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Abstract 

Biocompatibility and neuron regenerating properties of various bioactive glass 

(BG)/Polyhydroxyalkanoate (PHA) blend composites were assessed in order to study their suitability 

for peripheral nerve tissue applications, specifically as lumen structures for nerve guidance conduits 

(NGCs). BG/PHA blend composites were fabricated using  

Bioactive glass® 45S5 (BG1) and BG 1393 (BG2) with the 25:35 poly(3-hydroxyoctanoate/poly3-

hydroxybutyrate), 25:75 P(3HO)/P(3HB) blend (PHA blend). Various concentrations of each BG 

(0.5, 1.0 and 2.5 wt%) were used to determine the effect of BG on neuronal growth and 

differentiation, in single culture using NG108-15 neuronal cells and in a co-culture along with RN22 

Schwann cells. NG108-15 cells exhibited good growth and differentiation on all the PHA blend 

composites showing that both BGs have good biocompatibility at 0.5, 1.0 and  

2.5 wt%  within the PHA blend. The Young’s modulus values displayed by all the PHA blend/BG 

composites ranged from 385.6 MPa to 1792.6 MPa, which are able to provide the required support 

and protective effect for regeneration of peripheral nerves.  More specifically, the tensile strength 

obtained in the PHA blend/BG1 (1.0 wt%) (10.0 ± 0.6 MPa) was found to be similar to that of rabbit 

peroneal nerve.  This composite also exhibited the best biological performance in supporting growth 

and neuronal differentiation among all the substrates. The neurite extension on this composite was 

found to be remarkable with the neurites forming a complex connection network.   

1. Introduction 

After injury, peripheral nerves are able to regenerate spontaneously as a result of the action 

of Schwann cells promoting a favourable environment for axonal growth. However, the regeneration 

and recovery of nerve function depends on the injury gap length and the type of lesion. Suturing of 
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the two stumps (i.e., end-to-end suture) is a suitable and common method to bridge small gaps (less 

than 2 mm). For larger gaps, nerve regeneration is severely impeded and repair of nerve tissue 

requires nerve grafting with an autologous nerve graft being accepted as the “gold standard” 

procedure.[1] However, common complications of autografting such as additional surgery, loss of 

nerve function, donor site morbidity and scar tissue formation limit the success of patient recovery.  

Bioartificial tubular devices, widely known as nerve guidance conduits (NGCs) are a 

promising alternative to autografting. Neural tissue regeneration based on NGCs prevents additional 

surgical intervention required to harvest autologous nerves and thereby less surgical trauma is 

inflicted. Moreover, fibrous scar tissue infiltration is reduced whereas accumulation of soluble factors 

is maximized. Additionally, the use of NGCs avoids mismatched fascicles between the injured nerve 

and the autograft.[1]  In addition to biocompatibility, a bioresorbable NGC has to be a mechanically 

robust device which combines good flexibility with compressive resistance, preventing compression 

of the growing nerve tissue or collapse of the tubular structure. There are several commercial NGCs 

made from natural and synthetic materials, such as poly(L-lactide-co-caprolactone) (PLCL), 

poly(glycolic acid) PGA, poly(vinyl alcohol) PVA, collagen type I and extracellular matrix (ECM). 

[2] The regeneration outcomes achieved with the current NGCs are comparable with the autologous 

nerve graft only for short gaps (less than 10 mm). For longer nerve defects, i.e. critical gaps, 

autografting performs better when compared with NGCs.  

Hence, the main focus of further progress in NGCs is the development of intraluminal 

architecture. Modifications in the lumen of NGCs have shown to enhance nerve regeneration in vitro 

and in vivo. [1]  A range of different types of internal structures serving as physical cues have been 

explored including grooves, random and aligned fibres to guide neuronal growth, reducing neurite 

misdirection. [1, 3, 4] Both synthetic and natural polymers have been used for the manufacturing of such 

internal structures. However, with recent advances in applications of inorganic bioactive glasses 

(BGs) in soft tissue engineering, [2] BGs have recently been studied in nerve tissue regeneration [5]. 

Despite the intrinsic brittleness of BGs, interest in their application for nerve regeneration is driven 
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by the proven biological activity of BGs due to the leaching of bioactive ions. In contrast, polymers 

provide a good support for cell growth, but they do not exhibit such an inherent release of factors 

with biological activity. Hence, bioactive glasses not only can enhance cell adhesion through the 

formation of a hydroxyapatite layer but also release ions that can trigger cell signalling processes that 

favour tissue regeneration. [3]  

Various types of BGs have been shown to have regenerative properties in a neuronal context. 

For example, Bioactive glass® 45S5 fibres are biocompatible with rat Schwann cells  and fibroblasts 

in vitro, and have shown to promote axonal regeneration in vivo. [6] Phosphate glass fibres are 

biocompatible with the Neonatal Olfactory Bulb Ensheathing Cell Line (NOBEC) [1, 7] and Dorsal 

Root Ganglion (DRG) neurons. [7, 8] Additionally, such fibres provide a directional cue for growing 

axons.[1,7] Moreover, bioactive borate glass scaffolds have not only shown biocompatibility with 

embryonic chick DRG but have also shown to support neurite extension.[9] Mohammadkhah [10] 

fabricated composites using different BG compositions consisting of 50 wt% PCL combined with 50 

wt% 1393 B3 borate glass; 50 wt% 45S5 silicate glass and with a blend of 25 wt% 1393 B3 and 25 

wt% 45S5 silicate glass. The resulting composites were found to be compatible with DRG neurons 

isolated from embryonic chicks and had a positive effect on neurite outgrowth.[ 10] In order to 

overcome BG brittleness, both BG fibres [11] and BG particles [12] were embedded into polymeric 

matrices.   

Herein we have designed bioresorbable hybrid composites by combining a blend of 

bioresorbable polyhydroxyalkanoates (PHAs) with particulate BGs. BG/PHA blend composites were 

fabricated using Bioactive glass® 45S5 (BG1) and BG 1393 (BG2) with the 25:75 P(3HO)/P(3HB) 

blend. We extend our previously reported work [13] in the development of flexible PHA blends, which 

were highly biocompatible with neuronal cells and thereby provided a good support for growth of 

nerve tissue. Here we demonstrate that adding BGs as fillers to a 25:75 poly-3-

hydroxyalkanoate/poly-3-hydroxybutyrate, 25:75 P(3HO)/P(3HB)  (PHA blend) has a further 

positive effect on the growth and differentiation of RN22 Schwann and NG108-15 neuronal cells. 
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This effect depends on the BG content, confirming the biological activity of BGs incorporated in the 

bioresorbable polymer matrices.  Quite counter-intuitively, introduction of BGs decreased the 

stiffness of the PHA blends. This combination of suitable mechanical properties and enhanced ability 

to support growth and differentiation of neuronal cells confirmed the possible application of these 

highly bioactive composite scaffolds as lumen coat within the bioresorbable NGCs, to be used for 

critical gap repair.  

 

2. Materials and Methods 

Production and extraction of poly(3-hydroxyalkanoate) and poly(3-hydroxybutyrate): Production, 

extraction, purification of both PHAs, P(3HO) and P(3HB), and the determination of 

lipopolysaccharides was carried out as previously described. [14] Briefly, P(3HO) and P(3HB) were 

produced through bacterial fermentation using Pseudomonas mendocina and Bacillus cereus SPV 

followed by soxhlet extraction.  

Production and composition of bioactive glasses: The bioactive glasses were produced by the 

conventional glass melting method and subsequent milling to obtain the micrometric sized powders. 

The production of Bioactive glass® 45S5 (BG1) and BG 1393 (BG2) is described in previous studies 

[15, 16]. SEM micrographs showing the morphology of the used glass powders BG1 and BG2 are 

presented in the Supplementary Information. The chemical composition of BG1 and BG2 are shown 

in Table 1. 

Composite film preparation: This study focuses on the evaluation of cellular response towards PHA-

based composites which were conducted on planar surfaces. Films of PHA blend along with BG1 and 

BG2 were prepared using the solvent casting method [13]. The PHAs were dissolved in chloroform 

(Sigma-Aldrich, Gillingham, UK) in order to obtain a total polymer concentration of 5 wt/vol % of 

the 25:75 P(3HO)/P(3HB) blend. After polymer dissolution, the required amounts of each bioactive 

glass were introduced into the polymer solution to obtain formulations containing 0.5, 1.0, 2.5 wt% 

of BG with respect to the PHAs. BGs were dispersed by sonication using a probe sonicator. The 
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polymer solutions containing dispersed BGs were cast in 6-cm glass petri dishes. The films were air 

dried and produced in triplicate in order to obtain a total of twenty-one films including the control 

25:75 P(3HO)/P(3HB) blend. Additionally, films of polycaprolactone (PCL), an established 

biocompatible and bioresorbable polymer, were used as a control polymeric material. PCL was 

provided by Vornia Biomaterials Ltd. (Dublin, Ireland). The PCL contained a methyl ether 

polyethylene glycol block which was used as an initiator in the ring opening polymerisation of 

caprolactone. This block made PCL relatively more hydrophilic. PCL films were prepared as 

described above for composite films using 5 wt % PCL solution in chloroform. All polymer films 

were aged for 5 weeks at room temperature. During this period crystallization of the polymers were 

expected to be completed for all samples. [13]  

Scanning electron microscopy of PHAs/bioactive glass composites: Surface topography of the films 

and the PHA/BG composites was analyzed using a FEI XL30 Field Emission Gun Scanning Electron 

Microscope (FEI, Netherlands).  All the samples were previously sputter-coated with a 20 nm film 

of palladium using a Polaron E5000 sputter coater. The operating pressure of the sputter coating was 

5x10-5 bar with a deposition current of 20 mA for a duration of 90 s. The images were then recorded 

and the diameters of pores were measured at different magnifications at 5kV using the FEI software.  

Profilometric surface analysis: The surface roughness of the films was analyzed using a Sony Proscan 

1000 Laser Profilometer (Sony, Japan) with a measuring range of 400 μm, a resolution of 0.02 μm 

and a maximum output of 10 mW. Scans of 0.5 mm2 were obtained from each sample. Nine random 

coordinates were selected from each specimen in order to measure the Root Mean Square (RMS) 

roughness (Rq) defined as the root mean square average of the profile height deviations from the 

mean line. The formula defining Rq is as follows: 

i) 𝑅𝑞 = √1𝑛∑ 𝑦𝑖2𝑛𝑖=1  
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where n is the number of intersections of the profile at the mean line (intersections); and γ, profile 

slope at mean line (°). [17] 

Surface wettability of the films: The wettability of the films was measured by using a KSV Cam 200 

goniometer (KSV, Finland).  About 200 μL of deionized water was dropped onto the surface of the 

films using a gas-tight micro-syringe. As soon as the water droplet made contact with the sample, a 

total of 10 images were captured with a frame interval of one second. The analysis of the images was 

performed using the KSV Cam software. For each sample, three random points were analyzed to 

obtain a total of nine measurements for each type of film.  

Mechanical properties: Tensile testing was carried out using a 5942 Instron Testing System (High 

Wycombe, UK) equipped with a 500N load cell at room temperature. The test was conducted using 

films of 5 mm width and length of 3.5-5 cm. The deformation rate was 5 mm/min. The average values 

for 5 specimens were calculated. 

Differential scanning calorimetry: Thermal transitions for composites were characterized using DSC 

214 Polyma (Netzsch, Germany), equipped with Intracooler IC70 cooling system. Scanning was 

conducted between -70 oC and 200 oC at a heating rate of 10 °C/min under the flow of nitrogen at 60 

mL/min. Enthalpy of fusion for P(3HB) was normalised to the weight fraction of P(3HB) in 

composites or a polymer blend. 

NG108-15 Neuronal and RN22 Schwann cell culture: The NG108-15 cell line is a hybrid of mouse 

neuroblastoma and rat glioma whereas RN22 Schwann cells is a rat origin cell line. Cells were grown 

in Dulbecco’s Modified Eagle Medium (DMEM) under a humidified atmosphere of 5 % CO2 at 37°C 

(DMEM) (Sigma–Aldrich, Gillingham, UK), supplemented with 10 % (v/v) fetal calf serum (Sigma-

Aldrich, Gillingham, UK), 1 % (w/v) glutamine (Sigma-Aldrich, Gillingham, UK), 1% (w/v) 

penicillin/streptomycin (Sigma-Aldrich, Gillingham, UK), and 0.5% (w/v) amphotericin B (Sigma-

Aldrich, Gillingham, UK).  Cells were only used in experiments once they were 80% -90 % confluent. 

For  culture of NG108-15 neuronal cells, 3 x 104 cells were trypsinised and seeded directly onto the 

Page 7 of 35 AUTHOR SUBMITTED MANUSCRIPT - BMM-103249.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



8 

 

PHA film samples within the 12 well plates in 3 mL of DMEM as above (Sigma–Aldrich, Gillingham, 

UK). Cultures were maintained for 4 days, with half of the medium being removed and replaced with 

fresh serum-free DMEM (Sigma–Aldrich, Gillingham, UK) on day 2 to stimulate experimental 

differentiation. NG108-15 cells were used between passages 10-20 while RN22 Schwann cells were 

used between passages 15-25. For co-culture with RN22 Schwann cells, 1.5 x 104 of each cell type 

were trypsinised and seeded in the same well directly onto PHA film samples and cultures were 

maintained for 4 days, with half of the medium being removed and replaced with fresh serum-free 

DMEM (Sigma–Aldrich, Gillingham, UK) on day 2 to stimulate experimental differentiation. 

Live/dead measurement of NG108-15 neuronal cells: After growing cells for 4 days, culture medium 

was removed and replaced with fresh serum-free DMEM (Sigma–Aldrich, Gillingham, UK) 

containing 0.0015% (w/v) propidium iodide (Invitrogen, 55B Bridge Cl, Dartford DA2 6PT, UK) 

and 0.001% (w/v) Syto-9 (Invitrogen, Dartford, UK) at 37°C/5% CO2 for 15 min. After washing with 

phosphate-buffered saline (PBS) (x3), cells were imaged by confocal microscopy. A helium-neon 

laser was used for the detection of propidium iodide (λex= 536 nm / λem=617 nm) (Invitrogen, 55B 

Bridge Cl, Dartford DA2 6PT, UK) while an argon-ion laser was used for Syto 9 (λex= 494 nm / λem 

= 515 nm). Three fields-of-view were imaged containing 20-500 cells per sample, so as to express 

the data as a percentage of live versus dead cells ± Standard Error of the Mean (SEM). Quantification 

of live and dead cells was performed using Image J. [18, 19]   

Immunolabelling of NG108-15 neuronal cells and RN22 Schwann cells: To assess differentiation of 

NG108-15, cells were labelled for β III-tubulin (neurite marker). Samples were washed with PBS 

(x3) (Sigma–Aldrich, Gillingham, UK) and fixed with 4% (v/v) paraformaldehyde (Sigma–Aldrich, 

Gillingham, UK) for 20 mins at room temperature. Cells were permeabilized with 0.1 % (v/v) Triton 

X-100 (Sigma–Aldrich, Gillingham, UK) for 20 mins, before being washed with PBS (Sigma–

Aldrich, Gillingham, UK) (x3). Unreactive binding sites were blocked with 3% (w/v) bovine serum 

albumin (BSA) (Sigma–Aldrich, Gillingham, UK) for 30 mins, at room temperature, and cells were 

incubated overnight with a mouse anti β III-tubulin antibody (1:1000) (Sigma–Aldrich, Gillingham, 
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UK) diluted in 1% BSA (Sigma–Aldrich, Gillingham, UK) at 4°C. In the case of co-cultures, 

polyclonal rabbit anti-S100β diluted in 1% BSA at 4°C was also added (Schwann cell marker) (1:250) 

(Dako, Denmark). Cells were washed three times with PBS (Sigma–Aldrich, Gillingham, UK) before 

being incubated with a Texas Red-conjugated anti-mouse IgG antibody (1:100 dilution in 1% BSA) 

(Sigma–Aldrich, Gillingham, UK), and for co-cultures, also a FITC-conjugated secondary anti-rabbit 

IgG antibody (1:100 in 1% BSA) (Vector Labs, USA) for 90 mins at room temperature. After washing 

the cells once with PBS, 4’, 6-diamidino-2-phenylindole dihydrochloride (DAPI) (1:500 dilution in 

PBS) was added to label nuclei. Cells were then incubated for 30 mins at room temperature before 

being washed again with PBS (x3). Cells were then imaged by using confocal microscopy. Nuclei 

were visualized by two photon excitation using a Ti:sapphire laser (716 nm) for DAPI (λex = 358 nm 

/ λem = 461 nm) (Sigma–Aldrich, Gillingham, UK). For imaging the neuronal cell body and neurites 

of NG108-15 cells, a helium-neon laser (543nm) was used to detect Texas Red-conjugated anti-

mouse IgG antibody (1:100 dilution in 1% BSA) (λex = 589 nm / λem = 615 nm) (Sigma–Aldrich, 

Gillingham, UK). For imaging  RN22 Schwann cells , an argon ion laser (488 nm) was used to detect 

FITC (λex= 495 nm/λem= 521 nm) (Sigma–Aldrich, Gillingham, UK). The differentiated cells were 

then counted using Image J and identified as neuronal cells expressing neurites. 

Statistical analysis: A Shapiro - Wilk and Bartlett’s test was previously performed to verify the 

normality and homogeneity of the data respectively. To analyse the difference between data, a one-

way ANOVA test (p < 0.05) was conducted followed by Turkey’s – post test (p < 0.05). Data was 

reported as mean ± SEM. 

3. Results  

3.1. Structural and mechanical characterisation of composite scaffolds  

The selection of a polymer matrix for the preparation of new composites suitable for nerve 

regeneration was based on our previous study of binary PHA blends combining the rigid and strong 

P(3HB), with the soft and elastomeric P(3HO). [13] In that study, the 25:75 P(3HO)/P(3HB) blend 
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was identified as the most promising material for supporting the growth of neuronal cells. Therefore, 

a blend of this composition was used as a matrix for the preparation of BG composites and is referred 

as PHA blend throughout this paper. Two types of BGs, BG1 and BG2 were incorporated into the 

polymer matrix via processing of polymer solutions in chloroform. The chemical composition of both 

bioactive glasses is shown in Table 1.  The BGs used in this study are different in chemical 

composition and also in particle size. The average particle size of BG1 was 5 µm in diameter and had 

a clearly narrower particle size distribution than BG2 (Supporting information, Figure S1). The mean 

particle size of BG2 was 6 microns. [16] 

 

Table 1. Chemical composition of 455S Bioactive glass® and BG 1393 

Bioactive glass Composition (wt %) 

BG 45S5 45 SiO2, 24.5 CaO, 24.5 Na2O, 6 P2O5 

BG 1393 53 SiO2, 20 CaO, 6 Na2O, 4 P2O5, 12 K2O, 5 MgO 

 

 

The PHA blend tended to form porous films with an average pore size of 1.6 ± 0.2 µm, 

uniformly distributed across the film surface (Figure 1 M, N). Films of polycaprolactone (PCL) were 

also prepared using the same conditions, to act as another control material. The PCL control film 

exhibited significantly larger pores with an average diameter of 36.1 ± 3.5 µm (Figure 1 O, P). The 

incorporation of two different BGs to the PHA blend caused dissimilar changes in surface 

morphology; films of PHA blend/BG2 (Figure G-L) composites were notably less porous in 

comparison to composites filled with BG1 (Figure A-F). This was probably related to differences in 

the distribution of BG particles of different particle size distribution. It is well known that an increase 

in polydispersity of particles leads to a decrease in void volume when the partcles are packed. [20] This 

is also valid for porous particle-polymer composites.[21]  Wider size distribution of the BG2 particles 

allows denser packing of the BG2 particles in the polymer matrix resulting in relatively less porous 

composite films. Generally, addition of BGs led to larger pores compared to the pores on the PHA 

blend control. The most developed porosity was achieved for the PHA blend/BG1 (0.5 wt %) and 
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PHA blend/BG1 (2.5 wt%) which showed intricate porous networks with an average pore size of 5.4 

± 0.7 µm and 3.5 ± 0.3 µm, respectively (Figure 1 A-B, E-F). No relationship was found between the 

amount of BG and the pore size. It is worth to notice that in the context of materials development for 

internal structures of NGCs, BG additives should allow the maintainance or even improve the 

material porosity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Scanning electron microscopy of PHA blend/BG composites and controls. (A, B) PHA blend/BG1 

(0.5 wt %). (C, D) PHA blend/BG1 (1.0 wt %). (E, F) PHA blend/BG1 (2.5 wt %). (G, H) PHA blend/BG2 

(0.5 wt %). (I, J) PHA blend/BG2 (1.0 wt %), (K, L) PHA blend/BG2 (2.5 wt %).  (M, N) PHA blend.  (O, P) 

PCL. Scale bar = 100 µm – first and third column; 10 µm – second and fourth column. 

 

Compared to the series of PHA blend/BG1 composites, the surface morphology of PHA 

blend/BG2 composites were less regular with the occurrence of protrusions (Figure 1 G-L). The 

protrusions were most likely formed due to the presence of much larger particles in BG2. As a result, 

C D 

E 
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the roughness, determined as the root mean square roughness (Rq) by laser profilometry, was 

systematically higher for the PHA blend/BG2 composites (Figure 2).  

Interestingly, the roughness of the PHA blend/BG1 (1.0 wt %) and PHA blend/BG2 (0.5 wt 

%), the least porous samples in each composite series, was higher compared with the more porous 

samples of the corresponding composite series. The two other control surfaces used in the study 

provided examples of smooth (0.3 ± 0.0 µm for the glass slide) and highly rough (7.2 ± 0.1 µm for 

PCL film) surfaces. 

 

 

 

Figure 2. Root mean square roughness (Rq) of the PHA blend/bioactive glass composites and 

controls. The roughness presented by the PHA blend/BG1composites was lower compared with PHA 

blend/BG2 composites. The highest roughness value was displayed by the PCL substrate.  

 

As seen in Figure 2, the roughness of the PHA blend/BG1 (0.5 wt %) was not statistically 

different to PHA blend/BG1 (2.5 wt %) and glass (0.4 ± 0.0 µm, 0.4 ± 0.0 µm, 0.3 ± 0.0 µm 

respectively, *p < 0.05). The lowest roughness was displayed by the glass slide control compared to 

all the substrates. The roughness of PHA blend/BG1 (1.0 wt %) was not significantly different to that 

of PHA blend/BG2 (1.0 % w/v) and the PHA blend (1.0 ± 0.1, 1.2 ± 0.1 µm, 1.3 ± 0.0 µm respectively, 
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**p > 0.05) and significantly lower than those measured for the PHA blend/BG2 (0.5 wt %) and PHA 

blend/BG2 (2.5 wt %) (2.6 ± 0.1 µm, 2.3 ± 0.0 µm, **p < 0.05). The PHA blend/bioactive glass 

composites that displayed the highest roughness were PHA blend/BG2 (0.5 wt %) (2.6 ± 0.1, p < 

0.05) and PHA blend/BG2 (2.5 wt %) (2.3 ± 0.0, p < 0.05). The highest roughness among all the 

substrates was presented by the PCL control (7.2 ± 0.1 µm, p < 0.05). 

Surface hydrophilicity is a simple determinant of cellular response towards biomaterials. 

Previous studies have shown that cell attachment increases when hydrophilicity increases. These 

findings have been observed for different cell types such as osteoblasts, [22, 23]  fibroblasts, [24, 25]  

Madin-Darby Canine Kidney (MDCK) cells, [26] mouse osteoblast-like cell line MC3T3-E, [25] 7F2 

mouse osteoblasts [27] and neurites.[28, 29] PHA/BG composites combine a hydrophobic polymer with 

hydrophilic fillers, hence, the surface hydrophilic/hydrophobic balance was expected to vary 

depending on the BG content. The water contact angles were measured for all substrates as a widely 

used parametre of surface hydrophilicity/wettability (Table 2). 

 

Table 2. Water contact angles of PHA blend/BG composites and controls.  

Substrates Water contact angle (°) 

PHA blend/BG1 (0.5wt %) 95.7 ± 0.6 

PHA blend/BG1 (1wt %) 65.7 ± 1.2 

PHA blend/BG1 (2.5wt %) 65.3 ± 1.4 

PHA blend/BG2 (0.5wt %) 93.5 ± 0.8 

PHA blend/BG2 (1wt %) 78.8 ± 0.7 

PHA blend/BG2 (2.5wt %) 67.0 ± 0.7 

PHA blend 77.4 ± 0.8 

PCL 81.9 ± 1.3 

Glass 23.2 ± 0.5 

 

 

In both series of composites there was a significant decrease in surface wettability for 

composites with the lowest BG content; contact angles of 95.7o ± 0.6o and 93.5o ± 0.8o for PHA 

blend/BG1 (0.5 wt %) and PHA blend/BG2 (0.5 wt %), respectively, compared with 77.4o ± 0.8o for 

the control PHA blend.  
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The materials were further characterised by differential scanning calorimetry (DSC) to 

evaluate the influence of inorganic fillers in crystallisation and the state of the amorphous phase of 

semi-crystalline PHAs. DSC thermograms (Supporting information, Figure S2) show that composites 

and the control PHA blend did not exhibit melting of the P(3HO) component. Thus P(3HO) was not 

crystallised as a single phase in the P(3HB) matrix. Although the melting temperature of P(3HB) was 

not affected by the presence of BG, the degree of crystallinity of P(3HB) significantly decreased in 

the composites with BG1 (Table 3) compared with the control PHA blend and crystallinity gradually 

decreased with the increase of filler content. On the other hand, it appears that P(3HB) crystallinity 

was not influenced by BG2: 65.8, 64.0, 67.4% for composites containing 0.5, 1.0 and 2.5wt % of 

BG2, respectively, compared to 65.6% for the PHA blend.  

 

Table 3. Differential scanning calorimetry of PHA blend/BG composites. 

Substrates Tg (°C) Tm (°C) Specific enthalpy of melting 

(kJ/g) 

XC, %* 

Observed Normalised     

to P(3HB) 

PHA blend/BG1 (0.5 wt %) n/d 177.6 59.2 79.5 54.4 

PHA blend/BG1 (1 wt %) n/d 175.1 42.0 56.8 38.9 

PHA blend/BG1 (2.5 wt %) n/d 173.0 36.8 50.8 34.5 

PHA blend/BG2 (0.5 wt %) n/d 174.6 71.2 95.5 65.8 

PHA blend/BG2 (1 wt %) n/d 174.3 69.2 93.5 64.0 

PHA blend/BG2 (2.5 wt %) n/d 174.4 71.3 98.4 67.4 

PHA blend n/d 174.6 71.8 95.7 65.6 

* the crystallinity degree of P(3HB) was calculated using the formula 𝑋𝐶 = ∆𝐻𝑛𝑜𝑟𝑚∆𝐻0 × 100 and  

H0=146 J/g. [30] 

Interestingly, for all the composites and the PHA blend the glass transition event was not 

detected (Table 3) in the temperature range where the glass transition of P(3HB), the dominant 

component of the blend (close to 3C), would be typically observed.  The absence of glass transition 

indicated that the P(3HB) in the amorphous phase was in a rigid state, which is a vitrified state of the 

amorphous material.[31] Since the fractions of polymers in an amorphous state (Table 3) were 
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significantly higher in the PHA blend/BG1 composites than in the PHA blend/BG2 composites, this 

is a further confirmation of our assumption of a more confined and regular space formed between 

less polydisperse BG1 particles and P(3HB) crystallites. The interface area is expected to be larger 

in such structures. As a result, despite the increased fraction, all amorphous polymers in PHA blend 

/ BG1 composites distributed into the interfaces, which limited their mobility and transformed them 

into a rigid state. 

Such differences in the rigidity of the amorphous phase and crystallisation for the two types 

of composites defined the mechanical properties of the materials. As can be seen from Table 4, PHA 

blend/BG1 composites were significantly softer than composites filled with BG2 and the control PHA 

blend. The Young’s modulus decreased by 2-5 times for the PHA blend/BG1 composites, which was 

a result of the lower degree of crystallinity of P(3HB) in the polymer matrix. It is worth noting that 

calculations of Young’s modulus and ultimate strength do not take into consideration the porosity of 

the materials. However, the differences in the porosities of the materials were not so large and could 

not be the reason for such a decrease in the stiffness of composites filled with BG1. 

Counterintuitively, despite the presence of rigid BG1 in the polymer matrix, the flexibility of the PHA 

blend/BG1 composites significantly increased when compared with the PHA control; more than 15 

times increase in elongation at break was observed for the PHA blend/BG1 composite (0.5 wt%) as 

compared to the PHA blend (Table 4). However, as expected, a further increase in BG content resulted 

in a decrease in the elongation at break within each series of the composites. All PHA blend/BG1 

composites showed higher elongation at break values compared to the PHA blend/BG2 composites 

with equivalent BG content and also the control PHA blend. 
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Table 4. Mechanical properties of the PHA blend/Bioactive Glass composites     

Substrates  Young’s Modulus 

(MPa) 

Ultimate tensile 

strength (MPa) 

Elongation at break, 

% 

PHA blend/BG1 (0.5 wt %) 400.0 ± 6.0 5.8 ± 0.1 36.0 ± 6.4 

PHA blend/BG1 (1 wt %) 850.0 ± 70.0 10.0 ± 0.6 2.5 ± 0.3 

PHA blend/BG1 (2.5 wt %) 390.0 ± 26.0 5.1 ± 0.7 2.3 ± 0.5 

PHA blend/BG2 (0.5 wt %) 1300.0 ± 100.0 16.1 ± 0.7 3.6 ± 1.2 

PHA blend/BG2 (1 wt %) 1060.0 ± 50.0 13.0 ± 1.4 1.7 ± 0.1 

PHA blend/BG2 (2.5 wt %) 1730.0 ± 76.0 19.6 ± 0.8 1.7 ± 0.2 

PHA blend 1800.0 ± 200.0 19.7 ± 0.3 1.6 ± 0.1 

PCL 390.0 ± 26.0 12.6 ± 0.3 120.0 ± 41.0 

 

Similar to the stiffness, the ultimate tensile strength was lower for PHA blend / BG1 

composites. However, there was no correlation between the BG content and composite stiffness and 

strength, which are commonly described for composites by the rule of mixtures. The main reasons 

for this anomalous behaviour are variable porosity of the materials, variation in the crystallinity 

degree and poor compatibility between the polymer matrix and fillers. As a result of the interplay of 

these factors, the stiffest and strongest composites were achieved for composites containing 1.0 wt% 

of BG1 (Young’s modulus and ultimate strength 850.0 ± 70.0 and 10.0 ± 0.6 MPa, respectively) and 

2.5 wt% of BG2 (Young’s modulus and ultimate strength 1730.0 ± 76.4 and 19.6 ± 0.8MPa, 

respectively). The tensile strength obtained in the PHA blend/BG1 (1% w/v) (10.0 ± 0.6 MPa) was 

found to be similar to that of rabbit peroneal nerve determined in another study (11.7 ± 0.7 MPa). [32] 

 

3.2. Cellular response to the PHA-based composites 

Primary evaluation of the biocompatibility of the PHA blend/BG composites was conducted 

using live/dead cell viability assay for NG108-15 neuronal cells. As shown in Figure 3,  

NG108-15 neuronal cells attached well and grew on the surface of all PHA-based materials. Cell 

growth was significantly lower in the glass control. A significant difference was found between the 

percentage of live cells in the control PHA blend (94.9 ± 0.9 %) and PCL film (92.4 ± 1.6 %)  

(#P < 0.05) implying superior neuronal growth for PHA-based materials compared with the widely 

used biodegradable PCL (Figure 3J). The percentage of live cells determined for all the composites 
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was similar and found to be in the range of 99.4 ± 0.1 % to 92.4 ± 1.6 % (Figure 3J). These values 

were not significantly different as compared to the control PHA blend. Although the comparison of 

percentage of live cells did not display significant differences, the statistical analysis of the number 

of neuronal cells grown on the substrates revealed some differences in cell attachment for the 

composites. In Figure 3K the number of neuronal cells grown on different substrates was compared. 

The composite PHA blend/BG1 (1.0 wt %) supported the highest number of cells (760 ± 60 cells) 

among all the composites, which was significantly different when compared to the rest of the 

substrates (**P < 0.05). On the other hand, the PHA blend/BG1 (0.5wt %) supported the lowest 

number of neuronal cells (215 ± 30 cells), presenting similar values when compared with the number 

of cells grown in the control PHA blend and PCL.  Smaller variations in the number of viable cells 

were observed in the series of composites with the BG2 filler:  400.0 ± 110.0; 410.0 ± 70.0; 250.0 ± 

45.0 cells for PHA blend/BG2 (0.5 wt %), PHA blend/BG2 (1.0 wt %) and PHA blend/BG2 (2.5 wt 

%), respectively. In both series of composites decreased number of viable cells was found for the 

composites with 2.5 wt% BG content compared with the composites containing 1.0 wt% of BGs. 
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Figure 3. Confocal micrographs of NG108-15 neuronal cells labelled with propidium iodide (red) and Syto-9 

(green) after four days in culture on PHA/Bioactive glass composites and the controls PHB blend, PCL and 
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glass. A) PHA blend/BG1 (0.5 wt %), B) PHA blend/BG1 (1.0 wt %), C) PHA blend/BG1 (2.5 wt %), D) PHA 

blend/BG2 (0.5 wt %), E) PHA blend/BG1 (1.0 wt %), F) PHA blend/BG2 (2.5 wt %), G) PHB blend, H) 

PCL, I) and Glass. J) Live/dead analysis of neuronal cells on the P(3HO)/P(3HB) blends, PCL and glass 

(control). K) Number of live cells on PHA/bioactive glass composites, PHA blend, PCL and glass (control). 

Scale bar = 50 µm. 

 

As seen in Figure 3, the percentage of live neuronal cells in all the PHA blend/BG composites, 

PHA blend and PCL was higher in comparison to glass (control) (mean ± SEM,  

n = 9 independent experiments *P < 0.05). Percentage of live neuronal cells in the PHA blend was 

significantly different to the PCL control (mean ± SEM, n = 9 independent experiments #P < 0.05. 

The number of live cells (Fig. 3K) grown on PHA blend/BG1 (1.0 wt %) was significantly different 

compared to the rest of substrates (760.0 ± 60.0 cells). The number of neuronal cells displayed by 

PHA blend/BG1 (2.5 wt %) (317.0 ± 30.0 cells) (***P < 0.05) and PHA blend/BG2 (0.5 wt %) (400.0 

± 110.0 cells) (● P < 0.05) were found significantly different to the glass control (53.0 ± 18.0 cells). 

Also, the number of cells grown on the PHA blend/BG2 (1.0 wt %) (410.0 ± 70.0 cells) (●● P < 0.05) 

was significantly different to that grown on the controls, PCL (171.0 ± 39.0) and glass (53.0 ± 18.0 

cells).    

NG108-15 neuronal cells grown on the substrates were immunolabelled for β III-tubulin to 

study neuronal differentiation and neurite outgrowth. Neurite outgrowth assessment was carried out 

according to the method of Daud [33]. Differentiation was confirmed in all the neuronal cells by 

observing of neurites sprouting in all the PHA blend/BG composites (Figure 4). However, a more 

uniformly distributed and higher number of differentiated cells was found in the PHA blend/BG 

composites, compared to the PCL and glass controls. It can be seen in  

Figure 4 that cells grown on PCL and glass were grouped in clusters with aggregate structure. 
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Figure 4. Micrographs of NG108-15 neuronal cells immunolabelled for β-III tubulin after 4 days culture on 

PHA blend composites. A) PHA blend/BG1 (0.5 wt %) composite, B) PHA blend/BG1 (1.0 wt %) composite, 
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C) PHA blend/BG1 (2.5 wt %) composite, D) PHA blend/BG2 (0.5 wt %) composite, E) PHA blend/BG2 (1.0 

wt %) composite, F) PHA blend/BG2 (2.5 wt %) composite, G) PHB blend, H) PCL, and I) Glass. J) Number 

of differentiated neuronal cells grown on substrates. Scale bar = 50 µm. 

 

As seen in Figure 4, the PHA blend/BG1 (1.0 wt %) composite supported the highest number 

of differentiated neuronal cells (350.0 ± 40 cells) compared to the rest of substrates. The number of 

NG108-15 cells grown on the composites, PHA blend/BG1 (0.5 wt %) (230.0 ± 20.0 cells), PHA 

blend/BG1 (1.0 wt %) (350.0 ± 40.0 cells), PHA blend/BG1 (2.5 wt %) (300.0 ± 25 cells), PHA 

blend/BG2 (0.5 wt %) were significantly different to those found in PHA blend/BG2 (1.0% wt) (85.0 

± 10.0 cells), PHA blend/BG2 (2.5 wt %) (60.0 ± 9.0 cells) and the controls PHA blend film (80.0 ± 

23.0), PCL film (50.0 ± 7.0 cells) and glass (10.0 ± 3.0 cells) (*P < 0.05, **P < 0.05, ***P < 0.05, ● 

P < 0.05).   

In line with the live/dead assay, the PHA blend/BG1 (1.0 wt %) composite supported the 

highest number of differentiated neuronal cells (350.0 ± 40.0 cells) in comparison to the rest of the 

substrates (Figure 4J). The total number of neuronal cells grown on the composites, PHA blend/BG1 

(0.5 wt %) (230.0 ± 20.0 cells), PHA blend/BG1 (1 wt %) (350.0 ± 40.0 cells), PHA blend/BG1 (2.5 

wt %) (300.0 ± 25.0 cells), and PHA blend/BG2 (0.5 wt %) (230.0 ± 20.0 cells), were significantly 

different to those found on the PHA blend/BG2 (1 wt %) (85.0 ± 10.0 cells), PHA blend/BG2 (2.5 wt 

%) (60.0 ± 9.0 cells) and the controls PHA blend film (80.0 ± 23.0), PCL film (50.0 ± 7.0 cells) and 

glass slide  (10.0 ± 3.0 cells) (*P < 0.05, **P < 0.05, ***P < 0.05, • P < 0.05). Confocal micrographs 

of NG108-15 neuronal cells immunolabelled for beta-III tubulin grown on PHA blend/BG1 (Figures 

S3), and PHA blend/BG2 composites (Figure S4) shown in the supplementary material were taken 

with higher magnification in order to observe neurite bearing neurons. The growth and differentiation 

of NG108-15 cells in all the PHA blend composites confirmed that both BG types displayed high 

biocompatibility with neuronal cells. 

The response of neuronal cells towards the substrates was further studied in co-culture with 

RN22 Schwann cells, in order to evaluate the effect of RN22 Schwann cells on neuronal 

Page 21 of 35 AUTHOR SUBMITTED MANUSCRIPT - BMM-103249.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



22 

 

differentiation and neurite outgrowth.  Micrographs of NG108-15 neuronal cells grown in co-culture 

with RN22 Schwann cells are shown in Figure 5 and Figures S3 of the supplementary material. 

Neuronal cells were immunolabelled for β-III tubulin (red) whereas RN22 Schwann cells were 

stained with S100β (green) for visualization. Neurite outgrowth assessment of NG108-15 neuronal 

cell/RN22 Schwann cell co-cultures was performed according to Daud [33]. 

Although only small numbers of RN22 Schwann cells were detected, analysis of NG108-15 

neuronal cells demonstrated their ability to attach, grow and differentiate on all the substrates in co-

existance (Figure 5). As in the live/dead cell test and in the neurite outgrowth assessment of NG108-

15 neuronal cells in single cultures, the PHA blend/BG1 (1.0 wt %) composite supported the highest 

number of differentiated neuronal cells when co-cultured with RN22 Schwann cells (650.0 ± 20.0 

cells) compared to the rest of substrates (Figure 5S). Statistical analysis of neuronal cells grown on 

the PHA blend/BG composites in single culture showed an increase in neuronal cell attachment when 

cultured with RN22 Schwann cells except for the PHA blend/BG1 (0.5 wt %). This increase was 

statistically significant for all composites. A seven-fold increase was shown in the number of neuronal 

cells detected in the PHA blend/BG2 (1.0 wt %) and PHA blend/BG2 (2.5 wt%) when cultured with 

RN22 Schwann cells. 
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Figure 5. Micrographs of NG108-15 neuronal cells inmunolabelled for β-III tubulin (red) grown in co-culture 

with RN22 Schwann cells labelled with S100β (green) after 4 days on PHA blend/bioactive glass composites. 

(A, G, M) PHA blend/BG1 (0.5 wt %); (B, H, N) PHA blend/BG1 (1.0 wt %); (C, I, O) PHA blend/BG1 (2.5 

wt %); (D, J, P) PHA blend/BG2 (0.5 wt %); (E, K, Q) PHA blend/BG2 (1.0 wt %); (F, L, R) PHA blend/BG2 

(2.5 wt %). S) Number of neuronal cells grown when co-cultured with RN22 Schwann cells. T) Number of 

NG108-15 neuronal cells grown on the PHA blend/BG composites in single culture vs co-cultured with RN22 

Schwann cells. Scale bar = 50 µm. 

The number of neuronal cells presented in PHA blend/BG1 (1.0 wt %) when grown with 

RN22 Schwann  cells was significantly different to that of PHA blend/BG1 (0.5 wt %)  (*P < 0.05) 
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and to those of PHA blend/BG1 (2.5 wt %), PHA blend/BG2 (0.5 wt %), PHA blend/BG2 (1.0 wt 

%), PHA blend/BG2 (2.5 wt %), PHA blend film, PCL film (100.0 ± 30.0 cells) and glass  (**P < 

0.05) (Figure 5).   The number of neuronal cells grown on PHA blend/BG2 (1.0 wt %) in the presence 

of RN22 Schwann cells was significantly different to that determined for the PHA blend/BG2 (2.5 

wt %) (●●P< 0.05). A statistically significant increase was observed in the number of NG108-15 cells 

when grown in co-culture with RN22 Schwann cells on the PHA blend/BG1 (0.5 wt %) (▪P < 0.05); 

PHA blend/BG1 (1.0 wt %) (▪▪ P < 0.05); PHA blend/BG1 (2.5 wt %) (▪▪▪ P < 0.05); PHA blend/BG2 

(1.0 wt %) (○ P < 0.05), and PHA blend/BG2 (2.5 wt %) (○○ P < 0.05). 

 

3. Discussion  

Porosity is considered as a crucial structural feature of materials which provides an efficient 

cell migration, nutrient and catabolite exchange [17] required for nerve regeneration. It is worth noting 

that the pore size for the composites developed in this study (3–10 μm) are within the 5–30 μm range 

recommended for NGCs, hence a lumen coat using these PHA-composites will fulfill the adequate 

porocity. [34]  

The incorporation of BG2 resulted in rougher surfaces for composites containing 0.5 wt % 

and 2.5 wt % of BG2 (2.6 ± 0.1 µm and 2.3 ± 0.01 µm, respectively) compared with the PHA blend 

control (1.2 ± 0.1 µm), while roughness of the PHA blend/BG2 (1.0 wt %) was not significantly 

different to that of the PHA blend control. At the same time, incorporating BG1 led to decreased Rq 

values in comparison with the control PHA blend film (Figure 2). This finding may be the result of a 

decreased impact of the so-called “breath figure” phenomenon [35] that is common in film casting of 

hydrophobic polymer solutions with highly volatile solvents. For such systems, water droplets 

condense on the polymer as a result of surface cooling due to evaporation and make imprints on the 

film surface. However, since the addition of BG1 decreased the hydrophobicity of the material, the 

“breath figure” effect could have smaller impact on surface topography of composite film.  
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The significant decrease in surface wettability observed in both series of composites for 

composites with the lowest BG content (contact angles of 95.70 ± 0.60 and 93.50 ± 0.80 for PHA 

blend/BG1 (0.5 wt %) and PHA blend/BG2 (0.5 wt %), respectively, compared with 77.40 ± 0.80 for 

the control PHA blend could reflect the contribution of surface topography to the change in surface 

wettability. Although the roughness for the PHA blend/BG1 (0.5 wt %) did not significantly change 

compared with the PHA blend, the technique used in this study evaluates roughness on a micrometer 

scale. Probably topographical features of nano- and submicron sizes in the composite film resulted in 

an increase in the contact angle for these composites. BG particles were completely covered with the 

polymer matrix in composites with 0.5 wt % BG content, when particle/polymer ratio was low. In 

this case, hydrophilicity of the BG did not contribute to the wettability. However, with the increase 

in BG content more BG particles were exposed on the composite surface, increasing the surface 

hydrophilicity and the contact angle decreased with respect to PHA blend for composites containing 

1.0 wt% and 2.5 wt% BG.  Composites with filler content of 1.0 wt% and 2.5 wt% showed lower 

contact angle values than the PHA blend except for PHA blend/BG2 (1.0 wt%). Slightly lower values 

of contact angles for the composites filled with BG1 is likely due to their surfaces being smoother as 

compared with composites containing BG2. 

In the composites, crystallisation of P(3HB) occurs in a confined space between the BG 

particles. Less polydisperse particles of BG1 may have formed a more regularly packed environment 

than BG2. Additionally, as was mentioned above, composites with BG1 were more porous than the 

PHA blend / BG2 composites. These two factors could drive the P(3HB) crystallisation to occur in a 

more confined space for the PHA blend/BG1 composites resulting in the suppression of P(3HB) 

crystal growth. The higher the BG content the more crowded the system would be, leading to a lower 

degree of P(3HB) crystallisation (Table 3). However, in the case of PHA blend/BG2 composites, 

higher degree of BG packing might lead to the formation of BG-rich and BG-depleted regions. Hence, 

in this case, P(3HB) crystallisation was similar to the crystallisation in the PHA blend. 
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It is well-known that BGs have beneficial effects on tissue regeneration upon contact with 

physiological fluids, including cell attachment and stimulation of growth factor production by their 

dissolved ions (i.e., vascular endothelial growth factor (VEGF); basic fibroblastic growth factor 

(bFGF). [3] Both, 45S5 and 1393 BGs release the cations Ca+2 and P+5 in physiological solutions, 

which have shown to stimulate angiogenesis. Phosphorous results in an increase in VEGF, bFGF, 

and matrix metalloproteinase-2 (MMP-2), whereas calcium has shown to enhance endothelial cell 

proliferation [36]. The combined effect of the above mentioned phenomena can explain the cellular 

growth increment observed in the composites, PHA blend/BG1 (0.5, 1.0, 2.5 % wt) and PHA 

blend/BG2 (0.5, 1.0 % wt) as compared to PHA-control films. Hence, the bonding between BG-

containing surfaces and cells is the result of dissolution and precipitation reactions on the surface of 

the material. These interactions are highly affected by the BG composition and involve proteins 

absorbed to the material surface, cell receptors and dissolved ions. [3] Therefore, while some of the 

phosphate and calcium ions could have reacted to form hydroxyapatite (HA), other free phosphate 

and calcium ions could have been free in solution and entered the cell via the Na/Pico-transporter 

(NPT) and specific membrane channels respectively, positively affecting the expression of growth 

factors by neuronal cells. There are a great diversity of voltage- and ligand-gated ion channels that 

are permeable to inorganic ions such as calcium, sodium, potassium and chloride, which are vital for 

the electrical activity of excitable cells. Moreover, calcium in particular, also serves as an essential 

signalling entity. [37] 

 It is widely accepted that the hydrophobicity of surfaces significantly affects cell attachment. 

However, in this study a lack of linearity was observed in terms of hydrophobicity/cell growth. It is 

expected that lower water contact angles would support higher cell adhesion and growth. Although 

the composites with the lowest water contact angles, PHA blend/BG1 0.5 wt (65.7 ± 1.2 °) and PHA 

blend/BG1 1.0 wt % (65.3 ± 1.4 °) showed the best performance supporting cell growth of neuronal 

cells, the composite PHA blend/BG1 0.5 wt % with the highest contact angle,  (95.7 ± 0.6 °) presented 

optimal biocompatibility (Fig. 4, 5, S3). The formation of a HA layer could potentially counteract the 
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unfavourable effect of the hydrophobic surface in the PHA blend/BG1 0.5 wt % composite by 

providing a bonding interface. Similarly, the biocompatibility of the composite PHA blend/BG2 0.5 

wt % (93.5 ± 0.8°) could also have been improved by the formation of a HA layer (Fig. 3, 4). 

Surprisingly an opposite effect was observed in the co-culture of PHA blend/BG2 0.5 wt % in which 

addition of RN22 Schwann cells could have a detrimental effect in cell growth by either hindering 

the formation of HA or by depleting the nutrients in the media.  This composite was the only construct 

that showed a decrease in NG108-15 growth in co-culture with RN22 Schwann cells.  

In all the cell culture experiments, PHA blend/BG1 (1.0 wt %) exhibited superior performance 

in supporting the growth of differentiated NG108-15 cells compared to the rest of substrates. The 

superior performance of PHA blend/BG1 (1.0 wt %) was consistent in all the cell culture experiments 

(live/dead analysis, neurite outgrowth assessment of NG108-15 neuronal cells and NG108-15 / RN22 

Schwann cell co-cultures). Furthermore, neurite extension found in the PHA blend/BG1 (1.0 wt %) 

was very clear as observed in areas where neurites formed a complex connection network (Supporting 

material, Figure S3). These interconnected neurite structures were also observed in PHA blend/BG1 

(0.5 wt%) (Supporting material, Figure S3). The growth and differentiation of the NG108-15 cells on 

the remaining PHA blend/composites was variable in the live/dead cell test, neurite outgrowth 

assessment on NG108-15 neuronal cell and on NG108-15/RN22 Schwann cell co-cultures. It is 

important to note that despite the fact that PHA blend/BG1 (1.0 wt%) displayed a superior 

performance as a neuronal scaffold, this composite did not show the most favourable surface 

characteristics among the rest of composites.  Although the water contact angle (65.7 ± 1.2°) 

corresponded to a hydrophilic substrate, the roughness was low and its microstructure did not show 

an interconnected porous system. Therefore, the concentration of BG1 used in PHA blend/BG1 might 

have played an important role in the favourable properties of this composite, by providing a beneficial 

balance of cations in the culture media. It is worth to mention that this is the first study of PHA/BG 

composites in the context of neural tissue engineering.  
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In general, both BGs showed significant biocompatibility within the PHA blend. In all the 

experiments the presence of BGs at all concentrations (0.5 wt %, 1.0 wt %, 2.5 wt %) increased the 

number of neuronal cells with respect to both, the PHA blend control and PCL control. The 45S5 

composites exhibited better performance in supporting cell growth and differentiation of NG108-15 

cells, compared with the BG2 composites.  

  To the best of our knowledge, this study is the first to evaluate the effect of BG 1393 (BG2)  

on neuronal regeneration and shows its potential application as a base material in the form of  

PHA/BG2 composite for the manufacture of inner structures of NGCs used for regeneration of 

peripheral nerves. In contrast, BG 45S5 (BG1) has been previously investigated for peripheral nerve 

regeneration applications, either on its own or in combination with other polymers, but not PHAs.   

Bunting [6] have reported that fibres of BG1 are biocompatible with rat Schwann cells and fibroblasts 

in vitro. They showed qualitative and quantitative evidence of axonal regeneration in vivo using a 

silastic conduit filled with BG 45S5 fibres implanted in sciatic nerves of adult rats. Additionally, 

Mohammadkhah [10] used BG 45S5 as one of the components of a range of poly-ε-caprolactone 

(PCL)/BG composites used to support nerve regeneration. For the biocompatibility study, dorsal root 

ganglia (DRG) isolated from embryonic chicks was cultured on composite sheets and neurite 

outgrowth was measured. The bioactive glass particles added to the composites did not show any 

negative effects on neurite extension.  An increase in neurite outgrowth of DRG cultured on the poly-

ε-caprolactone (PCL)/BG1 composite was observed compared with PCL sheets. [10] 

Although only few RN22 Schwann cells were detectable at the end of the experiment, they may have 

supported neuronal growth and axon extension. RN22 Schwann cells grow faster than NG108-15 

cells and form a layer of cells that tend to detach easily. Therefore, RN22 Schwann cells could have 

detached during the fixation and washing process prior to immunolabelling. Schwann cells are the 

myelin-forming cells of the peripheral nervous system.  Schwann cells-neurons communication is 

carried out through intracellular waves of calcium and via intercellular diffusion of chemical 
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messengers, which are involved in the synaptic transmission.[38, 39] In this respect, the release of Ca2+ 

from bioactive glasses could be controlled to obtain a beneficial effect in SC-neuron communication. 

Intercalated regions of myelinated sheets leave the axonal section of the neuronal cells 

exposed to promote the depolarization of the membrane. Nodes of Ranvier are rich in voltage-gated 

Na+ channels, where Na+ ions cross and depolarize the membrane between segments of compacted 

myelin. Herein, the release of Na+ ions from bioactive glasses might have an effect on the membrane 

polarization during impulse conduction. Further research needs to be carried out to investigate the 

specific effect of the Na+ ions released from bioactive glasses on the membrane polarization. 

4. Conclusions  

The microstructure of the PHA blend/BG composites was affected by the concentration of 

bioactive glasses in the composite. The concentration of BG 45S5 (BG1) and BG 1393 (BG2) showed 

an effect not only in the pore size of PHA blend/BG composites, but also in the distribution and 

structure of the porous systems. The efficient growth and differentiation of NG108-15 cells on all the 

PHA blend composites confirmed that both bioactive glasses (BG1 and BG2) have good 

biocompatibility when used as a PHA composites. The growth and differentiation of NG108-15 cells 

on PHA blend/composites was found to be variable in the live/dead cell test and neurite outgrowth 

assessment. In general, both bioactive glasses exhibited a significant impact on the biocompatibility 

of the PHA blend. Although composites with BG2 shown to support neuronal regeneration, 

composites with BG1 displayed superior performance in supporting cell growth and differentiation 

of neuronal cells.  The presence of  RN22 Schwann cells  in NG108-15 cultures had a further positive 

effect on the growth and maintenance of the differentiated neuronal cells in all the PHA 

blend/composites except for the PHA blend/BG2 (0.5 wt %).  PHA blend/BG1 (1.0 wt %) exhibited 

the best performance in supporting growth and maintaining neuronal differentiation of NG108-15 

amongst all the substrates in all the cell culture experiments. Moreover, neurite extension found in 

the PHA blend/BG1 (1.0 wt%) was remarkable, as neurites formed a complex connection network. 

Therefore, the PHA blend/BG1 (1.0 wt%) exhibited the best combination of surface features, 
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chemical and mechanical properties to emerge as the best substrate for the growth and differentiation 

of neuronal cells and hence for the future development of both lumen coat of NGCs and for nerve 

tissue regeneration in general. Due to the known beneficial effect of hydroxyapatite (HP) in cell 

growth and attachment [40], the formation of this compound in PHA blend/BG composites should be 

investigated in further studies using X-ray powder diffraction (XRD) or Fourier-transform infrared 

spectroscopy (FTIR). Aditionally, owing to the fact that calcium has a fundamental role in the 

initiation of the nerve regeneration process [41, 42, 43, 44, 45, 46, 47, 48], the use of bioactive glasses as 

calcium delivery systems with controlled release is expected to have a positive impact on axonal 

growth. Therefore, measurement of calcium release from PHA blend/BG composites and 

characterization of calcium homeostasis are highly recommended for further studies. 
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