabian Sea. Deep Sea Res. 47, 189–
- 821 226 (2000).
- 822 84. Sperling, E. A. et al. Oxygen, ecology, and the Cambrian radiation of animals. *Proc. Natl.*
- 823 *Acad. Sci.* **110**, 13446–13451 (2013).