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Remarkable levels of 15N polarization delivered 

through SABRE into unlabeled pyridine, pyrazine or 

metronidazole enable single scan NMR 

quantification at the mM level.  

Marianna Fekete, Fadi Ahwal and Simon B. Duckett*  

University of York, Department of Chemistry, Heslington, York, YO10 5DD (UK) 

KEYWORDS. 15N polarization, SABRE, parahydrogen 

 

ABSTRACT. While many drugs and metabolites contain nitrogen, harnessing their diagnostic 15N-

NMR signature for their characterization is underutilized due to inherent detection difficulties. 

Here we demonstrate how precise ultra-low field SABRE (±0.2 mG) in conjunction para-hydrogen 

and an iridium precatalyst of the form IrCl(COD)(NHC) with the co-ligand d9-benzylamine allows 

the natural abundance 15N NMR signatures of pyridine, pyrazine, metronidazole and acetonitrile 

to be readily detected at 9.4 T in single NMR observations through >50% 15N polarization levels. 

These signals allow rapid and precise reagent quantification via a response that varies linearly over 

the 2 mM to 70 mM concentration range.  
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 2

 

Introduction 

Hyperpolarization methods have been shown to dramatically improve the sensitivity of Nuclear 

Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI)1-2 in a process that involves 

increasing the purity of the magnetic states they detect. Signal amplification by reversible 

exchange (SABRE) reflects one such method. It harnesses the nuclear spin order of para-hydrogen 

(p-H2)3,4,5 and is a consequence of the pioneering work of Weitekamp6 and Eisenberg.7 For SABRE 

to operate, the symmetry of p-H2 is first broken by temporarily placing it into a metal complex so 

that the new hydride ligands which result couple distinctly to NMR active spins within the ligand 

sphere of the product. A process of reversible binding then allows a suitable substrate to become 

hyperpolarized through what is a catalytic process that transfers nuclear spin order within the 

complex rather than achieving a change in chemical identity.3,5 Typically this process takes place 

in a specified magnetic field that is often called the polarization transfer field (PTF) and can be 

selected to optimize efficiency.8-9 The selection of this field is made according to the chemical 

shift difference that exists between the interacting nuclear spins and their spin-spin couplings10,11 

in a process that has been accurately modelled.12 As the active SABRE catalyst may break the 

symmetry of the two protons that were initially located in p-H2 through chemical or magnetic 

inequivalence effects the process of catalysis can be complex.5, 13 This is because for spin order 

transfer from the p-H2 derived hydride ligands to take place, the receiving ligand nuclei must 

exhibit different spin-spin couplings to these two protons.  

Knowledge of this behavior has influenced SABRE catalyst design14 and the resulting 

sensitization process has enabled the easy NMR detection of low-abundance inorganic species.13  

Other studies have used deuterated co-ligands to improve the spin-order yields in SABRE by 
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 3

reducing waste through the focusing of polarization transfer into fewer receptor sites.15 When this 

is achieved in conjunction with 2H labelling, the associated extension of nuclear spin-order lifetime 

has proven to be particularly beneficial as de-coherence within the SABRE catalyst reflects one 

route to reduce the overall processes efficiency.16 These two effects combine to extend the duration 

over which signals remain visible to NMR. as in classical terms one T1 period is associated with a 

63% destruction of the hard-won polarization level. Not surprisingly, the extended lifetimes 

associated with molecular singlet states17-21 and their derivatives, feature extensively in 

hyperpolarization research as one goal is often to study in vivo reactivity.22 In further 

developments, Tessari et al. have shown how 1H-SABRE can achieve precise analyte 

quantification at low substrate loadings by the involvement of a slow exchanging co-ligand.23-24 

Furthermore, Iali et al extended SABRE to the hyperpolarization of primary amines through 

catalysts of the form [Ir(H)2(IMes)(amine)3]Cl,25 and it was noted that sterically hindered amines 

which failed to bind efficiently benefited by the addition of smaller NCMe which enables the 

formation of [Ir(H)2(IMes)(aniline)2(NCMe)]Cl.26 The successful use of amines reflects an 

important boost to SABRE because the hyperpolarized NH response can be used to sensitize other 

molecules through proton exchange.25 More recently developments of this ligand design route have 

enabled the hyperpolarization of pyruvate and acetate.27-28  

Normally, though the detection of 15N by NMR is even more challenging than that of 1H because 

of its 0.36% natural abundance and low magnetogyric ratio. 15N detection is, however, needed for 

the characterization of important nucleobases, nucleosides, nucleotides, peptides, proteins and 

transition metal complexes. In addition, as the T1 of 15N can exceed many minutes, magnetic state 

lifetimes can approach those of positron emission tomography.29-33 It is not therefore surprising 

that 15N hyperpolarization reflected an early target of both spontaneous3 and radio frequency 
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 4

driven SABRE.34 Warren et al. refined these methods through SABRE SHEATH35-36 to deliver 

20% 15N polarization in metronidazole.37 Several alternative radio frequency strategies have also 

been exemplified38-40 and given the goal of in vivo SABRE, water soluble SABRE catalysts have 

also been described41-42 with the MRI detection of a 15N response illustrated.42 Here though we 

seek to demonstrate how amines as co-ligands can enable the highly efficient 15N polarization of 

a range of target substrates (sub) via SABRE catalysis through [Ir(H)2(1)(sub)2(BnNH2)]Cl (a) or 

[Ir(H)2(1)(sub)(BnNH2)2]Cl (b) of Scheme 1 in order to improve on the potential of SABRE 

approach to achieve in vivo MRI detection.  

 

Results 

Hyperpolarization of the 15N NMR signal of pyridine. 

We start by considering non-labelled pyridine at a 35 mM concentration because of its wide use 

in early SABRE research3,4, 13 in conjunction with the precatalyst [IrCl(COD)(h22-1)]43 (5 mM) of 

Scheme 1. Our experimental measurements involved examining an NMR tube containing 

methanol-d4 solutions of these reagents under 3 bar (absolute) pressure of p-H2 at 99% purity. The 

p-H2 gas is first dissolved by shaking the NMR tube whilst it is located in a pre-set magnetic field 

that lies between ±1 mG to ±140 G for ~10 seconds (relative to the main NMR magnets field 

orientation). Subsequently, the sample is placed in a 9.4 T magnet where the final NMR signal 

detection step occurs. 
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 5

  

Scheme 1. Chemical structures of complexes, substrates and ligands.  

Under these conditions, the SABRE catalyst [Ir(H)2(h22-1)(py)3]Cl forms and a 1H NMR signal 

gain of 1452-fold can be seen for the ortho-proton resonance of free pyridine that is present in 

solution after transfer from a 60 G field. This polarization transfer step takes 10 seconds to 

complete and the resulting polarization level (PH) is 4.65% (Px reflects the percentage polarization 

associated with nuclei x). In this case, the catalyst breaks the symmetry of the two p-H2 derived 

protons through magnetic inequivalence effects and hence spin order transfer flows optimally 

within the equatorial plane that contains the hydride ligands into bound pyridine.44 For 15N, 

however, the large trans two bond 1H-15N coupling of ~19 Hz45,9,35, 46 that connects these hydride 

ligands to nitrogen in [Ir(H)2(h22-1)(py)3]Cl enables the efficient transfer of polarization at an 

approximate -1 mG field that is of the same sense to the main 9.4 T observation field. The 
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 6

consequence of this process is a 39200 fold (±2%) 15N-NMR signal gain which means the 

corresponding P15N value is 12.9% (±2%). Hence this unlabeled 35 mM sample of pyridine can be 

detected by 15N NMR spectroscopy in a single scan NMR measurement at a magnetic field of 9.4 

T with a signal to noise ratio 11 using a routine inverse detection probe.   

Establishing that the co-ligand benzylamine is beneficial to the hyperpolarization of the 15N 

NMR signal of pyridine. 

When the co-ligand d7-benzylamine (d7-BnNH2) was added to such a sample, at an initial 

concentration of 17.5 mM, it proved to rapidly convert into its d9-benzylamine isotopologue. 

Consequently, we refer to d9-BnND2 throughout this manuscript even though d7-BnNH2 is actually 

added to the samples. The resulting 1H NMR spectra reveal that in addition to this labelling change, 

two new inorganic species are formed which yield pairs of hydride ligand signals at  -22.14 and 

-22.58, and  -23.34 and -23.73 respectively. These hydride ligand signals arise from [Ir(H)2(h22-

1)(d9-BnND2)(py)2]Cl and [Ir(H)2(h22-1)(d9-BnND2)2(py)]Cl respectively that are present in 

solution in the ratio 2.6 : 1. The two complexes contain inequivalent hydride ligands that differ 

from one another according to the identity of the axial ligands in the complex as detailed in Scheme 

1 and the SI. Furthermore, as their proportions match the value seen when a similar sample is 

created by the initial addition of benzylamine and H2 to [IrCl(COD)(h22-1)], but before pyridine 

addition takes place, it can be concluded that these two complexes are in equilibrium. Hence the 

separation of their roles in the underlying SABRE process is impractical, but we note it would be 

expected that both will contribute to this process. In addition, it is important to recognize that both 

of these complexes contain chemically and magnetically distinct hydride ligands. The result of this 

change is that spin-order transfer can now proceed into ligands that lie trans and cis to hydride, 

which means that spin dilution, associated with polarization of the axial ligands, is expected and 
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 7

this will reduce the SABRE signal gains that are seen for the free substrate.44 Hence, the 

involvement of polarization transfer protecting d9-BnND2 which limits spin-order wastage should 

be of significant benefit to the SABRE outcome.  

When the resulting d9-BnND2 solutions were examined for SABRE, the 1H NMR response 

resulting from this mixture of catalysts proved to contain a free pyridine ortho proton resonance 

that was 880-fold (± 50) larger than expected after transfer from a 60 G field. As this gain is smaller 

than the value achieved by [Ir(H)2(h22-1)(py)3]Cl we can conclude that under these conditions the 

[Ir(H)2(h22-1)(d9-BnND2)(py)2]Cl/[Ir(H)2(h22-1)(d9-BnND2)2(py)]Cl mixture is actually less 

efficient at hyperpolarizing the 1H NMR signals of pyridine than [Ir(H)2(h22-1)(py)3]Cl. More 

notable though is the fact that the corresponding 15N NMR spectrum contains a signal that is 

indicative of a P15N value of 18% (53300 ± 6000 fold) in conjunction with a PTF of approximately 

-1 mG (Figure 1a). This reflects a 27% improvement in SABRE efficiency when compared to that 

achieved by [Ir(H)2(h22-1)(py)3]Cl and confirms that there is a benefit to using the co-ligand d9-

benzylamine when seeking 15N polarization.  

Upon changing to [IrCl(d22-1)(COD)], and completing a similar series of d9-BnND2 promoted 

measurements, the levels of signal gain seen in the pyridine ortho proton 1H NMR signal rises to 

1324-fold, although the 15N polarization level proved to be unaffected. Hence, while catalyst 

deuteration is not successful at improving SABRE 15N activity, it is able to improve the level of 

1H signal gain because of reduced spin order wastage and improved 1H relaxation.16 This suggests 

that low-field 15N-relaxation within the catalyst is not improved.  

While it is well known that the optimum SABRE catalyst changes with the identity of the 

substrate, it has been clearly demonstrated here that there is also a further dependence on the 
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 8

efficiency of SABRE transfer within a given substrate according to whether 1H or 15N is the target. 

The optimum rate of ligand exchange for 1H transfer has been proposed by Barskiy to be 4.5 s-1 in 

complexes of the type [Ir(H)2(h22-1)(py)3]Cl. Consequently, the rate of pyridine substrate 

dissociation in [Ir(H)2(h22-1)(py)2(d9-BnND2)]Cl in methanol-d4 solution was determined using 

the EXSY method and found to be 0.06 s-1 at 268 K.  This value increases to 1.04 s-1 upon warming 

to at 298 K, and 2.1 s-1 at 308 K. Our associated SABRE measurements reveal that the 

corresponding 1H NMR signal gains change from 600-fold, through 4530-fold to 3550-fold at the 

308 K setting. Hence it appears that a rate closer to 1.04 s-1 is optimal for 1H transfer into pyridine 

using this catalyst. Our experiments also reveal that there is a 30% growth in efficiency of 15N 

polarization for pyridine on moving from 268 K to 298 K, and a further 22% improvement on 

moving to 308 K from 298 K. Consequently, we can confirm that the two different nuclei are best 

served with different rates of ligand exchange.  
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 9

 

 Figure 1. Polarized 15N NMR signals of a) pyridine, b) acetonitrile, c) and d) pyrazine and e) 
metronidazole. Levels indicted in figure alongside agent. In d), the series of 15N NMR signals for 
pyrazine vary in intensity according to the magnitude of the polarization transfer field. f) Shake 
time dependence of P15N level in metronidazole with [IrCl(d34-4)(COD)]. g) P15N level for 
metronidazole (black) and pyrazine (red) in a 10 mm sample tube as a function of PTF magnitude. 
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 10

 

Hyperpolarization of the 15N NMR signal of acetonitrile. 

In order to develop this method further, acetonitrile was tested at a similar 35 mM concentration 

in conjunction with the SABRE catalyst [Ir(H)2(h22-1)(NCMe)3]Cl. This catalyst also relies on 

magnetic inequivalence to break the symmetry of the hydride ligands and it yields a 1H NMR 

signal gain of just 83-fold per methyl proton in the unbound acetonitrile present in solution after 

transfer at 298 K from a 70 G field. The SABRE derived 15N NMR signal gain for CH3CN was 

found to be far more substantial, at 41800 ± 6000 fold (14% polarization) after transfer from an 

approximate -1 mG field.  

Acetonitrile hyperpolarization was then studied in conjunction with 3.6 equivalents of the co-

ligand d9-benzylamine relative to a 5.2 mM iridium concentration. Both [Ir(H)2(d9-

BnND2)2(NCMe)(h22-1)]Cl and [Ir(H)2(d9-BnND2)3(h22-1)]Cl form in these experiments, in a 2:1 

ratio. They both possess chemically distinct hydride ligands. The resulting 1H NMR response after 

SABRE showed an improved 1H NMR signal gain of 160-fold per proton for CH3CN while its 15N 

polarization level rose to 19% (Figure 1b).  

 For the corresponding 2H labeled precatalyst [IrCl(d22-1)(COD)], the 1H NMR signal again 

improves further to 367-fold per proton in accordance with reduced spin dilution that arises as a 

consequence of hydride ligand chemical inequivalence in [Ir(H)2(d9-BnND2)2(NCMe)(h22-1)]Cl 

and [Ir(H)2(d9-BnND2)3(h22-1)]Cl, but now the achieved P15N level fell to 10%. Hence 2H-catalyst 

labelling of the NHC ligand is now detrimental to the 15N polarization level. In this case, the 

appreciable concentration of [Ir(H)2(d9-BnNH2)2(NCMe)(d22-1)]Cl, where there will be coupling 

between the 2H labels of the NHC and the 15N of NCMe, could result in the reduction in 15N-

SABRE efficiency. Barskiy’s observations that in micro-Tesla transfer fields scaler relaxation of 
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 11

the second kind47 associated with the quadrupolar 14N-13C interaction limits the level of 13C 

polarization under SABRE support this view.48 The gain in 1H signal intensity relative to the 

situation with h22-1 is, however, consistent with a reduction in polarization transfer into this ligand 

through deuteration and an extension of the hydride ligands relaxation times.14 

 

Hyperpolarization of the 15N NMR signal of pyrazine. 

We next consider pyrazine (pz). This substrate was tested by taking 5.2 mM methanol-d4 

solutions of [IrCl(COD)(h22-1)] that contained a 7-fold excess of pz under 3 bar of p-H2. The 

resulting 1H NMR signal gain for pz was now 900 fold per proton (2.9 % polarization) and a P15N 

value of 16% (± 2, per nitrogen used throughout) was observed after transfer from -3mG.  

Studies with added h7-BnND2 resulted in a 1H NMR signal gain of 566 fold (0.8%) and a 15N 

signal gain of 12% due to the associated spin dilution effects. However, when d9-BnND2 and h22-

1 were used with a PTF of 60 G, radiation damping resulted with 1H signal detection. In order to 

aid the analysis, this artifact could be suppressed if a less efficient PTF of 120 G was used. Analysis 

under these conditions was used to deduce that the corresponding PH level is 13.5% (± 0.6) per 

proton for a 60 G measurement while for 15N it was 38% (per nitrogen). The 1H NMR signal gain 

grew further to 30.9% (± 0.7) when [IrCl(d22-1)(COD)] was used but the corresponding 15N signal 

response fell in intensity meaning that scaler relaxation of the second kind is again important We 

also tested the related SIMes containing precatalyst [IrCl(COD)(2)]49 with pyrazine and discovered 

that a P15N value of 15.8% could be achieved without a co-ligand. Samples containing both d7-

benzylamine and pyrazine yield [Ir(H)2(pz)2(d9-BnND2)(h22-2)]Cl and [Ir(H)2(d9-

BnND2)2(pz)(h22-2)]Cl in the ratio 2:1 and a P15N value of 44.2% via PTF from an approximate -

1.9 mG field (Figure 1c). This falls to 31.8% with d22-SIMes in agreement with a role for 2H-drive 
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 12

relation in the SABRE catalyst at low field.  Figure 1d shows that the sign of the polarization 

transfer field, relative to that of the main observation field affects the measured 15N pz signal gains. 

This is because upon moving the sample slowly between the points of polarization transfer and 

measurement if it experiences a zero-field point there is a loss in spin order due to relaxation at 

this point. 

The rate of pyrazine dissociation from [Ir(H)2(pz)2(d9-BnND2)(h22-2)]Cl was determined using 

the EXSY method to be 0.33 s-1 at 268 K when the 1H NMR signal gain is 660 fold.  This rate 

increases to 1.8 s-1 at 298 K where the 1H signal gain is 2200 fold. Our experiments reveal a 20% 

growth in efficiency of 15N polarization on moving from 268 K to 298 K for pyrazine as a 

consequence of this rate increase which is faster than that of pyridine loss in the related complex 

[Ir(H)2(h22-1)(py)2(d9-BnND2)]Cl. This kinetic difference is consistent with the relative 15N 

polarization efficiencies of 44.2% and 18% respectively.  

 

Hyperpolarization of the 15N NMR signal of metronidazole. 

Biologically significant metronidazole50, 51 has been well-studied by Chekmenev et al.52, 53, 54, 55 

We conducted control measurements for 5.2 mM methanol-d4 solutions of [IrCl(COD)(h22-1)] and 

[IrCl(COD)(h22-2)] with a 7-fold excess of metronidazole relative to iridium and a 3 bar pressure 

of p-H2 but failed to see significant polarization in either sample. However, once a 3.6-fold excess 

of d7-benzylamine was added, polarization transfer to proton and 15N was readily seen with both 

precursors. For [IrCl(COD)(h22-1)] the P15N value was 22% whilst for [IrCl(COD)(h22-2)] it was 

24% (transfer at -2 mG and 2% P15N seen for d7-benzylamine itself). When the 2H labeled versions 

of these catalysts, [IrCl(COD)(d22-1)] or [IrCl(COD)(d22-2)], were used, these P15N values rose to 
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27%. In all cases the reaction with d9-benzylamine and metronidazole formed [Ir(H)2(mtz)2(d9-

BnND2)(NHC)]Cl and [Ir(H)2(d9-BnND2)2(mtz)(NHC)]Cl with the ratio being 1.4:1 for d22-2.  

Data was now collected on the d22-2 system to demonstrate that the PTF value can be used to 

control which of the two substrates present in solution receives polarization. This effect serves to 

illustrate how selectivity can be introduced into the analysis of mixtures if peak overlap is an issue 

(see SI). Furthermore, a catalyst change to [IrCl(COD)(d34-4)] increased the N1 value to 51% for 

metronidazole with 4% polarization being achieved on N2 and 1% on d9-benzylamine.  

The rates of metronidazole dissociation from the resulting complex [Ir(H)2(mtz)2(d9-

BnND2)(d34-4)]Cl were determined in methanol-d4 solution at 268, 298 and 308 K by the EXSY 

method as being 0.80 s-1, 2.37 s-1 and 5.5 s-1 respectively.  For the 1H signal gain, 298 K proved to 

be best, yielding an enhancement of 856-fold. We now see an 80% growth in efficiency of 15N 

polarization on moving from 268 K to 298 K, but the P15N values falls to just 18% at 308 K. Hence 

increasing the ligand exchange rate beyond 2.4 s-1 seems detrimental.   

 

 

Nucleus (PTF)  

                       Signal Gain (P) 

1 d22-1 2 d22-2 3 d16-3 4 d34-4 Error, 
%, ± 

Py
ra

zi
ne

 

1H (120 G) / fold 137
2 

3151 2220 6028 2533 558 556 673 4 

15N (%, as indicated PTF mG)  38 
(-3) 

35 
(-3) 

44 
(-
1.9) 

37 
(-5) 

26 
(-2) 

31 
(-4) 

32 
(-5) 

28 
(-3) 

2 

M
et

ro
ni

da
zo

le
-N

1 1H (60 G)/ fold 326 474 560 446 814 1038 676 856 5 

15N(%, at PTF of -2 mG)  22 27 24 27 23 23 32 51 3 

 

Table 1. Absolute value of 1H (total proton) and 15N NMR (per site) signal enhancement levels 
for pyrazine and metronidazole at the specified PTF for samples with d9-benzylamine as a co-
ligand. 
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Using higher proportions of p-H2 to improve the NMR signal gain.    

A series of measurements were then completed on metronidazole using a 10 mm NMR tube to 

deploy a larger excess of p-H2 in conjunction with [IrCl(COD)(d34-4)] and d9-benzylamine. A 

slight increase in 15N polarization level to 54% results alongside a reduction in response variability 

to 2%. Consequently, as shown in Figure 1g, a -3.6 mG PTF can be deduced as being optimal. 

Similar 10 mm measurements were then made for pyridine with [IrCl(COD)(h22-1), acetonitrile 

with [IrCl(COD)(h22-1) and pyrazine with [IrCl(COD)(h22-2) in the presence of d9-benzylamine. 

These studies saw the P15N level for pyridine increase to 48% at 4 bar p-H2 pressure. When 

acetonitrile was examined a 30.7% P15N level was reached, but for pyrazine it became 59.4% per 

nitrogen. Further increases in the pyrazine % P15N level can be achieved through reagent dilution 

such that when an initial 5 mM solution of [IrCl(COD)(h22-2)] with a 3.6-fold excess of d9-

benzylamine and 7-fold excess of pyrazine based on iridium is diluted 10 fold, the P15N value 

increases to 79%; the S/N ratio in this case is 11.3. In this case the effect is directly analogous to 

increasing the volume of p-H2 available.  

 

Quantification of reagent concentrations at the mM level through a SABRE enhanced 15N 

signal 

Once we had ascertained how to achieve these polarization levels, we tested how the magnitude 

of the pyridine, pyrazine and metronidazole response varied as a function of substrate 

concentrations between 2.2 and 70 mM. These solutions were made up by simply diluting a stock 

solution with an initial catalyst, d7-benzylamine and substrate concentration of 10 mM, 36 mM 

and 70 mM respectively. We discovered that there was a linear variation in signal response is each 

case as detailed in Figure 2.    
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Figure 2. Raw signal intensity resulting from a series of hyperpolarized 15N NMR spectra of 
pyridine, metronidazole and pyrazine as a function of their concentration. The polarization transfer 
field was optimized for each substrate. The stock solution of the sample ( [Ir] = 6.5mM, substrate 
= 70 mM, and 22.7 mM d9-BnND2) was diluted during these measurements, from 70 mM substrate 
to 2.2 mM substrate concentration. The straight lines result from linear regression analysis and the 
square of the sample correlation coefficient -R2-confirms linear behavior.  

 

 

Figure 3. Raw signal intensity resulting from a series of hyperpolarized 15N NMR spectra of 
pyrazine as a function of its concentration. The polarization transfer field used was -1.9 mG. The 
concentration of the [Ir]-precatalyst ([IrCl(COD)(h22-2)]) was kept constant at 6.5 mM. 3.6 
equivalents of d9-BnND2 were added relative to metal. Subsequently, the concentration of added 
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pyrazine was varied from 8.2 mM to 70 mM. Straight line behavior results thereby confirming that 
the absolution concentration of pyrazine can be estimated from such data. 

 

In second series of studies we maintained a constant iridium and co-ligand concentration whilst 

changing the pyrazine concentration.  A linear change in 15N signal intensity was again observed 

(Figure 3) despite in this case observing some changes in catalyst form. The hydride region of the 

polarized NMR spectra confirm that both [Ir(H)2(pz)(d9-BnND2)2(h22-2)]Cl (A) and 

[Ir(H)2(pz)2(d9-BnND2)(h22-2)]Cl (B) of Figure 4 form with the former being favored at low 

pyrazine loadings. As the concentration of pyrazine decrease, the amount of the formed complex 

B decreases and as a result of it the 15N polarization of pyrazine linearly decrease as well. This 

suggest that the main SABRE – 15N catalyst is the type B complex. We are currently exploring 

this behavior in more detail. These data therefore confirm that substrate detection and 

quantification is feasible via a 15N SABRE signal (see SI).   
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Figure 4: Effect of pyrazine loading on catalyst speciation when methanol-d4 solutions of 

[IrCl(COD)(h22-2)] are examine with d9-BnND2 and pyrazine in the presence of p-H2 seen through 

the hydride region of the corresponding 1H NMR spectra.  Left, thermally equilibrated NMR 

spectra, right initial SABRE enhanced NMR spectra. Species A and B are defined in the text whilst 

C is Ir(H)2(Cl)(d9-BnND2)(pz)(h22-2)  and D [Ir(H)2(d9-BnND2)(methanol-d4)(h22-2)]Cl. 

 

Conclusions 

We have described here how the addition of the co-ligand d9-benzylamine to a precatalyst based 

on [IrCl(NHC)(COD)] under p-H2 results in very high levels of 15N polarization in a range of 

substrates. The high field measurements were made in conjunction with the simple shake and drop 

approach, and it takes approximately 17 seconds to complete a measurement. In the case of the 

substrates pyridine and acetonitrile, [IrCl(h22-1)(COD)] led to  P15N values of 48% and 30.9% 

respectively after transfer from an appropriate mG field. In contrast, a 59.4 P15N value for pyrazine 

was achieved using the precatalyst [IrCl(h22-2)(COD)]. These reactions involve the formation of a 

range of SABRE catalysts of the form [Ir(H)2(sub)2(d9-BnND2)(NHC)]Cl and [Ir(H)2(sub)(d9-

BnND2)2(NHC)]Cl which are in equilibrium.  

Previous studies have established that using deuterated NHC ligands (d22-1 and d22-2) improve 

SABRE hyperpolarization transfer efficiency into methylnicotinate. This improvement is based on 

an extension of the hydride ligands relaxation times.14 Studies here confirm that higher P1H values 

result in all cases in support of this benefit. However, deuteration is not beneficial for 15N transfer 

in pyridine, pyrazine and acetonitrile. Barskiy’s observations that in micro-Tesla transfer fields 

scaler relaxation of the second kind47 associated with the quadrupolar 14N-13C interaction limits 

the level of 13C polarization under SABRE offer a route to explain this view.48 For metronidazole, 
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however, an improved value of 54% on N1 results with d9-benzylamine and [IrCl(COD)(d34-4)] 

which when compared to that seen with precatalyst [IrCl(COD)(h34-4)]. Hence, 2H labelling of the 

catalyst can also be of significant benefit to P15N.  

The rates of ligand exchange were also assessed alongside the collection of variable temperature 

SABRE data. It was found that the rate of optimum ligand exchange was slower than that found 

for 1H transfer despite the larger 1H-15N transfer coupling. We are currently exploring this behavior 

in more detail.  

Data was also presented that was collected from larger 10 mm NMR tubes using a 4 bar pressure 

of p-H2. This acted to increase the relative excess of the hyperpolarization fuel p-H2 relative to the 

substrate and proved to result in greatly improved response reproducibility. Consequently, results 

demonstrated that a polarization transfer field precision of ±0.2 mG is needed for optimal 15N 

transfer. In addition, ~50% 15N polarization levels could now be achieved in pyrazine, pyridine or 

metronidazole, which makes them all highly detectable even at low concentration.  

In order to demonstrate an analytical use for these 15N signals, results were presented to 

demonstrate that the magnitude of the resulting NMR response scales linearly with concentration 

over the range 2.2 to 70 mM. This means that such SABRE-derived data can be used to quantify 

their amount in solution when set against a suitable reference trace. Tessari have completed a 

growing range of studies which demonstrate 1H detection levels can be linked to both speciation 

and quantity23-24, while we have described how 13C signals in glucose can be linked to amount.56 

These studies employed a methylated triazol co-ligand to simplify the exchange kinetics in order 

to produce the necessary linear response. We were unable to benchmark our data with that of the 

triazol co-ligand as it is not commercially available. We did, however, test d6-dmso which is 
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finding widespread use as a co-ligand for the sensitization of weakly binding substrates as an 

alternative. As detailed in the SI the corresponding SABRE performance was degraded.  

It is therefore clear that SABRE offers a simple and yet efficient route to analyte quantification 

by 15N NMR spectroscopy. Not surprisingly, we predict these results will therefore be of benefit 

if you wish to use 15N NMR as a characterization tool, or simply to quantify precise, and yet low, 

levels of nitrogen containing drugs that are present in solution or to collect 15N-MRI data.      
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