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Dereverberation techniques based on acoustic multichannel equalization, such as the re-
laxed multichannel least squares (RMCLS) technique and the partial multichannel equaliza-
tion technique based on the multiple-input/output inverse theorem (PMINT), are known to
be sensitive to room impulse response perturbations. In order to increase their robustness,
several methods have been proposed, e.g., using a shorter reshaping filter length, incorporat-
ing regularization, or incorporating a sparsity-promoting penalty function. This paper focuses
on evaluating the performance of these methods for single-source multi-microphone scenar-
ios, both using instrumental performance measures as well as using subjective listening tests.
While commonly used instrumental performance measures indicate that the regularized RM-
CLS technique yields the largest reverberant energy suppression, subjective listening tests
show that the regularized and sparsity-promoting PMINT techniques yield the best percep-
tual speech quality. By analyzing the correlation between the instrumental and the percep-
tual results, it is shown that signal-based performance measures are more advantageous than
channel-based performance measures to evaluate the perceptual speech quality of signals dere-
verberated by equalization techniques. Furthermore, this analysis also demonstrates the need
to develop more reliable instrumental performance measures.

1 INTRODUCTION

Speech signals recorded in an enclosed space by micro-

phones placed at a distance from the speaker are often cor-

rupted by reverberation, which arises from the superposi-

tion of many delayed and attenuated copies of the clean

signal. Reverberation causes signal degradation, typically

leading to decreased speech quality and intelligibility [1–3]

and performance deterioration in automatic speech recog-

nition systems [4, 5]. With the continuously growing de-

mand for high-quality hands-free communication in tele-
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conferencing applications, voice-controlled systems, and

hearing aids, speech enhancement techniques aiming at

dereverberation have become indispensable.

In the last decades, many single and multichannel dere-

verberation techniques have been proposed [6], with mul-

tichannel techniques being generally preferred since they

exploit both the spectro-temporal and the spatial character-

istics of the received microphone signals. Existing multi-

channel dereverberation techniques can be broadly classi-

fied into spectral enhancement techniques [7,8], probabilis-

tic modeling-based techniques [9, 10], and acoustic multi-

channel equalization techniques [11–14]. Acoustic multi-

channel equalization techniques aim to reshape the avail-

able room impulse responses (RIRs) between the speaker

and the microphone array. They can in theory achieve per-

fect dereverberation performance [11], and hence comprise

an attractive approach to speech dereverberation.

J. Audio Eng. Sco., Vol. , No. , 1
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A well-known multichannel equalization technique

aiming at acoustic system inversion is the multiple-

input/output inverse theorem (MINT) technique [11],

which however suffers from drawbacks in practice. Since

the available RIRs typically differ from the true RIRs due

to, e.g., temperature or position variations [15–17] or due

to the sensitivity of blind and supervised system identi-

fication methods to near-common zeros or background

noise [13, 18–21], MINT fails to invert the true RIRs. This

may lead to perceptually severe distortions in the output

signal [13, 14]. In order to increase the robustness against

RIR perturbations, partial multichannel equalization tech-

niques such as relaxed multichannel least-squares (RM-

CLS) [13] and partial multichannel equalization based on

MINT (PMINT) [14] have been proposed. Since early

reflections tend to improve speech intelligibility [22] and

late reflections are the major cause of speech intelligi-

bility degradation, the objective of these techniques is to

suppress only the late reflections.

Although partial equalization techniques are signifi-

cantly more robust than MINT, their performance still re-

mains susceptible to RIR perturbations [14]. Hence, several

methods have been proposed to further increase the robust-

ness of the RMCLS and PMINT techniques against RIR

perturbations. In [23] it has been proposed to use a shorter

reshaping filter length than conventionally used, resulting

in a better-conditioned optimization criterion. In [14] it

has been proposed to incorporate regularization in the fil-

ter design such that the distortion energy due to RIR per-

turbations is reduced. In [24, 25] it has been proposed to

incorporate a signal-dependent sparsity-promoting penalty

function in the filter design such that the output signal ex-

hibits spectro-temporal characteristics of a clean signal.

While simulation results in [14, 23–25] have shown us-

ing instrumental performance measures that all proposed

methods effectively increase the robustness of the RMCLS

and PMINT techniques, an extensive instrumental and per-

ceptual comparison of the performance of all these meth-

ods is lacking.

The objective of this paper is threefold. First, using

channel-based and signal-based instrumental performance

measures, the reverberant energy suppression and the per-

ceptual speech quality of the different robust extensions

of the RMCLS and PMINT techniques are compared for

various RIR perturbation levels. While instrumental per-

formance measures indicate that the regularized RMCLS

technique yields the largest reverberant energy suppres-

sion, different conclusions can be drawn about the percep-

tual speech quality based on different instrumental perfor-

mance measures. Second, in order to determine the most

perceptually advantageous technique, the overall speech

quality is evaluated using subjective listening tests, show-

ing that the regularized and sparsity-promoting PMINT

techniques yield the best perceptual speech quality. Third,

the correlation between the instrumental and the percep-

tual results is analyzed, showing the advantage of signal-

based performance measures over channel-based perfor-

mance measures as well as the necessity to develop more

reliable instrumental performance measures to evaluate the

perceptual speech quality of signals dereverberated using

equalization techniques.

The paper is organized as follows. In Section 2 the

RMCLS and PMINT techniques for acoustic multichan-

nel equalization as well as the different proposed methods

to increase their robustness against RIR perturbations are

briefly reviewed. In Section 3 the considered acoustic sce-

narios and the algorithmic settings are described. In Sec-

tions 4 and 5 the performance of the different techniques

is compared using instrumental performance measures and

subjective listening tests. Finally, Section 6 discusses the

correlation between the instrumental and the perceptual re-

sults.

2 ROBUST ACOUSTIC MULTICHANNEL

EQUALIZATION

2.1 Configuration and Notation

Consider the acoustic system depicted in Fig. 1, con-

sisting of a single speech source in a reverberant room

and M microphones. The mth microphone signal ym(n),
m = 1, . . . ,M, at time index n is given by

ym(n)=
Lh−1

∑
l=0

hm(l)s(n − l)

︸ ︷︷ ︸

xm(n)

+vm(n) = xm(n) + vm(n), (1)

where hm(l), l = 0, . . . , Lh − 1, are the coefficients of the

Lh-taps long time-invariant RIR between the speech source

and the mth microphone, s(n) is the clean speech signal,

xm(n) is the reverberant speech component, and vm(n) is

the additive noise component. Since this paper deals with

acoustic multichannel equalization techniques for speech

dereverberation, in the following it is assumed that vm(n) =
0, hence ym(n) = xm(n).

Using the filter-and-sum structure in Fig. 1, the output

signal z(n) is equal to the sum of the filtered microphone

signals, i.e.,

z(n) =
M

∑
m=1

Lw−1

∑
l=0

wm(l)xm(n − l), (2)

where wm(l), l = 0, . . . , Lw − 1, are the coefficients of the

Lw-taps long filter applied to the mth microphone signal.

In vector notation, the RIR hm and the filter wm can be

described as

hm = [hm(0) . . .hm(Lh−1)]T,wm = [wm(0) . . .wm(Lw−1)]T.

...

w1(n)
y1(n)

w2(n)
y2(n)

wM (n)
yM (n)

...

...

Σ
z(n)

C
s(n)

h1
(n
)

h2(n)

h
M (n)

v1(n)
+

v2(n)
+

vM (n)
+

Fig. 1: Acoustic system configuration.
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Using the MLw-dimensional stacked filter vector w =
[wT

1 . . .w
T
M]T , the equalized impulse response (EIR) vec-

tor c of length Lc = Lh + Lw − 1, i.e., c = [c(0) . . .c(Lc −
1)]T , can be expressed as

c = Hw, (3)

where H denotes the Lc × MLw-dimensional multichannel

convolution matrix of the RIRs, i.e., H = [H1 . . .HM], and

Hm =


















hm(0) 0 . . . 0

hm(1) hm(0)
. . .

...
... hm(1)

. . . 0

hm(Lh−1)
...

. . . hm(0)

0 hm(Lh−1)
. . . hm(1)

...
. . .

. . .
...

0 . . . 0 hm(Lh−1)


















. (4)

Defining the Lc–dimensional clean speech vector s(n) =
[s(n) . . .s(n − Lc + 1)]T and the Lw–dimensional mth re-

verberant signal vector xm(n) = [xm(n) . . .xm(n − Lw +
1)]T , with xm(n) = HT

ms(n), the output signal z(n) can be

expressed as

z(n)=
M

∑
m=1

wT
mxm(n)=

M

∑
m=1

wT
mHT

ms(n)=wT HT

︸ ︷︷ ︸

cT

s(n). (5)

As indicated by (5), the dereverberation performance of the

speech enhancement system fully depends on the EIR vec-

tor c. For conciseness, the time index n will be omitted

when possible in the remainder of this paper.

2.2 Acoustic Multichannel Equalization

Acoustic multichannel equalization techniques assume

that measurements or estimates of the RIRs are provided.

Such techniques aim at speech dereverberation by design-

ing a reshaping filter w such that the (weighted) EIR in (3)

is equal to a (weighted) dereverberated target EIR. Since

the true RIRs are typically not available in practice, the

reshaping filter is designed using the perturbed multichan-

nel convolution matrix Ĥ constructed from the available

RIRs ĥm. This matrix is equal to Ĥ = H + E, where E

represents the convolution matrix of the RIR perturbations

arising due to, e.g., temperature fluctuations [15], source-

microphone geometry mismatches [16, 17], RIR estima-

tion errors from blind and supervised system identifica-

tion methods [18,19], or microphone transfer function mis-

matches. It should be noted that microphone transfer func-

tion mismatches result in convolutive RIR perturbations in-

stead of additive ones. However, the techniques discussed

in the remainder of this paper are independent of the type of

RIR perturbations present in the system, as long as a model

can be developed to characterize these perturbations.

In this paper, we will focus on the RMCLS [13] and

PMINT [14] techniques, which compute the filter w as the

solution to

WĤw = Wct , (6)

with W an Lc × Lc–dimensional diagonal weighting ma-

trix and ct the Lc–dimensional target EIR. The definition

of the weighting matrix W and the target EIR ct for the

RMCLS and PMINT techniques is presented in Tables 1

and 2 respectively, where τ denotes a delay, Ld denotes

the length of the direct path and early reflections, I de-

notes the Lc × Lc–dimensional identity matrix, and p ∈
{1, . . . , M}, i.e., for the PMINT technique, the direct path

and the early reflections of the target EIR are controlled by

the first part of one of the available RIRs. Without loss of

generality, other desired EIRs could also be used instead, as

long as they are perceptually close to the true RIRs. From

these definitions of W and ct , it can be observed that on the

one hand, the RMCLS technique does not constrain all taps

of the EIR, aiming only at suppressing the reverberant tail,

while on the other hand, the PMINT technique constrains

all taps of the EIR, aiming at suppressing the reverberant

tail and preserving the perceptual speech quality. For more

details on these techniques, we refer to [13, 14].

The filter solving (6) is computed by minimizing the

least-squares cost function1

J
LS

= ‖W(Ĥw − ct)‖
2
2. (7)

As shown in [11, 14], assuming that the RIRs ĥm do not

share any common zeros and using Lw ≥
⌈

Lh−1
M−1

⌉

, with ⌈·⌉

the ceiling operator, the filter minimizing (7) is equal to

w
LS

= (WĤ)+Wct , (8)

where {·}+ denotes the matrix pseudo-inverse. When

the true RIRs are available, i.e., Ĥ = H, this fil-

ter yields perfect dereverberation performance, i.e.,

WHw
LS

= Wct [14]. However, in the presence of RIR

perturbations, i.e., Ĥ 6= H, this filter typically fails to

achieve dereverberation, i.e., WHw
LS

6= Wct , possibly

even causing large distortions in the output signal [14].

Table 1: Definition of the weighting matrix W in (6) for the

RMCLS and PMINT techniques.

Technique Weighting matrix W

RMCLS diag[1 . . . 1
︸ ︷︷ ︸

τ

1 0 . . . 0
︸ ︷︷ ︸

Ld

1 . . .1]T

PMINT I

Table 2: Definition of the target EIR ct in (6) for the

RMCLS and PMINT techniques.

Technique Target EIR ct

RMCLS [0 . . . 0
︸ ︷︷ ︸

τ

1 0 . . . 0]T

PMINT [0 . . .0
︸ ︷︷ ︸

τ

ĥp(0) . . . ĥp(Ld − 1)
︸ ︷︷ ︸

Ld

0 . . .0]T

1Strictly speaking, the cost function in (7) is a weighted least-

squares cost function for W 6= I.

J. Audio Eng. Sco., Vol. , No. , 3
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2.3 Increasing Robustness Against RIR

Perturbations

In this section, several methods that have been proposed

to increase the robustness of the RMCLS and PMINT tech-

niques are briefly reviewed. Furthermore, insights on the

computational complexity of these different methods are

provided.

Decreasing the reshaping filter length: In [23] it

was analytically shown that using a shorter reshaping fil-

ter length than conventionally used, i.e., Lw <
⌈

Lh−1
M−1

⌉

, de-

creases the condition number of the matrix WĤ. As ana-

lytically shown in [26], a smaller condition number yields

a better-conditioned least-squares optimization criterion,

with the resulting least-squares solution w
LS

in (8) being

less sensitive to perturbations in WĤ.

Incorporating regularization: In [14] it was proposed

to increase the robustness of the RMCLS and PMINT tech-

niques by incorporating regularization in the filter design,

such that the distortion energy due to RIR perturbations

is reduced. The regularized least-squares cost function is

given by

J
RLS

= ‖W(Ĥw − ct)‖
2
2 + δwT Rew, (9)

with Re denoting the matrix modeling the perturbations,

i.e., Re = E {ET E}, where E denotes the expected value

operator, and δ is a regularization parameter providing a

trade-off between the minimization of the least-squares er-

ror J
LS

and the distortion energy due to RIR perturbations

wT Rew. The regularized least-squares filter minimizing (9)

is given by

w
RLS

= [(WĤ)T (WĤ) + δRe]
−1(WĤ)T Wct . (10)

Incorporating sparsity-promoting penalty functions:

In [24, 25] it was proposed to increase the robustness

of the RMCLS and PMINT techniques by incorporating

penalty functions that promote sparsity of the output sig-

nal in the short-time Fourier transform (STFT) domain,

such that the output signal exhibits characteristics of a

clean speech signal. The Lz-dimensional output signal vec-

tor z = [z(n) . . . z(n − Lz + 1)]T can be expressed as

z = Xw, (11)

where X denotes the Lz × MLw-dimensional multichannel

convolution matrix of the microphone signals, i.e., X =
[X1 X2 . . . XM], and

Xm =








xm(n) · · · xm(n − Lw + 1)
xm(n − 1) · · · xm(n − Lw)

...
. . .

...

xm(n − Lz + 1) · · · xm(n − Lw − Lz + 2)







. (12)

The sparsity-promoting least-squares cost function is then

given by

J
SLS

= ‖W(Ĥw − ct)‖
2
2 + η f

SP
(ΨΨΨz), (13)

where f
SP

denotes a sparsity-promoting penalty func-
tion and η is a weighting parameter providing a trade-
off between the minimization of the least-squares error

J
LS

and the penalty function value f
SP
(ΨΨΨz). The opera-

tor ΨΨΨ denotes the STFT operator transforming the Lz-
dimensional time-domain vector z into the Lz̃-dimensional
time-frequency domain vector z̃ consisting of the STFT
coefficients of the output signal, with z̃ = ΨΨΨz. Since no
closed-form expression is available for the filter minimiz-
ing the cost function in (13), the sparsity-promoting least-
squares filter can be computed using, e.g., the iterative al-
ternating direction method of multipliers (ADMM) algo-
rithm [27]. Introducing the auxiliary variable a such that
the optimization problem in (13) is split into simpler sub-
problems, the ADMM algorithm computes the sparsity-
promoting least-squares filter using the following update
rules [24, 25] until a termination criterion is satisfied (cf.
Section 3):

w(i+1) = [2(WĤ)T (WĤ) + ρXT X]−1

× [2(WĤ)T (Wct) + ρXT ΨΨΨH(a(i) − λλλ (i))],
(14)

a(i+1) = Sη/ρ (ΨΨΨXw(i+1) + λλλ (i)), (15)

λλλ (i+1) = λλλ (i) + ΨΨΨXw(i+1) − a(i+1). (16)

In (14)-(16), {·}(i) denotes the variable in the ith itera-

tion, λλλ is the so-called dual (splitting) variable, ρ > 0

is the ADMM penalty parameter, and Sη/ρ denotes the

proximal mapping of the used sparsity-promoting penalty

function [28]. Simulation results in [25] have shown that

incorporating an l0-norm, l1-norm, or weighted l1-norm

sparsity-promoting penalty function significantly increases

the robustness of the RMCLS and PMINT techniques, with

the weighted l1-norm penalty function yielding the best

performance. Hence, in this paper we only consider the

weighted l1-norm penalty function, defined as

f
SP
(z̃) = ‖diag{u}z̃‖1 =

Lz̃−1

∑
q=0

|u(q)z̃(q)|, (17)

with u(q) > 0, q = 0, . . . ,Lz̃ − 1, denoting user-defined

scalar weights. In order to preserve the spectro-temporal

structure of a typical speech signal, the weights u(q) are

defined as [25]

u(q) =
1

|x̃p(q)|+ ζ
, q = 0, . . . , Lz̃ − 1, (18)

with x̃p(q) the STFT coefficients of the p-th microphone

signal, where p ∈ {1, . . . , M}, and ζ > 0 a small positive

scalar used to avoid division by 0.

While simulation results in [14, 23–25] have shown that

all proposed methods are effective in increasing the ro-

bustness of the RMCLS and PMINT techniques against

RIR perturbations, an extensive instrumental and percep-

tual comparison of the performance of all these methods to

determine the most robust and perceptually advantageous

technique is lacking.

Computational complexity considerations: The

computational complexity of all considered methods is

cubic, since matrix multiplication and matrix inversion

account for the dominant operation in all reshaping filter

computations, cf. (8), (10), and (14)-(16). The complex-

ity of using a shorter reshaping filter length is O(n3
r ),

where nr denotes the number of rows of the matrix WĤ

4 J. Audio Eng. Sco., Vol. , No. ,
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when Lw <
⌈

Lh−1
M−1

⌉

. The complexity of using regulariza-

tion is O(n3
c), where nc denotes the number of columns

of the matrix WĤ when Lw =
⌈

Lh−1
M−1

⌉

. Finally, the com-

plexity of using a sparsity-promoting penalty function is

O(L3
z ), where Lz denotes the length of the output signal

vector. Since typically nr < nc ≪ Lz, it can be said that

decreasing the reshaping filter length results in the low-

est computational complexity, whereas incorporating a

sparsity-promoting penalty function results in the high-

est computational complexity. In addition, the execution

of the sparsity-promoting method takes a significantly

longer time than the execution of the other methods due

to the multiple number of iterations. However, since the

number of iterations is constant, this is not reflected in

the computational complexity of the sparsity-promoting

method.

3 ACOUSTIC SCENARIOS AND ALGORITHMIC

SETTINGS

This section describes the considered acoustic scenar-

ios and the algorithmic settings for which the performance

of the robust extensions of the RMCLS and PMINT tech-

niques is evaluated.

Acoustic scenarios: We considered 2 different rever-

berant acoustic systems with a single speech source and

M = 4 omni-directional microphones. For each acoustic

system, Table 3 presents the reverberation time T60, the

source-microphone distance dsm, the inter-microphone dis-

tance dim, and the RIR length Lh at a sampling frequency

fs = 8 kHz. The RIRs between the speech source and the

microphones were measured using the swept-sine tech-

nique [29] and the reverberant signals were generated by

convolving 2 sentences of clean speech (approximately 4

s long) from the HINT database [30] with the measured

RIRs. In order to simulate RIR perturbations, the measured

RIRs were perturbed by proportional Gaussian distributed

errors as proposed in [31], such that a desired normalized

projection misalignment (NPM), defined as

NPM = 10log10

∥
∥
∥hm − hT

mĥm

ĥT
mĥm

ĥm

∥
∥
∥

2

2

‖hm‖2
2

, (19)

is obtained. The considered NPMs are NPM1 = −33 dB

and NPM2 = −15 dB, with NPM1 representing a moder-

ate perturbation level and NPM2 representing a high per-

turbation level. Hence, the performance of all considered

techniques is evaluated for 4 different acoustic scenarios,

i.e., S1-NPM1, S2-NPM1, S1-NPM2, and S2-NPM2.

Table 3: Characteristics of the considered acoustic systems.

System T60 [ms] dsm [m] dim [m] Lh

S1 450 3 0.05 3600

S2 610 2 0.04 4880

Algorithmic settings: As previously mentioned, we

investigate the performance of the following techniques

(cf. Section 2.2):

r L-RMCLS, i.e., the RMCLS technique using a shorter

reshaping filter length,
r R-RMCLS, i.e., the regularized RMCLS technique,
r S-RMCLS, i.e., the weighted l1-norm sparsity-

promoting RMCLS technique,
r L-PMINT, i.e., the PMINT technique using a shorter re-

shaping filter length,
r R-PMINT, i.e., the regularized PMINT technique, and
r S-PMINT, i.e., the weighted l1-norm sparsity-promoting

PMINT technique.

For the R-RMCLS, S-RMCLS, R-PMINT, and S-PMINT

techniques the reshaping filter length is set to Lw =
⌈

Lh−1
M−1

⌉

which is the minimum length required for perfect derever-

beration performance (cf. Section 2.2), i.e., Lw = 1200 for

the system S1 and Lw = 1627 for the system S2. For all

techniques, the delay is set to τ = 90 and the length of the

direct path and early reflections is set to Ld = 0.01 × fs

(i.e., 10 ms), cf. Tables 1 and 2. The target EIR ct for

the robust extensions of the PMINT technique is set to

the direct path and early reflections of the first RIR ĥ1,

i.e., p = 1. For the regularized techniques, the matrix Re

modeling the RIR perturbations is set to Re = I. For the

sparsity-promoting techniques, the STFT is computed us-

ing a 32 ms Hamming window with 50% overlap between

successive frames. As in [24], the variables w, a, and λλλ
are initialized with [1 0 . . .0]T and the termination criterion

is set to either the number of iterations exceeding 150 or

the change in the filter norm dropping below 10−3. The

weights in (18) are computed using the STFT coefficients

of the first microphone signal x̃1(q), i.e., p = 1.

The considered reshaping filter lengths Lw for the L-

RMCLS and L-PMINT techniques, regularization parame-

ters δ for the R-RMCLS and R-PMINT techniques, and

weighting and penalty parameters η and ρ for the S-

RMCLS and S-PMINT techniques are

Lw ∈ {500,600, . . . ,

⌈
Lh − 1

M − 1

⌉

}, (20)

δ ∈ {10−7,10−6, . . . ,10−1,1,3,5,7,10}, (21)

η ∈ {10−7,10−6,10−5,10−4}, (22)

ρ ∈ {10−7,10−6, . . . ,10−1}. (23)

As in [14, 23], the optimal reshaping filter length, the op-

timal regularization parameter, and the optimal weighting

and penalty parameters used in the following simulations

are intrusively selected from (20)-(23) as the parameters

maximizing the perceptual evaluation of speech quality

(PESQ) score [32] for each technique and each acoustic

scenario (cf. Section 4 for details on the PESQ score com-

putation). It should be noted that the computation of the

PESQ score for selecting the optimal parameters is an in-

trusive procedure that is not applicable in practice, since
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knowledge of the true RIRs is required in order to compute

the reference signal and the resulting EIR.

4 INSTRUMENTAL EVALUATION

In this section, the performance of the different con-

sidered techniques is evaluated by means of commonly

used instrumental performance measures, i.e., direct-

to-reverberant ratio (DRR) [6], speech-to-reverberation

modulation energy ratio (SRMR) [33], log likelihood

ratio (LLR) [34], and PESQ [32]. The channel-based

DRR measure has been shown to correlate well with

the perceived amount of reverberation for unprocessed

signals [35], whereas the signal-based SRMR, LLR, and

PESQ measures have been shown to correlate well with the

perceived overall quality of signals processed by speech

enhancement algorithms for dereverberation and noise re-

duction [36]. While the SRMR measure is a non-intrusive

measure, the LLR and PESQ measures are intrusive mea-

sures comparing the output signal to a (dereverberated)

reference signal. The reference signal employed in this

evaluation is the clean speech signal convolved with the

direct path and the early reflections (up to 10 ms) of the

true RIR h1. Note that a higher DRR, a higher SRMR,

a lower LLR, and a higher PESQ score indicate a better

performance.

Fig. 2a depicts the obtained DRR for the input RIR h1

and for the EIRs c obtained using the robust extensions of

the RMCLS and PMINT techniques. The following con-

clusions can be drawn by comparing the presented DRR

values:

r All techniques improve the DRR in comparison to the

input RIR h1.
r The robust extensions of the RMCLS technique gener-

ally yield a similar or higher DRR than the robust ex-

tensions of the PMINT technique. This is to be expected

since the robust extensions of the RMCLS technique re-

lax the constraints on the filter design and aim only at

suppressing the late reverberation, whereas the robust

extensions of the PMINT technique also aim at preserv-

ing the perceptual speech quality (which is not reflected

by the DRR measure).
r The R-RMCLS technique typically yields the highest

DRR for the considered scenarios (except for the sce-

nario S2-NPM1, where the S-RMCLS technique yields

the highest DRR).
r The R-PMINT technique typically yields a higher DRR

than the S-PMINT technique (except for the scenario S1-

NPM1, where the R-PMINT and S-PMINT techniques

yield a similar DRR).
r The L-RMCLS and L-PMINT techniques yield the low-

est DRR out of all considered robust extensions. This

is not surprising since these techniques simply use a

shorter reshaping filter length, without explicitly taking

into account the structure of the RIR perturbations or the

characteristics of the output speech signal.
r The performance of all considered techniques is gener-

ally higher for the system S1 than for the system S2. This

can be explained by the higher reverberation time of the

system S2, leading to a larger number of perturbed RIR

taps to be reshaped, and hence, an increased sensitivity

of all considered techniques to RIR perturbations.

Figs. 2b-2d depict the obtained SRMR, LLR, and PESQ

scores for the reverberant microphone signal x1(n) and for

the output signals z(n) obtained using the robust extensions

of the RMCLS and PMINT techniques. The following con-

clusions can be drawn by comparing the presented instru-

mental measures:

r Not all techniques improve the overall quality in compar-

ison to the reverberant signal x1(n), e.g., the L-RMCLS

technique yields a lower SRMR for scenarios S2-NPM1

and S2-NPM2, the L-PMINT technique yields a lower

SRMR for the scenario S2-NPM2, and the R-PMINT

technique is the only technique consistently improving

the LLR for all scenarios.
r The robust extensions of the PMINT technique generally

yield a similar or better SRMR and LLR than the ro-

bust extensions of the RMCLS technique. Surprisingly,

the robust extensions of the RMCLS technique generally

yield a similar or better PESQ score than the robust ex-

tensions of the PMINT technique, implying that PESQ

does not appear to reflect the better preservation of the

early reflections achieved by the robust extensions of the

PMINT technique but puts more emphasis instead on the

better reverberant tail suppression achieved by the robust

extensions of the RMCLS technique.
r The R-PMINT technique typically yields the best SRMR

and LLR (except for the scenario S2-NPM2, where the

S-RMCLS technique yields the best SRMR), whereas

the R-RMCLS technique typically yields the best PESQ

score.
r As expected, the L-RMCLS and L-PMINT techniques

typically yield the lowest performance in terms of all in-

strumental performance measures.
r The performance of all considered techniques is gener-

ally higher for the system S1 than for the system S2.

In summary, based on instrumental performance measures

it can be said that incorporating regularization and sparsity-

promoting penalty functions is more advantageous to in-

crease the robustness of equalization techniques than using

a shorter reshaping filter length. Furthermore, as expected,

the robust extensions of the RMCLS technique achieve

a larger reverberant energy suppression (as evaluated us-

ing the DRR measure) than the robust extensions of the

PMINT technique, with the R-RMCLS technique typically

yielding the best performance. However, when compar-

ing the perceptual speech quality achieved by the different

techniques, different conclusions can be derived depending

on the used instrumental performance measure, highlight-

ing the necessity of conducting subjective listening tests.
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Fig. 2: Instrumental measures for the robust extensions of the RMCLS and PMINT techniques for all considered acoustic

scenarios: (a) DRR, (b) SRMR, (c) LLR, and (d) PESQ.

5 PERCEPTUAL RESULTS

The perceptual evaluation is based on a multi stimu-

lus test with hidden reference and anchor (MUSHRA) us-

ing the specifications given in [37]. The evaluation is con-

ducted for the reverberant microphone signal x1(n) and

for the output signals z(n) obtained using all considered

techniques. In addition to these signals, a hidden refer-

ence and an anchor are presented to the subjects. The hid-

den reference has been generated as the clean speech sig-

nal convolved with the direct path and the early reflec-

tions (up to 10 ms) of the true RIR h1. The anchor has

been generated as the low-pass filtered microphone sig-

nal x1(n) with a cut-off frequency of 3 kHz. Sound sam-

ples for each considered acoustic scenario can be found

at bit.ly/mushrasamples. The signals are diotically

presented to the subjects through headphones (Sennheiser

HDA 200) using an RME Fireface UFX sound card, with

all signals normalized in amplitude. A total of 21 self-

reported normal hearing subjects who are familiar with

speech processing participated in the listening tests. The

subjects evaluated the signals in terms of the attribute

“overall speech quality” on a scale from 0 to 100. Prior

to the actual evaluation, the subjects were trained to fa-

miliarize themselves with the task and the signals under

test. Furthermore, they could adjust the sound volume to a

comfortable level. The order of presentation of signals and

scenarios were randomized between all subjects.

Fig. 3 depicts the obtained MUSHRA scores for the

reverberant microphone signal and for the output sig-

nals obtained using the robust extensions of the RMCLS

and PMINT techniques. For completeness, the obtained

MUSHRA scores for the reference and the anchor are also

depicted, illustrating that the reference is correctly identi-

fied for all scenarios and that the anchor is typically rated as

having the worst perceptual speech quality (except for the

scenario S2-NPM1, where the L-RMCLS technique yields

a worse quality). In general it can be observed that the rat-

ing variability between subjects (as shown by the whiskers

in each boxplot) is rather large. This is commonly the

case for listening tests evaluating the overall speech qual-

ity achieved by dereverberation algorithms, e.g., [2, 3, 38].

Since the artifacts and distortions produced by the consid-

ered techniques are quite different, the perception of these

artifacts and distortions by different subjects is also rather

different.

For the moderate RIR perturbation level (NPM1 = −33

dB), it can be observed that all proposed techniques typ-

ically improve the perceptual speech quality in compari-

son to the reverberant microphone signal (except for the

L-RMCLS technique yielding a worse perceptual speech

quality and the L-PMINT technique yielding a similar

perceptual speech quality for the system S2). Further-

more, out of the different methods proposed to increase

the robustness of equalization techniques, incorporating a

sparsity-promoting penalty function yields the best percep-

tual speech quality, whereas using a shorter reshaping fil-

ter length yields the worst perceptual speech quality. Fi-

nally, it can be observed that due to the better preserva-

tion of the early reflections, the robust extensions of the

PMINT technique yield a better perceptual speech qual-

ity than the robust extensions of the RMCLS technique,

with the S-PMINT technique yielding the best perceptual

speech quality.

For the higher RIR perturbation level (NPM2 = −15

dB), it can be observed that more techniques fail to improve

the perceptual speech quality in comparison to the rever-

berant microphone signal, i.e., the L-RMCLS, S-RMCLS,
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Fig. 3: MUSHRA scores for the reverberant microphone signal x1(n) and for the output signals z(n) obtained using the

robust extensions of the RMCLS and PMINT techniques for all considered acoustic scenarios. In addition, the scores of

the hidden reference and the anchor are displayed. For each box, the central mark is the median, the edges of the box are

the 25-th and the 75-th percentiles, and the whiskers extend to 1.5 times the interquartile range from the median.

and S-PMINT techniques yield a similar or worse quality

for the system S2. Furthermore, it can be observed that,

similarly as before, the robust extensions of the PMINT

technique yield a similar or better perceptual speech qual-

ity than the robust extensions of the RMCLS technique (ex-

cept for the S-PMINT technique yielding a worse quality

than the S-RMCLS technique for the system S2). How-

ever, unlike for NPM1 = −33 dB, it can now be ob-

served that the R-PMINT technique results in the best

perceptual speech quality, outperforming the S-PMINT

technique. Incorporating regularization in the RMCLS

and PMINT techniques yields the best perceptual speech

quality, whereas incorporating sparsity-promoting penalty

functions typically yields the worst perceptual speech qual-

ity. Hence, while incorporating sparsity-promoting penalty

functions seems to be very advantageous to increase the ro-

bustness and the perceptual speech quality in the presence

of moderate RIR perturbation levels, the performance of

sparsity-promoting techniques seems to deteriorate more

rapidly with increasing perturbation levels than the perfor-

mance of regularized techniques. This is not unexpected,

since sparsity-promoting penalty functions only rely on

general spectro-temporal characteristics of clean speech

signals, whereas regularization aims at explicitly modeling

and suppressing the level of RIR perturbations.

To determine whether the previously discussed results

are statistically significant, a statistical analysis has been

conducted. Since the data are not normally distributed, a

Friedman’s test [39] with the factor “technique” has been

performed for the different considered scenarios.

As summarized in Table 4, the statistical analysis shows

a significant influence of the factor “technique” for all

scenarios. To determine the sources of significance, a

Wilcoxon signed-rank test [40] has been separately con-

ducted for each scenario. The obtained results for each

acoustic scenario are presented in Tables 5-8, with the

ticks representing a statistically significant difference, i.e.,

p < 0.05, and the crosses representing no statistically sig-

nificant difference, i.e., p ≥ 0.05. The presented results are

obviously symmetric across the diagonal since such entries

correspond to the same pair comparison. Table 5 shows that

Table 4: Results of the Friedman’s test for all consid-

ered scenarios. The variable χ2 denotes the Friedman’s chi

square statistic and the value ρ < 0.001 indicates the sig-

nificance of the results.

Scenario χ2 ρ

S1-NPM1 140 ρ < 0.001

S2-NPM1 88 ρ < 0.001

S1-NPM2 119 ρ < 0.001

S2-NPM2 83 ρ < 0.001

for the system S1 and the moderate RIR perturbation level

NPM1 only the regularized and the sparsity-promoting

techniques yield a statistically significant improvement in

comparison to the reverberant microphone signal. Further-

more, it can be observed that the S-PMINT technique is the

only technique yielding a statistically significant improve-

ment in comparison to all other techniques. Table 6 shows

that for the system S2 and the moderate RIR perturbation

level NPM1 only the R-PMINT, S-PMINT, and R-RMCLS

techniques yield a statistically significant improvement in

comparison to the reverberant microphone signal. Further-

more, it can be observed that these techniques yield the

most statistically significant improvements in comparison

to other techniques. Table 7 shows that for the system S1

and the high RIR perturbation level NPM2 the R-PMINT

technique and the robust extensions of the RMCLS tech-

nique yield a statistically significant improvement in com-

parison the reverberant microphone signal. Furthermore,

it can be observed that the R-PMINT and the R-RMCLS

techniques yield the most statistically significant improve-

ments in comparison to other techniques. Finally, Table 8

shows that for the system S2 and the high RIR perturba-

tion level NPM2 only the R-PMINT technique yields a sta-

tistically significant improvement in comparison to the re-

verberant microphone signal. Furthermore, the R-PMINT

technique also yields the most statistically significant im-

provements in comparison to other techniques.
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Table 5: Wilcoxon signed-rank test for scenario S1-NPM1. The ticks represent a statistically significant difference and the

crosses represent no statistically significant difference.

x1(n) L-RMCLS R-RMCLS S-RMCLS L-PMINT R-PMINT S-PMINT

x1(n) 7 3 3 7 3 3

L-RMCLS 7 3 3 7 3 3

R-RMCLS 3 3 7 7 3 3

S-RMCLS 3 3 7 3 7 3

L-PMINT 7 7 7 3 3 3

R-PMINT 3 3 3 7 3 3

S-PMINT 3 3 3 3 3 3

Table 6: Wilcoxon signed-rank test for scenario S2-NPM1. The ticks represent a statistically significant difference and the

crosses represent no statistically significant difference.

x1(n) L-RMCLS R-RMCLS S-RMCLS L-PMINT R-PMINT S-PMINT

x1(n) 7 3 7 7 3 3

L-RMCLS 7 3 7 7 3 7

R-RMCLS 3 3 3 3 7 3

S-RMCLS 7 7 3 7 3 7

L-PMINT 7 7 3 7 3 7

R-PMINT 3 3 7 3 3 3

S-PMINT 7 7 3 7 7 3

Table 7: Wilcoxon signed-rank test for scenario S1-NPM2. The ticks represent a statistically significant difference and the

crosses represent no statistically significant difference.

x1(n) L-RMCLS R-RMCLS S-RMCLS L-PMINT R-PMINT S-PMINT

x1(n) 3 3 3 7 3 7

L-RMCLS 3 3 3 3 3 3

R-RMCLS 3 3 7 3 3 3

S-RMCLS 3 3 7 3 3 3

L-PMINT 7 3 3 3 3 3

R-PMINT 3 3 3 3 3 7

S-PMINT 7 3 3 3 3 7

Table 8: Wilcoxon signed-rank test for scenario S2-NPM2. The ticks represent a statistically significant difference and the

crosses represent no statistically significant difference.

x1(n) L-RMCLS R-RMCLS S-RMCLS L-PMINT R-PMINT S-PMINT

x1(n) 3 7 7 7 3 7

L-RMCLS 3 3 3 3 3 3

R-RMCLS 7 3 7 7 7 7

S-RMCLS 7 3 7 7 3 7

L-PMINT 7 3 7 7 7 7

R-PMINT 3 3 7 3 7 3

S-PMINT 7 3 7 7 7 3

In summary, even though the statistical significance cri-

terion is not always satisfied, the trend of the results con-

firm that the robust extensions of the PMINT technique

yield a better perceptual speech quality than the robust

extensions of the RMCLS technique. Furthermore, the S-

PMINT technique results in the best perceptual speech

quality for moderate RIR perturbation levels, whereas the

R-PMINT technique results in the best perceptual speech

quality for high RIR perturbation levels.

6 CORRELATION ANALYSIS BETWEEN

INSTRUMENTAL AND PERCEPTUAL RESULTS

When comparing the instrumental evaluation results in

Section 4 with the perceptual evaluation results in Sec-

tion 5, it can be observed that not all perceptual results

can be well predicted by the instrumental performance

measures. On the one hand, the instrumental performance

measures accurately predicted that 1) the regularized and
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sparsity-promoting techniques generally outperform the

techniques using a shorter reshaping filter length and that

2) the performance of all considered techniques for the sys-

tem S1 is typically better than for the system S2. On the

other hand, the instrumental performance measures failed

to predict 1) the consistent perceptual advantage of the ro-

bust extensions of the PMINT technique over the robust

extensions of the RMCLS technique as well as 2) the per-

ceptual advantage of the S-PMINT technique over the R-

PMINT technique for moderate RIR perturbation levels.

Table 9 shows the correlation between the perceptual rat-

ings and the instrumental performance measures as deter-

mined by the Pearson product-moment correlation coeffi-

cient (PPMCC), computed as

PPMCC =
∑ j(a j − ā)(b j − b̄)

√

∑ j(a j − ā)2(b j − b̄)2
, (24)

where a j and b j denote the perceptual and instrumental rat-

ings for the j-th sound sample and ā and b̄ denote the re-

spective mean values. It can be observed that for each sce-

nario at least one instrumental performance measure yields

a high correlation to the perceptual ratings, with the signal-

based performance measures typically yielding a higher

correlation than the channel-based DRR measure. Further-

more, it can be observed that except for the LLR measure,

the correlation for all other measures strongly depends on

the considered scenario. The correlation for the DRR mea-

sure varies between 0.25 and 0.81, which is to be expected

since a purely energy-based measure cannot always re-

flect how the remaining distortions in the late reverberant

tail are perceived. For the moderate RIR perturbation level

NPM1, the SRMR measures shows a very high correlation

to the perceptual ratings, whereas for the higher perturba-

tion level NPM2, the correlation values significantly de-

crease. Hence, it appears that the SRMR measure, which

has been primarily developed and optimized on unpro-

cessed reverberant signals, can very well predict the quality

of signals with little or no distortions but does not reflect

the distortions introduced by equalization techniques. Fur-

thermore, the auditory-based PESQ measure does not al-

ways appear to reflect the distortions introduced by equal-

ization techniques, e.g., yielding a low correlation of 0.56

for the scenario with most distortions in the output signal,

i.e., S2-NPM2. Finally, it appears that a relatively simple

linear prediction coefficient based distance measure such

as LLR reflects the distortions introduced by equalization

Table 9: Absolute value of the Pearson product-moment

correlation coefficient between the perceptual ratings and

the instrumental performance measures.

Measure S1-NPM1 S2-NPM1 S1-NPM2 S2-NPM2

DRR 0.25 0.61 0.81 0.44

SRMR 0.93 0.97 0.62 0.52

LLR 0.77 0.71 0.75 0.87

PESQ 0.76 0.69 0.82 0.56

techniques more reliably than all other measures over all

considered scenarios, with correlation values varying be-

tween 0.71 and 0.87.

In summary, while instrumental performance measures

are certainly a valuable tool when designing speech dere-

verberation techniques, the impact of distortions and ar-

tifacts caused by acoustic multichannel equalization tech-

niques can only be truly assessed using subjective listening

tests. Since the considered instrumental measures are inca-

pable of accurately predicting the perceptual ratings, fur-

ther development of instrumental performance measures is

required.

7 CONCLUSION

In this paper we have evaluated the performance of sev-

eral robust extensions of acoustic multichannel equaliza-

tion based on RMCLS and PMINT by means of instrumen-

tal performance measures and subjective listening tests.

Instrumental performance measures show that the regu-

larized RMCLS technique yields the largest reverberant

energy suppression. Subjective listening tests show that

the robust extensions of the PMINT technique yield the

best perceptual speech quality, with the sparsity-promoting

PMINT technique yielding the best quality for moderate

RIR perturbation levels and the regularized PMINT tech-

nique yielding the best quality for high RIR perturba-

tion levels. A correlation analysis between the instrumental

and perceptual results shows that signal-based performance

measures typically yield a higher correlation than channel-

based performance measures when evaluating the percep-

tual quality of signals processed by acoustic multichannel

equalization techniques. Furthermore, the provided corre-

lation analysis highlights the need to develop more accu-

rate instrumental performance measures, reliably reflecting

the distortions introduced by acoustic multichannel equal-

ization techniques.
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