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Abstract 14 

The hydrological characteristics of debris-covered glaciers are known to be fundamentally 15 

different from those of clean-ice glaciers, even within the same climatological, geological and 16 

geomorphological setting. Understanding how these characteristics influence the timing and 17 

magnitude of meltwater discharge is particularly important for regions like High Mountain Asia, 18 

where downstream communities rely on this resource for sanitation, irrigation and hydropower. 19 

The hydrology of debris-covered glaciers is relatively complex: rugged surface topographies 20 

typically route meltwater through compound supraglacial-englacial systems involving both 21 

channels and ponds, as well as pathways that remain unknown. Low-gradient tongues that extend 22 

several kilometres retard water conveyance and promote englacial storage. Englacial channels are 23 

frequently abandoned and reactivated as water supply changes, new lines of permeability are 24 

exploited, and drainage is captured due to high rates of surface and subsurface change. Seasonal 25 

influences, such as the monsoon, are superimposed on these distinctive characteristics, 26 

reorganising surface and subsurface drainage rapidly from one season to the next. Recent 27 

advances in understanding have mostly come from studies aimed at quantifying and describing 28 

supraglacial processes; little is known about the subsurface hydrology, particularly the nature (or 29 

even existence) of subglacial drainage. In this review, we consider in turn the supraglacial, 30 

englacial, subglacial, and proglacial hydrological domains of debris-covered glaciers in High 31 

Mountain Asia. We summarise different lines of evidence to establish the current state of 32 

knowledge and, in doing so, identify major knowledge gaps. Finally, we use this information to 33 

suggest priorities for future hydrological research at High Mountain Asian debris-covered glaciers, 34 

and how they may influence our ability to be able to make long-term predictions of changes in the 35 

water they supply. 36 
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1. Introduction 37 

Debris-covered glaciers have gained increased research attention over recent years, partly in 38 

recognition of their role as water sources for large parts of the world’s population (Scherler et al., 39 

2011), and partly because they host a range of distinctive features, driven by processes that are 40 

largely absent at their clean-ice counterparts. Definitions for what constitutes a ‘debris-covered 41 

glacier’ vary widely (e.g. Anderson, 2000; Kirkbride, 2011), but here we define them to be glaciers 42 

with a largely continuous layer of supraglacial debris over most of the ablation area, typically 43 

increasing in thickness towards the terminus  (Figure 1). Debris can be supplied to such glaciers by 44 

avalanches, rockfalls and small landslides from local mountainsides onto the glacier surface (Figure 45 

2, 3A), thrusting from the bed, dust blown from exposed moraines, or solifluction from (ice-cored) 46 

moraines (Dunning et al., 2015; Evatt et al., 2015; Gibson et al., 2017b; Hambrey et al., 2008; 47 

Kirkbride and Deline, 2013; Kirkbride and Warren, 1999; Rowan et al., 2015; Spedding, 2000; van 48 

Woerkom et al., 2019). The surface debris layer can range in thickness from scattered particles to 49 

several metres, including large rocks and substantial boulders (Figure 3C and D) (Inoue and 50 

Yoshida, 1980; McCarthy et al., 2017; Nicholson et al., 2018). 51 

 52 

Figure 1 – Debris-covered glaciers in the Sagarmatha National Park, Nepal Himalaya, annotated 

with some of the features distinctive to High Mountain Asian debris-covered glaciers. A) Chola 

Glacier (image width is ~1.5 km across the glacier terminus and lake). B) Imja Glacier, showing the 

terminus and calving front (~0.75 km width) into Imja Tsho, looking towards the accumulation area 

of the tributary Amphulapcha Glacier. C) Khumbu Glacier, showing the upper ablation area (clean-

ice flowing from the Khumbu Icefall) to the left and the ~10 km long lower ablation area (debris-

covered tongue) to the right; dashed yellow lines are 100 m contours. 
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 Debris-covered glaciers are present in nearly all of Earth’s glacierised regions, with a 53 

particularly large concentration in High Mountain Asia (Bolch et al., 2012; Scherler et al., 2018, 54 

2011). Around 25% of Earth’s population is dependent on melted glacier ice and/or seasonal snow  55 

for drinking water, irrigation or hydroelectric power (Immerzeel et al., 2010); glacial runoff in High 56 

Mountain Asia is an important component of streamflow, particularly for reducing seasonal water 57 

shortages (Bolch et al., 2019; Pritchard, 2019; Scott et al., 2019). Glacier mass loss in response to 58 

climate warming is currently increasing river discharge and contributions to sea level (IPCC, 2019; 59 

Lutz et al., 2014; Radić et al., 2014; Shea and Immerzeel, 2016), but studies simulating future 60 

scenarios universally predict long-term reductions in flow, perhaps as soon as 2050 in central Asia 61 

(Barnett et al., 2005; Bolch et al., 2012; Lutz et al., 2014; Ragettli et al., 2016b; Sorg et al., 2012). 62 

This passing of ‘peak water’ threatens future water security in many regions, particularly across 63 

High Mountain Asia (Bolch et al., 2019; Eriksson et al., 2009; Hannah et al., 2005; Huss and Hock, 64 

2018; Immerzeel et al., 2010; Winiger et al., 2005). A decrease in discharge from the Indus and 65 

Brahmaputra rivers alone is estimated to affect 260 million people (Immerzeel et al., 2010). 66 

 The long-term response of debris-covered glaciers to changing climatic conditions is 67 

strongly non-linear and reflects complexities relating to spatial variability in debris concentration 68 

and climatic controls integrated over at least several decades (Benn et al., 2012; Vaughan et al., 69 

2013). A decadal trend of surface lowering, stagnation and glacier mass loss has already been 70 

observed on many debris-covered glaciers across High Mountain Asia (Bolch et al., 2012, 2011; 71 

IPCC, 2019; Kääb et al., 2012; Pellicciotti et al., 2015; Scherler et al., 2011) as a result of warmer 72 

air temperatures and weaker monsoons (Pieczonka et al., 2013; Thakuri et al., 2014). However, 73 

predictions of mass loss from individual glacierised regions vary hugely. For example, in the Everest 74 

region of the Himalaya, estimates of ice mass loss by 2100 vary from ~10% (Rowan et al., 2015), 75 

through 50% (Soncini et al., 2016), to 99% in extreme scenarios (warming of ~3°C) (Shea et al., 76 

2015). Model outputs also vary spatially at a regional scale (e.g. Chaturvedi et al., 2014; 77 

Kraaijenbrink et al., 2017; Zhao et al., 2014). Such predictions depend sensitively on the precise 78 

climate scenario used, but a number of key knowledge gaps exist concerning the character of 79 

debris-covered glaciers and the processes influencing their varied geometrical response to climate 80 

change (Benn et al., 2012; Bolch et al., 2012; Huss, 2011; Scherler et al., 2011). 81 

 Understanding how meltwater is produced, transported, and stored within High Mountain 82 

Asian debris-covered glaciers is therefore imperative. However, hydrological research has been 83 

severely limited by the remoteness and inaccessibility of such glaciers. There is growing 84 

recognition that the configuration and efficiency of water routing across and through debris-85 

covered ice is distinctively different from that of clean-ice glaciers, even within the same glacial 86 

system – first shown by a recent study on Miage Glacier, a debris-covered glacier in the European 87 

Alps (Fyffe et al., 2019b). Debris-covered glacier surfaces are complex, often characterised by 88 

hummocky, rugged topography with a shallow (or even reversed) longitudinal surface gradient 89 

(Figures 1 and 2), with depressions capable of storing meltwater for both short and long periods 90 

within nested catchments of varying spatial scales. These features, and a host of others, are 91 

particularly prominent in High Mountain Asia (Figure 1), and provide a setting that strongly 92 

influences the nature of hydrological systems in this region (Benn et al., 2017; Miles et al., 2019). 93 
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 In this review, we consider the current state of knowledge of debris-covered glacier 94 

hydrological systems in High Mountain Asia. Four hydrological domains are considered in turn: 95 

supraglacial (Section 2), englacial (Section 3), subglacial (Section 4), and proglacial (Section 5). 96 

Within each section, we summarise existing research and understanding of debris-covered glacier 97 

hydrological systems and then address key remaining knowledge gaps. Figure 2 provides a 98 

reference conceptual diagram of a High Mountain Asian debris-covered glacier, with each 99 

hydrological feature encompassing both known and unknown elements of each domain. Finally, 100 

in light of the above, we propose future research directions concerning the hydrology of debris-101 

covered glaciers (Section 6). This review is intended to complement existing reviews of clean-ice 102 

valley glacier hydrology (e.g. Fountain and Walder, 1998; Hubbard and Nienow, 1997; Irvine-Fynn 103 

et al., 2011; Jansson et al., 2003) and, while we define the spatial scope as High Mountain Asia, 104 

much existing research has been carried out in the Himalaya (particularly Nepal), from where the 105 

review and our illustrations of many of the key elements draw strongly. 106 

 107 

Figure 2 – A conceptual illustration of the main landscape and hydrological features of a typical 

debris-covered glacier in High Mountain Asia. 

2. Supraglacial hydrology 108 

2.1 Supraglacial zone 109 

2.1.1 Meltwater generation 110 

Meltwater is produced on debris-covered glaciers through ablation of surface ice and snow, with 111 

the spatial pattern of melt complicated by the surface debris extent, thickness and lithological 112 
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characteristics (Figures 1 and 3). A debris layer shallower than a critical thickness, typically ~50 113 

mm, decreases albedo and thus increases the ablation rate compared to debris-free ice. The 114 

ablation rate peaks at a debris thickness of ~2–5 mm, known as the effective thickness (Adhikary 115 

et al., 2000; Evatt et al., 2015; Inoue and Yoshida, 1980; Juen et al., 2014; Lejeune et al., 2013; 116 

Nicholson and Benn, 2013, 2006; Østrem, 1959; Singh et al., 2000; Takeuchi et al., 2000). The exact 117 

values of the critical and effective thickness strongly depend on the thermal conductivity of the 118 

debris (Figure 4), which can vary widely both across a glacier surface and in time according to 119 

whether the debris is wet or dry (Casey et al., 2012; Collier et al., 2015, 2014; Gibson et al., 2017b; 120 

Nicholson and Benn, 2013; Pelto, 2000). In contrast, a debris layer thicker than > ~50 mm insulates 121 

the ice from incoming solar radiation, inhibiting the receipt of surface energy at the ice-debris 122 

interface and thus reducing the melt rate (Figure 4). Beneath a debris thickness of 250–300 mm, 123 

ice becomes almost fully insulated from daily surface energy fluxes, with only longer-term changes 124 

in surface energy balance reaching the underlying debris-ice interface (Bocchiola et al., 2015; Brock 125 

et al., 2010; Conway and Rasmussen, 2000; Nicholson and Benn, 2013; Østrem, 1959; Reid and 126 

Brock, 2010). Variations in ablation according to these factors represent an important first-order 127 

control on glacier surface morphology and are partially responsible for the characteristic 128 

hummocky topography superimposed on a shallow or concave (reversed gradient) debris-covered 129 

glacier surface profile (Figure 1). 130 

 131 

Figure 3 –  Images illustrating variations in debris thickness on Khumbu Glacier, Nepal Himalaya: 

A) a landslide scar (yellow circle, ~500 m wide) and unstable rock faces (purple circle) providing 
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debris to the glacier surface; image is taken looking east across the surface of Khumbu Glacier, and 

the debris layer above ice cliffs can also be seen. B) an ice cliff with entrained debris (green circle), 

debris-rich ice layers (orange circle), and a moderately-thick (~1–2 m) surface debris layer; C) a thin 

(~20 cm; red arrow) surface debris layer above ice adjacent to a supraglacial pond; and D) a thick 

(> 5 m; red arrow) surface debris layer above an ice cliff. 

Counteracting the influence of a thick surface debris layer, the ablation rate of debris-132 

covered glaciers is enhanced by the presence of supraglacial ponds (Section 2.1.2) and ice cliffs 133 

(Figure 3B and D). The latter form by slumping of debris from steep slopes, calving at supraglacial 134 

pond margins (Section 2.1.2), or the collapse of englacial voids (Section 3.1), all of which expose 135 

steep, bare ice (Figure 3B) or thinly debris-covered (Figure 3D) faces at the glacier surface (Benn 136 

et al., 2012, 2001; Sakai et al., 2002; Thompson et al., 2016). The melting of ice cliffs is responsible 137 

for a substantial proportion of debris-covered glacier ablation (Brun et al., 2016; Buri et al., 2016b; 138 

Han et al., 2010; Juen et al., 2014; Reid and Brock, 2014; Sakai et al., 2002, 2000; Thompson et al., 139 

2016), accounting for up to 69% of the total ablation of debris-covered areas whilst covering as 140 

little as 2% of the total glacier area, exhibiting melt rates often 10–14 times higher than beneath 141 

debris-covered ice (Immerzeel et al., 2014; Sakai et al., 1998). Where ice cliffs are associated with 142 

supraglacial ponds, there is further potential for increased melting through undercutting and 143 

calving processes (Brun et al., 2016; Buri et al., 2016a; Miles et al., 2016; Röhl, 2008; Thompson et 144 

al., 2016). Taken together, ice cliff and pond systems contribute significantly to the surface 145 

lowering of debris-covered glaciers where the debris layer is thinner in the central ablation area 146 

(King et al., 2017; Nuimura et al., 2012; Pellicciotti et al., 2015; Ragettli et al., 2016a; Thompson et 147 

al., 2016; Watson et al., 2017), contributing to the inverted mass balance regime typical of High 148 

Mountain Asian debris-covered glaciers. 149 

 150 

Figure 4 – Østrem curve examples from Nicholson & Benn (2006, and citations therein), showing 

variations in the relationship between debris thickness and ice ablation on different glaciers. (a) 

notes the debris thickness at which maximum melt occurs, and (b) marks the debris thickness at 

which melt becomes inhibited compared to that of clean ice on different glaciers (indicated on both 

for Isfjallsglaciaren). 
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2.1.2 Meltwater storage 151 

Supraglacial ponds (Figure 5), a term used here to include larger water bodies elsewhere 152 

sometimes referred to as lakes, are common and important features on debris-covered glaciers, 153 

particularly those with recent surface lowering. Ponds are generally absent from clean-ice valley 154 

glaciers but are prevalent on low-gradient areas of ice sheet margins (Chu, 2014; Sundal et al., 155 

2009). Similarly for debris-covered glaciers, the most important control on the location of 156 

supraglacial pond formation is a low glacier surface slope (Miles et al., 2017b; Quincey et al., 2007; 157 

Reynolds, 2000; Sakai, 2012; Sakai et al., 2000; Sakai and Fujita, 2010; Salerno et al., 2012). A 158 

surface gradient of ≤ 2° is considered to promote the development of larger ponds, while smaller 159 

isolated and transient ponds are considered more likely on steeper slopes (Miles et al., 2017b; 160 

Quincey et al., 2007; Reynolds, 2000). The upglacier slope has also been shown to have an 161 

influence, being inversely correlated to the total area of lakes downglacier (Salerno et al., 2012). 162 

Glacier velocity and motion type also exert controls over supraglacial pond location. An 163 

increase in lake concentration is common towards the termini of debris-covered glaciers, areas 164 

that are typically characterised by (very) low surface velocities (Kraaijenbrink et al., 2016b; Miles 165 

et al., 2017b; Quincey et al., 2007; Sakai, 2012; Salerno et al., 2015, 2012). A decrease in velocity 166 

towards the glacier terminus and ice inflow at the confluences of flow units (Kraaijenbrink et al., 167 

2016b) causes compressive flow, which tends to close crevasses and drive water back to the 168 

surface, as well as limiting effective drainage from the glacier surface (Kraaijenbrink et al., 2016b; 169 

Miles et al., 2017b). The thinning and stagnation of debris-covered glacier termini may also 170 

enhance meltwater production, further promoting the formation of ponds (Salerno et al., 2015; 171 

Thakuri et al., 2016). 172 

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413



8 

 

 

Figure 5 – Examples of supraglacial pond size and temporal changes on Khumbu Glacier, Nepal 

Himalaya. Ponds range in diameter from: A) several metres; B) tens of metres (person circled in red 

for scale); C) and D) hundreds of metres; E) and F) several kilometres. A) and B) are located in the 

upper ablation area. C) and D) show the same pond-cliff-cave system in the mid-ablation area two 

years apart, with notable expansion of the cave via undercutting and calving. The pond, which has 

reduced in area (likely partly drained), was filled with a large amount of small, calved ice blocks in 

May 2019 and large cracks in the cliff system suggest further imminent large-scale calving. E) and 

F) show the expanding linked supraglacial pond chain at the terminus, also two years apart (green 

star indicates the same location as images were taken from slightly different positions). Pond 
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growth and coalescence has progressively eroded the hummocks that used to separate these 

ponds. Higher melt rates are indicated by the covering of ice cliffs in fine debris (‘dirty ice’). 

Initial supraglacial pond growth occurs through subaqueous melting at the base of any 173 

slight depression (Chikita et al., 1998; Mertes et al., 2016; Miles et al., 2016; Stokes et al., 2007; 174 

Thompson et al., 2012). Water accumulates and is heated by incoming solar radiation, causing the 175 

pond to warm. For example, Chikita et al. (1998) measured a maximum temperature of ~5°C at a 176 

supraglacial lake surface on Trakarding Glacier, Nepal Himalaya. Excess energy is thus available for 177 

lateral and vertical ablation wherever pond water is in contact with ice, increasing the pond size, 178 

steepening marginal slopes and mobilising debris to expose bare ice (Figure 5E and F) (Stokes et 179 

al., 2007). Furthermore, mixing of pond stratification by inflowing meltwater on Koxkar Glacier, 180 

Tien Shan, has been shown to increase the temperature (by ~4°C) and density of the pond (Xin et 181 

al., 2012). Here, the warmed surface water sinks to the pond base and increases the potential for 182 

subaqueous melting; a process that can also be induced by wind-driven currents (Chikita et al., 183 

1998). 184 

Supraglacial ponds surrounded by ice cliffs tend to be larger and deeper than those without 185 

cliffs (Watson et al., 2018), as the ice cliffs facilitate pond growth by subaerial melting and 186 

backwasting, particularly during the monsoon melt season (Röhl, 2008; Steiner et al., 2019). Where 187 

warm surface pond water meets glacier ice, it can undercut the cliff beneath the waterline; 188 

progressive undercutting and thermo-erosional notch development may then lead to calving of 189 

the ice cliff and pond expansion (Figure 5C and D) (Chikita et al., 1998; Kirkbride and Warren, 1997; 190 

Mihalcea et al., 2006; Miles et al., 2016; Röhl, 2008, 2006; Sakai et al., 2009). Conversely, where 191 

the subaqueous and ice cliff melt rates are similar, the ice cliff will persist and backwaste stably 192 

(Brun et al., 2016; Buri et al., 2016a; Miles et al., 2016). Calving is most effective at larger ponds 193 

(Röhl, 2008), in particular where the fetch is greater than 20 m and the water temperature is 2–194 

4°C (Sakai et al., 2009). Calving events cause further mixing of pond layers, driving warmer surface 195 

water towards the base and again enhancing basal melting: greatest supraglacial pond deepening 196 

rates of have been shown to occur adjacent to the tallest calving ice cliffs (Thompson et al., 2012). 197 

Although sedimentation from ice cliffs and inflowing water can reduce pond depth, this effect is 198 

often outstripped by ablation (Thompson et al., 2012). 199 

A pattern of supraglacial pond evolution into moraine-dammed lakes has been observed 200 

for some ponds on debris-covered glaciers in High Mountain Asia. Supraglacial ponds form initially 201 

as ‘perched ponds’, isolated above the englacial drainage network (Benn et al., 2012). As these 202 

ponds increase in area and depth, they evolve from perched to base-level features, where the 203 

base-level is determined by the height at which water leaves the glacial system (usually the 204 

elevation of a spillway through the terminal moraine or the glacier bed, if water is transported 205 

there) (Mertes et al., 2016; Thompson et al., 2012). However, differing sub-catchments may have 206 

differing base-levels defined by other hydrological features such as moulins, which can result in a 207 

stepped hydrological cascade based on several local base-levels. Alternatively, the presence of a 208 

groundwater system can result in a regional base-level. Over an extended period of glacier 209 

recession, an increasing number of supraglacial ponds form and grow over time, creating a chain 210 

of terminus-base-level ponds that eventually coalesce (Figure 5E and F) (Sakai, 2012; Salerno et 211 
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al., 2012). The growth of base-level ponds is not limited by periodic drainage, potentially allowing 212 

dramatic increases in area, particularly through calving (Benn et al., 2001; Sakai, 2012; Thompson 213 

et al., 2012). If meltwater cannot escape from the system, pond expansion and coalescence may 214 

eventually lead to the formation of a single base-level moraine-dammed proglacial lake at the 215 

glacier terminus (Section 5.1.1) (Mertes et al., 2016) that will continue to expand both upglacier 216 

and downwards by ice melt. 217 

Various stages of this supraglacial pond evolution are simultaneously present on many High 218 

Mountain Asian debris-covered glaciers. An increase in supraglacial pond area and proglacial lake 219 

formation, assumed to be in response to a warmer climate and glacier surface lowering, has been 220 

observed in recent decades in, for example, the Tien Shan (Wang et al., 2013), Bhutan Himalaya 221 

(Ageta et al., 2000; Komori, 2008) and Nepal Himalaya (Benn et al., 2000; Watson et al., 2016). 222 

Within the Hindu-Kush Himalaya, a clear divide has appeared between the East, where there are 223 

a greater number of larger ponds that have grown between 1990–2009 and become increasingly 224 

proglacial, and the West, where already generally smaller supraglacial ponds have been decreasing 225 

further in area (Gardelle et al., 2011). However, local variations do occur and the pattern is not 226 

universal (e.g. Steiner et al., 2019). 227 

As isolated perched ponds grow, they can deepen such that they become connected to the 228 

englacial system by intersecting englacial flow pathways, and drain (Benn et al., 2001; Qiao et al., 229 

2015; Röhl, 2008; Watson et al., 2018, 2016; Wessels et al., 2002), temporarily halting further pond 230 

expansion (Mertes et al., 2016). Pond drainage is promoted in zones of higher local surface velocity 231 

and strain rates, connecting the supraglacial and englacial drainage networks and resulting in 232 

smaller-sized ponds (Miles et al., 2017b). However, as noted above, ponds are generally more 233 

likely to form in areas with lower surface velocities. Ponds may also drain by preferentially 234 

exploiting inherited structural weaknesses such as (sediment-filled) crevasse traces, crevasses and 235 

englacial channels that have been forced closed by longitudinal compression, allowing drainage by 236 

hydrofracture (the penetration of a water-filled crevasse through an ice mass assisted by the 237 

additional pressure of the water at the crevasse tip) (Benn et al., 2017, 2012, 2009; Gulley and 238 

Benn, 2007; Miles et al., 2017b). Alternatively, perched ponds may drain by overspilling, when a 239 

channel is melted into the downstream end of a pond. If, during drainage, such a channel incises 240 

faster than the pond lowers then unstable and potentially catastrophic drainage can result (Qiao 241 

et al., 2015; Raymond and Nolan, 2000). However, analyses on Lirung Glacier, Nepal Himalaya, 242 

provided strong evidence for continuous inefficient drainage of supraglacial ponds, likely into 243 

debris-choked englacial conduits (Miles et al., 2017a). 244 

A periodic cycle of pond expansion and drainage may occur until the pond becomes large 245 

enough to become permanently connected to the englacial system, and thus more stable due to 246 

inputs of meltwater from streams and other ponds located farther upglacier (Benn et al., 2001; 247 

Miles et al., 2017a; Wessels et al., 2002). An abundant supply of meltwater from the ice surface or 248 

the wider drainage system is indicated by ponds with a high suspended sediment concentration 249 

(Takeuchi et al., 2012). A seasonal pattern of supraglacial pond filling and drainage has been 250 

observed at seven glaciers in the Tien Shan, with 94% of observed ponds draining during the 251 

monsoon every year between 2013–2015 (Narama et al., 2017). Similar cycles were reported for 252 
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five glaciers in Langtang Valley, Nepal Himalaya, where the maximum ponded area between 1999–253 

2013 occurred early in the melt season, subsequently decreasing as ponds drained or froze (Miles 254 

et al., 2017b). Conversely, larger ponds have been observed to drain incompletely and separate 255 

into multiple smaller ponds, subsequently refilling to re-form one large pond (Benn et al., 2001; 256 

Miles et al., 2017b; Wessels et al., 2002). Warmer spring temperatures have been noted to 257 

correlate with a greater number of drainage events later the same year, likely due to greater 258 

meltwater inputs earlier in the year triggering redevelopment of the subsurface drainage system 259 

(Qiao et al., 2015). 260 

Supraglacial ponds are responsible for a large proportion of debris-covered glacier ablation, 261 

absorbing heat up to 14 times more quickly than the debris-covered area. In the Langtang Valley, 262 

Nepal, this accounted for 12.5% of catchment ice loss (E. S. Miles et al., 2018b). However, linked 263 

supraglacial pond chains have been suggested to provide only a small proportion of total glacier 264 

proglacial discharge (Irvine-Fynn et al., 2017; Miles et al., 2019), primarily storing meltwater and 265 

thus increasing the potential for enhanced ablation. Ponds have a strongly positive surface energy 266 

balance, with ≥ 50% of their absorbed energy released with the melt output from the pond and 267 

contributing to internal melting along supraglacial and englacial conduits (Miles et al., 2016; Sakai 268 

et al., 2000). This in turn may lead to englacial roof collapse and the formation of new ponds (Benn 269 

et al., 2012; Miles et al., 2017a; Sakai et al., 2000), resulting in a net glacier-wide increase in 270 

ablation. The increasing presence of ponds has been described as the clearest indicator of the 271 

influence of climate change on debris-covered glaciers (Salerno et al., 2012). 272 

2.1.3 Meltwater transport 273 

Supraglacial streams (Figure 6) on High Mountain Asian debris-covered glaciers vary widely in 274 

prevalence, size and length. To exist and persist, a supply catchment is required (Benn et al., 2017; 275 

Gulley et al., 2009a) and the rate of stream incision, driven by thermal erosion, must outpace the 276 

rate of surface lowering (Marston, 1983). Such conditions may be promoted beneath thicker debris 277 

that suppresses surface ablation in the lower ablation area (Benn et al., 2017), yet observations of 278 

streams in this region are rare, likely due to the hummocky topography both limiting the size of 279 

supraglacial catchments (Fyffe et al., 2019b) and preventing any streams that do form from 280 

persisting for long distances (Benn et al., 2017). Farther upglacier, often under conditions of strong 281 

longitudinal extension associated with ice falls, open crevasses are common and also suppress 282 

supraglacial stream development (Benn et al., 2017). Most supraglacial streams have therefore 283 

been observed in the upper to mid-ablation area (Figure 6A-D) (Gulley et al., 2009a; Miles et al., 284 

2019), downglacier of crevasse fields but sufficiently far upglacier that the hummocky topography 285 

is not overly pronounced and the debris layer is thin (Section 2.1.1). 286 

 A perennial supraglacial stream has been present in the upper ablation area of Khumbu 287 

Glacier, Nepal Himalaya, for over 14 years (Figure 6A-D) (Gulley et al., 2009a; Miles et al., 2019). 288 

This stream and its smaller tributaries originate just downglacier of the Khumbu icefall, where the 289 

surface gradient decreases dramatically (Figure 1). The low surface gradient of the ablation area 290 

results in this channel having high sinuosity (Miles et al., 2019). As streams transfer meltwater 291 

downglacier, they can incise effectively into the glacier surface (Figure 6B and C); one channel had 292 

melted 5–10 m deep by the time it reached the lower ablation area (Gulley et al., 2009a; Iwata et 293 
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al., 1980). Such incision is evident where channel sides have ablated more slowly than the 294 

surrounding glacier surface, leaving walls of horizontally-notched ice showing previous high water-295 

levels (Figure 6C). Supraglacial streams may drain into debris-covered glaciers through crevasses 296 

or moulins (Gulley et al., 2009a; Iwata et al., 1980), or through ‘cut-and-closure’ (see Section 3.1) 297 

(Gulley et al., 2009a; Jarosch and Gudmundsson, 2012). Relict channels abandoned by continued 298 

incision can often be exposed on the surface as a result of spatially variable surface lowering 299 

(Figure 6D). 300 

 301 

Figure 6 – Examples of supraglacial streams on Khumbu Glacier, Nepal Himalaya, in: A-C) the upper 

ablation area, incised into the ice beneath the debris layer. Blue arrows indicate water flow 

direction; yellow arrows indicate abandoned/relict channels. The supraglacial stream in A) is 

extensive and very well developed, transporting large volumes of meltwater efficiently. B) and C) 

are upstream of A) (white and black star, respectively): B) shows a relict, debris-filled meander bend 

which has been superseded by a more direct channel; C) shows multiple levels of stream incision 

(grooves indicated by red dashed line, ~1 m high); D) the mid-ablation area, where the same incised 

channel becomes englacial through cut-and-closure after several hundred metres of progressive 

downcutting, visible from the multiple relict levels (channel drop in the image is ~10 m); E) and F) 

the lower ablation area. The channel in E) is a short stretch between a supraglacial pond and a 

shallow moulin, flowing over the debris layer. The stream in F) flows into a breach in the lateral 

moraine to form the proglacial stream; here it has eroded into the sand-like sediment across a 

basin that seasonally floods.  

 Supraglacial streams can undergo rapid pathway changes. Figure 6B shows a debris-filled 302 

section of channel, abandoned as meltwater progressively took a more direct route, leaving a 303 

central island of protruding ice. This process may have been similar to the formation of an ox-bow 304 

lake from a terrestrial river meander bend. However, the abandoned channel section may be 305 

reactivated during times of high flow, evidenced by the presence of thick, evenly spread debris 306 

deposits in Figure 6B. Farther downglacier, where supraglacial stream observations are rarer, 307 

pathway changes have also been witnessed on short timescales (Miles et al., 2019). In Figure 6E, 308 
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the stream flows into a shallow moulin, yet within 10 days this moulin had collapsed and been 309 

abandoned, with the stream routing into a new moulin just upstream. Moulin collapse has been 310 

attributed to the highly spatially variable surface lowering and ablation rates on debris-covered 311 

glaciers (Miles et al., 2019), while the short timescale suggests that the new moulin exploited an 312 

existing weakness in the ice. 313 

2.2 Supraglacial knowledge gaps 314 

Predictions of future mass balance regimes on High Mountain Asian debris-covered glaciers are 315 

still uncertain. Surface lowering is leading to an overall increase in debris thickness (Gibson et al., 316 

2017a) and an upglacier emergence of a thin supraglacial debris layer, which will likely further 317 

decrease albedo and increase surface meltwater production (thereby increasing surface lowering, 318 

potentially leading to a positive cycle until debris thickens sufficiently to insulate the surface) 319 

(Kirkbride and Warren, 1999; Stokes et al., 2007). Measuring meltwater production is crucial, but 320 

difficult beneath (thin) debris layers, and often impossible where access to the ice-debris interface 321 

is not feasible. More broadly, the future evolution of debris-covered glacier surface geometry 322 

remains unaddressed, for example, whether meltwater will primarily be transported rapidly off 323 

the glacier in channels or stored within large systems of linked supraglacial ponds, thus moderating 324 

diurnal proglacial discharge. 325 

On a finer scale, a detailed process understanding of meltwater storage and transport 326 

through supraglacial ponds and pond systems is lacking, particularly of water circulation within, 327 

between and out of ponds (while often just one discrete conduit output is visible, water has also 328 

been observed to seep beneath the debris layer and emerge in unexpected locations (Miles et al., 329 

2019)). There has been little focus on how these links between ponds will change as ponds expand 330 

and eventually coalesce. Volumetric measurements of supraglacial ponds are scarce, rendering it 331 

difficult to accurately calculate how much meltwater is being stored on the glacier surface. 332 

Additionally, little attention has been paid to the effect debris (heated by solar radiation) falling 333 

into a pond has on the pond temperature and thus its basal melt rate. 334 

The various pathways and rates of meltwater transport across a debris-covered glacier 335 

surface would benefit from greater understanding. For example, supraglacial streams are 336 

commonly difficult to discern in debris-covered regions of the glacier surface; this is particularly 337 

true for smaller surface streams and diffuse flows, which are less easily located and consequently 338 

remain largely unreported. On a smaller scale, the occurrence of some ice ablation beneath even 339 

a thick debris layer implies that during much of the ablation season, water must exist between the 340 

ice surface and the debris layer (McCarthy et al., 2017), likely as a thin but variable film. However, 341 

the planform structure remains unknown, as does transport beneath the debris layer, which 342 

subsequently must occur as a saturated surface layer or - initially at least - as small, inefficient 343 

rivulets. 344 

Water storage within and below the supraglacial debris layer is likely but unexplored, 345 

introducing temporary delays in the transport of meltwater through the system and thus affecting 346 

meltwater hydrochemistry (Tranter et al., 2002, 1993), the development of other parts of the 347 

drainage network, and proglacial discharge. However, despite its importance in contrasting with 348 
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standard models of supraglacial hydrology based on research at clean-ice glaciers, small-scale 349 

meltwater storage delays remain unknown, which at least partly reflects the difficulty involved in 350 

gaining access to the ice-debris interface beneath thick surface debris. Similar issues are present 351 

for the hydrology of snowpacks overlying thick debris, yet the extent that the snowpack delays 352 

runoff and how much snowmelt enters the hydrological system are similarly unaddressed. 353 

3. Englacial hydrology 354 

3.1 Englacial zone 355 

Exceptionally, englacial channels at High Mountain Asian debris-covered glaciers have been at 356 

least as well explored by glaciospeleologists than at clean-ice glaciers. Such exploration has been 357 

carried out primarily in the Nepal Himalaya, including at Khumbu Glacier (Gulley et al., 2009a), 358 

Ngozumpa Glacier (Benn et al., 2017, 2009; Gulley and Benn, 2007), Ama Dablam and Lhotse 359 

Glaciers (Gulley and Benn, 2007), as well as several debris-covered glaciers in the Tien Shan 360 

(Narama et al., 2017). Largely on the basis of such studies, Gulley et al. (2009) proposed three 361 

formation mechanisms for englacial channels within debris-covered glaciers: 362 

I. Cut-and-closure type conduits appear to be particularly prevalent within High 363 

Mountain Asian debris-covered glaciers, relative to clean-ice counterparts. Since the 364 

process requires more rapid channel incision than surface ablation, this prevalence 365 

could result from the presence of cold surface ice and/or surface debris, both impeding 366 

general surface lowering. Under such conditions, incision will continue to the 367 

hydrologic base-level of the glacier (Section 2.1.2) (Gulley et al., 2009a; Miles et al., 368 

2019). These conduits may be repeatedly abandoned and reactivated as water supply 369 

varies through the year, with channels closing by snow infill and, possibly, ice creep. 370 

However, such channels rarely close completely due to their shallow depth, and may 371 

contain sediment that provides lines of secondary permeability by which the channel 372 

may subsequently be reactivated (Benn et al., 2009; Gulley et al., 2009a; Gulley and 373 

Benn, 2007). Cut-and-closure conduits have been reported on Khumbu (Gulley et al., 374 

2009a) and Ngozumpa Glaciers (Thompson et al., 2012). 375 

II. Meltwater may aggregate to form englacial channels by exploiting lines/planes of 376 

secondary permeability; for example, those left by relict cut-and-closure channels or 377 

debris-filled and/or compressed former surface crevasses (Benn et al., 2012; Gulley et 378 

al., 2009b; Gulley and Benn, 2007; E. S. Miles et al., 2018a). Along these low-379 

permeability zones, discharge through the icy matrix leads to the development of 380 

enlarging lines of preferential flow due to viscous heat dissipation, eventually forming 381 

an englacial conduit (Benn et al., 2012). 382 

III. Englacial channels may also form by hydrofracturing (Benn et al., 2012, 2009; Gulley et 383 

al., 2009b), though this process is generally restricted to upper, debris-free areas where 384 

surface runoff can enter open crevasses (Benn et al., 2012). In the lower ablation area, 385 

low surface gradients, low strain and compression reduce the capacity for crevassing. 386 

Channel formation by hydrofracturing has been invoked in association with longitudinal 387 

crevasses on Khumbu Glacier (Benn et al., 2012, 2009), promoted by the combined 388 
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effect of transverse stresses and high water pressure at the base of supraglacial lakes. 389 

Multiple stages of hydrofracture, followed by channel closure through freeze-on, were 390 

interpreted from a series of successively lower niches eroded into pond walls (Benn et 391 

al., 2009). 392 

 If a stream exploits a crevasse for a sufficient time it forms a moulin, as on clean-ice glaciers. 393 

Although such instances are rare, steep-gradient moulins have been observed in the upper 394 

ablation area of some High Mountain Asian debris-covered glaciers (e.g. Southern Inylchek Glacier, 395 

Tien Shan and Baltoro Glacier, Pakistan Karakoram (Narama et al., 2017; Quincey et al., 2009)), 396 

and a shallow-gradient moulin reported in the lower ablation area of Khumbu Glacier (Figure 6E) 397 

(Miles et al., 2019). Indeed, explored englacial conduits, such as on Khumbu and Ngozumpa 398 

Glaciers, also had shallow gradients (Benn et al., 2017; Gulley et al., 2009a; Gulley and Benn, 2007), 399 

suggesting predominant formation in these instances by cut-and-closure rather than crevasse 400 

exploitation. 401 

 Englacial channels have been observed at multiple elevations within High Mountain Asian 402 

debris-covered glaciers, often showing numerous levels of incision resulting from sequential 403 

supraglacial pond drainage events as the base-level has moved (Gulley et al., 2009a; Gulley and 404 

Benn, 2007). According to this model, each conduit has a local base-level (Section 2.1.2), but is 405 

only present to a depth coincident with the glacier’s contemporary base-level, determined by the 406 

height at which water leaves the glacier (Gulley et al., 2009a; Gulley and Benn, 2007). Furthermore, 407 

as the surface gradient of the ablation area of debris-covered glaciers is typically very low, the 408 

hydraulic gradient (Shreve, 1972) is correspondingly low, encouraging meandering and the 409 

formation of sinuous englacial channels (Miles et al., 2019), as observed on Khumbu and 410 

Ngozumpa Glaciers (Benn et al., 2017; Gulley and Benn, 2007). 411 

 Longer-distance water transport has been inferred through perennial sub-marginal 412 

channels located along the edge of debris-covered glaciers, likely formed by cut-and-closure (Benn 413 

et al., 2017; Thompson et al., 2016). Such marginal features provide longer-distance and more 414 

hydraulically-efficient pathways than conduits within the central glacier, due to the frequent 415 

presence of infilled crevasse traces that can be exploited by water flowing at the margins (Gulley 416 

and Benn, 2007). Centrally-located englacial conduits may become re-exposed due to lowering of 417 

the surrounding surface, routing water back to the surface (Figure 7) (Miles et al., 2019), which 418 

may make these conduits more discontinuous, particularly when combined with the commonly 419 

hummocky topography (Miles et al., 2017a). 420 

 Shallow englacial systems have been observed on High Mountain Asian debris-covered 421 

glaciers. These typically consist of short channels (channelised, distributed or a combination), 422 

englacial reservoirs and/or shallow moulins, primarily linking supraglacial ponds (Miles et al., 423 

2017a, 2019; Narama et al., 2017). Such linked supraglacial-englacial systems may be created 424 

and/or maintained by supraglacial pond drainage into englacial conduits (Gulley and Benn, 2007; 425 

Narama et al., 2017). Narama et al. (2017) found that the seasonal drainage cycle of supraglacial 426 

ponds on seven Tien Shan glaciers was characterised by a connection to an established englacial 427 

drainage system later in the summer; 94% of ponds drained and connected on all three years 428 
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studied. Englacial conduits may thus play an important role in the life cycles of perched ponds 429 

(Benn et al., 2017; Miles et al., 2017a). 430 

 The efficiency of deeper englacial drainage networks can vary and may also be influenced 431 

by supraglacial pond drainage events. On Dokriani Glacier, Garhwal Himalaya, englacial conduits 432 

were inferred to be efficient and active through the entire melt season, with proglacial discharge 433 

proportional to supraglacial water production (Hasnain and Thayyen, 1994). Conversely, on 434 

Khumbu Glacier, a channelised but inefficient englacial system was inferred in the pre-monsoon 435 

season (Miles et al., 2019). This system did not link to the supraglacial pond chain, but was routed 436 

to the surface closer to the terminus, suggesting that deep englacial to shallow-englacial-437 

supraglacial links are also possible. While this inefficient englacial system was characterised by 438 

slow transport velocities, previous observations of faster transit through Khumbu Glacier during 439 

the drainage of a tributary glacier’s supraglacial pond implies that this system can adapt rapidly to 440 

greater meltwater inputs (E. S. Miles et al., 2018a; Miles et al., 2019). 441 

 442 

Figure 7 – A relict englacial feature (~10 m in height) in the centre of an ice cliff on Khumbu Glacier, 

Nepal Himalaya, viewed: A) from upglacier, and B) from downglacier, exposed after a drainage 

event of the associated supraglacial pond. On the downglacier side, tens of metres of surface 

lowering has occurred and the previously englacial channel is now visible from the surface, 

meandering and incising for ~200 m further downglacier before flowing into a pond. 

 The efficiency of englacial meltwater transport has also been noted to change through the 443 

melt season at High Mountain Asian debris-covered glaciers. The influx of large volumes of 444 

monsoon precipitation during the summer months may result in the reopening of englacial (and 445 

subglacial) conduits, giving potential for considerable englacial ablation (Benn et al., 2012); for a 446 

surface pond of 500 m2, sufficient energy to melt ~2,600 m3 of temperate ice is released over a 447 

single monsoon season (Miles et al., 2016). This additional meltwater ultimately leads to channel 448 

erosion (Miles et al., 2017b; Sakai et al., 2000), which may be further enhanced by pond drainage 449 

events, as the warmer drained water (Section 2.1.2) conveys large amounts of energy, adding 450 

further to total glacier mass loss (Benn et al., 2012; Miles et al., 2016; Sakai et al., 2000; Thompson 451 

et al., 2016). 452 
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 For englacial channels located near the surface, rapid expansion can result in conduit 453 

collapse if the ceiling is not sufficiently supported. A relict conduit formed in this way exposes new 454 

bare ice faces, including ice cliffs, which may then contribute to more rapid lowering of the glacier 455 

surface (Section 2.1.1) (Benn et al., 2017; Kraaijenbrink et al., 2016b; Miles et al., 2016; Sakai et 456 

al., 2000; Thompson et al., 2016, 2012). Ablation rates and surface subsidence can be further 457 

enhanced if the new depression becomes flooded by that increased meltwater production, 458 

supplemented by upglacier inputs, providing new depressions for supraglacial ponds to form or 459 

expand and coalesce (Section 2.1.2) (Benn et al., 2012, 2001; Kirkbride, 1993; Kraaijenbrink et al., 460 

2016b; Miles et al., 2017a; Sakai et al., 2000; Thompson et al., 2012). 461 

Meltwater may be stored englacially within debris-covered glaciers, ranging from small 462 

shallow englacial reservoirs (Miles et al., 2019) to deeper and potentially larger reservoirs. The 463 

latter type has been inferred, for example, on Biafo Glacier, Karakoram Himalaya, at the start of 464 

the melt season before the drainage system was reactivated (Hewitt et al., 1989). Similarly, the 465 

release of meltwater stored within englacial conduits that became stressed during the transitional 466 

pre-monsoon season was partly attributed to the initiation of an outburst flood at Lhotse Glacier 467 

(Rounce et al., 2017). Other inferences have been made from supraglacial pond water-level 468 

measurements, such as at Imja Tsho, Nepal Himalaya, where the post-melt season lake level was 469 

constant despite lower air temperatures and lower precipitation, which would both serve to 470 

reduce meltwater production. This situation was explained by recharge from englacially- and 471 

subglacially-stored water progressively released over time (Thakuri et al., 2016). 472 

3.2 Englacial knowledge gaps 473 

Despite relatively extensive englacial glaciospeleological exploration, numerous knowledge gaps 474 

remain. For example, as at clean-ice glaciers, the thermal regime of the glacier exerts a significant 475 

control on the location and formation of an englacial drainage system, yet is unknown for almost 476 

all High Mountain Asian debris-covered glaciers. A recent study suggested that the lower area of 477 

Khumbu Glacier may primarily comprise temperate ice (K. E. Miles et al., 2018) allowing the 478 

existence of a deep englacial drainage system (Miles et al., 2019). However, this research was 479 

confined to a single glacier and its representativeness for other debris-covered glaciers in High 480 

Mountain Asia remains unknown. 481 

 Knowledge of the influence of supraglacial debris on englacial (and subglacial) drainage 482 

systems is incomplete. On Miage Glacier, the upglacier cleaner/thinly debris-covered ice was 483 

shown to produce an efficient subsurface drainage system to the terminus from the early melt 484 

season. In contrast, the heavily debris-covered lower ablation area restricted the development of 485 

supraglacial drainage, leading to an inefficient subsurface system that ultimately flowed into the 486 

upper glacier’s efficient system (Fyffe et al., 2019b). While there are similarities between the 487 

drainage system of Miage and the few High Mountain Asian debris-covered glaciers studied, the 488 

generally thicker debris layer and much greater prevalence of supraglacial ponds towards the 489 

terminus of the latter will additionally influence the hydrological system of such glaciers – an 490 

influence that remains unexplored. 491 
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 Links between the englacial system and other hydrological domains, such as supraglacial-492 

to-englacial transitions (through cut-and-closure channels, weaknesses in the ice and supraglacial 493 

pond drainages), would benefit from better understanding. Research into the shallow englacial 494 

system is needed, including how much of a distinction there is between shallow englacial and 495 

supraglacial systems, considering the rapidly changing surface topography that is typical of High 496 

Mountain Asian debris-covered glaciers. Finally, the potential for englacial meltwater storage has 497 

received very little attention. 498 

4. Subglacial hydrology 499 

4.1 Subglacial zone 500 

Knowledge of subglacial drainage at High Mountain Asian debris-covered glaciers is limited, 501 

although some evidence at least points to the existence of such systems. For example, 502 

glaciospeleological investigations indicated that the proglacial stream of a retreating tributary of 503 

Khumbu Glacier reached Khumbu’s bed (Benn, pers. comm., 2018). This channel was considered 504 

to follow the bed for some distance downglacier, similar to the perennial sub-marginal channels 505 

present at the edge of the neighbouring Ngozumpa Glacier (Benn et al., 2017; Miles et al., 2019; 506 

Thompson et al., 2016). However, this water did not persist subglacially, exiting the glacier 507 

supraglacially, likely due to the commonly high hydrological base-level of such glaciers routing the 508 

system upwards, possibly following the glacier’s cold-temperate transition surface (K. E. Miles et 509 

al., 2018; Miles et al., 2019). All other subglacial system information is inferred and discussed 510 

briefly below. 511 

The presence of meltwater at the bed has been inferred from surface velocity records from 512 

remote sensing (e.g. Quincey et al., 2009) or field-based GPS (e.g. Tsutaki et al., 2019), using 513 

inferences similar to those for clean-ice glaciers. Relatively rapid surface velocities in the central 514 

areas of glaciers have been recorded during summer months, when melting and rainfall delivery 515 

are greatest (Figure 8). Such velocity increases have been interpreted as indicative of basal motion 516 

lubricated by subglacial drainage (Benn et al., 2017; Copland et al., 2009; Kääb, 2005; Kodama and 517 

Mae, 1976; Kraaijenbrink et al., 2016a; Kumar and Dobhal, 1997; Mayer et al., 2006; Quincey et 518 

al., 2009). Similar remote sensing studies of surging debris-covered glaciers, particularly in the 519 

Karakoram, have inferred the presence of subglacial water, enabling rapid surface velocities during 520 

surge phases (Copland et al., 2009; Quincey et al., 2011; Steiner et al., 2018). For example, a 521 

maximum velocity of > 250 m a-1 was reported at South Skamri Glacier, Pakistan Karakoram 522 

(Copland et al., 2009). 523 

Evidence of channelised subglacial drainage has been provided by the presence of 524 

proglacial outlet channels at the terminus of debris-covered glaciers. During the melt season, these 525 

discharge large volumes of heavily debris-laden water, implying sediment entrainment during 526 

transport along the bed (Quincey et al., 2009). This has also been inferred from comparisons of 527 

supraglacial with proglacial solute concentrations on Lirung Glacier, where high proglacial Ca2+ and 528 

SO4
2- concentrations indicated prolonged contact with reactive debris, inferred to occur during 529 

subglacial drainage (Bhatt et al., 2007). Similarly, a perennially-active subglacial system on Dokriani 530 
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Glacier was inferred to be connected with the englacial system from proglacial electrical 531 

conductivity measurements (Hasnain and Thayyen, 1994). 532 

 Variations in subglacial system efficiency have been inferred from studies focusing on the 533 

proglacial stream. For example, bulk proglacial meltwater analysis showed the increasing 534 

efficiency of a channelised system at atmospheric pressure beneath Gangotri Glacier, Garhwal 535 

Himalaya, with greater meltwater inputs through the melt season (Pottakkal et al., 2014). This was 536 

also inferred from the increase in the net flux and size of subglacially-eroded suspended particles 537 

through the melt season, as the drainage system became progressively more efficient and 538 

interconnected (Haritashya et al., 2010). Dye tracing experiments at Dokriani Glacier indicated a 539 

transition from distributed to channelised drainage through the melt season (Hasnain et al., 2001). 540 

On a diurnal scale, Kumar et al. (2009) found that the total ion concentration of proglacial 541 

meltwater at Gangotri Glacier increased from the afternoon onwards, interpreted as an enhanced 542 

subglacial component due to the englacial system developing through the day and transporting a 543 

greater proportion of supraglacial meltwater to the solute-rich glacier bed. Finally, substantial 544 

subglacial meltwater storage at debris-covered Lirung Glacier was inferred from its lower diurnal 545 

discharge variability relative to nearby debris-free Khimsung Glacier, Nepal Himalaya (Wilson et 546 

al., 2016). 547 

 548 

Figure 8 – Surface velocity maps of Lirung Glacier, Nepal Himalaya, during summer (left) and winter 

(right), with three transverse velocity profiles (A-C) at the locations marked, from Kraaijenbrink et 

al. (2016b) available under a Creative Commons Attribution 4.0 License. 

4.2 Subglacial knowledge gaps 549 

Very little is known about the subglacial drainage of High Mountain Asian debris-covered glaciers, 550 

largely due to the difficulty in accessing these systems. Furthermore, many debris-covered glaciers 551 
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in High Mountain Asia terminate in lakes (Section 5.1.1), which increases the likelihood of some 552 

form of subglacial drainage system but reduces the likelihood of that system being channelised. 553 

Such lakes also severely hamper direct access to any outflow channels that might be present. 554 

Assuming the existence of such channels, it is entirely unknown whether subglacial networks flow 555 

directly into proglacial ponds at the bed, are routed to the surface upglacier and flow in 556 

supraglacially (similar to the pathway of some englacial drainage at Ngozumpa Glacier (Benn et al., 557 

2017)), or are partially/wholly lost to groundwater. Additionally, the existence of base-level 558 

englacial streams and a perched water table are highly likely to complicate the detection of, and 559 

distinction between, englacial and subglacial systems, at least approaching the terminus. For 560 

example, towards the terminus of Khumbu Glacier, it has been inferred that the high local base-561 

level results in the uprouting of the subglacial/deep englacial drainage system to the surface, yet, 562 

as the ice here is temperate, some meltwater would nonetheless be expected at the bed (K. E. 563 

Miles et al., 2018; Miles et al., 2019). However, basal ice temperatures and conditions for almost 564 

all other High Mountain Asian debris-covered glaciers are entirely unknown. 565 

Transitions between the englacial and subglacial system are important to understand, as 566 

are discovering and tracking lost meltwater components – lost potentially to groundwater, to 567 

short- or long-term storage within the glacier, or to evaporation from the terminal moraine. The 568 

influence of the supraglacial debris cover on subglacial systems should also be addressed, if 569 

extensive subglacial drainage environments are discovered. 570 

5. Proglacial hydrology 571 

5.1 Proglacial zone 572 

5.1.1 Proglacial lakes 573 

One of the most distinctive characteristics of the proglacial zone of High Mountain Asian debris-574 

covered glaciers is the frequent presence of a proglacial lake (Figure 9), which are far less common 575 

at equivalent clean-ice glaciers. These lakes form by a continuation of the processes of glacier 576 

thinning and supraglacial pond growth (Section 2.1.2) facilitated by the deposition of sufficient 577 

debris by debris-covered glaciers to create high, arcuate terminal moraines. Here, perched 578 

supraglacial ponds expand both downwards, eventually cutting to base-level, and laterally, often 579 

eventually coalescing to produce one large lake above and over the terminus (Basnett et al., 2013; 580 

Kattelmann, 2003; Mertes et al., 2016; Röhl, 2008; Watanabe et al., 2009). Although less common, 581 

base-level lakes that penetrate the full glacier thickness can form farther upglacier and expand 582 

downglacier through stagnant terminus ice, for example Imja Tsho on Imja Glacier, Nepal Himalaya 583 

(Figure 9) (Watanabe et al., 2009). The exact location of such a proglacial lake may be determined 584 

by the location of shallow englacial conduits that provide pre-existing lines of weakness as the 585 

perched ponds grow (Benn et al., 2017; Thompson et al., 2012). Proglacial lakes will therefore 586 

determine the hydrological base-level of the glacier, and are often dammed by the terminal 587 

moraine (Thompson et al., 2012). 588 
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 589 

Figure 9 – Proglacial lake (Imja Tsho) with a frozen and snow-covered surface at Imja Glacier, Nepal 

Himalaya. A) full length of Imja Tsho (~2.7 km in October 2018), looking upstream towards the 

calving front of Imja Glacier. B) detached (stagnant) glacier ice that dams the lake. The black star 

and arrow in B) show the location and direction A) was taken in. 

The formation of moraine-dammed proglacial lakes represents a final stage in the surface 590 

lowering and overall mass loss of debris-covered glaciers. Benn et al. (2012) defined three stages 591 

in the development of debris-covered glaciers: in regime one, all parts of the glacier are 592 

dynamically active; in regime two, surface lowering has begun and ice velocities decrease; in 593 

regime three, glaciers are completely stagnant and rapid recession may occur. The formation of a 594 

base-level lake indicates that a glacier has entered this third regime, and rapid recession may then 595 

occur through further expansion of that proglacial lake (Benn et al., 2012). An increasing number 596 

of proglacial lakes of increasing size have been observed in recent decades across the Hindu Kush 597 

Himalaya (Gardelle et al., 2011; Haritashya et al., 2018b; Thompson et al., 2012). The pattern of 598 

proglacial lake formation varies across the region, with glacial lake area in the western Himalaya 599 

decreasing 30–50% from 1990–2009 compared to an increase of 20–65% towards the east, where 600 

lakes are already more prevalent (Gardelle et al., 2011; Maharjan et al., 2018). This pattern at least 601 

partly reflects greater glacier recession in the west over this period (Gardelle et al., 2011). 602 

Proglacial lakes continue to expand through similar mechanisms to supraglacial ponds 603 

(Section 2.1.2 above) until they are limited by substrate, enhancing glacial mass loss and thus 604 

meltwater production where the lake is underlain or dammed by ice (Carrivick and Tweed, 2013; 605 

Röhl, 2008). Initial growth occurs through subaqueous melting and subaerial ice-face melting, 606 

causing both deepening and lateral expansion. However, once triggered, calving becomes the 607 

dominant method of subsequent lake growth (Röhl, 2008; Thompson et al., 2012). Calving into a 608 

proglacial lake progresses from notch development and roof collapse to large-scale, full-height 609 

slab calving enabled by the lake deepening to the glacier bed (Kirkbride and Warren, 1997; 610 

Thompson et al., 2012). The water depth may then be sufficient to trigger extending flow in the 611 

now-unsupported ice cliff, increasing flow velocities and weakening the ice through crevasse 612 

formation and dynamically-induced thinning (Kirkbride and Warren, 1999; Thompson et al., 2012; 613 

Tsutaki et al., 2019). This can result in rapid and potentially unstable calving, substantially 614 

increasing glacier mass loss, as has been observed during several kilometres of such retreat at 615 
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Tasman Glacier, New Zealand (Kirkbride and Warren, 1999) and modelled for lake- and land-616 

terminating glaciers in the Bhutan Himalaya (Tsutaki et al., 2019). Upglacier expansion of the lake 617 

(Watanabe et al., 2009) may have implications for the glacier’s drainage system, such as by earlier 618 

interruption of meltwater routing (Carrivick and Tweed, 2013). 619 

Very large proglacial lakes can alter a glacier’s microclimate due to a lake’s lower albedo 620 

and higher thermal heat capacity relative to the surrounding ice and soil, producing locally cooler 621 

summer air temperatures and warmer autumn temperatures (Carrivick and Tweed, 2013). This can 622 

slow local summer ice ablation and consequently reduce the amount of meltwater being produced 623 

and transported through the glacier, with implications for the development of englacial and 624 

subglacial drainage systems. If a moraine-dammed proglacial lake is present then the 625 

overwhelming majority of water transported through a debris-covered glacier is likely to pass 626 

through it (Benn et al., 2017). This has implications for drainage through the glacier and for the 627 

potential occurrence of glacial lake outburst floods (GLOFs). 628 

5.1.2 Proglacial streams 629 

Proglacial runoff from debris-covered glaciers can form a significant proportion of the discharge of 630 

large rivers downstream, particularly in High Mountain Asia: the Indus, Dudh Koshi, Ganges and 631 

Brahmaputra rivers all stem from glacial meltwaters (Pritchard, 2019; Ragettli et al., 2015; Wilson 632 

et al., 2016). In particular, glacial runoff buffers both seasonal (Bolch et al., 2019; Pritchard, 2019) 633 

and annual (Pohl et al., 2017) water shortages. Loss of glacier volumes due to longer, warmer melt 634 

seasons and decreased snow accumulation could result in much reduced water availability, greatly 635 

influencing downstream communities and ecology (Bolch et al., 2019; Pohl et al., 2017; Pritchard, 636 

2019). 637 

 Proglacial discharge measurements, estimates and models have been run across High 638 

Mountain Asia, such as on individual glaciers in Nepal (Braun et al., 1993; Fujita and Sakai, 2014; 639 

Ragettli et al., 2015; Rana et al., 1997; Savéan et al., 2015; Soncini et al., 2016; Tangborn and Rana, 640 

2000), Tibet (Kehrwald et al., 2008), the Tien Shan (Caiping and Yongjian, 2009; Han et al., 2010; 641 

Sorg et al., 2012), India (Hasnain, 1999, 1996; Khan et al., 2017; Singh et al., 2005, 1995; Singh and 642 

Bengtsson, 2004; Thayyen and Gergan, 2010), and for multiple catchments and entire regions 643 

(Winiger et al., 2005). However, of the studies listed above, five measured discharge for a year or 644 

less; three have 2–3 years of measurements; and only one has 6 years of measurements; the rest 645 

use modelling to obtain estimates of proglacial discharge. 646 

The presence of surface debris can have a notable effect on the proglacial discharge of a 647 

debris-covered glacier, resulting in a proglacial hydrograph that is different from that of a clean-648 

ice glacier. While no such comparison has been made for a High Mountain Asian debris-covered 649 

glacier, an example is shown from the debris-covered Dome Glacier, Canadian Rockies (Figure 10) 650 

(Mattson, 2000). Here, discharge was muted both diurnally and through the ablation season 651 

compared to the neighbouring clean-ice Athabasca Glacier (Figure 10), producing an annual 652 

variance in volumetric discharge of 1% compared to 24%, respectively. This is due partly to the 653 

suppression of surface melt by a debris cover (Section 2.1.1), and partly to the lags that are induced 654 

as a result of the debris layer – the additional time to conduct heat through the debris and the 655 

warmer local air temperatures due to the warming debris introduces a delay. Thus, peak melt can 656 
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occur up to several hours after the maximum radiation receipt at the debris surface (Carenzo et 657 

al., 2016; Conway and Rasmussen, 2000; Evatt et al., 2015), and exceptionally recorded as being 658 

up to 24 hours later for debris layers > 0.85 m thick (Fyffe et al., 2014). This lag in diurnal peak melt 659 

is thus reflected in the timing of the highest stream flow, producing a later and less pronounced 660 

peak in the diurnal pattern of a debris-covered glacier’s proglacial stream (Fyffe et al., 2019a, 661 

2014). 662 

  663 

Figure 10 – Hydrographs of proglacial discharge of the clean-ice Athabasca Glacier and the 

adjacent debris-covered Dome Glacier, Canadian Rockies, over the ablation months of July and 

August 1994 and 1995. Figure redrawn from Mattson (2000). 

Lags in proglacial discharge from debris-covered glaciers may also be caused by the 664 

temporary storage of water within the surface debris layer, for example, during rainfall events. 665 

This may influence subglacial and proglacial discharge by delaying and buffering water transfer at 666 

the surface, potentially affecting basal water pressures and minimising peaks in proglacial 667 

discharge (Brock et al., 2010). However, in the Himalaya, the monsoon precipitation is thought to 668 

exert only a weak control on the proglacial discharge hydrograph of glaciers unless the intensity is 669 

> ~20 mm d-1, which occurred on 20% of rainfall days during four years of monsoon measurements 670 

on Dokriani Glacier (Thayyen et al., 2005). Early in the melt season, meltwater is also stored within 671 

the snowpack of debris-covered glaciers, providing a further delay in the transport of meltwater 672 

from the surface into the subsurface drainage system (Singh et al., 2006b). However, in the last 673 

two decades the amount of snowfall accumulation has decreased across the Himalaya, and is 674 

projected to decrease a further 20–40% by 2100 (Salerno et al., 2015; Viste and Sorteberg, 2015) 675 

which is likely to reduce this buffer and influence the future proglacial hydrograph pattern of 676 

debris-covered glaciers.  677 
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Groundwater storage within high-elevation glacial catchments has been inferred to 678 

interact with proglacial (and subglacial) stream networks, affecting the discharge patterns of the 679 

streams due to additional water storage and subsequent release (Gremaud et al., 2009; Smart, 680 

1996, 1988). For example, a ~45 day lag between precipitation and discharge was observed for 12 681 

glacierised and non-glacierised Himalayan catchments, indicating storage of up to two-thirds of 682 

the river discharge in a groundwater aquifer system before the monsoon, greatly affecting the 683 

annual discharge pattern (Andermann et al., 2012c). This has similarly been shown in much lower 684 

river suspended sediment concentrations measured post-monsoon, having been diluted as 685 

groundwater begins to be released (Andermann et al., 2012b, 2012a). Comparable processes may 686 

occur beneath the glaciers themselves, for example, at Khumbu Glacier in the pre-monsoon 687 

season, where more meltwater entered the glacier’s subsurface drainage system than exited the 688 

glacier at the terminus (Miles et al., 2019). Indeed, in the Jade Dragon Snow Mountain region of 689 

southwest China, 29% of the glacier meltwater was calculated to be stored in a karst aquifer (Zeng 690 

et al., 2015). Groundwater sinks of subglacial meltwater can therefore comprise a significant 691 

portion of the total glacial output, potentially resulting in underestimation of glacial ablation. 692 

A range of models has been used to predict future runoff from debris-covered glaciers using 693 

various future climatic scenarios for a single glacier basin (Ragettli et al., 2015; Singh et al., 2008, 694 

2006a; Zhang et al., 2007), and multiple glacier basins (Immerzeel et al., 2012; Lowe and Collins, 695 

2001) up to a regional scale (Rees and Collins, 2006; Shea and Immerzeel, 2016). Currently, a large 696 

proportion of debris-covered glaciers worldwide, particularly in the Himalaya, have negative mass 697 

balances (Bolch et al., 2012, 2011; Kääb et al., 2012; Scherler et al., 2011). A recently observed 698 

decline in Himalayan snowfall will contribute further to the decreasing mass of these glaciers by 699 

both reducing accumulation rates and exposing the glacier surface to atmospheric melting earlier 700 

in the melt season (Salerno et al., 2015). Glacier contributions to catchment discharge in many 701 

regions have been predicted to increase over the next few decades, but as the glaciers continue 702 

to shrink, peak water will be surpassed and this proportion will begin to reduce substantially due 703 

to the significantly smaller volume of remaining glaciers (Barnett et al., 2005; Bolch, 2017; Bolch 704 

et al., 2012; Huss, 2011; Huss and Hock, 2018; Lutz et al., 2014). Shea and Immerzeel (2016) 705 

estimated that most basins will have declining glacier contributions to streamflow by 2100, and 706 

water shortage may then be a concern for many populated areas in the Karakoram, while reduced 707 

peak flows may represent a greater concern in the eastern Himalaya. 708 

5.2 Proglacial knowledge gaps 709 

Few glacial discharge monitoring stations have been in place for longer than a decade in High 710 

Mountain Asia, leaving current and future discharge volumes unknown for most debris-covered 711 

glaciers. The volume of potential glacial meltwater losses to groundwater, and whether these re-712 

join the glacial system (subglacially, proglacially or further downstream), are also poorly 713 

understood. 714 

 Changes in proglacial hydrology are hampered by the absence of predictions of the future 715 

geometric development of High Mountain Asian debris-covered glaciers. For example, if surface 716 

lowering remains the dominant response to climate warming, glaciers may melt entirely and/or 717 

form large proglacial lakes that then dominate mass loss processes. Conversely, the inverted mass 718 
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balance regime could result in a separation of the stagnant, heavily debris-covered lower glacier 719 

from the upper, less debris-covered regions, potentially providing ideal conditions for a base-level 720 

lake to form in between, dammed by the detached debris-covered ice.  721 

6. Conclusions and future research priorities 722 

The previous sections have outlined the state of knowledge and remaining knowledge gaps 723 

regarding the hydrological systems of debris-covered glaciers in High Mountain Asia. Based on this 724 

review, we conclude by proposing six hydrological research areas that we consider to be key 725 

priorities for future work. As the relative importance of each of these knowledge gaps also remains 726 

unknown, data collection should prioritise those parameters most inhibiting robust predictions of 727 

changes in glacier dynamics, geometry, mass balance and future water supply. It is also worth 728 

noting that a recurring theme spanning all of these topics and all parts of the hydrological system 729 

is the general lack of data available to characterise seasonal variations in flow routing and 730 

discharge. This is perhaps most relevant in the central and eastern parts of High Mountain Asia 731 

where the influence of the monsoon is strong; measurements during this time period would 732 

therefore be particularly valuable. 733 

I. Elucidating glacier-wide water balance 734 

Given the importance of glaciers as a source of water in high mountain regions, the robust 735 

quantification of water inputs into, and outputs from, the glacier system is paramount. Detailed 736 

hydrological field observations are required, both temporally and spatially extensive, to better 737 

constrain numerical model parameterisations. Water inputs should be simulated and examined 738 

independently of glacier-fed river discharge, with attention to process parameterisation to 739 

facilitate improvements in efforts to close the water balance. Water storage is also an important 740 

component of the water balance, discussed further in research priority IV below. 741 

 The limited measurement to date of precipitation across High Mountain Asia, particularly 742 

snow and rainfall partitioning, synoptic and seasonal-to-annual variations in precipitation 743 

gradients and rainfall fraction, should be assessed by establishing a network of robust automatic 744 

weather stations over a range of surface types and elevations. Glacier surface elevation change 745 

should be measured simultaneously by, for example, ultrasonic rangers to allow for melt and mass 746 

balance model calibration and validation. Precipitation gradients could be further addressed with 747 

dedicated accumulation measurements. 748 

 The temporary but long-term ‘loss’ of meltwater within the system, particularly the 749 

refreezing of meltwater within firn in the accumulation area but also refreezing within crevasses 750 

or the body of the glacier, requires better characterisation. Empirical data collected from snow pits 751 

and shallow ice cores would be sufficient to quantify these ‘losses’ over short timescales, 752 

complemented by longer-term records derived from deeper coring or visual examination of 753 

layering present in borehole walls. In the accumulation area, these methods would provide the 754 

additional bonus of historical records of local accumulation. 755 
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 Accurate assessment of the amount of water lost through evaporation and sublimation can 756 

only be made through detailed examination of eddy covariance systems coupled with detailed 757 

meteorological observations. Future research should examine these processes not only from 758 

snow-covered areas, recently shown to be a key source of water loss (Stigter et al., 2018), but also 759 

over the accumulation and debris-covered ablation areas and the terminal and lower lateral 760 

moraines, which may equally contribute to evaporation and sublimation losses. Quantifying these 761 

moisture fluxes may be possible either by direct field measurement or by remote sensing for 762 

longer timescales. 763 

 Other priorities include quantifying losses to groundwater and better evaluating the role 764 

of debris in driving the observed hysteretic behaviour of downstream annual hydrographs. Isotopic 765 

analyses may shed light on water sources and variations therein, while catchment-scale dye or gas 766 

tracing studies tied closely to continuous measurements of discharge at various locations on and 767 

beyond the glacier could help to address the volumes of water delivered to groundwater systems 768 

(and if so, the proportion that re-joins the proglacial stream further downvalley). 769 

II. Understanding hydrological processes influencing glacier mass balance 770 

The efficiency of rainfall and meltwater routing from higher elevation locations should be 771 

evaluated due to its potential impact on glacier accumulation and mass balance by englacial 772 

melting. More detailed assessments of specific loci of storage or release and their timescales 773 

should be determined through direct field-based monitoring, perhaps allied to experimentation 774 

and melt model development. 775 

 Heat fluxes driven by meltwater conveyance to the englacial and subglacial environments 776 

of debris-covered glaciers (i.e. cryo-hydrologic warming (Phillips et al., 2010)), could be explored 777 

using numerical models guided by field-based measurements of supraglacial water fluxes and 778 

temperatures, along with borehole-based investigations of englacial temperature fields. Similarly, 779 

vertical heat transfer from warm supraglacial pond water to pond basins deserves attention. Pond 780 

expansion rates are partially controlled by the thermal conductivity and thickness of bottom 781 

sediments, necessitating measurements of temperature profiles and sediment cores, respectively. 782 

Future investigations may find value in focusing on systematic field-based bathymetry, pond coring 783 

and measurements of pond water and basal sediment temperatures at multiple depths, perhaps 784 

combined with the development of numerical models of heat transfer by such mechanisms. 785 

 There is a need for accurate knowledge of spatial variations in surface debris thicknesses 786 

and the influence of meltwater at the ice-debris interface, while models need to be able to 787 

simulate vapour fluxes through the debris. Thus, meteorological stations are needed to measure 788 

water content or relative humidity. Debris thickness maps and the existence of water could be 789 

reconstructed by refining algorithms from remotely-sensed data (both thermal imagery and 790 

surface lowering) or on the basis of field measurements by hand and/or high-frequency ground-791 

penetrating radar. 792 

 Improved understanding of meltwater routing, particularly supraglacial and englacial 793 

drainage pathways, is necessary due to their strong association with the formation of supraglacial 794 
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ice cliffs, which account for disproportionate amounts of surface melt. Investigations should map 795 

current stream coverage and changes in surface topography and hydrology (for example, the 796 

collapse and surface exposure of shallow englacial systems), either in the field or remotely using 797 

satellite images where streams are large enough, supplemented by methods such as dye tracing 798 

for shallow englacial systems beneath the surface. 799 

III. Identifying the influence of drainage and meltwater storage on ice motion 800 

Meltwater presence at the bed or the terminus of debris-covered glaciers can affect the velocity 801 

of both land- and lake-terminating glaciers. A better understanding and inclusion of subglacial 802 

hydrological processes into models of glacier dynamics will improve future simulations of ice flow 803 

and glacier evolution. Within subglacial hydrological processes, better quantification is needed of 804 

the inputs to the system (i.e. coupling meteorological data with melt modelling), the volume of 805 

water present at the bed (for example, by monitoring subglacial water pressure in deep borehole 806 

arrays) and the volumes of water lost from the system (i.e. by calculating the glacier’s water 807 

balance). 808 

 Ice motion should be separated into its constituent components (i.e. ice deformation and 809 

basal sliding), with particular focus on measurements acquired during the melt season and on an 810 

individual glacier scale. A recent study argued on the basis of remote sensing that basal water 811 

pressure, and consequently sliding, is necessary to model seasonal and inter-glacier variability 812 

accurately (Dehecq et al., 2019). Therefore, glacier surface velocities should be measured, for 813 

example through field-based GPS or remote sensing studies. The recently available and constantly 814 

growing archive of rapid-repeat, high-resolution optical and radar remotely-sensed imagery will 815 

help future work to improve knowledge of seasonal velocities. Deeper ice velocities and strain can 816 

be recorded within boreholes, ideally to the glacier bed. Such boreholes can also allow 817 

measurements of the glacier thermal regime and bed substrate, while improved mapping of glacier 818 

bed topography across High Mountain Asia is necessary to constrain ice thicknesses. Finally, in 819 

order to assess the influence of calving from a proglacial lake, the above measurements should be 820 

collected in comparative studies between lake- and land-terminating High Mountain Asian 821 

glaciers. 822 

IV. Characterising seasonal changes in hydrology 823 

Targeted research is needed to measure seasonal changes in the hydrological storage components 824 

absent from clean-ice glaciers, the improved understanding of which is needed to represent the 825 

drainage system of debris-covered glaciers appropriately in hydrological models. For example, 826 

seasonal changes in the area and volume of perched supraglacial ponds could be achieved at the 827 

glacier scale using rapid-repeat optical satellite imagery to maximise likelihood of observation 828 

and/or by leveraging fine-resolution synthetic aperture radar satellite data, which is insensitive to 829 

cloud cover. Improved process-based understanding should also be made with detailed field-based 830 

studies. Inferences of seasonal storage and release from subsurface reservoirs exist, but the 831 

processes and timescales on which these occur require quantification. 832 
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 Detailed examination of debris water content (including the seasonal thaw dynamics of the 833 

debris layer, influencing the debris hydraulic transmissivity) can be made using soil moisture 834 

sensors at depth intervals, while through-debris transmissivity and snowpack storage/release 835 

could be assessed with dye tracing experiments. These processes will aide better understanding 836 

of the role of debris, snow and firn in transmitting meltwater to supraglacial streams and beyond. 837 

 Glacier drainage systems respond dynamically to the seasonal production of meltwater; 838 

this is manifest at clean-ice glaciers when snowline retreat stimulates the progressive upglacier 839 

transition from inefficient to efficient drainage. Research is needed at High Mountain Asian debris-840 

covered glaciers to evaluate the distinctive seasonal dynamics due to the additional storage 841 

components and distinct melt generation patterns, for example, through dye tracing, 842 

glaciospeleology or bulk proglacial meltwater analysis. Such studies would also aide a better 843 

general understanding of the nature and form of englacial and subglacial drainage. 844 

 Finally, the seasonal structure and dynamics of debris-covered glacier hydrological systems 845 

must be understood in the context of melt and discharge. An integrated effort to assess seasonal 846 

changes in debris-covered glacier hydrology should be coupled with melt season meteorological 847 

and ablation measurements, as well as development of a continuous discharge record through 848 

proglacial discharge monitoring stations. 849 

V. Evaluating hydrological hazards 850 

The growth in both number and size of supraglacial ponds is one of the clearest visual signs of 851 

debris-covered glacier decay. Research should focus on predicting future lake locations and the 852 

timing of formation, possibly through modelling by identifying overdeepenings. Moraine-853 

impounded sites (such as where base-level terminal lakes have been observed to develop) are 854 

more complex – investigations into the drainage capability (evidence of free-drainage as opposed 855 

to impoundment) combined with remotely-sensed observations of expanding, coalescing 856 

supraglacial pond chains may provide a suitable starting point. Improved understanding of 857 

supraglacial pond expansion rates, discussed in research priority II, is also crucial, while accurately 858 

modelling the longevity of ice cliffs could be improved with high-resolution DEMs (obtained, for 859 

example, through Structure-from-Motion) coupled with simple numerical modelling. 860 

 Assessments of how ‘dangerous’ a lake is (potential of a catastrophic GLOF occurring) often 861 

disagree (e.g. Haritashya et al., 2018a; Maharjan et al., 2018; Rounce et al., 2016), and recent 862 

events such as the 2015 Gorkha earthquake suggest that many glacial lakes may be more stable 863 

than hitherto considered. Misconceptions still exist within these studies, with many assuming the 864 

lake area and rate of lake expansion to be critical to the hazard level, while in practice, a large 865 

number of factors likely contribute, many of which may be specific to each glacial lake. Traditional 866 

magnitude-frequency relationships are no longer relevant as the current state of mountain 867 

environments is beyond historic precedence. Therefore, alternative forms of event prediction are 868 

needed, such as site-specific scenario development depending on different event magnitudes. 869 

 Field-based measurements should be made on an individual glacial lake basis and the 870 

downstream area in order to determine the potential hazard and risk of a GLOF. Knowledge of 871 
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moraine dam composition (including sediment type and the presence or absence of an ice core) 872 

and the existence of seepage or piping is needed, and could be addressed by radar, seismics, 873 

drilling or coring into moraines to characterise soil strength and composition. Flood hydrographs 874 

could be better constrained by geotechnical modelling to understand dam failure mechanisms. 875 

While predicting the timing of an outburst flood is near impossible, particularly those originating 876 

from englacial and subglacial sources, characterising subsurface drainage and routing and seasonal 877 

release of stored water may help to identify likely timing and locations of sudden outbursts 878 

(research priority IV). Cascading hydrological hazards should also be addressed, which may be 879 

triggered by very high-elevation and often hanging glaciers that are seldom studied. The thermal 880 

conditions and hydrology of these glaciers should be investigated, for example, by hot-water 881 

drilling and installing temperature sensors, along with dye tracing and discharge monitoring. 882 

VI. Predicting future hydrological changes over short and long timescales 883 

Understanding the timescales over which debris-covered glaciers will lose mass, thus influencing 884 

the amount of meltwater generated and subsequent hydrological processes, depends on 885 

developing a new generation of glacier models that capture both the complex properties of debris 886 

transport by ice and the key processes affecting sub-debris mass balance. Numerical model 887 

predictions need to integrate opposing processes on different scales, for example, encompassing 888 

the glacier-scale ‘debris-cover anomaly’ (recently observed, but unexplained, debris-covered 889 

glacier mass loss rates that are similar to those of clean-ice glaciers (Gardelle et al., 2012; 890 

Pellicciotti et al., 2015)) whilst maintaining the overall insulation effect of the debris-covered area. 891 

Additionally, the relationship between debris transport, ice flow and mass balance is an important 892 

feedback that needs to be included in glacier models to predict debris-covered glacier change over 893 

timescales longer than a few decades (Rowan et al., 2015). 894 

Field and remote sensing data are required at the correct scale and resolution for numerical 895 

models to evaluate their output and provide accurate predictions of glacier mass change. 896 

Subsequently, these observations of mass balance and ice flow processes need to be 897 

parameterised to allow simulations of regional glacier change that do not neglect the influence of 898 

important small-scale processes, and that also contain enough process-based understanding to 899 

predict how these controls will evolve over time. Understanding the importance of local-scale 900 

processes for the long-term evolution of debris-covered glaciers compared to climatic controls on 901 

glacier mass and dynamics is crucial. 902 

As debris-covered glaciers shrink, primarily by surface lowering, the debris cover will 903 

thicken and increase insulation, reducing ablation over a potentially greater area of the terminus. 904 

Debris-covered glaciers are therefore already larger and likely to decline slower than equivalent 905 

clean-ice glaciers in the same climatic regime; as a result, their meltwater will temporarily become 906 

a relatively larger component of the annual hydrological budget as clean-ice glaciers vanish first 907 

over the next two centuries. Accurate dynamic glacier models are therefore needed to predict 908 

changing hydrographs and contributions to downstream water supplies, particularly after peak 909 

water has passed. Supraglacial ponds play an important role in modulating the proglacial 910 

hydrograph and, in the long-term, may provide a natural water supply reservoir during periods of 911 
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drought. However, sedimentation rates within ponds, and therefore their likely longevity, should 912 

be quantified by hydrological stations both within and at the outlet of larger ponds. 913 

The acceleration of debris-covered glacier mass loss and decrease in glacial runoff as peak 914 

water passes may lead to proglacial streams becoming proportionately more sediment-laden. This 915 

may be enhanced during the melt season, particularly in regions of High Mountain Asia affected 916 

by heavy monsoon rains which can enhance supraglacial debris weathering (Collins, 1999). In 917 

addition, the ice within larger debris-covered glaciers is older than in smaller glaciers and will thus 918 

contain a longer legacy of environmental contaminants. Ultimately, this may result in higher 919 

volumes of sediment and potentially pollutants being released through the proglacial stream into 920 

water supplies, particularly during the melt season. Discharge and water quality should therefore 921 

be monitored with hydrological monitoring stations on proglacial streams across High Mountain 922 

Asia. Combined with modelling efforts and improved hydrological understanding, this will allow 923 

mitigation strategies to be planned for the vast downstream populations that depend on glacial 924 

meltwater. 925 
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