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Indirect comparisons are used to obtain estimates of relative effectiveness

between two treatments that have not been compared in the same randomized

controlled trial, but have instead been compared against a common compara-

tor in separate trials. Standard indirect comparisons use only aggregate data,

under the assumption that there are no differences in effect-modifying vari-

ables between the trial populations. Population-adjusted indirect comparisons

aim to relax this assumption by using individual patient data (IPD) from one

trial to adjust for differences in effect modifiers between populations. At pre-

sent, the most commonly used approach is matching-adjusted indirect compar-

ison (MAIC), where weights are estimated that match the covariate

distributions of the reweighted IPD to the aggregate trial. MAIC was originally

proposed using the method of moments to estimate the weights, but more

recently entropy balancing has been proposed as an alternative. Entropy

balancing has an additional “optimality” property ensuring that the weights

are as uniform as possible, reducing the standard error of the estimates. In this

brief method note, we show that MAIC weights are mathematically identical

whether estimated using entropy balancing or the method of moments. Impor-

tantly, this means that the standard MAIC (based on the method of moments)

also enjoys the “optimality” property. Moreover, the additional flexibility of

entropy balancing suggests several interesting avenues for further research,

such as combining population adjustment via MAIC with adjustments for

treatment switching or nonparametric covariate adjustment.

KEYWORD S

effect modification, indirect comparison, individual patient data, matching-adjusted indirect
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1 | INTRODUCTION

Estimates of relative treatment effects are required for

health care decision-making, for example, in health tech-

nology assessment or regulatory/reimbursement

decisions. A common scenario encountered is where two

treatments of interest, say B and C, have not been com-

pared head-to-head in the same randomized controlled

trial, but instead are compared against a common com-

parator A in separate AB and AC trials. In such scenarios,
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an indirect comparisons1 may be used to obtain an esti-

mate of the relative effect of C vs B, denoted dBC, by com-

paring the relative effect estimates reported in the AB

and AC trials as d̂BC = d̂AC− d̂AB (on a suitable scale, eg,

log odds ratios, log hazard ratios, or mean differences).

However, if there are differences in effect-modifying vari-

ables between the two study populations, this indirect

comparison will be biased.2,3 If individual patient data

(IPD) are available from both the AB and AC study, stan-

dard regression or weighting methods may be used to

adjust for differences in effect-modifying variables

between the study populations. However, it is common

for IPD to only be available from one study and publi-

shed aggregate data from the other. For example, in

health technology assessment a company submits evi-

dence of clinical and cost effectiveness to a reimburse-

ment body such as the National Institute for Health and

Care Excellence in England and Wales. The submitting

company will typically have IPD from their own trial (say

AB), but only published aggregate data from their com-

petitor's trial (AC).

Methods for population-adjusted indirect comparison

have been proposed that aim to adjust for any differences

in observed effect modifiers between populations, using

IPD from one study and aggregate data from another.2,3

At present, the most commonly used approach2,4 is

matching-adjusted indirect comparison (MAIC).5 MAIC is

a weighting approach, where weights wik are estimated

so that the weighted covariate distribution in the AB

study matches that of the AC study. Using these weights,

mean outcome on treatments k = A, B in the AC popula-

tion are estimated by taking a weighted average of the

outcomes yik(AB) of the Nk(AB) individuals i on treatment

k in the AB population

ŷk ACð Þ=

PNk ABð Þ

i=1 yik ABð Þwik

PNk ABð Þ

i=1 wik

: ð1Þ

A population-adjusted indirect comparison is then

constructed in the AC study population as

d̂BC ACð Þ= d̂AC ACð Þ− d̂AB ACð Þ, ð2Þ

where d̂AB ACð Þ = gðŷB ACð ÞÞ−gðŷA ACð ÞÞ for a suitable link

function g(�), and d̂AC ACð Þ is reported by the AC study.

Signorovitch et al5 proposed to estimate the weights

wik using the method of moments to balance the mean

covariate values (and any included higher order terms,

for example squared covariate values to balance the vari-

ance) between the weighted AB population and the AC

population. Belger et al6,7 suggest another form of

population reweighting based on entropy balancing,8

which matches moments of the covariate distributions

under the additional constraint that the optimal entropy

balancing weights are those which are as close as possible

to uniform weights (ie, as close as possible to no

weighting at all). This additional constraint means that

entropy balancing methods should (at least for

homoskedastic outcomes) have equal or reduced SE (and

equal or greater effective sample size) compared to

MAIC, while achieving the same reduction in bias. How-

ever, as we now show, estimation of weights via entropy

balancing and the method of moments are in fact entirely

equivalent. This leads to an important conclusion regard-

ing the optimality of standard MAIC weights based on

the method of moments, and suggests interesting avenues

for further research.

2 | EQUIVALENCE OF THE
METHOD OF MOMENTS AND
ENTROPY BALANCING

The estimation of weights for MAIC, whether based on

the method of moments or on entropy balancing, can be

formulated as a minimization problem.5,8 Equivalence

therefore follows from consideration of the respective

objective functions that are to be minimized.

Let xik be a vector of covariate values for an individual

i on treatment k in the AB study. Signorovitch et al5

showed that, after centering the covariates around the

means in the AC study (ie, so that �xAC = 0), MAIC mini-

mizes the objective function

HMM αð Þ=
X

k=A,B

X

Nk ABð Þ

i=1

exp x
T
ikα

� �

, ð3Þ

for a vector of parameters α. With solution

α̂=arg min HMM αð Þð Þ, the (normalized) weights wik are

then given by

wik =
exp x

T
ikα̂

� �

P

v=A,B

PNv ABð Þ

u=1 exp x
T
uvα̂

� �

: ð4Þ

(We use the normalized weights here to better show the

equivalence to entropy balancing; a set of weights can be

rescaled arbitrarily without affecting the estimate in

Equation (1).2,5)

Entropy balancing also seeks weights that match the

moments of covariates between studies, but that further

minimize the entropy distance from uniform weights,
P

k=A,B

PNk ABð Þ

i=1 wiklog N ABð Þwik

� �

. Hainmueller8 used
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Lagrange multipliers to find an unconstrained dual opti-

mization problem, which (again after setting �xAC = 0 )

gives the objective function

HEB αð Þ= log
1

N ABð Þ

X

k=A,B

X

Nk ABð Þ

i=1

exp x
T
ikα

� �

 !

: ð5Þ

With solution α̂=arg min HEB αð Þð Þ, the weights are

again given by (4).

Comparing the objective functions (3) and (5), we

see that

HEB αð Þ= log HMM αð Þð Þ− log N ABð Þ

� �

: ð6Þ

Therefore, since the logarithm is a monotonic func-

tion and log(N(AB)) is constant, the solutions of these two

minimization problems are identical; MAIC weights

based on the method of moments or entropy balancing

are identical up to a normalizing constant.

Example R code is provided in the Appendix S1 that

implements both the method of moments and entropy

balancing approaches to MAIC, applied to the simulated

example given by Phillippo et al.2

3 | DISCUSSION

In this brief method note, we have shown that the MAIC

weights are identical whether estimated using entropy

balancing or the method of moments. In practice,

entropy balancing performs the minimization on the log

scale which may perform better computationally, but the

estimated weights will be identical for MAIC and entropy

balancing, up to optimization error. An important corol-

lary from this result is that standard MAIC (based on the

method of moments) also enjoys the additional “optimal-

ity” property that the estimated weights are as close as

possible to uniform weights (no weighting at all), in an

entropy sense. Alternative loss functions could be used in

the entropy balancing scheme which may change the

performance of the method, and would then no longer be

equivalent to standard MAIC based on the method of

moments. For example, it remains to be seen whether

other loss functions could be used to obtain MAIC

weights that are optimal in the sense that they minimize

the SE of the resulting population-adjusted estimates

(or equivalently, maximize the effective sample size); this

is likely of greater practical interest than pursuing opti-

mality in the entropy sense.

For entropy balancing, Hainmueller8 notes that other

“base weights” for which to minimise the distance from

could be used instead of uniform weights, and this would

also depart from equivalence to standard MAIC based

on the method of moments. With non-uniform base

weights w
0ð Þ
ik , the entropy balancing objective function in

(5) becomes

HEB αð Þ= log
X

k=A,B

X

Nk ABð Þ

i=1

w
0ð Þ
ik exp x

T
ikα

� �

 !

, ð7aÞ

and the weights are then given by

wik =
w

0ð Þ
ik exp x

T
ikα̂

� �

P

v=A,B

PNv ABð Þ

u=1 w
0ð Þ
uv exp x

T
uvα̂

� �

: ð7bÞ

Setting uniform base weights w
0ð Þ
ik =1=N ABð Þ in

(7) recovers formula (5) above. Non-uniform base weights

could, for example, be used to perform nonparametric

covariate adjustment,9 or to adjust for treatment

switching,10 prior to population adjustment by weighting

to match the AC population. The idea is that the final

weights aim to retain the initial adjustment applied by

the base weights, while also applying the necessary popu-

lation adjustment. This would be a novel development

for MAIC, and is an interesting avenue for further

research. It remains to be seen how this approach might

perform in practice, for example, if the population differ-

ences are large and the final weights are far from the base

weights. The example R code in the Appendix S1 also

includes an implementation of entropy balancing MAIC

with non-uniform base weights.

Different schemes for applying weights have also

been proposed. MAIC as described by Signorovitch

et al5 estimates weights for the entire AB population at

once to balance covariate distributions with the entire

AC population. Belger et al6,7 compare with other possi-

ble approaches, which involve splitting apart trial arms

and balancing covariate distributions separately

between the control arms (A) and between the treat-

ment arms (B and C) in the IPD and aggregate

populations. The properties of such “splitting”

approaches in comparison with a more typical popula-

tion reweighting are largely unknown and require fur-

ther investigation; however, some initial simulation

studies have reported performance benefits over stan-

dard MAIC.11 While MAIC is at present the most com-

monly used approach for population adjustment, other

methods are available which may have advantages over

MAIC.2,12,13 Recent simulation work showed that

regression-based approaches such as multilevel network

meta-regression and simulated treatment comparison

performed better than MAIC in many scenarios, and

PHILLIPPO ET AL. 3



that in some cases MAIC could even increase bias com-

pared to a standard indirect comparison.12

We have discussed an “anchored” indirect compari-

son scenario where a common comparator arm is avail-

able. However, a sizeable proportion of MAIC analyses

published to date instead rely on an “unanchored” indi-

rect comparison, where absolute outcomes on treatments

B and C from single-arm studies or in a disconnected

network are compared directly as d̂BC Cð Þ = gðŷC Cð ÞÞ−

gðŷB Cð ÞÞ, where ŷB Cð Þ is estimated using weights and ŷC Cð Þ

is reported by the C trial.2,4 Unanchored comparisons

rely on a much stronger assumption than anchored

comparisons, namely that all prognostic factors as well

as all effect modifiers have been suitably adjusted for.2,3

The equivalence of the method of moments and entropy

balancing approaches follows in exactly the same man-

ner in an unanchored setting. Unanchored MAICs have

previously been used in scenarios with a common com-

parator but where treatment switching is present.2,4

The entropy balancing approach with non-uniform base

weights, described above, provides an attractive option

for combining weight-based adjustments for treatment

switching10 with an anchored MAIC, while crucially

retaining reliance on randomization.

Several simulation studies have compared approaches

based on standard MAIC and entropy balancing and

found no difference between these approaches.6,7,11 The

equivalence result given in this paper explains these find-

ings, as we now know that these approaches are identical

up to the numerical accuracy of the optimization rou-

tines. Available guidance on the use of MAIC (eg, 2)

should be updated to note the equivalence of entropy

balancing and standard MAIC.

In conclusion, the equivalence of MAIC weights esti-

mated using the method of moments and entropy

balancing means that standard MAIC (based on the

method of moments) inherits the desirable “optimality”

property that the weights are as uniform as possible.

Moreover, the additional flexibility of entropy balancing

suggests several interesting avenues for further research.
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