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Abstract. Soil moisture plays an important role in the par-

titioning of rainfall into evapotranspiration, infiltration, and

runoff, hence a vital state variable in hydrological modelling.

However, due to the heterogeneity of soil moisture in space,

most existing in situ observation networks rarely provide suf-

ficient coverage to capture the catchment-scale soil mois-

ture variations. Clearly, there is a need to develop a sys-

tematic approach for soil moisture network design, so that

with the minimal number of sensors the catchment spatial

soil moisture information could be captured accurately. In

this study, a simple and low-data requirement method is pro-

posed. It is based on principal component analysis (PCA) for

the investigation of the network redundancy degree and K-

means cluster analysis (CA) and a selection of statistical cri-

teria for the determination of the optimal sensor number and

placements. Furthermore, the long-term (10-year) 5 km sur-

face soil moisture datasets estimated through the advanced

Weather Research and Forecasting (WRF) model are used as

the network design inputs. In the case of the Emilia-Romagna

catchment, the results show the proposed network is very ef-

ficient in estimating the catchment-scale surface soil mois-

ture (i.e. with NSE and r at 0.995 and 0.999, respectively, for

the areal mean estimation; and 0.973 and 0.990, respectively,

for the areal standard deviation estimation). To retain 90 %

variance, a total of 50 sensors in a 22 124 km2 catchment is

needed, and in comparison with the original number of WRF

grids (828 grids), the designed network requires significantly

fewer sensors. However, refinements and investigations are

needed to further improve the design scheme, which are also

discussed in the paper.

1 Introduction

Soil moisture is at the heart of the Earth system, and it plays

an important role in the exchanges of water and energy at the

land surface (Dorigo et al., 2017; Robock et al., 2000; Crow

et al., 2018). In hydrology, soil moisture is the key compo-

nent for the partitioning of rainfall into evapotranspiration,

infiltration, and runoff (Vereecken et al., 2008; Brocca et al.,

2017; Rajib et al., 2016; Fuamba et al., 2019). In particular,

the antecedent soil moisture condition of a catchment is one

of the most important factors for flood triggering (Uber et al.,

2018; Zhuo and Han, 2017). For hydrological modelling, soil

moisture is a vital state variable. Especially during real-time

flood forecasting, the accurate updating of the soil moisture

state variable is a critical step to reduce the accumulation

of model errors (i.e. time drift problem) (López López et

al., 2016; Laiolo et al., 2016; Zwieback et al., 2019). There-

fore, the intensive monitoring of catchment-scale soil mois-

ture content would benefit a number of hydrological applica-

tions.

In situ soil moisture sensors (e.g. capacitance probe and

time domain reflectometry) can provide point-based soil

moisture measurements with relatively high accuracy (af-

ter calibration) in comparison with the modelling and the

remotely sensed approaches (Albergel et al., 2012). There-

fore, they are a crucial source of information for hydrologi-

cal research (Western et al., 2004; Brocca et al., 2017). How-

ever, due to the spatial heterogeneity of soil moisture and the

economic considerations (e.g. installation and maintenance

cost), most existing in situ networks rarely provide sufficient

coverage to capture the catchment spatial soil moisture varia-
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tions (Chaney et al., 2015). There have been enormous works

carried out by the USA National Soil Moisture Network

(NSMN, 2020), USA state Mesonets, and the International

Soil Moisture Network (ISMN) (Dorigo et al., 2013) on soil

moisture network integration and database setup; however,

they are based on existing in situ networks, the majority of

which are not purposely designed for catchment-scale hy-

drological studies. In particular, in a number of cases, soil

moisture sensors are mainly installed close to the residential

plain areas (e.g. due to easy accessibility and maintenance),

and there is a lack of sensors installed in the complex topo-

graphic areas (Zhuo et al., 2019b).

Therefore, there is a need to develop a systematic ap-

proach for the soil moisture network design, so that with the

minimal number of sensors the catchment-scale soil mois-

ture information could be captured accurately. Although a

number of projects have been carried out in the field of soil

moisture network design, for instance through various NASA

soil moisture campaigns (SMEX, SMAPVEX, etc.), they are

mainly focused on satellite soil moisture evaluations and al-

gorithm improvements, so the in situ sensors are purposely

designed to best match the satellite’s footprint, with high sen-

sor coverage in small experimental scales. Moreover, most

existing soil moisture network studies are based on using

in situ/aircraft datasets in small experimental areas, which

can hamper their applications in data-sparse regions. How-

ever, to our knowledge, there is a lack of existing literature

covering soil moisture network design, and particularly for

the catchment-scale hydrological applications (Chaney et al.,

2015).

Therefore, to address the aforementioned research gap, the

aim of this paper is to propose an efficient soil moisture net-

work design scheme for catchment-scale studies, based on a

combination of statistical approaches and globally available

modelling datasets. In particular, principal component anal-

ysis (PCA) is adopted to investigate the network redundancy

degree, and K-means cluster analysis (CA) and a selection

of statistical criteria are used to determine the optimal sensor

number and placements. Although other statistical method-

ologies could also be explored (e.g. the temporal stability

analysis (Vachaud et al., 1985) and the empirical orthogo-

nal functions (Perry and Niemann, 2007) which have been

applied for soil moisture network design by the community),

PCA and CA form a simple statistical approach that works

efficiently with a large array of datasets and have been suc-

cessfully explored by Curtis et al. (2019) for classifying soil

moisture response units in a catchment. Long-term (10-year)

soil moisture datasets estimated through the advanced Nu-

merical Weather Prediction (NWP) Weather Research and

Forecasting (WRF) model (Skamarock et al., 2008) are used

as the design inputs. The WRF model has been applied in a

wide range of applications with good performances (Srivas-

tava et al., 2015; Zaitchik et al., 2013; Zhuo et al., 2019a;

Stéfanon et al., 2014). Although WRF-estimated soil mois-

ture cannot represent the ground truth, they are ideal datasets

to provide catchment characteristics, such as land cover, soil

properties, and topographies, which are the main drivers

of local soil moisture heterogeneity (Friesen et al., 2008).

Therefore, such globally available datasets together with the

proposed statistical approaches would provide useful insights

for the soil moisture network design research (i.e. to min-

imize the redundancy of information and to improve accu-

racy), in particular, for those currently ungauged catchments.

In this study, the proposed method is implemented in the

Emilia-Romagna Region, northern Italy, as a case study due

to its high exposure to flood events.

The paper is organized as follows: the study area is intro-

duced in Sect. 2; soil moisture network design methodologies

are described in Sect. 3; the results are presented in Sect. 4;

and discussions and conclusions are included in Sect. 5.

2 Study area

In this study, the Emilia-Romagna Region (latitude 43◦50′–

45◦00′ N; longitude 9◦20′–12◦40′ E) is selected for the case

study, which is in northern Italy (Fig. 1). The region’s to-

tal coverage is approximately 22 124 km2. It is surrounded

by the Apennines to the south and the Adriatic Sea to the

east, with over half of the area as a plain agricultural zone

(12 000 km2). The climate condition is highly varied in the

region, which is largely influenced by the mountains and the

sea, with subcontinental in the Po River plain and surround-

ing hilly areas and cool temperate in the mountain range

(Nistor, 2016). It has distinct wet and dry seasons (i.e. dry

season between May and October and wet season between

November and April) (Zhuo et al., 2019b). Based on the

ESA Climate Change Initiative land cover map (Bontemps

et al., 2013), the region is mainly covered by herbaceous

(37 %), followed by tree (22 %), and cropland (21 %). The

majority of the area is on the Quaternary alluvial deposits,

which are characterized by a high degree of heterogeneity

(Pistocchi et al., 2015). The annual temperature ranges from

8.2 to 19.3 ◦C, and the annual mean precipitation is between

520 and 820 mm (Pistocchi et al., 2015).

For the soil moisture network in the region, currently, there

is a total of 19 soil moisture sensors installed (all located in

the plain area); however, only 1 of them can provide long-

term continuous soil moisture monitoring datasets. The net-

work is managed by the Regional Agency for Environmental

Protection, Emilia Romagna Region. Through further inves-

tigations, it was found that a number of the sensors have actu-

ally never provided proper soil moisture measurements since

the installation. Only one soil moisture sensor in the plain

area is clearly not sufficient for any catchment-scale applica-

tions. Therefore, it is hoped that the proposed soil moisture

network design scheme could provide some useful guidance

to the local authority on an improved network in the future

(i.e. a minimum number of sensors for reduced installation

and maintenance cost, but at the right locations).

Hydrol. Earth Syst. Sci., 24, 2577–2591, 2020 https://doi.org/10.5194/hess-24-2577-2020
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Figure 1. The geographical map of the Emilia-Romagna Region. The copyright of the background map belongs to © Esri (Light Gray Canvas

Basemap).

3 Methodologies

3.1 WRF model

The WRF model is a next-generation, non-hydrostatic

mesoscale NWP system designed for both atmospheric re-

search and operational forecasting applications (Skamarock

et al., 2005). The model is capable of modelling a wide range

of meteorological applications varying from tens of metres

to thousands of kilometres (NCAR, 2020). Apart from the

WRF’s aforementioned advantage in including the catchment

characteristics for the soil moisture estimations, it also has

other merits that make it an ideal tool for providing the dis-

tributed soil moisture information for the network design. For

instance, the WRF model’s spatial and temporal resolutions

can be changed depending on the input datasets to fit various

application requirements, and a number of globally available

data products can be selected to provide the necessary bound-

ary and initial conditions for running the model. Therefore,

WRF is able to provide valuable information for this study.

Here WRF version 3.8 is used.

3.1.1 Model parameterization

Apart from the atmospheric forcing, parameterization is also

required to drive the WRF model. In particular, the micro-

physics scheme is important in simulating accurate rain-

fall information, which in turn is significant for estimat-

ing the accurate soil moisture fluctuations. WRF V3.8 sup-

ports 23 microphysics options, ranging from simple to more

sophisticated mixed-phase physical options. In this study,

the WRF Single-Moment 6-Class scheme is adopted which

considers ice, snow, and graupel processes and is suitable

for high-resolution applications (Zaidi and Gisen, 2018).

The physical options used in the WRF setup are Dud-

hia shortwave radiation (Dudhia, 1989) and rapid radiative

transfer model (RRTM) longwave radiation (Mlawer et al.,

1997). Cumulus parameterization is based on the Kain–

Fritsch scheme (Kain, 2004) which is capable of repre-

senting sub-grid-scale features of the updraft and rain pro-

cesses, and such a feature is useful for real-time modelling

(Gilliland and Rowe, 2007). The surface layer parameteri-

zation is based on the Revised fifth-generation Pennsylva-

nia State University–National Center for Atmospheric Re-

search Mesoscale Model (MM5) Monin–Obukhov scheme

(Jiménez et al., 2012). The planetary boundary layer is cal-

culated based on the Yonsei University scheme (Hong et al.,

2006). In WRF, its land surface model plays a vital role

in the integration of information generated through the sur-

face layer scheme, the radiative forcing from the radiation

scheme, the precipitation forcing from the microphysics and

convective schemes, and the land surface conditions to sim-

ulate the water and energy fluxes (Ek et al., 2003). In this

study, Noah Multiparameterization (Noah-MP) is chosen, be-

cause it has shown more accurate soil moisture estimation

performance than the other two main schemes (Noah and

CLM4) in other studies (Cai et al., 2014; Zhuo et al., 2019a).

https://doi.org/10.5194/hess-24-2577-2020 Hydrol. Earth Syst. Sci., 24, 2577–2591, 2020
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Table 1. WRF parameterizations used in this study.

Settings/parameterizations References

Map projection Lambert

Central point of domain Latitude: 44.54; longitude: 11.02

Latitudinal grid length 5 km

Longitudinal grid length 5 km

Model output time step Daily

Nesting Two-way

Land surface model Noah-MP

Simulation period 1 Jan 2006–31 Dec 2015

Spin-up period 1 Jan–31 Dec 2005

Microphysics New Thompson Thompson et al. (2008)

Shortwave radiation Dudhia scheme Dudhia (1989)

Longwave radiation Rapid radiative transfer model Mlawer et al. (1997)

Surface layer Revised MM5 Jiménez et al. (2012), Chen and Dudhia (2001)

Planetary boundary layer Yonsei University method Hong et al. (2006)

Cumulus parameterization Kain–Fritsch (new Eta) scheme Kain (2004)

Table 1 shows the selected WRF parameterization schemes.

The static inputs (i.e. land use and soil texture) are cho-

sen in the WRF pre-processing package. Here, the land-use

categorization is interpolated from the MODIS 21-category

data classified by the International Geosphere Biosphere Pro-

gramme (IGBP). The soil texture data are based on the Food

and Agriculture Organization of the United Nations Global

5 min grid cell soil database.

3.1.2 Model setup

The WRF model is centred over the Emilia-Romagna Re-

gion and integrates three nested domains (D1–D3), with

horizontal spacing of 45 km × 45 km (outer domain, D1),

15 km × 15 km (inner domain, D2), and 5 km × 5 km (inner-

most domain, D3). In this study, the innermost domain D3

is used (88 × 52 grids, west–east and south–north, respec-

tively), with a two-way nesting scheme considered letting

the information from the child domain be fed back to the

parent domain. To drive the WRF model, the European

Centre for Medium-Range Weather Forecasts (ECMWF) re-

analysis (ERA-Interim) is adopted to provide the study re-

gion’s boundary and initial conditions. ERA-Interim is a

global atmospheric reanalysis that is available from 1979

to 2019 (ERA-5 as a recent update to ERA-Interim may

also be used). The spatial resolution of the datasets is ap-

proximately 80 km on 60 levels in the vertical from the sur-

face up to 0.1 hPa. It contains 6-hourly gridded estimates of

three-dimensional meteorological variables and 3-hourly es-

timates of a large number of surface parameters and other

two-dimensional fields. Please see Berrisford et al. (2011)

for detailed documentation on ERA-Interim.

After the initialization, the model needs to be spun up to

derive a physically valid state (e.g. equilibrium state) (Cai et

al., 2014; Cai, 2015). In this study, WRF is spun up by run-

Figure 2. WRF grids used in the analysis, with the DEM map in the

background.

ning through the whole year of 2005. After the spin-up, the

WRF model is run on a daily time step from 1 January 2006

to 31 December 2015, using the ERA-Interim datasets. The

modelled WRF grids within the Emilia-Romagna catchment

(total of 828 grids) are shown in Fig. 2 as black dots, with the

elevation map also illustrated in the background. For explo-

ration purposes, this study uses the WRF surface soil mois-

ture at 0–10 cm for the network design. This is because the

surface soil moisture changes more frequently in comparison

with the root-zone soil moisture. And in theory, the root-zone

soil moisture should follow the general trend of the surface

soil moisture (in a delayed mode). In our future study, the

WRF root zone soil moisture will also be explored.

Hydrol. Earth Syst. Sci., 24, 2577–2591, 2020 https://doi.org/10.5194/hess-24-2577-2020
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3.2 Soil moisture network design

For the soil moisture network design, three main problems

need to be tackled. The first is how redundant the network

is, the second is how many soil moisture sensors are needed

within a catchment, and finally where the best locations are

to place them. To solve the first problem, PCA is used to in-

vestigate the redundancy degree of the network. To solve the

latter two problems, the K-means CA is adopted. It should

be noted that the information used for the PCA/CA is based

on the soil moisture temporal variations (e.g. the 10-year time

series data), so that areas following similar soil moisture vari-

ations can be grouped together, and location information is

not used here. However, due to the influence of local charac-

teristics, the resultant clusters should more or less reflect the

geographical feature.

3.2.1 PCA for network redundancy analysis

When soil moisture data are collected from p soil mois-

ture sensors, these data are often correlated. This correla-

tion reflects the complexity of the catchment and indicates

that some of the information collected from one sensor is

also contained in the remaining p−1 sensors (Gangopadhyay

et al., 2001). The role of the PCA is to examine the redun-

dancy of the WRF 5 km gridded soil moisture outputs (Dai

et al., 2017). PCA is a statistical procedure for multivariance

feature extraction. It adopts an orthogonal transformation to

convert a set of possibly correlated observations into a set of

linearly uncorrelated variables called principal components.

This transformation is defined in such a way that the first

principal component has the largest possible variance, and

each succeeding component in order has the highest variance

possible under the constraint that it is orthogonal to the pre-

ceding components (Wold et al., 1987).

In this study, we have p WRF soil moisture grids with

N observations (the time series of the data, i.e. 10-year daily

datasets). The covariance matrix p × p can be calculated

which is denoted as X, and the eigenvectors and the eigen-

values of the matrix can also be determined, correspondingly.

Since eigenvectors of X are orthogonal, the p eigenvectors

are used to construct the principal components, which can be

represented as

eigenvector =
(

eig1eig2eig3. . .eigp

)

. (1)

With such a relationship, the original datasets can be trans-

formed in terms of eigenvectors into a new dataset Z. Z is

shown as the following:

Zi = X1eigi,1+X2eigi,2+. . .+Xpeigi,p, i = 1, . . ., p, (2)

where Zi is the new dataset and Xi is the original dataset. The

variance of each of the components is the eigenvalue. The

eigenvector with the highest eigenvalue is the principal com-

ponent of the dataset. Since the optimal number of principal

components is dependent on the amount of original variance

the network should retain, the examination of the network

redundancy is implemented based on the desired rate of vari-

ance contribution, and the number of principal components

can thus be calculated correspondingly.

3.2.2 K-means cluster analysis (CA) for sensor number

and placement determination

After exploring the redundancy level of the network, it is nec-

essary to determine how many WRF grids to select so that the

maximum level of information can be retained. Similarly to

the relationship between the number of principal components

and the variance contribution rates, the appropriate number

of grids is also dependent on the amount of original variance

the network would like to retain. Since the number of com-

ponents from the PCA does not directly represent the physi-

cal number of grids, we propose to use the elbow method to

find the corresponding number of grids. The elbow method is

based on K-means clustering and looks at the variance con-

tribution rate as a function of the number of grids. Generally,

the required number of grids increases when the variance

contribution rate increases. However, the growth rate is not

constant and changes significantly at a critical point (thresh-

old), which is used in this study as the desired rate for the

soil moisture network design. If for a specific desired vari-

ance the determined number of grids is significantly less than

the total number of WRF soil moisture grids, then it can be

concluded that the network is heavily redundant, and even by

removing a large number of grids, the rest can still provide

sufficient soil moisture information for the entire catchment

and vice versa. In this paper, the variance contribution rate of

70 %–99 % is tested.

The K-means approach is a typical distance-based clus-

tering method which uses the distance as the indicator of

similarity among objects (i.e. the smaller the distance, the

higher the similarity of two objects) (Kodinariya and Mak-

wana, 2013). In this study, the Euclidean distance is adopted

as the distance measurement. It is a simple and widely used

way of calculating the distances between objects in a multi-

dimensional space (Danielsson, 1980). The centroid of each

cluster is the point at which the sum of Euclidean distances

from all objects in that cluster is minimized. It is an iterative

approach repeated for all of the clusters.

After deciding on the number of soil moisture grids from

the elbow method and setting up the optimal clusters, we pro-

pose two ways to find the most suitable grid for the sensor

placements. One way is by finding the grid which gives the

median averaged soil moisture (i.e. averaged over the whole

study period) in each of the clusters (denoted as CA-Med),

and another is by identifying the maximum averaged soil

moisture in each of the clusters (denoted as CA-Max) (Dai

et al., 2017). CA-Max is focused on extreme soil moisture

conditions, whilst CA-Med is focused on the median condi-

tion. Since they provide results in two aspects, it is useful

https://doi.org/10.5194/hess-24-2577-2020 Hydrol. Earth Syst. Sci., 24, 2577–2591, 2020



2582 L. Zhuo et al.: Soil moisture sensor network design for hydrological applications

to explore both in this study. As a result, for each cluster,

there is one optimal grid and, grouped with the other opti-

mal grids found in other clusters, the ideal placements for

the soil moisture sensors are identified. The group of the se-

lected grids is considered to be the optimal combination of

locations that can provide the desired variance of the original

WRF soil moisture measurements over the whole catchment.

3.3 Network evaluation

Since there is no existing optimal in situ soil moisture net-

work that can be used as a reference for the evaluation, it

is challenging to assess the designed network performance

based on a comparison study. However, the designed network

should be efficient enough to represent the maximum amount

of information with the minimum number of sensors within

a catchment. In other words, the designed network should re-

tain the main catchment-scale soil moisture information of

the original WRF’s full outputs, which is particularly impor-

tant for the hydrological modelling. To assess the network in

such an aspect, the soil moisture information contained by

the designed and original networks is compared. Two statis-

tical indicators are used for this purpose, namely the Pearson

correlation coefficient and the Nash–Sutcliffe coefficient.

The Pearson correlation coefficient (r) is a statistical mea-

sure of the linear correlation between two datasets, which in

this study can estimate the systematic deviation between the

designed (Sd) and original (So) catchment-scale soil moisture

variations, and it is calculated by the following equation:

rSo,Sd
=

E [SdSo] − E [Sd]E [So]
√

(

E
[

S2
d

]

− E[Sd]2
)

×
(

E
[

S2
o

]

− E[So]2
)

, (3)

where E is the mean value of the corresponding vector.

In this study, the optimal performance is achieved when

rSo,Sd
equals 1.

Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe,

1970) is used widely in hydrology to evaluate the prediction

accuracy in hydrological modelling, which can be obtained

by

NSE = 1 −

∑
(

St
o − St

d

)2

∑
(

St
o − E [So]

)2
, (4)

where t is the time step of the dataset. The NSE range

is [1, −∞). The closer NSE is to 1, the more accurate the

designed network is.

4 Results

4.1 Soil moisture network redundancy analysis

Within the study area of 22 124 km2, there is a total number

of 828 WRF soil moisture grids. With such a dense dataset,

there should exist information redundancy. To explore this,

Figure 3. Cross-correlation matrix for the whole catchment.

Table 2. The relationship between the percentage of grids and the

cross-correlation.

Cross-correlation Percentage of grids

(r) (%)

0.5 85

0.6 78

0.7 70

0.8 52

0.9 15

0.95 3

a cross-correlation (r) matrix for all of the grids over the

whole study period is plotted in Fig. 3. It can be seen that

the majority of the matrix is in blue tone, which means most

of the grids (85 %) are correlated (r > 0.5) with most of the

others (as shown in Table 2). In addition, over half of the

grids (52 %) have high correlation (r > 0.8) with the rest of

the grids, and even 15 % of the grids can achieve very high

correlation (r > 0.9). However, it is clear from the map that

some grids (e.g. grid numbers 396–398 and 523–529) are

less strongly correlated with the others (red tone, with low

correlation < 0.3 observed), which means more soil mois-

ture sensors might need to be installed at those locations.

A further exploration of cross-correlation performance using

boxplots is shown in Fig. 4b. The locations of the selected

grids (as in Fig. 4b) are marked in Fig. 4a with red circles. It

can be seen that the nine grids are distributed evenly within

the catchment in order to represent a spectrum of catchment

features (different land covers, elevations, soil types, etc.).

From the boxplot, it can be seen for a specific grid that the

cross-correlation can range from as low as below 0.1 to as

high as almost 1. The large range is particularly obvious for

Grid 500, which is located in the plain zone near the eastern

boundary of the catchment and is close to the Valli di Co-

macchio lagoon. The closeness to the waterbody could mean

its soil moisture is dominated more by the shallow water ta-

ble at that location, which makes the soil moisture relatively

insensitive to the weather in comparison with grids located

further away. For Grid 100, its correlation with the rest of

Hydrol. Earth Syst. Sci., 24, 2577–2591, 2020 https://doi.org/10.5194/hess-24-2577-2020
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Figure 4. (a) WRF selected grid number; (b) correlation boxplot

for the selected grids as highlighted in red in (a). For the boxplot,

it shows the minimum, maximum, 0.25th, 0.50th, and 0.75th per-

centiles, and outliers (red cross).

the grids in the catchment is relatively low, with 75 % of the

cross-correlations less than 0.6. The potential reason could

be that because it is located in the southern mountainous

zone, with a high density of tree coverage and complex to-

pographic conditions, its soil moisture changes more differ-

ently than the other grids. A similar condition is observed for

Grid 1, which is also located in a hilly zone on the southern

boundary of the catchment (i.e. lower correlation as shown

in the boxplots). Such a phenomenon is not unexpected and

could mean more sensors are needed in those complex zones

for better soil moisture monitoring purposes. However, for

grids like 300 and 600 (and the surrounding areas), since the

majority of their correlations are high and they are located

in plain areas with no water boundary nearby, they could be

arranged with a smaller number of soil moisture sensors.

4.2 PCA and sensor number

In summary, through the cross-correlation exploration, many

parts of the WRF soil moisture dataset are significantly re-

dundant. To systematically investigate the redundancy de-

gree of the network, the PCA approach is applied. Figure 5a

shows the PCA results to provide useful guidance on the ac-

ceptable loss of information. It is clear to see that the first

principal component carries close to 80 % of the total vari-

ance, with the second component bringing this to nearly

90 %. This result again indicates that high redundancy ex-

ists in the dataset, and just one component can contain al-

most 80 % of the total soil moisture information. To better

understand the relationship between the principal compo-

nent numbers, the variance contribution rate, as well as the

Figure 5. (a) PCA and (b) elbow curve.

corresponding required number of grids (through the elbow

method), a set of variance contribution rates from 70 % to

97.5 % is used as the representatives. The required number of

components and the grids are listed accordingly in Table 3.

It can be seen that only one component with six grids is suf-

ficient to retain 70 % of the soil moisture information. Even

when the variance is set at 80 %, only two components are

needed to meet the requirement, and the corresponding num-

ber of soil moisture girds is 11 (1.3 % of the total grids). To

satisfy 90 % variance, three components are needed, and al-

though the total number of grids is increased to 50, it is still

significantly less than the WRF’s full inputs. The detailed

numbers further indicate the relatively high level of redun-

dancy in the WRF’s original dataset.

The trend can also be observed through the elbow curve

which is illustrated in Fig. 5b. It presents the relationship be-

tween the variance and the number of grids. It can be seen

to meet the increment of variance; the required number of

grids also increases. But the growth rate is the most signifi-

cant when the variance is smaller than 70 %, and it then slows

down gradually after that. When the variance is 95 %, the rate

is further weakened. Based on the curve, it is suggested that

the desired variance (i.e. trade-off point) is between 80 % and

95 %. The required number of soil moisture grids for 80 %,

85 %, 90 %, and 95 % is 11, 21, 50, and 184, respectively. It

is clear that, in order to achieve the 95 % variance, a signif-

icantly greater number of additional grids are required, that

is, 268 % more than for the 90 % variance case. Therefore,
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Figure 6. Designed soil moisture sensor locations, based on CA-Max. The total numbers of grids used for the design are 6, 11, 21, 50, 184,

and 367 for 70 %, 80 %, 85 %, 90 %, 95 %, and 97.5 % variance, respectively.

Table 3. The number of components and grids to reach the % vari-

ance threshold (based on the PCA method and the elbow curve

method).

Variance Components Number

(%) of grids

70.0 1 6

75.0 1 7

80.0 2 11

85.0 2 21

90.0 3 50

92.5 3 94

95.0 3 184

97.5 3 367

for further improvement of variance from 90 % to 95 %, the

economic cost for the additional number of sensors might not

be as valuable as for the 85 % to 90 % case (138 % additional

sensors are required for the enhancement).

4.3 Soil moisture sensor location design

Once the degree of redundancy for the full WRF soil mois-

ture network is established, the next step is to determine the

optimal locations for sensor placements. Here, CA-Max and

CA-Med are used. The designed networks for CA-Max and

CA-Med are illustrated in Figs. 6 and 7, respectively. The in-

dicated locations in the figures provide guidance on the pref-

erential areas for the soil moisture sensor placements. Each

of the methods gives a different set of sensor locations; for in-

stance, the selected optimal soil moisture grids from the CA-

Max method tend to be located at the catchment boundary,

and the situation is particularly obvious for the low-variance

cases (i.e. 70 %–80 %). For example, when the variance is

set at 70 %, the selected optimal locations from CA-Max are

mostly distributed near the catchment’s southern boundary,

while from CA-Med, it is more homogeneously distributed

(i.e. one at the southern boundary, one in the north, two in the

north-western part, and two in the north-eastern part). This is

because CA-Max selects the maximum averaged soil mois-

ture of a cluster. In the case study area, since the southern

boundary of the catchment is mainly covered by dense trees
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Figure 7. Designed soil moisture sensor locations, based on CA-Med. The numbers of grids used for the design are 6, 11, 21, 50, 184, and

367 for 70 %, 80 %, 85 %, 90 %, 95 %, and 97.5 % variance, respectively.

which generally have higher soil moisture contents than the

rest of the catchment, the selected locations tend to distribute

near the southern boundary. For CA-Med, as it selects the

median averaged soil moisture of a cluster, the resultant lo-

cations are more evenly distributed.

When the variance is increased, for instance at 90 %, the

difference between the two CA methods becomes less dis-

tinctive. Despite this, it can still be seen for CA-Max that

there is less coverage of sensors in the western and eastern

parts of the catchment, with most of the sensors located in

the mid-region. However, for the same variance, the sensor

distribution from CA-Med looks more evenly distributed vi-

sually. Nevertheless, when the variance reaches as high as

97.5 %, the difference from the two methods becomes rather

small, as 367 sensors are located covering most parts of the

catchment in both cases.

4.4 Soil moisture network evaluation

The evaluation of the designed network is challenging, as

there are no standard assessment criteria available to guide

on what kind of network is the most appropriate for a given

study area. In essence, the designed network should be ef-

ficient, which means the network should contain the maxi-

mum amount of information with a minimal number of sen-

sors. In this study since we focus on the soil moisture’s hy-

drological applications (catchment scale), to evaluate the ef-

ficiency of the proposed schemes, the catchment-scale soil

moisture data derived by the designed networks are com-

pared with the WRF’s full inputs (828 grids). Both the areal

spatial mean and standard deviation are calculated. The Pear-

son correlation coefficient and the Nash–Sutcliffe coefficient

are used to quantify the relationships between the two soil

moisture datasets. The results for both CA-Med and CA-Max

are compared in Fig. 8. Based on the areal mean soil mois-

ture (Fig. 8a and c), it is clear to see that CA-Med outper-

forms CA-Max for the majority of the variance cases (both

NSE and r), except for the NSE results when the variance

is over 90 %. Moreover, for the NSE results, a decline in the

performance can be observed clearly after it passes the 90 %

variance point, which illustrates that an increment of the sen-

sor number does not necessarily mean an improvement of

the performance. For the standard deviation, the disparity

between the two methods is smaller. When the variance is

below 80 %, the growth trend for the CA-Med case is not

clear, as it firstly drops at the 75 % point and then climbs up
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Figure 8. NSE and r plots: (a) NSE performance based on the areal mean soil moisture, (b) NSE performance based on the areal standard

deviation soil moisture (STD), (c) r performance based on the areal mean soil moisture, and (d) r performance based on the areal standard

deviation soil moisture.

Table 4. NSE and correlation r performance of CA_Med and CA_Max.

Variance No. of CA_Max_Mean CA_Med_Mean CA_Max_STD CA_Med_STD

grids NSE r NSE r NSE r NSE r

70.0 6 0.831 0.978 0.949 0.985 0.601 0.834 0.716 0.876

75.0 7 0.851 0.984 0.978 0.993 0.778 0.887 0.746 0.870

80.0 11 0.894 0.990 0.991 0.996 0.867 0.945 0.901 0.951

85.0 21 0.976 0.997 0.991 0.998 0.926 0.967 0.930 0.976

90.0 50 0.988 0.998 0.995 0.999 0.963 0.986 0.973 0.990

92.5 94 0.997 0.998 0.990 0.999 0.969 0.989 0.960 0.992

95.0 184 0.994 0.999 0.985 0.999 0.932 0.990 0.914 0.986

97.5 367 0.988 1.000 0.983 1.000 0.910 0.986 0.895 0.982

again when the variance increases, whereas for the CA-Max

case, there is a clear upward trend. Similarly to Fig. 8a, it

is interesting to see that for the areal standard deviation in

Fig. 8b and d, the NSE and r also start to drop after reach-

ing around 90 %. The evaluation results are summarized in

Table 4 for numerical comparison. Since CA-Med surpasses

CA-Max for most of the cases, it is chosen for the network

design. In the aspect of the desired variance, because as dis-

cussed earlier, when the variance climbs over 90 %, the per-

formance instead drops. Therefore 90 % variance is suitable

for use in the network design in this case.

The time series plots of the areal soil moisture mean and

standard deviation are shown in Fig. 9. Generally, the de-

signed network can estimate the catchment’s mean soil mois-

ture very well, as it follows the variation of the WRF’s

full input dataset closely (NSE = 0.995 and r = 0.999). For

the standard deviation, the general trend from both datasets

shows a higher spatial variation of soil moisture over the dry

season and lower variation during the wet season. The spa-

tial variation is averaged around 0.04 m3 m−3 throughout the

whole study period. However, there are some disparities be-

tween the two datasets; in particular, during the wet season

(bottom peaks in the STD plot), the designed network on sev-

eral occasions overestimates the spatial soil moisture varia-

tion, and during the dry season (top peaks in the STD plot),

it underestimates it instead. Nevertheless, the differences are

small and the correlation between the two datasets is high,

with NSE = 0.973 and r = 0.990 obtained. In conclusion, the

designed network can maintain the dominant information of

the WRF’s full-grid input well.

The sensor displacements for the designed and existing (in

situ) networks are illustrated in Fig. 10. In comparison with

the distribution of the proposed network, the existing net-

work is clearly biased, with all of the sensors located in the
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Figure 9. (a) The areal mean soil moisture of the designed and WRF full-input networks and (b) the areal soil moisture standard deviation

of the designed and WRF full-input networks. The designed network is based on CA-Med, 90 % variance contribution rate, and 50 sensors.

Figure 10. Comparison between the existing and designed soil

moisture networks.

mid-plain zone only. Such a distribution (i.e. no sensors lo-

cated in the southern mountainous (highly vegetated) region)

can have adverse impacts on the accuracy of the areal mean

soil moisture estimation. However, we can see that some of

the existing sensors are located near some of the designed

sensors, which could be kept if located within the same clus-

ter. But a lot more sensors are indeed required in the hilly

zone, where currently no sensors are installed. The existing

stations could be initially installed for irrigation purposes,

which are hence mainly located in the plain area. Scatterplots

of the areal mean soil moisture calculated from the designed

and existing networks are also presented in Fig. 11. The per-

formance difference between the two networks is clear to ob-

serve. For the proposed network, the points are located close

to the identical line, whereas for the existing network, due to

the inappropriate sensor distributions over the catchment, the

points are more dispersive (NSE = 0.889). The performance

of the existing network (i.e. using WRF grid data from the ex-
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Figure 11. Scatterplots for areal mean soil moisture: (a) WRF

full grid inputs against the proposed network (NSE = 0.995, r =

0.998); (b) WRF full grid inputs against the existing in situ network

(NSE = 0.889, r = 0.987).

isting locations) in comparison with the proposed networks is

worse; in particular, its NSE is lower than the 70 % CA-Med

case in the designed network (i.e. 0.949). For the existing net-

work, without putting sensors in the highly vegetated region,

the network clearly underestimates soil moisture variations

during the dry season (i.e. for the cases when the soil mois-

ture is less than 0.25 m3 m−3).

5 Discussions and conclusions

With the low-cost soil moisture sensors becoming more and

more available and modern communication technology (i.e.

Internet of Things), it is expected that more in situ soil mois-

ture sensors will be installed in the future. Although there

is a wide range of soil moisture networks around the world

(e.g. USA NSMN, ISMN, USA state Mesonets), the major-

ity of them are not purposely designed for catchment-scale

hydrological studies. Moreover, to our knowledge most ex-

isting soil moisture network studies are based on using in

situ/aircraft datasets in small experimental areas, which can

hamper their applications in data-sparse regions. In this pa-

per, a low-data requirement scheme (only WRF-simulated

soil moisture information is required, which can be generated

globally) together with simple statistical analysis (PCA/CA)

is proposed to overcome the aforementioned shortcomings.

Through a series of evaluations of the developed network,

it can be concluded that the method can provide efficient

catchment-scale soil moisture estimations (i.e. high accuracy

of the areal mean and standard deviation soil moisture esti-

mations). To retain 90 % variance, a total of 50 sensors in

a 22 124 km2 catchment is needed. In comparison with the

original number of WRF grids (828 grids), the proposed net-

work requires a significantly smaller number of sensors. Fur-

thermore, in comparison with the existing soil moisture net-

work in the Emilia-Romagna Region, the proposed network

has sensors more evenly distributed, covering most represen-

tative parts of the catchment (e.g. both plain and mountain-

ous regions), and can obtain more accurate catchment-scale

soil moisture estimation. However, several points need to be

discussed as follows.

The first point is about the uncertainty of the WRF’s soil

moisture estimations, which could influence the accuracy of

the network design. It is acknowledged that the reliability

of the designed network is influenced by the performance

of the WRF model. To evaluate the WRF results and test

whether the proposed network can reproduce the catchment-

scale soil moisture well, a long-term densely covered soil

moisture network will be required. Setting up such a network

is challenging and difficult to realize due to the high installa-

tion and maintenance cost. In this study, a long-term WRF

soil moisture estimation with 1-year spin-up time is used

which could to some extent produce a more stable result. But

since “All models are wrong” (by George E. P. Box, https:

//en.wikipedia.org/wiki/All_models_are_wrong, last access:

14 May 2020), an uncertainty model (Zhuo et al., 2016)

could be proposed to be integrated with the network design

scheme. For example, we can generate a large number of

probable “true soil moisture” datasets based on the proposed

uncertainty model so that a set of possible soil moisture net-

works can be produced. As a result, the designed network

will be expressed in a probabilistic form instead of a deter-

minate form. In addition, a decision-making scheme consid-

ering different conditions (e.g. accessibility, installation, and

maintenance cost) under the uncertainty can be developed to

select the most suitable soil moisture network. The uncer-

tainty influence of the WRF soil moisture on the network

design will be investigated in future studies.

Second, the case study is based on the daily soil mois-

ture inputs for the hydrological applications. With differ-

ent research needs (meteorology, climatology, hydrology,

water resources, geology, etc.), various temporal scales of

soil moisture data might be required; for example, climate

change study requires soil moisture data in decades or hun-

dreds of years, which often needs annual-scale measure-

ments; drought assessment requires monthly to seasonal

datasets; while for hydrometeorological prediction applica-

tions, hourly datasets might be needed. For the network de-

sign, the input data’s temporal scale (daily, weekly, monthly,

yearly) can influence the final network design; therefore, it is

worth investigating in future studies about the temporal-scale

effect on the network design.
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Third, for a complex catchment like Emilia-Romagna,

other uncertainty sources apart from the WRF model can also

affect the performance of the designed network; for instance,

the study area has varied climate conditions (a mixture of

subcontinental and cool temperate) and distinct seasonal

changes (wet/dry seasons). Therefore, separating/combining

networks under different catchment conditions could result in

an improved soil moisture network design. Furthermore, the

poor accessibility to sensors is another challenging point that

can hamper the performance of the designed network in real

life. To overcome the accessibility issue, advanced soil mois-

ture sensors (e.g. Cosmic-ray soil moisture sensor; Zreda et

al., 2012) with low maintenance requirements could provide

a good alternative for long-term deployment in complex ter-

rain. Moreover, the accessibility factor could also be consid-

ered for the network design (e.g. can be considered during

the CA for the sensor placements).

Fourth, the proposed method assumes that a soil moisture

station placed inside a 5 km grid cell can perfectly represent

the mean soil moisture condition for that grid cell. However,

in reality it is not the case. As a result, the scale mismatch

between the footprint of an in situ point-based soil moisture

station and the 5 km dataset used here would be expected

to degrade the performance of the resulting network (Crow

et al., 2012). Advanced soil moisture sensing technology as

aforementioned, such as the Global Navigation Satellite Sys-

tems (GNSS) and the Cosmic-ray, could provide alternative

solutions over point-based sensors to reduce such impacts.

In particular, the COSMOSUK (Evans et al., 2016) network

is moving towards integration with operational weather fore-

casts, and Cosmic-ray is suitable to be used in complex ter-

rain and might be a good option to be used for a national

network as compared with point-based in situ sensors.

Fifth, regarding the temporal variation factor, as has been

mentioned earlier, the information we used for the PCA/CA

is based on the soil moisture temporal variations, so that ar-

eas following similar soil moisture temporal variations can

be identified. Although location information is not used for

the PCA/CA analysis, due to the influence of local charac-

teristics, the resultant clusters should more or less reflect

the geographical feature. The resultant clusters are shown

in Fig. 12. It can be seen that most of the clusters are geo-

graphically connected. Although k-means has issues in deal-

ing with nonconvex clusters and geographically there might

exist nonconvex-shaped clusters, as demonstrated in this pa-

per k-means indeed is very useful for the soil moisture net-

work design (the time series datasets are used instead of the

location information).

Since the forcing data for the WRF model are glob-

ally covered, the proposed scheme can largely benefit un-

gauged catchments. On the other hand, in places where dense

soil moisture networks are already available, the proposed

scheme could also help in minimizing the cost by reduc-

ing the number of sensors. Another advantage of the method

is that the number of soil moisture sensors can be changed

Figure 12. Cluster map.

based on different variances to meet various requirements.

By selecting different variance levels, the redundancy of the

WRF’s full-input network can be assessed, and the corre-

sponding optimal sensor number can be determined. How-

ever, the proposed scheme is still in its infancy, with a lot of

refinements and further explorations needed; therefore, it is

hoped that this paper will stimulate more studies by the com-

munity in tackling the soil moisture network design problem.
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