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The Use of 3D Printing in the Development of

Gaseous Radiation Detectors
Sam Fargher, Chris Steer, and Lee Thompson

Abstract—Fused Deposition Modelling has been used to pro-
duce a small, single wire, Iarocci-style drift tube to demonstrate
the feasibility of using the Additive Manufacturing technique to
produce cheap detectors, quickly. Recent technological develop-
ments have extended the scope of Additive Manufacturing, or
3D printing, to the possibility of fabricating Gaseous Radiation
Detectors, such as Single Wire Proportional Counters and Time
Projection Chambers. 3D printing could allow for the production
of customisable, modular detectors; that can be easily created
and replaced and the possibility of printing detectors on-site in
remote locations and even for outreach within schools.

The 3D printed drift tube was printed using Polylactic acid
to produce a gas volume in the shape of an inverted triangular
prism; base length of 28 mm, height 24.25 mm and tube length
145 mm. A stainless steel anode wire was placed in the centre of
the tube, mid-print. P5 gas (95% Argon, 5% Methane) was used
as the drift gas and a circuit was built to capacitively decouple
signals from the high voltage. The signal rate and average pulse
height of cosmic ray muons were measured over a range of
bias voltages to characterise and prove correct operation of the
printed detector.

Index Terms—3D Printing, Additive Manufacturing, Gaseous
radiation Detectors, Drift Tubes.

I. INTRODUCTION

A
DDITIVE Manufacturing (AM), or 3D printing, is a

technique used to fabricate 3D models from CAD files by

fusing together successive layers of material. AM was devel-

oped in the 1980’s as a method of producing basic prototypes,

however the available processes were expensive and slow.

Recent years have seen new technologies and developments

occur that have extended the scope of AM. Improved speed

and accuracy of AM processes have enabled fast production

of high quality, functional products; and an increase in the

range of printable materials, such as flexible and electrically

conductive thermoplastics, has allowed more complex designs

and geometries to be fabricated. Commercialisation has also

allowed Rapid Prototyping (the iterative process of trial and

error to produce a working design) to become a cost-effective,

accessible and convenient production method.

A. Motivations

In 2013 M. Hohlmann [1] posed a ”Grand Challenge” to the

HEP instrumentation community to use AM to produce parti-

cle detectors. In this white paper, Hohlmann shows the current

AM capabilities still do not meet the requirements to 3D print a
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fully-functional MicroPattern Gas Chambers, including a Gas

Electron Multiplier, that have the spatial resolution needed

for applications in HEP experiments. However, current AM

techniques do have the necessary performance to allow Rapid

Prototyping to be used in the R& D phase of building such

Gaseous Radiation Detectors (GRDs) and in the production of

GRDs of a simpler design, such as Single Wire Proportional

Counters (SWPCs) and Time Projection Chambers (TPCs).

Fig. 1. A table comparing commercial AM capabilities to the performance
needed to 3D print complete gaseous radiation detectors such as MicroPattern
Gas Chambers (containing GEMs), for high spatial resolution detectors
required in HEP experiments [1].

II. 3D PRINTING WIRED GASEOUS RADIATION

DETECTORS

Fused Deposition Modelling (FDM) is the main AM tech-

nique available to to the authors. This process works by

extruding thin lines of molten thermoplastic, in the x-y plane,

onto a base plate to produce a ”slice” of a model. The baseplate

then moves downwards in the z-axis and another ”slice” is

printed onto the previous, thermally fusing as the plastic is

printed. This process is repeated until a 3D model is produced.

An Iarocci-style drift tube was chosen to be the first type

of GRD to be printed as this is of the simplest design. Iarocci

tubes are often cylindrical, a few cm in diameter, with an anode

wire of diameter ∼100 µm, and a resistive cathode (typically

graphite) coating on the inside. This internal resistive cathode

allows for an external pick-up electrode to be used, allowing

for easier detector construction [2]. The initial challenges of

3D printing a the drift tube using FDM are producing a hollow

enclosure, as the drift tube ’roof’ would have to be printed

over empty space; introducing a taut anode wire in the correct

position, which will remain taut; and ensuring the enclosure

is airtight.

Acrylonitrile butadiene styrene (ABS) and Polylactic acid

(PLA) were investigated as possible thermoplastics to print

the enclosure, with a variety of different drift tube enclosure

designs. Two printers were used; the Makerbot Replicator 2X

for the ABS and the re:3D Gigabot (Fig. 2) for the PLA. Each
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Fig. 2. Picture of the re:3D Gigabot at The University of Sheffield. The
Gigabot is a large scale commercial FDM printer, with a possible print volume
of dimensions 590 x 600 x 600 mm3.

drift tube was designed using OpenSCAD to produce an .stl

file which was then converted, via slicing software, into print-

able .x3g or .GCODE files, depending on the printer used. The

.x3g file format is a binary file used by the Makerbot and the

.GCODE file format is a Computer Numerical Control (CNC)

file used by the Gigabot. The .GCODE files have a significant

advantage over the .x3g as GCODE is a list of commands

followed by the printer; for 3D printing each successive layer

of the print has its own section of code, allowing the possibility

of editing the .GCODE before printing, to customise certain

layers. From the tests, ABS was found to warp too easily

and provide poor overhang formation for the majority of the

enclosure designs, however PLA produced stable prints and

excellent overhang formation for all tested designs and an

inverse triangular prism drift tube was selected to be continued

with. These results, along with the advantages that come with

using .GCODE, meant using PLA with the Gigabot henceforth.

Having found PLA to be the best thermoplastic to use, a

new drift tube was created using OpenSCAD. This drift tube

had a base length of 28 mm, height 24.25 mm and tube length

145 mm and included gas inlet valves (see Fig. 3 for cross-

section).

A frame was also designed, and 3D printed with the

Gigabot, to hold an anode wire at high tension. The height

of the frame was designed to be half the height of the drift

tube, allowing the wire to run through the centre of the drift

tube. A stainless steel wire, (r = 50µm), was secured to the

frame using Araldite while using a 300g load to supply the

correct tension. Although stainless steel is not an ideal metal

for a drift tube anode wire, it was the easiest available wire

for these tests.

Four pegs, each (10 x 10 x 5) mm3, were added to the drift

tube model on OpenSCAD, which corresponded to the inner

corners of the wire frame (see Fig. 4). These pegs ensure the

wire frame can only be placed in the correct position to leave

the anode wire running central down the tube.

The drift tube .GCODE was generated, usingSimplify3D

slicing software, and subsequently edited to pause the process

Fig. 3. Cross-section of the OpenSCAD drift tube design with gas inlet. Open
sections at bottom left and right are connected to the main, central triangular
prism to allow gas to flow within but these sections do not contribute to any
signals.

mid-print, at the height of the wire frame; lower the baseplate;

and wait for 120 seconds, allowing enough time for the frame

holding the anode wire to be introduced. Once in place, the

3D printing process continued, depositing molten plastic over

the anode wire, securing it in place. The drift tube walls

were printed with a 20% infill, however this amount of plastic

was not sufficient to grip the wire and maintain the tension

required for operation once the wire was cut free from the

frame. Instead of increasing the infill of the entire drift tube,

the .GCODE corresponding to the 5 printed layers, above

and below the anode wire, were replaced with the .GCODE

generated with 100% infill, which gripped the anode wire

sufficiently.

Once printed, the anode wire was cut free from the frame,

leaving a hollow drift tube with a central anode wire. Each end

of the anode wire was soldered to an SHV connector (with one

end connected via a 1MΩ resistor) fixed to 3D printed end caps

to provide a barrier to the bare wire, which would be connected

to a high voltage (see Fig. 5). The drift tube was then coated

with copper shielding spray to provide RF protection and act

as an external cathode (grounded) as an internal cathode has

not yet been introduced into the drift tube design.

Fig. 4. OpenSCAD design of drift tube, wire rig and pegs, to allow the wire
(red) to be correctly placed within the drift tube. Although all designs are
collected here, the drift tube and pegs are one design and the wire rig is
another design to be printed separately. The wire (red) is not part of either
model but has been added to show position.
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A simple circuit was built to take the output of the drift tube

and capacitively decouple any signals from the bias voltage

before being passed to an oscilloscope. An airtight metal box

was modified to take the gas output of the drift tube and

monitor the oxygen level, using a SGX oxygen sensor, as a

measure of contaminants in the drift gas. The oxygen monitor

box, circuit enclosure and circuit diagram can be seen in Fig.

5.

Fig. 5. UPPER: Circuit diagram of signal decoupling circuit. The 50 Ω

resistor was included to better match the impedance of the signal output
system. Components D1 and D2 are Schottky Diodes included as a precaution,
to limit the signal amplitude and protect the oscilloscope electronics. LOWER:
Picture of completed drift tube connected to signal decoupling circuit (small
metal box) and oxygen sensor (large metal box).

III. CHARACTERISATION

To characterise the drift tube, the average pulse height and

signal rate was determined for a range of applied bias voltages.

P5 gas (95% Argon 5% Methane) was flowed through the

drift tube at a constant flow rate of 0.2 litres/min and the

oxygen level monitored and maintained below 0.0025%. The

temperature of the gas was maintained at 299.0 ± 1.5 K. A

range of bias voltages were applied to the anode wire via a

V6533P 6 Channel VME Programmable HV Power Supply

and the raw signals, decoupled from the bias voltage, were

passed onto a Teledyne LeCroy WaveRunner Oscilloscope to

record the signal pulse heights and signal rate. Cosmic ray

muons were used to produce signals in the drift tube and a

minimum of a few thousand signals were recorded for each

of the applied bias voltages.

Fig. 6 shows the variation of signal rate against the bias

voltage applied to the anode wire. These results were obtained

from a relatively low statistics data run, however, the graph

does show that the signal rate generally increases with bias

voltage; as expected with GRDs. It should be noted that

although the drift tube has been operated at high voltages,

uncommon for most GRDs, these voltages are typical for

Iarocci tube operation.

Fig. 6. Graph of average signal rate against applied bias voltage and errors.

Fig. 7. Graph of pulse heights against applied bias voltage and with errors.
The assumed regions of operation are labelled. The pulse heights are in
arbitrary units as the raw signals are used, and a integrator and shaper need
to be used to fix appropriate units to values.

Fig. 8. Graph depicting the typical variation in average pulse height, with
bias voltage, found for GRDs. The operation regions are also labelled [3].
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Fig. 7 shows the variation in average pulse height against the

bias voltage applied to the 3D printed drift tube anode wire,

and the typical variation of average pulse height, with bias

voltage, expected for GRDs are shown in Fig. 8. Currently,

the range of bias voltages that the drift tube has been operated

with is not sufficient to provide a clear correlation between the

data and the expected variation, however, the general shape

of the measured curve demonstrates the expected behaviour

at lower voltages and the assumed regions of operation have

been labelled on the graph, i.e. Ion Chamber Region and

Proportional Region. As noted in the figure caption, only the

raw signals have been used and the next stage is to add a pulse

integrator and shaper to provide better signals for analysis.

IV. CONCLUSION

A simple Iarocci-style drift tube was 3D printed, proving the

concept that simple GRDs can be 3D printed at current AM

capabilities. The characterisation of the drift tube is underway

and the results appear to show the drift tube is operating

correctly; giving reason to continue investigating AM as a

means of producing GRDs. Upon completion of characterising

the current 3D printed drift tube, the next stage of this project

is to produce a method of introducing an internal cathode into

the drift tube, to allow readout. If this is successful, it is hoped

that the project will move forward to developing a method

of printing more complex GRDs, such as Time Projection

Chambers.
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