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We consider the fundamental protocol of dense coding of classical information assuming that noise affects

both the forward and backward communication lines between Alice and Bob. Assuming that this noise is

described by the same quantum channel, we define its dense coding capacity by optimizing over all adaptive

strategies that Alice can implement, while Bob encodes the information by means of Pauli operators. Exploiting

techniques of channel simulation and protocol stretching, we are able to establish the dense coding capacity of

Pauli channels in arbitrary finite dimension, with simple formulas for depolarizing and dephasing qubit channels.
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I. INTRODUCTION

Dense coding, also known as superdense coding, has been

one of the first examples of how quantum entanglement can

boost information and communication technology [1]. Now

recognized as an essential resource for quantum communica-

tion and information processing [2–5], quantum entanglement

describes correlations outside the classical realm and it is

at the core of the realization of many methods, including

quantum teleportation [6,7], quantum cryptography [8–10],

boson sampling [11,12], and random circuit sampling [13,14].

The dense coding protocol allows two parties to transmit

classical information encoded on quantum systems with the

aid of shared entanglement. By employing a bipartite entan-

gled state, it is possible to encode 2 log2 d bits of classical

information in a d-dimensional system, thus overcoming the

upper bound log2 d on the unassisted classical capacity.

In ideal conditions, a dense coding scheme exploits a

noiseless quantum channel between Alice and Bob. Through

this quantum channel, Alice sends to Bob part B of a bipartite

entangled state σAB. Once received by Bob, system B is subject

to a Pauli operator Ux with probability Px. The encoded system

is sent back to Alice through the second use of the noiseless

quantum channel. At the output, Alice implements a joint

quantum measurement on A and B to retrieve the classical

information. In this case, the capacity C(σAB) is [15,16]

C(σAB) = max{log2 d, log2 d + S(σB) − S(σAB)}, (1)

where σB = TrA σAB and S(σ ) := − Tr(σ log2 σ ) is the von

Neumann entropy [17]. For a maximally entangled resource

state σAB one has C = 2 log2 d .
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In a realistic scenario, noise must be explicitly included in

the protocol. For instance, noise can affect the transmission

of quantum systems from the sender (Bob) to the receiver

(Alice), after the entangled resource state has been perfectly

distributed. This is the typical scenario in the definition of

entanglement-assisted protocols whose capacity is known

[18,19]. More realistically, noise may also affect the distri-

bution itself of the resource state from Alice to Bob. This

scenario has been previously studied in Refs. [20–22] where

it has been called “two-sided” noisy dense coding but no

capacity has been established.

This is the aim of this paper where the two-sided protocol

is formulated in a general feedback-assisted fashion. Here

the round-trip transmission of the quantum systems between

Alice and Bob is interleaved by two adaptive quantum oper-

ations (QOs) performed by Alice, which are optimized and

updated on the basis of the previous rounds. At the same time,

Bob may also optimize his classical encoding strategy, i.e.,

the probability distribution of his Pauli encoders. Optimizing

over these protocols we define the dense coding capacity of

a quantum channel between Alice and Bob. We then use

simulation techniques [23–26] that allow us to simplify the

structure of the protocol and derive a single-letter upper bound

for this capacity. This quantity is explicitly computed for

a Pauli channel in arbitrary d dimension, with remarkably

simple formulas for qubit channels, such as the depolarizing

and the dephasing channel.

II. DENSE CODING PROTOCOL

Let us recall the expressions of Pauli operators in a d-

dimensional Hilbert space. On a computational basis {| j〉}, we

may define the two shift operators

X | j〉 = | j ⊕ 1〉, Z| j〉 = ω j | j〉, (2)

where ⊕ is modulo d addition and ω := exp(2iπ/d ). We may

then consider the d2 Pauli operators X lZm that, for simplicity,

we denote by Ux with collapsed index x = l, m. For d = 2,

2643-1564/2020/2(2)/023023(5) 023023-1 Published by the American Physical Society
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FIG. 1. Two-sided noisy dense coding over a quantum channel

E . Alice prepares locally the bipartite state σAA′ and sends system

A′ to Bob who performs the Pauli unitary encoding Ux and sends

the system back through the quantum channel. At the output Alice

performs a joint positive-valued operator measure (POVM) in order

to retrieve x. In an adaptive version of the protocol, Alice performs

quantum operations (QOs) on her input and output systems which

are generally updated and optimized round by round. These QOs

may also be conditioned by an extra assisting variable which is

communicated back by Bob.

these operators provide the standard qubit Pauli operators X ,

Y , Z plus the identity I . In the following we use the compact

notation Ux(ρ) := UxρU †
x .

Now consider the scheme depicted in Fig. 1 where the

communication line between Alice and Bob is affected by a

completely positive trace-preserving (CPTP) map E . Alice’s

resource state σAA′ is defined on a d × d-dimensional Hilbert

space. Part A′ is sent to Bob who encodes classical variable

X := {x, πx} by means of d2 Pauli operators Ux which are

chosen with probability πx. In this way, Bob generates the

state

σAB′ (x) := [IA ⊗ (Ux ◦ E )A′](σAA′ ), (3)

where I (ρ) := IρI† is the identity map. Once system B′

is sent back through the channel, Alice receives the output

system A′′ in the state ρAA′′ (x) := (IA ⊗ Ex )(σAA′ ) where we

have defined the encoding channel

Ex := E ◦ Ux ◦ E . (4)

In order to retrieve the value of x, Alice performs a joint

quantum measurement on A and A′′. Asymptotically (i.e., for

many repetitions of the protocol), the accessible information

of Alice’s output ensemble {πx, ρAA′′ (x)} is given by the

Holevo bound [27],

χ ({πx, ρAA′′ (x)}) = S

[

∑

x

πxρAA′′ (x)

]

−
∑

x

πxS[ρAA′′ (x)].

(5)

The one-shot dense coding capacity (1-DCC) of the channel

C
(1)
D (E ) is obtained by optimizing over Bob’s encoding vari-

FIG. 2. Adaptive dense coding protocol over the quantum chan-

nel E . Each encoding and round-trip transmission occurs between

two quantum operations (QOs) which are applied to Alice’s local

register of quantum systems (e.g., this register can be thought to

be part of a quantum computer). In the figure, we show the first

use of the protocol, where Alice picks a quantum system a′
1 from

her register, and she sends it to Bob through the noisy channel E .

Once the output b1 is received, Bob applies a local Pauli operator

Ux1
encoding letter x1 with probability πx1

. The encoded system b′
1 is

then sent back to Alice through the backward use of the channel E ,

with the output system a′′
1 becoming part of Alice’s local register.

able and Alice’s input source, i.e., we may write

C
(1)
D (E ) = max

σ,πx

χ [{πx, ρAA′′ (x)}]. (6)

III. ADAPTIVE DENSE CODING

Consider now dense coding over a quantum channel E

where Alice performs QOs in an adaptive fashion. Alice has

a quantum register a as in Fig. 2. This is an ensemble of

d-dimensional quantum systems that she can manipulate and

use for the quantum communication. At the beginning Alice

performs a QO Q0 on her register a in order to prepare it in

some initial state ρ0
a . She then selects one system a′

1 ∈ a and

sends it through the quantum channel E . Once Bob receives

the corresponding output system b1, he encodes the letter

x1 by applying a Pauli operator Ux1
with probability πx1

.

This procedure gives rise to the state ρ0
ab′

1
(x1). Bob sends the

system b′
1 backward to Alice through E . At the output, Alice

incorporates the received system a′′
1 in her local register which

is updated as aa′′
1 → a. Next, Alice performs an optimized

QO Q1 on the register with output state ρ1
a (x1). In the second

transmission Alice picks another system a′
2 ∈ a and she trans-

mits it to Bob who receives b2. Bob applies the second Pauli

operator Ux2
with probability πx2|x1

and sends the system back

to Alice who performs another optimized QO Q2 obtaining the

state ρ2
a (x1x2). After n uses, Alice’s output state will be ρn

a (xn)

where xi = x1x2 . . . xi is the encoded message with probability

πxi
= πxi|xi−1...x1

. . . πx2|x1
πx1

.

On average, Alice receives the ensemble {πxn
, ρn

a (xn)}

where the output state ρn
a (xn) depends on the encoded

classical information and the sequence of QOs Q :=

{Q1, Q2, . . . Qn}. Alice’s deferred measurement [2] will be

done on the final state. For large n, and optimizing the Holevo

information of the ensemble P over all the possible sequences

Q, we define the dense coding capacity (DCC) of the quantum

channel E as

CD(E ) := sup
Q

max
πxn

lim
n

n−1χ
[{

πxn
, ρn

a (xn)
}]

. (7)
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FIG. 3. Stretching of adaptive dense coding. (a) Replace the

round-trip process of Fig. 2 with a total x-depending channel Ex , fol-

lowing Eq. (4). (b) Now simulate the total channel Ex by teleporting

Ttele over the Choi matrix σEx
, i.e., we make use of Ttele(ρ ⊗ σEx

).

(c) Collapse the QOs and the simulation LOCC Ttele into a single QO

� so that the Choi matrix σEx
can be stretched out of the adaptive

operation. (d) Repeat for all the n uses, so as to collect an ensemble

of Choi matrices subject to a global QO �.

Note that this definition is more general than a regularized

version C∞
D (E ) of Eq. (6), where Alice prepares a large

multipartite input state, sends part of this state through n uses

of the round trip, and then performs a global measurement of

the total output. In fact, Eq. (7) assumes that Alice’s input can

also be updated round by round on the basis of feedback from

Bob [28].

IV. SINGLE-LETTER UPPER BOUND

We now exploit a number of ingredients from recent lit-

erature to derive a computable upper bound for the DCC.

Recall that, for any finite-dimensional quantum channel E ,

we may write the simulation E (ρ) = T (ρ ⊗ σ ), where T is

a trace-preserving LOCC and σ a resource state [23]. Fur-

thermore, suppose that the channel is covariant with respect

to Pauli operators so that, for any Pauli U , we may write

E ◦ U = U ′ ◦ E for some generally different Pauli U ′. In this

case the channel is Pauli covariant and we may write [23,25]

E (ρ) = Ttele(ρ ⊗ σE ), where Ttele is a teleportation LOCC and

σE is the channel’s Choi matrix, i.e., σE := IA ⊗ E (	AB) with

	AB being a maximally entangled state. Note that the Pauli

unitaries Ux are jointly Pauli covariant, i.e., we may certainly

write Ux ◦ U = U ′ ◦ Ux where U ′ is the same for any x (since a

Pauli operator either commutes or anticommutes with another

Pauli operator). Therefore, if E is Pauli covariant, we also have

that the encoding channel Ex is jointly Pauli covariant. We may

therefore write the channel simulation Ex(ρ) = Ttele(ρ ⊗ σEx
)

in terms of its Choi matrix.

σEx
:= IA ⊗ Ex(	AB). (8)

The next step is the stretching of the protocol as repre-

sented in Fig. 3 and explained in the figure caption. Thanks to

this procedure the output state can be decomposed in a tensor

product of Choi matrices up to a global QO �, i.e., we may

write

ρn
a (xn) = �

(

σ
⊗nx1

Ex1

⊗ σ
⊗nx2

Ex2

⊗ · · · ⊗ σ
⊗nxn

Exn

)

, (9)

where the nxi
is the number of xi occurrences in the message

xn. This is given by nxi
= nπxi

where πxi
=

∑

j 
=i πxn
is the

marginal probability. Thanks to Eq. (9) we can simplify the

Holevo quantity in Eq. (7). In fact, by using (⋆) the con-

tractivity under CPTP maps of the Holevo quantity, and (•)

the subadditivity of the von Neumann entropy S under tensor

products, we may write

χ
[{

πxn
, ρn

a (xn)
}]

(⋆)

� χ
({

πxn
,
⊗n

i=1σ
⊗nxi

Exi

})

= S

(

∑

xn

πxn

⊗

iσ
⊗nxi

Exi

)

−
∑

xn

πxn
S
(
⊗

iσ
⊗nxi

Exi

)

(•)

� nx1
S
(

∑

xn

πxn
σEx1

)

+ · · · + nxn
S

(

∑

xn

πxn
σExn

)

− nx1

∑

xn

πxn
S
(

σEx1

)

− · · · − nxn

∑

xn

πxn
S
(

σExn

)

� nS

(

∑

x

πxσEx

)

− n
∑

xπxS(σEx
)

= nχ ({πx, σEx
}), (10)

where πx is the marginal probability of a generic letter x and

the Choi matrix σEx
is defined in Eq. (8). Note that, in the

last inequality of Eq. (10), we also use the fact that a random

code [2,29] is known to achieve the Holevo bound for discrete

memoryless quantum channels [30,31].

By using Eq. (10) in the definition of Eq. (7), we may then

get rid of the supremum over Q and the asymptotic limit in

n. We may therefore write a single-letter upper bound for the

DCC of a Pauli-covariant channel E as

CD(E ) � max
πx

χ ({πx, σEx
}), (11)

where πx is the marginal probability distribution of Bob’s

encoding variable, and σEx
is the Choi matrix of the encoding

channel Ex in Eq. (4). Note that the upper bound in Eq. (11)

may be reached asymptotically by a nonadaptive protocol

where Alice prepares maximally entangled states 	AA′ and

sends A′ through the channel, while Bob applies independent

Pauli operators Ux with optimized probability πx. Therefore,

for a Pauli-covariant channel we conclude that

CD(E ) = C
(1)
D (E ) = max

πx

χ ({πx, σEx
}). (12)

Remarkably, no adaptiveness or regularization is needed to

achieve the best possible dense coding performance with a

Pauli-covariant channel.

023023-3
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Before we proceed, some observations are in order. First of

all, let us note that the condition of Pauli covariance allows us

to reduce the (adaptive) dense coding capacity of a quantum

channel E (Fig. 2) to the quantum reading capacity [32] of

a corresponding ensemble of encoding channels Ex := E ◦

Ux ◦ E [Fig. 3(a)]. This interesting connection is discussed in

more detail in Ref. [33]. Then, let us note that, in a more

general scenario, the forward channel from A′ to B and the

backward channel from B′ to A′′ (Fig. 1) may be described

by two different completely positive maps, say E1 and E2

respectively. We can easily extend Eq. (7) to define the dense

coding capacity of the composition E2 ◦ E1. Suppose now that

both E1 and E2 are Pauli covariant. Then, via Eq. (4), we

can define a new encoding channel E1,2
x := E2 ◦ Ux ◦ E1 and

repeat the above stretching technique to obtain a single letter

formula for CD(E2 ◦ E1) in terms of the Choi matrix σ
E

1,2
x

of

the encoding channel E1,2
x . This procedure extends Eq. (12) to

the formula CD(E2 ◦ E1) = maxπx
χ ({πx, σE

1,2
x

}).

V. DENSE CODING CAPACITY OF PAULI CHANNELS

The main result in Eq. (12) can be applied to any Pauli

channel at any finite dimension d. For any d � 2, a Pauli

channel takes the form

Ed (ρ) =

d−1
∑

k,r=0

pkr (X kZr )ρ(X kZr )†, (13)

where pkr is a probability distribution, and X and Z are the

d-dimensional shift operators in Eq. (2). For this channel, we

may easily write an explicit formula for its DCC capacity. In

evaluating the Holevo bound, we notice that von Neumann

entropy S(
∑

xπxσEd
x
) is maximized by the uniform probability

πx = 1/d2 and we can write S(
∑

xπxσEd
x
) = log2 d2. Then,

using the invariance of the entropy under unitary transforma-

tions, one has
∑

xπxS(σEd
x
) = S[IA ⊗ Ed (σEd )]. Therefore, for

the Holevo quantity in Eq. (12) we may write

CD(Ed ) = log2d2 − S[IA ⊗ Ed (σEd )]. (14)

As expected this is strictly less than the entanglement-assisted

classical capacity of the channel, given by [18,19]

CE (E ) = log2d2 − S(σEd ). (15)

Consider a qubit depolarizing channel, which is a Pauli

channel of the form

E2
depol(ρ) =

(

1 −
3

4
p

)

ρ +
p

4
(XρX + Y ρY + ZρZ ), (16)

for some probability p. Then, it is straightforward to

see that CD(E2
depol) = 2 − h2(α) − α log2 3, where h2(x) =

−x log2 x − (1 − x) log2(1 − x) is the binary entropy func-

tion and α := 3/4p(2 − p). Then, consider a qubit dephasing

channel, which takes the form

E2
deph(ρ) = (1 − p)ρ + pZρZ. (17)

Its DCC is equal to the following expression:

CD

(

E2
deph

)

= 2[1 − h2(p)], (18)

for p � 1/2 and zero otherwise.

VI. CONCLUSION

In this work we have considered the most general adaptive

protocol for the dense coding of classical information in a

realistic scenario where noise affects both the communication

lines between Alice and Bob. Assuming that this noise is

modelled by the same quantum channel, we define its dense

coding capacity as the maximum amount of classical infor-

mation (per round-trip use) that Bob can transmit to Alice.

We assume that Bob is implementing Pauli encoders with an

optimized probability distribution and Alice is using quantum

registers that are adaptively updated and optimized in the

process. For the Pauli-covariant channel, we find that this

capacity reduces to a single-letter version based on a protocol

which is nonadaptive and one-shot (i.e., using iid input states).

In particular, we can establish exact formulas for the dense

coding capacity of Pauli channels.

Note that our approach departs from the definition of

entanglement-assisted classical capacity of a quantum channel

[18,19], where it is implicitly required that the parties either

have a noiseless side quantum channel for distributing entan-

gled sources or they have previously met and stored quan-

tum entanglement in ideal long-life quantum memories. Our

treatment and definition of dense coding capacity removes

these assumptions assuming that the entanglement source is

itself distributed through the noisy channel and, therefore, it

is realistically degraded by the environment. Because of this

feature, our capacity can also be seen as an upper bound for

the key rates of two-way quantum key distribution protocols

that are related to the dense coding idea [34–38].
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