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Abstract9

1. Mathematical analysis of partial differential equations (PDEs) has led to many insights10

regarding the effect of organism movements on spatial population dynamics. However, their11

use has mainly been confined to the community of mathematical biologists, with less attention12

from statistical and empirical ecologists. We conjecture that this is principally due to the in-13

herent difficulties in fitting PDEs to data.14

15

2. To help remedy this situation, in the context of movement ecology, we show how the popular16

technique of step selection analysis (SSA) can be used to parametrise a class of PDEs, called17

diffusion-taxis models, from an animal’s trajectory. We examine the accuracy of our technique18

on simulated data, then demonstrate the utility of diffusion-taxis models in two ways. First, for19

non-interacting animals, we derive the steady-state utilisation distribution in a closed analytic20

form. Second, we give a recipe for deriving spatial pattern formation properties that emerge21

from interacting animals: specifically, do those interactions cause heterogeneous spatial distri-22

butions to emerge and if so, do these distributions oscillate at short times or emerge without23

oscillations? The second question is applied to data on concurrently-tracked bank voles (Myo-24

des glareolus).25

26

3. Our results show that SSA can accurately parametrise diffusion-taxis equations from lo-27

cation data, providing the frequency of the data is not too low. We show that the steady-state28

distribution of our diffusion-taxis model, where it exists, has an identical functional form to29

the utilisation distribution given by resource selection analysis (RSA), thus formally linking30

(fine scale) SSA with (broad scale) RSA. For the bank vole data, we show how our SSA-PDE31

approach can give predictions regarding the spatial aggregation and segregation of different32

individuals, which are difficult to predict purely by examining results of SSA.33

34

4. Our methods give a user-friendly way in to the world of PDEs, via a well-used statisti-35
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3

cal technique, which should lead to tighter links between the findings of mathematical ecology36

and observations from empirical ecology. By providing a non-speculative link between observed37

movement behaviours and space use patterns on larger spatio-temporal scales, our findings will38

also aid integration of movement ecology into understanding spatial species distributions.39

Key words: Advection-diffusion, Animal movement, Home range, Movement ecology, Partial40

differential equations, Resource selection, Step selection, Taxis41
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1 Introduction42

Partial differential equations (PDEs) are a principal workhorse for mathematical biologists43

(Murray, 2003). Their strength lies in both their utility in describing a vast range of biological44

systems, and the existence of many mathematical techniques for analysing them. For example,45

the theory of travelling wave solutions has been used to understand spreading-speeds and46

spatial distributions of invasive species (Kot et al., 1996; Petrovskii et al., 2002; Lewis et al.,47

2016). Likewise, linear pattern formation analysis has been used for understanding animal coat48

patterns (Turing, 1952; Murray, 1981; Nakamasu et al., 2009), vegetation stripes in semi-arid49

environments (Klausmeier, 1999; Sherratt, 2005), spatial predator-prey dynamics (Baurmann50

et al., 2007; Li et al., 2013), and many more examples from ecology and beyond (Kondo &51

Miura, 2010). There are also a variety of advanced techniques for analysing PDEs, such as52

asymptotic analysis, weakly non-linear analysis, energy functionals, calculus of variations, and53

so forth (Evans, 2010; Murray, 2012), many of which have been used in an ecological setting54

(Cantrell & Cosner, 2004; Eftimie et al., 2009; Roques, 2013; Tulumello et al., 2014; Potts &55

Lewis, 2016a).56

Here, we are specifically interested in using PDEs to model animal movement. In this57

context, PDEs are valuable for understanding how patterns of utilisation distribution (the dis-58

tribution of an animal’s or population’s space use) emerge from underlying movement processes.59

PDEs have been successfully applied in this regard to phenomena such as territory and home60

range formation (Lewis & Moorcroft, 2006; Potts & Lewis, 2014), flocking and herding (Eftimie61

et al., 2007), organism aggregations (Topaz et al., 2006), and spatial predator-prey dynamics62

(Lewis & Murray, 1993). They have also been used to understand animal motion in response63

to fluid currents (Painter & Hillen, 2015), insect dispersal (Ovaskainen et al., 2008), and search64

strategies (Giuggioli et al., 2009). In all these examples, the models are assumed to operate65

on timescales over which death and reproduction have minimal effect. On such timescales, the66

emergent spatio-temporal patterns of animal distributions are determined solely by the move-67

ment decisions of animals as they navigate the landscape. These decisions may be influenced68
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by relatively static aspects of the environment (e.g. Giuggioli et al. (2009); Painter & Hillen69

(2015)) or the presence of other animals (e.g. Eftimie et al. (2007); Topaz et al. (2006)) or a70

combination of the two (e.g. Moorcroft et al. (2006)).71

Despite their broad use by applied mathematicians in general, and their great success in72

understanding the emergent properties of ecological systems in particular, PDEs have been73

much less-used in empirical or statistical ecology. This is perhaps due to the difficulties of74

parametrising them from data. One can, in principle, construct a likelihood function for a PDE75

model given the data. This has been done, for example, in mechanistic home range analysis76

studies (Moorcroft et al., 2006; Lewis & Moorcroft, 2006) and to understand insect dispersal77

through patchy environments (Ovaskainen, 2004; Ovaskainen et al., 2008). However, fitting the78

likelihood function requires numerically solving the PDE for many different parameter values79

(Ferguson et al., 2016). Such numerics can be both time consuming and technically difficult,80

essentially constituting a research subfield in its own right (Johnson, 2012; Ames, 2014). This81

is especially true when there are multiple interacting populations, due to the inherent non-82

linearities in the resulting PDEs, and also when the datasets are very large, as is increasingly83

the case (Hays et al., 2016).84

To test the theoretical advancements of PDE research against empirical observations, it is85

thus necessary to develop quicker and technically simpler methods for parametrisation. Sev-86

eral such methods have been developed to this end. For example, homogenisation techniques87

have been recently developed to simplify numerical solutions of reaction-diffusion equations (a88

class of PDEs), by separating time-scales in a biologically-motivated way (Powell & Zimmer-89

mann, 2004; Garlick et al., 2011). Hefley et al. (2017) combined these methods with Bayesian90

techniques to parametrise reaction-diffusion equations efficiently and accurately from data on91

animal locations and disease transmission. However, these techniques rely on there being a92

biologically meaningful way to separate spatio-temporal scales, which is system-dependent.93

Furthermore it still requires numerical solutions of PDEs (albeit simplified ones), with all the94

technical baggage they can engender.95
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6

Likewise, the technique of gradient matching can also be used for rapid inference of differ-96

ential equation models (Xun et al., 2013; Macdonald & Husmeier, 2015). However, whilst this97

method can speed-up inference considerably, applying it to a movement trajectory (as is our98

present concern) requires interpolating between the data-points to give a smooth utilisation99

distribution. Indeed, the accuracy of the inference can be highly dependent upon the choice of100

this smoothing (Ferguson, 2018). Therefore it is necessary, when applying gradient matching101

to a trajectory, to try various smoothing procedures, which can be time consuming. Then,102

only if the procedures give similar results can one be confident about the outcome. As a con-103

sequence, gradient matching is best suited to data where there are sufficiently many individual104

organisms that the utilisation distribution can be reliably estimated with high accuracy, e.g.105

when studying cell aggregations (Ferguson et al., 2016). However, in many studies of vertebrate106

animals’ movements, only a limited number of individuals can be tracked. It would therefore107

be advantageous to find a simpler, robust method of inference for parametrising PDEs, tailored108

to such animal tracking data.109

To fill this gap, we show here that the oft-used technique of step selection analysis (Fortin110

et al., 2005; Forester et al., 2009; Thurfjell et al., 2014; Avgar et al., 2016) can be used to111

parametrise a class of PDEs called diffusion-taxis equations from animal tracking data. These112

are examples of advection-diffusion equations (sometimes called convection-diffusion) where the113

advection is up or down a gradient of some physical quantity (e.g. a gradient of resources). Such114

PDEs can describe animal movement in relation to external factors (e.g. landscape features or115

con- or hetero-specific individuals) and hence make them a suitable model for animal movement116

in many situations. Step selection analysis (SSA) is already very widely-used, being both fast117

and simple to implement. Indeed, implementation has recently become even simpler thanks to118

the release of the amt package in R (Signer et al., 2019), so using our method does not require119

significant new technical understanding by practitioners.120

The diffusion-taxis equations we consider consist of two terms: (i) the diffusion term, which121

denotes the tendency for the animal locations to spread through time, and (ii) the taxis term,122
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7

which encodes drift tendencies in the animal’s movement. Both terms may, in principle, vary123

across space, in particular in response to external factors such as habitat features, resources,124

predators, or conspecific individuals. As such, this is a very intuitive way to think about animal125

movement (Ovaskainen, 2004).126

In this work, we give a simple recipe for converting the output of SSA into parameters for127

a diffusion-taxis equation. We then show how to use systems of such equations to understand128

both quantitative and qualitative features of emergent space-use patterns. In particular, we129

demonstrate how to derive the steady-state utilisation distribution (UD) in certain cases. This130

UD can be written in a closed-form, analytic expression, obviating the need for time-consuming131

numerics (Signer et al., 2017). It describes the long-term space use of animals (i.e. their home132

ranges) and, in contrast to the mere SSA-derived parameter values, can be used to make133

rigorous predictions about space-use (Moorcroft & Barnett, 2008; Potts & Lewis, 2014). We134

also show how to predict whether the UD of an individual animal or a population is likely to135

either (i) tend to a uniform steady-state (animal spread homogeneously across the landscape),136

(ii) reach a steady state with aggregation or segregation patterns, or (iii) be in perpetual137

spatio-temporal flux, never reaching a steady state.138

Knowing when these emergent spatial distributions may arise from movement processes is139

vital for understanding spatial distributions of individuals within a population and ultimately140

species distributions. Individuals often use non-diffusive movement mechanisms (e.g. spatially141

explicit selection of locations based on resources or presence of conspecifics) which scale up142

to different space-use patterns such as homogeneous mixing, spatial aggregation/segregation,143

or dynamic spatio-temporal patterns (Potts & Lewis, 2019). Such movement decisions and144

resulting patterns challenge the assumption of well-mixed populations in traditional population145

models. This also has implications for demography, for example via density dependence or146

carrying capacities (Morales et al., 2010; Riotte-Lambert et al., 2017; Spiegel et al., 2017), as147

well as interspecific interactions in communitites such as competition (Macandza et al., 2012;148

Vanak et al., 2013). As such, we encourage increased research effort in examining the effects of149
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8

movement mechanisms on spatial patterns. We propose the tools developed through this paper150

and Schlägel et al. (2019) as a means to aid such examination. Although the mathematical151

justification for the techniques given here requires some technical expertise, the recipes for152

implementing these techniques do not require advanced mathematical understanding (being153

SSA plus some minimal post-processing), so have potential to be widely applied.154

2 Methods155

2.1 From step selection to diffusion-taxis156

Suppose an animal is known to be at location x at time t. Step selection analysis (SSA)157

parametrises a probability density function, pτ (z|x, t), of the animal being at location z at158

time t + τ , where τ is a time-step that usually corresponds to the time between successive159

measurements of the animal’s location (Forester et al., 2009). For our purposes, the functional160

form of pτ (z|x, t) is as follows161

pτ (z|x, t) = K−1(x, t)φτ (|z− x|) exp[β1Z1(z, t) + · · ·+ βnZn(z, t)]. (1)162

163

Here, φτ (|z − x|) is the step length distribution (i.e. a hypothesised distribution of distances164

that the animal travels in a time-step of length τ), |z − x| is the Euclidean distance between165

z and x, Z(z, t) = (Z1(z, t), . . . , Zn(z, t)) is a vector of spatial features that are hypothesised166

to co-vary with the animal’s choice of next location, β = (β1, . . . , βn) is a vector denoting the167

strength of the effect of each Zi(z, t) on movement, and168

K(x, t) =

∫

Ω
φτ (|z− x|) exp[β1Z1(z, t) + · · ·+ βnZn(z, t)]dz (2)169

170

is a normalising function, ensuring pτ (z|x, t) integrates to 1 (so is a genuine probability density171

function). In Equation (2), Ω is the study area, which we assume to be arbitrarily large.172

We also require that the step-length distribution, φτ (|z − x|), not be heavy-tailed (i.e. its173
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mean, variance, and all its other moments must be finite). The parameters β1, . . . βn are then174

the focus of an SSA, indicating the selection behaviour of animals towards spatial features175

of their environment. We refer to the function exp[β1Z1(z, t) + · · · + βnZn(z, t)] as a step176

selection function (SSF), in line with its first use in the literature (Fortin et al., 2005). Note,177

though, that sometimes the term SSF is instead used for the entire probability density function178

(Equation 1) (Forester et al., 2009). In either case, SSA is the method of parametrising an179

SSF to analyse animal movement data. Note also that the functional form of Equation (1) is180

analogous to the weighted distribution approach to resource selection analysis (Johnson et al.,181

2008b; Wijeyakulasuriya et al., 2019).182

One can generalise Equations (1-2) by incorporating environmental effects across the whole183

step from x to z, not just the end of the step at z. Furthermore, one can model autocorrelation184

in movement via turning angle distributions (Forester et al., 2009; Avgar et al., 2016). For185

the sole purpose of parametrising an advection-diffusion PDE, though, it is not necessary to186

model either of these considerations, so we use the functional form in Equation (1). However,187

it is worth being aware that, should data be highly autocorrelated (e.g. if the turning angle188

distribution is far from uniform), the resulting inference may be inaccurate. We return to the189

issue of autocorrelation in more detail in the Discussion, and discuss how to ensure a given190

dataset is suitable for the methods presented here.191

The SSA method requires data on a sequence of animal locations x1, . . . ,xN gathered at192

times t1, . . . , tN respectively (with tj+1 − tj = τ for all j, so that the time-step is constant),193

together with a vector of environmental layers, Z(z, tj) at each time-point tj . It then returns194

best-fit values for the parameters β1, . . . , βn, using a conditional logistic regression technique,195

by comparing each location with a set of ‘control’ locations sampled from an appropriate196

probability distribution, which represents locations that would be available to the animal based197

on its movement capabilities. Details of the SSA technique and how it should be implemented198

are given in previous works, e.g. Thurfjell et al. (2014); Avgar et al. (2016), so we omit them199

here. Note that alternative approaches to parameter estimation for Equation (1) are also200
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possible, for example using maximum likelihood estimation or Bayesian techniques (Johnson201

et al., 2008b; Wijeyakulasuriya et al., 2019).202

We wish to use the SSA output to parametrise a diffusion-taxis model of the probability203

density function of animal locations, given by u(x, t). Notice that u(x, t) is different to the204

distribution described by Equation (1), which gives the probability density function of moving205

to location z, conditional on currently being located at x. However, in Supplementary Appendix206

A, we show that under the model in Equation (1), and as long as τ is sufficiently small, u(x, t)207

is well-described by the following diffusion-taxis equation208

∂u

∂t
= Dτ∇

2u
︸ ︷︷ ︸

diffusive

movement

− 2Dτ∇ · [u∇(β1Z1 + · · ·+ βnZn)]
︸ ︷︷ ︸

drift up the gradient

of β1Z1 + · · ·+ βnZn

. (3)209

210

Here, ∇ = (∂/∂x, ∂/∂y) (where x = (x, y)), and211

Dτ =
1

4τ

∫

R2

|x|2φτ (|x|)dx, (4)212

213

is a constant that describes the rate of diffusive movement. The derivation makes use of a214

diffusion-approximation approach (Turchin, 1998), whereby u(x, t) is derived by a moment-215

closure technique from a recurrence equation that describes how an animal’s location arises216

from its previous locations, and p(z|x) specifies the probability density of a specific movement217

step.218

The drift part of Equation (3) describes animal movement in a preferred direction according219

to environmental features, whereas the diffusive part takes care of small-scale stochasticity due220

to any other factors not accounted for explicitly. For this approximation to work, the time221

step τ must be sufficiently small that the gradient of resources (in any fixed direction) does222

not vary greatly across the spatial extent over which an animal is likely to move in time τ (see223

Supplementary Appendix A for precise mathematical details, and the Discussion for more on224
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dealing with situations where this assumption is violated).225

For our analysis, it is convenient to work in dimensionless co-ordinates. To this end, we start226

by setting x̃ = x/x∗ to be dimensionless space, where x∗ is a characteristic spatial scale. Since,227

in practice, the functions Zi(x, t) arrive as rasterised layers (i.e. square lattices), it is convenient228

to let x∗ be the pixel width (or, synonymously, the lattice spacing), but in principle the user229

can choose x∗ arbitrarily. We also set t̃ = tDτ/(x∗)
2 and ũ = (x∗)

2u. Then, immediately230

dropping the tildes above the letters for notational convenience, Equation (3) has the following231

dimensionless form232

∂u

∂t
= ∇2u− 2∇ · [u∇(β1Z1 + · · ·+ βnZn)]. (5)233

234

In summary, we have shown that step selection analysis can be used to parametrise a diffusion-235

taxis equation (Equation 5) where the drift term consists of taxis up the gradient of any236

covariate Zi for which βi is positive, and down the gradient of any covariate Zj for which βj is237

negative.238

The key value in moving from the movement kernel in Equation (1) to the PDE in Equation239

(5) is that it allows us to make an explicit connection between a model, pτ (z|x, t), of movement240

decisions over a small time interval, τ , and the predicted probability distribution, u(x, t), of241

an animal’s location at any point in time. While SSA by itself only gives inference about the242

movement rules themselves, the resulting PDEs enable us to make predictions of the space use243

patterns that will emerge over time, should the animal be moving according to the rules of244

the parametrised movement kernel (cf. Signer et al. (2017); Wilson et al. (2018)). Examples245

of such patterns, including steady-state home ranges, aggregation, and segregation, will be246

demonstrated later in this manuscript.247

2.2 Assessing inference accuracy on simulated data248

To test the reliability of our parametrisation technique, we simulate paths given by diffusion-249

taxis equations of the general form in Equation (5). We then use step selection analysis to see250
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whether the inferred β parameters match those that we used for simulations. For this study,251

we simulate two different types of model. In the first, which we call the Fixed Resource Model,252

there is just one landscape layer (so n = 1) and Z1(x, t) = Zf
1 (x) is a raster of resource values253

that does not vary over time (the superscript f emphasises that we are using the Fixed Resource254

Model). This raster is a Gaussian random field, constructed using the RMGauss function in the255

RandomFields package for R, with the parameter scale=10 (Fig. 1a).256

The second model is called the Home Range Model. This has n = 2 (i.e. two landscape257

layers), the first of which, Zh
1 (x) = Zf

1 (x), is the random field from Fig. 1a (the superscript h258

emphasises that we are working with the Home Range Model). The second denotes a tendency259

to move towards the central point on the landscape, which may be a den or nest site for the260

animal. This has the functional form Zh
2 (x) = −|xc−x|, where xc is the centre of the landscape.261

Notice that ∇Zh
2 is an identical advection term to that in the classical Holgate-Okubo localising262

tendency model (Holgate, 1971; Lewis & Moorcroft, 2006).263

For each of these two models, we simulate trajectories from Equation (5) for a variety of264

β-values. Each trajectory consists of 1,000 locations, gathered at dimensionless time-intervals265

of τ = 1. (Recall from the non-dimensionalisation procedure that this corresponds to a time266

of x2∗/D where x∗ is the pixel width and D the diffusion constant of the animal, defined267

in Equation 4). We construct 10 trajectories for each β-value used. Details of the method268

used for generating trajectories are given in Supplementary Appendix B. In short, the method269

involves reverse-engineering a stochastic individual-based model (IBM) from the PDE, such270

that the probability distribution of stochastic realisations of the IBM evolves in accordance271

with Equation (5). For the Fixed Resource Model, we also perform the same procedure but272

fixing βf
1 = 1 and varying τ , to understand the effect on inference of the time step, τ , at which273

data are gathered.274

We then parametrise each trajectory using SSA, finding control locations by sampling steps275

from a bivariate normal distribution with zero mean and a standard deviation equal to the276

empirical standard deviation. We match each case to 100 controls. To determine whether SSA277
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is effective in parametrising diffusion-taxis equations, we test whether the inferred β-values fall278

within 95% confidence intervals of the values used to simulate the trajectories.279

2.3 Application to empirical data and spatial pattern formation280

To demonstrate the utility of diffusion-taxis models for animal movement, we used some recent281

results from a study of social interactions between bank voles (Myodes glareolus), reported by282

Schlägel et al. (2019). This study used SSA to infer the movement responses of each individual283

in a group to the other individuals. For example, individual 1 may tend to be attracted towards284

2, who in turn may like to avoid 1 but rather be attracted towards 3. In the studied bank285

voles, such individualistic responses arose as sex-specific behaviours likely related to mating.286

However, they may also arise in relation to social foraging or interactions between species in287

competitive guilds.288

Details of the method are given in Schlägel et al. (2019), but here we give the ideas pertinent289

to the present study. Suppose there are M individuals in a group. For each individual,290

i ∈ {1, . . . ,M}, consider the utilisation distribution of each of the other individuals to be291

a landscape layer. In other words Zj(x, t) = uj(x, t) in the step selection function (Equation292

1). It may not be immediately obvious that one individual may be able to have knowledge293

about another’s utilisation distribution, but there are at least two biological processes by which294

this can happen, both of which can be justified mathematically (Potts & Lewis, 2019). The295

first is for individuals to mark the terrain as they move (e.g. using urine or faeces) and then the296

distribution of marks mirrors the utilisation distribution (Gosling & Roberts, 2001; Potts &297

Lewis, 2016b). The second is for animals to remember past interactions with other individuals298

and respond to the cognitive map of these interactions (Fagan et al., 2013; Potts & Lewis,299

2016a).300

By Equation (5), these movement processes give rise to a system of diffusion-taxis equations,301

one for each individual in the group, that each have the following form (in dimensionless co-302
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ordinates)303

∂ui
∂t

= ∇2ui − 2∇ ·



ui∇
∑

j ̸=i

βv
i,juj



 . (6)304

305

Here, βv
i,j measures the tendency for individual i to move either towards (if βv

i,j > 0) or away306

from (if βv
i,j < 0) individual j. The magnitude of βv

i,j measures the strength of this advective307

tendency. These correspond to the β-values inferred by SSA, with a superscript v to emphasise308

that these refer to the bank vole study.309

Depending on the values of βv
i,j , such a system of diffusion-taxis equations can have rather310

rich dynamics. These dynamics can be observed through numerical simulations (Fig. 2b).311

However, for technical reasons, to perform numerics we have to replace uj in Equation (6)312

with a locally-averaged version ūj =
∫

B(x) uj(z)dz, where B(x) is a small neighbourhood of x.313

This is to avoid rapid growth of small perturbations at arbitrarily high frequencies, which can314

happen without spatial averaging [see Supplementary Appendix D and Potts & Lewis (2019)315

for details]. The system we simulate is thus as follows316

∂ui
∂t

= ∇2ui − 2∇ ·



ui∇
∑

j ̸=i

βv
i,j ūj



 . (7)317

318

Details of the numerics are given in Supplementary Appendix D. To demonstrate some of319

the patterns that can emerge, Fig. 2 displays the spatio-temporal dynamics of the system in320

Equation (7) for various example parameter values. In Fig. 2a,b, we have M = 3, βv
1,2 = −2,321

βv
1,3 = −0.5, βv

2,1 = 0.5, βv
2,3 = 2, βv

3,1 = 0.5, βv
3,2 = 0.5. This means that Individual 1 is322

avoiding both 2 (βv
1,2 = −2) and 3 (βv

1,3 = −0.5); however 2 and 3 are both attracted towards 1323

(βv
2,1 = 0.5, βv

3,1 = 0.5) and also each other (βv
2,3 = 2, βv

3,2 = 0.5). This complicated three-way324

relationship turns out to cause perpetually oscillating spatial patterns (Fig. 2a,b).325

In Fig. 2c,d, we have M = 3, βv
1,2 = −2, βv

1,3 = −0.5, βv
2,1 = 0.5, βv

2,3 = −2, βv
3,1 =326

0.5, βv
3,2 = 0.5. Thus Individual 1 still avoiding both 2 (βv

1,2 = −2) and 3 (βv
1,3 = −0.5).327
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Furthermore, 2 and 3 are both still attracted towards 1 (βv
2,1 = 0.5, βv

3,1 = 0.5) and 3 is328

attracted to 2 (βv
3,2 = 0.5). However, this time 2 is avoiding 3 (βv

2,3 = 2). This situation leads329

to stationary spatial patterns (Fig. 2c,d).330

It is perhaps not immediately obvious why this simple switch in behaviour from 2 being331

attracted to 3 to 2 avoiding 3 should have such a dramatic change in the qualitative nature332

of the utilisation distributions. However, one can gain insight into such effects by using linear333

pattern formation analysis (Turing, 1952). This technique separates parameter space into three334

regions: (a) No Patterns, so each individual will eventually use all parts of space with equal335

probability, (b) Stationary Patterns, where individual utilisation distributions form spatially-336

heterogeneous patterns that typically lead to spatial segregations (with some possible overlap)337

and/or aggregations in certain parts of space (Fig. 2c-d), (c) Oscillatory Patterns, where small338

spatially-heterogenous perturbations oscillate and grow, meaning spatial patterns remain in339

perpetual flux (Fig. 2a-b).340

These parameter regimes are easily determined by calculating the eigenvalues of a matrix341

A, calculated in Potts & Lewis (2019) for Equation (7), which we call the pattern formation342

matrix. This matrix has diagonal entries Aii = −1 (for i = 1, . . . ,M) and the entry in the343

i-th row and j-th column is Aji = −2βv
i,j for i ̸= j. If the real parts of the eigenvalues of A344

are all negative then we are in the No Pattern parameter regime. If there is an eigenvalue345

whose real part is positive and the eigenvalue with the largest real part (a.k.a. the dominant346

eigenvalue) is a real number, then this is the Stationary Patterns regime. Otherwise, we are in347

the Oscillatory Patterns regime, where the dominant eigenvalue is non-real. These eigenvalues348

can be calculated in most computer packages, so there is no need for specialist mathematical349

knowledge. For example, the R programming language has a function eigen() designed for this350

purpose. Step-by-step instructions for the whole procedure of determining pattern formation351

properties are given in Supplementary Appendix C.352

In Schlägel et al. (2019), βv
i,j-values were inferred using SSA in all cases where i and j were353

of different sex, for eight different replicates (see Fig. 4 in their paper). Here, we use the354
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published best-fit values to construct the pattern formation matrix, A, for each of the eight355

replicates. We use this to categorise each replicate by its pattern formation properties (No356

Patterns, Stationary Patterns, Oscillatory Patterns).357

3 Results358

3.1 Simulated data359

When tested against simulated trajectories from diffusion-taxis equations, SSA was generally360

reliable at returning the parameter values used in the simulations (Fig. 1). For the Fixed361

Resource Model, there was just one parameter, β1 = βf
1 (the superscript denoting the Fixed362

Resource Model). All but one of the real values lay within the corresponding 95% confidence363

intervals of the SSA-inferred values (Fig. 1b). The one that did not (βf
1 = 5) was only slightly364

out, so this may have been simply due to random fluctuations. SSA tended to slightly overesti-365

mate the value of βf
1 with this resource layer, particularly for higher βf

1 values. However, since366

the difference between the inferred value of βf
1 and the actual value is never very large, and367

within the margin of error for each individual value of βf
1 , this suggests the approximations368

inherent in the derivation of Equation (5) from Equation (1) are acceptable for practical pur-369

poses. Fig. 1c shows the practical outcome of the small-τ requirement, whereby the inference370

over-estimates βf
1 as τ increases. Notice also that, if τ is too small, the inference has large371

error bars, owing to minimal change in resources over the spatial extent the animal travels in372

time τ , making it hard for the SSA procedure to return a precise signal.373

The SSA inference performed on the Home Range Model returned β-values whose 95%374

confidence intervals contained the real values in > 90% of cases. Those cases where the real375

values lay outside the confidence intervals were always only marginally outside (Fig. 1e,f;376

Supplementary Fig. SF1). However, as with the Fixed Resource Model, there is a tendency for377

SSA to slightly overestimate the real values of β1 = βh
1 (superscript h for Home Range Model).378

The estimation of βh
2 tends to be quite close to the real value unless βh

1 is rather large, at which379
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point SSA starts to over-estimate βh
2 very slightly yet consistently (Supplementary Fig. SF1).380

For the Home Range Model, it is interesting to examine the long-term utilisation distribu-381

tion of the animal’s probability distribution, i.e. its home range. A steady-state distribution382

for Equation (5) is given by383

u∗(x) = C−1 exp[2β1Z1(x) + · · ·+ 2βnZn(x)], (8)384

385

where C =
∫

Ω exp[2β1Z1(x, t) + · · ·+ 2βnZn(x, t)]dΩ is a normalising constant ensuring u∗(x)386

integrates to 1, so is a probability density function. That Equation (8) is a steady-state of387

Equation (5) can be shown by placing u(x, t) = u∗(x) into the right-hand side of Equation (5)388

and showing it vanishes. Note the factor of 2 before all the βi in Equation (8), a phenomenon389

that occurred for the same reasons in a 1D version of Equation (8) in Moorcroft & Barnett390

(2008), where they comment on the mathematical and biological reasons behind this. Fig. 1d391

gives the result of plotting Equation (8) for the Home Range model with parameter values392

β1 = βh
1 = 1, β2 = βh

2 = 0.1. This shows how empirically-parametrised diffusion-taxis models393

can be used to predict home range size and shape.394

3.2 Bank vole data395

Table 1 shows the best-fit βv
i,j-values inferred by Schlägel et al. (2019), together with the396

resulting dominant eigenvalues of the pattern formation matrix. Of the eight replicates, two of397

them were in the region where no patterns form, six where there are stationary patterns, but398

none where we predict oscillatory patterns.399

Here, Individuals 1 and 2 are female, whilst 3 and 4 are male. A positive number for βv
i,j400

means that Individual i tends to move towards j (more precisely, i moves up the gradient of401

the utilisation distribution of j). For example, in Replicate A, the sole female has a tendency402

to move towards both males and this attraction is reciprocated. Our mathematical analysis403

suggests that the steady-state utilisation distribution will likely be non-uniform. One would404

expect, given the mutual attraction, that this would result in an aggregation of all three405
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Table 1. Pattern formation in bank vole populations. The first column labels the
eight replicates A-H, following Schlägel et al. (2019). The next eight columns give the
βv
i,j-values (as defined for Equation 6) which are the best-fit values from Schlägel et al. (2019,

Fig. 4). The penultimate column gives the dominant eigenvalue of the linearised system and
the final column gives the patterning regime predicted by linear pattern formation analysis of
the system of Equations (6).

Replicate βv
1,3 βv

1,4 βv
2,3 βv

2,4 βv
3,1 βv

3,2 βv
4,1 βv

4,2 Eigenvalue Pattern regime

A 0.3 0.5 N/A N/A 0.5 N/A 0.5 N/A 0.26 Stationary
B 0.4 -1 0.8 -0.1 0.5 0.8 0.3 -0.4 0.94 Stationary
C -0.6 0.9 N/A N/A 0.3 N/A 0.2 N/A -1.0 None
D -2.9 -5.2 N/A N/A 0.6 N/A 0.9 N/A -1.0+5.1i None
E 0.7 0.7 -1.4 0.7 0.6 -0.5 0.4 0.2 1.1 Stationary
F 0.8 1.3 0.1 -0.1 0.7 -0.4 1.2 -0.1 1.9 Stationary
G -1.2 0.4 1.4 1.3 -0.4 1 0.8 1.3 2.4 Stationary
H 0.6 0.1 N/A N/A 0.8 N/A 0.4 N/A 0.44 Stationary

individuals in Replicate A. In Figs. 3a,b, we confirm this by numerically solving the diffusion-406

taxis equations from Equation (7) with the parameter values from the first row of Table 1 in407

a simple 1D domain. Note that the width of the aggregations is dependent upon the size of408

the spatial averaging kernel, B(x), and the exact positions of the aggregations are dependent409

on initial conditions (Potts & Lewis, 2019, Fig. 5). Despite this existence of multiple steady-410

state solutions, the general aggregation or segregation properties of the system appear to be411

independent of initial condition. This is proved for a simple N = 2 case in Potts & Lewis412

(2019, Sec. 4.1) and numerical evidence given for situations away from that case.413

In Replicates B, E, and F, stationary patterns are predicted to form, but the attract-414

and-avoid dynamics are rather more complicated, making prediction of the aggregation or415

segregation properties difficult to predict simply by eye-balling the βv
i,j-values. Numerical416

analysis shows that Individuals 1, 2, and 3 (both females and one male) in Replicate B tend to417

occupy approximately the same part of space, but that Individual 4 (the other male) tends to418

use the other parts of space (Fig. 3c,d).419

In Replicate E, the attract/avoid dynamics given in Schlägel et al. (2019) show three mutu-420

ally attractive parings: (1,3), (1,4), (2,4) (Table 1). This, by itself, would suggest aggregation421
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of all four individuals. However, we also see that Individuals 2 and 3 are mutually avoiding,422

so it is not immediately obvious what the space use patterns should look like. We therefore423

require a numerical solution of the diffusion-taxis equations, as given in Fig. 3e,f. This reveals424

a three-way aggregation of both males (Individuals 3 and 4) and one female (Individual 1).425

The remaining female (Individual 2) strongly avoids the other three individuals, sticking to426

parts of space that are hardly ever used by 1, 3, and 4.427

Replicate F likewise reveals complicated relationships between the four individuals. Here,428

numerical analysis of the corresponding diffusion-taxis system reveals an aggregation of both429

males (Individuals 3 and 4) and one female (Individual 1), similar to Replicate E. This time,430

however, Individual 2 (female) uses all parts of space, with very little tendency to avoid the431

others.432

Replicates G and H are similar in nature to E and A, respectively. Like E, Replicate G has433

three mutually-attractive pairings, (1,4), (2,3), and (3,4), and one mutually avoiding pairing,434

(1,3). The corresponding spatial patterns (not shown) reveal aggregation of Individuals 2, 3,435

and 4, with Individual 1 using other parts of space. Replicate H has mutual attraction between436

all three individuals and, as such, leads to space use patterns (not shown) of mutual aggregation437

between the three individuals.438

Finally, it is worth stressing that the diagrams in Fig. 3 are only there to demonstrate439

qualitative features of space use that diffusion-taxis analysis predicts will emerge. Principally,440

these are to understand whether the spatial patterns that emerge are of segregation or aggre-441

gation. However, these diagrams are not meant to represent accurate predictions of spatial442

patterns. Accurate predictions of space use would require incorporating into the model all the443

relevant resource distributions and environmental features (e.g. those in Section 2.2), together444

with empirically realistic initial conditions and spatial averaging kernel, in addition to details445

of between-individual interactions.446

This	article	is	protected	by	copyright.	All	rights	reserved

A
cc

ep
te

d
 A

rt
ic

le



20

4 Discussion447

We have demonstrated how diffusion-taxis equations can be parametrised from animal move-448

ment data, using the well-used and user-friendly technique of step selection analysis. The utility449

of such models is evidenced through two examples: (I) constructing the steady-state utilisation450

distribution (UD), thus relating the underlying movement to the long-term spatial distribution451

of a population, and (II) examining whether spatial patterns in the utilisation distribution will452

form spontaneously and whether these will be stable or in perpetual flux.453

Despite relying on the mathematical theory of PDEs, both examples can be used without454

any specialist mathematical knowledge. The formula for the UD is given in a simple closed455

form (Equation 8), so practitioners simply need to perform SSA on their path, then plug the456

resulting βi-values into Equation (8) to infer the UD. This builds on a 1-dimensional result from457

Moorcroft & Barnett (2008) by generalising it to higher dimensions and linking it explicitly458

to the functional form given by the output of SSA. The classification of spatial distributions459

into ‘No Patterns’, ‘Stationary Patterns’, and ‘Oscillatory Patterns’ is done by (a) placing the460

βi,j-values into the matrix A, described in Section 2.3, then (b) calculating the eigenvalues, for461

example using the eigen() package in R. This can all be done without the need to perform462

technical mathematical calculations.463

Our results linking the output of step selection analysis to the steady state utilisation464

distribution (Equation 8) are of direct application to mechanistic home range analysis (Lewis465

& Moorcroft, 2006). Traditionally, these were fitted to data by numerically solving a system of466

PDEs for a range of parameter values and searching for the best fit: a time-consuming process467

that requires technical knowledge of numerical PDEs. Our method, in contrast, simply requires468

the requisite knowledge to perform conditional logistic regression, which is both relatively quick469

and well-known.470

The result of Equation (8) also makes a simple, formal link between the step selection471

function (SSF) and the UD that emerges from the SSF, which has an exponential form, similar472

to a resource selection function (RSF). This question of the UDs emerging from an SSF was473
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examined using individual-based simulations by Signer et al. (2017), but our work makes this474

connection analytic in the case where the selection only depends on the end of the step and the475

turning angle distribution is uniform. Previous attempts to make this connection have started476

with an exponential form for the SSF and derived a rather more complicated equation for the477

UD (Barnett & Moorcroft, 2008; Potts et al., 2014). A more recent attempt works the other478

way around: beginning with an exponential formulation for the UD, then deriving a movement479

kernel that gives the UD in the appropriate long-term limit (Michelot et al., 2018). However,480

the resulting movement kernel does not appear in an exponential form like Equation (1). Our481

approach, although it relies on limiting approximation, has both a movement kernel (Equation482

1) and a utilisation distribution in a similar, exponential form (Equation 8). In some sense,483

this is just a trivial extension of the 1D result of Moorcroft & Barnett (2008), but a useful one484

that has not been made explicit in the literature.485

Since the predicted UD from Equation (8) is in an exponential form, similar to an RSF,486

it is quite straightforward for practitioners to estimate the error in this prediction and gain487

useful biological information about drivers of space-use patterns. First, one would subsample488

the data to give relocations that can be reasonably considered as independent. Then, one can489

re-parametrise Equation (8) using resource selection analysis on these relocation data. The490

βi-values from this re-parametrisation can then be compared with those from the SSA-PDE491

procedure described here.492

Our results related to spontaneous pattern formation (Example II) are of particular im-493

portance with regards to species distribution modelling. These results build upon the studies494

of Potts & Lewis (2019) and Schlägel et al. (2019). The former study demonstrates the wide495

variety of population distribution patterns that can emerge from taxis up or down utilisa-496

tion distribution gradients of other animals (including aggregation, segregation, oscillatory,497

and irregular patterns), whilst the latter gives a method for parametrising SSFs that describe498

movement responses to such gradients. The key novelty of our work with respect to the previ-499

ous two is to demonstrate how the output of SSA, including from the specific SSA techniques of500
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Schlägel et al. (2019), can be used to parametrise diffusion-taxis equations of the type studied501

in Potts & Lewis (2019). With this, we here provide the means to bridge the gap between in-502

ference on the mechanisms of fine-scale movement decisions (SSA) and predictions on resulting503

space-use patterns (PDEs).504

Despite the wealth of theoretical work on pattern formation in animal populations over505

many decades [e.g. Levin (1974); Chesson (1985); Durrett & Levin (1994); Baurmann et al.506

(2007); Li et al. (2013)], spontaneous pattern formation is an aspect of animal space use typi-507

cally ignored in species distribution models, which principally concern themselves with relating508

space use to environmental features. However, the literature on pattern formation gives many509

examples of features of spatial distributions that can arise without any need for correlation510

with environmental features. Perhaps part of the reason for this disparity is the perceived511

inaccessibility of the technical language of PDE analysis. A major purpose of this work is to512

make PDEs in general, and pattern formation in particular, more widely accessible, by showing513

how to both parametrise and analyse PDEs using simple out-of-the-box techniques (conditional514

logistic regression and eigenvector calculations respectively). Of course, the analysis using such515

techniques is limited and much more can be done with PDEs than presented here (discussed516

in Supplementary Appendix E), but we hope that it will present a starting point for those who517

have hitherto avoided PDE formalisms.518

An important assumption in our approach is that data are not highly temporally auto-519

correlated (i.e. we assume in the Methods that the distribution of turning angles between520

successive steps is approximately uniform). If one does have highly auto-correlated data, there521

are various possible approaches. The simplest is by subsampling to remove autocorrelation.522

In particular, if data are very high frequency (e.g. ≥ 1Hz), then one can subsample at the523

points where the animal turns (Potts et al., 2018). However, if subsampling leads to data so524

coarse that there are large changes in resource gradient between successive location fixes then525

the approach used here is not appropriate for the data, owing to the “small τ” requirement526

(i.e. that the gradient of resources does not vary a lot over the distance an animal covers in527
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time τ ; see Section 2.1). One way around this may be to smooth the resource landscape so528

that these large changes in resource gradient vanish. However, this is only appropriate if the529

animals are likely to be responding to such spatially-averaged resources, which will depend on530

the study population.531

Another way to deal with non-uniform turning angle distributions is to use the approach532

of Patlak (1953), popularised by Turchin (1998), to arrive at a diffusion-taxis equation that533

corrects for the autocorrelation. However, this itself is only an approximate correction, and can534

be inaccurate when combined with biased movement (Wang & Potts, 2017). A more accurate535

PDE approximation to a correlated random walk is the telegrapher’s equation (Masoliver et al.,536

1993), which generalises the advection-diffusion formalism. However, this still does not give537

an exact description of correlated movement in two dimensions. The extent to which either538

the telegrapher’s or the Patlak-Turchin approximations accurately capture the probability dis-539

tribution of autocorrelated animal movement through heterogeneous environments is, to our540

knowledge, an open question, and requires significant investigation beyond the scope of the541

present study.542

Away from step selection, the formalism of stochastic differential equations (SDEs) has been543

used to deal with autocorrelated data, by modelling the velocity of the animal as a stochastic544

process (Johnson et al., 2008a). Here, exact inference is possible (Parton et al., 2016), and545

applications have been made to heterogeneous environments (Russell et al., 2018). Further-546

more, such SDEs often have probability density functions (PDFs) that evolve according to an547

advection-diffusion PDE (Risken, 1996). However, since these SDEs describe the velocity of548

an object, the resulting PDEs describe the PDF of the velocities, not the locations. To de-549

scribe the locational PDF, i.e. space-use distribution, from a velocity-based stochastic process550

is technically demanding and typically requires approximate techniques (Codling & Hill, 2005).551

Animal movement through heterogeneous landscapes has also been studied using locational552

SDEs, with a potential function modelling the taxis in response to the environment (Preisler553

et al., 2013). This has a direct connection to our PDE formalism (Equation 3). Specifically,554
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by setting the potential function in Preisler et al. (2013, Equation 2) to −β ·Z and employing555

independent Brownian motions in each spatial direction, the resulting SDE has a PDF that is556

described by Equation (3) (Risken, 1996). Like our SSA-PDE approach, the SDE of Preisler557

et al. (2013) also has a convenient and efficient fitting procedure via regression techniques.558

In this way, the diffusion-taxis PDEs described here offer a formal link between step selection559

approaches and SDE approaches, which have hitherto had rather separate histories of technical560

development.561

It is also possible to incorporate autocorrelation in the approach of Preisler et al. (2013)562

by choosing a correlated stochastic process for the noise term (dV(t) in Preisler et al. (2013)).563

However, by doing this, the PDF is no longer exactly described by an advection-diffusion564

equation (Risken, 1996).565

Our use of SSA to parametrise PDEs relies on a limiting approximation that can affect566

inference. From Fig. 1c, we see that SSA tends to perform well for relatively small time-step,567

τ , but will overestimate the parameters in the PDE model as τ is increased. This is because the568

PDE moves according to the local resource gradient, merely examining the pixels adjacent to569

the current location. However, SSA compares the empirical ‘next location’ with a selection of570

control locations, which are highly likely to contain pixels that are not adjacent to the current571

location. This means that the movement decision may appear to be more strongly selected for572

than is really the case. This corroborates the idea that discretisation can lead to overestimation573

of selection, observed in recent theoretical work (Schlägel & Lewis, 2016b,a).574

These issues of scale arise because the PDE framework in our study assumes movement along575

a resource gradient. One could also build a PDE model to account for attraction to resources at576

a distance, which is often ecologically relevant. For example, a switching Ornstein-Uhlenbeck577

model of resource-driven movement, such as that of Wang et al. (2019), has a probability578

distribution that evolves according to an advection-diffusion equation. It would be interesting579

future work to extend the framework here to incorporate such models.580
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Fig. 1. Study on simulated data. Inference from simulated paths of individuals moving
according to the diffusion-taxis Equation (5). Panel (a) shows a resource layer given by a
Gaussian random field, with colour showing the value of the resource layer at each point.
Panel (b) gives the result of using step selection analysis to parametrise the Fixed Resource

model, where Zf
1 (x) is given by this example layer. Dots give the inferred βf

1 -values, with
bars giving 95% confidence intervals. Panel (c) shows how inference varies as the time-step
between measured locations, τ is increased. Here, the value used to simulate the
diffusion-taxis equation is βf

1 = 1. Panel (d) shows the emergent home range, as predicted by
Equation (8), for the Home Range model with βh

1 = 1, βh
2 = 0.1. Here, βh

1 denotes the
strength of the resource landscape’s effect on movement and βh

2 denotes the tendency to move
towards the attraction centre, xc (denoted by a cross). Details of this model are given in
Section 2.2. The colour-filled contours are as in Panel (a) and the black curves show contours
of the home range distribution. The solid black curve encloses 95% of the utilisation
distribution. The 25%, 50%, and 75% kernels are given by dash-dot, dotted, and dashed
curves respectively. Panels (e) and (f) show the results of using step selection analysis to infer
βh
1 and βh

2 , in an identical format to Panels (b) and (c). Panel (e) has βh
2 = 0.1 fixed and

Panel (f) has βh
1 = 1 fixed.
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Fig. 2. Pattern formation from diffusion-taxis systems. Panels (a) and (b) give a
numerical solution of the system in Equation (7) in a simple one dimensional example, with
M = 3 individuals (indexed with the letter i), βv

1,2 = −2, βv
1,3 = −0.5, βv

2,1 = 0.5, βv
2,3 = 2,

βv
3,1 = 0.5, βv

3,2 = 0.5. This is in the regime where linear pattern formation analysis predicts
oscillatory patterns. Panel (a) gives a snap-shot of the system at t = 1, showing distributions
of u1(x, 1), u2(x, 1), and u3(x, 1). Panel (b) shows the change in u2(x, t) over both space and
time. We observe that the system never seems to settle to a steady state. This contrasts with
Panels (c) and (d) which show a one dimensional example where linear pattern formation
analysis predicts stationary patterns to emerge. Here, M = 3, βv

1,2 = −2, βv
1,3 = −0.5,

βv
2,1 = 0.5, βv

2,3 = −2, βv
3,1 = 0.5, βv

3,2 = 0.5. Panel (c) gives the stationary distribution, whilst
Panel (d) displays convergence of the system towards this stationary distribution, for u2(x, t).
Throughout all panels, the spatial averaging kernel is B(x) = (x− 0.05, x+ 0.05) (see
comment before Eqn. 7).
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Fig. 3. Predictions of pattern formation properties of vole replicates. These plots
demonstrate whether the patterns predicted by linear analysis correspond to aggregation
and/or segregation between the constituent individuals (indexed with the letter i). Panels
(a-b) correspond to Replicate A from Schlägel et al. (2019), (c-d) correspond to Replicate B,
(e-f) to Replicate E, and (g-h) to Replicate F. Left-hand panels give the steady-state of the
distribution after solving each diffusion-taxis system numerically, with initial conditions being
a small random perturbation of the homogeneous steady state (ui(x) = 1 for all i, x). These
display the aggregation/segregation properties of the system. The right-hand panels give
Individual 3’s simulated probability distribution as it changes over time.
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