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Compile-time Code Virtualization

for Android Applications

Yujie Zhao1, Zhanyong Tang1, Guixin Ye1, Dongxu Peng1, Dingyi Fang1, Xiaojiang Chen1, Zheng Wang2

Abstract—Infringing intellectual property by reverse analysis
is a severe threat to Android applications. By replacing the
program instructions with virtual instructions that an adversary
is unfamiliar with, code obfuscation based on virtualization is
a promising way of protecting Android applications against
reverse engineering. However, the current code virtualization
approaches for Android only target at the DEX bytecode level.
The DEX file with the open file format and more semantic
information makes the decode-dispatch pattern easier to expose,
which has been identified as a severe vulnerability of security
and can be exploited by various attacks. Further, decode-dispatch
interpretation frequently uses indirect branches in this structure
to introduce extra overhead. This paper presents a novel ap-
proach to transfer code virtualization from DEX level to native
level, which possesses strong security strength and good stealth,
with only modest cost. Our approach contains two components:
pre-compilation and compile-time virtualization. Pre-compilation
is designed for performance improvement by identifying and
decompiling the critical functions which consume a significant
fraction of execution time. Compile-time virtualization builds
upon the widely used LLVM compiler framework. It automat-
ically translates the DEX bytecode into the common LLVM
intermediate representations where a unified code virtualization
pass can be applied for DEX code. We have implemented a
working prototype Dex2VM of our technique and applied it
to eight representative Android applications. Our experimental
results show that the proposed approach can effectively protect
the target code against a state-of-the-art code reverse engineering
tool that is specifically designed for code virtualization, and it
achieves good stealth with only modest cost.

Index Terms—Android packer, code visualization, compiler,
LLVM.

I. INTRODUCTION

With open-source and free, Android has achieved a domi-

nant position in the mobile device market. The market share

of Android in the worldwide smartphone market has reached

87%, according to IDC study [4]. However, in Android ecosys-

tem, the fact that Java class files and DEX files contain much

semantic information makes it exceptionally difficult to protect

the underlying source. And yet most software developers

continue to ignore the consequences, leaving their intellectual

property at risk.

To address this problem, most of the prior work relies on

a packer to strengthen Android applications. The underlying

principle of the packer is to embed a piece of code in the

binary program to obtain priority control of the program

and hide the execution logic of the application through code

obfuscation [13], [56], encryption [3], and other technologies,
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Northwest University, China.

2 Zheng Wang is with University of Leeds, United Kingdom.

while ensuring the correctness of its running results. The

Android packer is more complicated with respect to both DEX

and native levels since the Android system has a multi-level

design with runtime Dalvik(version 4.4 and earlier) and ART

(version 5.0 and later). Currently, the state-of-the-art Android

packer technique is to incorporate with code virtualization at

the Java layer [68], [46].

However, code virtualization at the Java layer has some

limitations. 1) Vulnerability. Like most code virtualization

implementations, the original DEX file adds a new section

with more content, including a virtual instruction set, a virtual

instruction scheduler with a decode-dispatch pattern, which

has been identified as a severe vulnerability of security and

can be exploited by various attacks [59], [63], [15], [45]. The

open and semantic DEX file format makes it easier to expose

these sensitive virtualized information. Because many existing

DEX analysis tools make it easy to obtain the DexFile data

structure. Such information can assist the accurate collection of

control flow and data flow of the virtualized code. Even if the

static analysis of virtualized code may not reveal the complete

semantics of a packed app, the behavior of the decode-dispatch

pattern should be exposed to the attacker. 2) Performance.

A recent study [59] shows that the slowdown varies from

1.9X to 660.9X when only 10% of the code is virtualized.

The performance issue is even more urgent on mobile devices

like smartphones when implying code virtualization on the

Android app.

We propose a novel and reliable Android app packer called

compile-time virtualization, which possesses strong security

strength and good stealth, with only modest cost. Our key

insights have two points: 1) Native code is more difficult

than DEX code in terms of readability and simplicity as

it preservers less semantic meaning of the program. For

example, native code contains no symbol information, so

that variables are mapped to registers and many symbols are

just an address [58]. Native code almost with no semantic

information is hard enough to analyze, and it will even harder

if they are translated into customer-defined instructions which

attackers are not familiar with. 2) Native code is 2 to 5 times

faster than the original DEX bytecode according to Googles

experiments on the mobile device Nexus One [57]. If part of

the DEX bytecode is converted to native code, the performance

improvement brought by it can offset part of the overhead

introduced by code virtualization.

So, the main idea of our scheme contains two compo-

nents of pre-compilation and compile-time virtualization. Pre-

compilation is designed for performance improvement and

compile-time virtualization overcomes the vulnerability of



security. Pre-compilation is to identify and decompile the

critical functions which consume a significant fraction of

execution time into C/C++ codes. Compile-time virtualization

is built on the LLVM(Low Level Virtual Machine) [35]. First,

its front end uses GCC compiler to translate C/C++ code

into LLVMIR. Second, it replaces its middle representation

LLVMIRs(Intermediate Representation of LLVM) with cus-

tom instructions, and finally its back end compiles virtualized

LLVMIR into native code.

Unlike past approaches, we use the idea of pre-compilation

in a way like AOT(Ahead Of Time) compiler. This kind of

method takes advantage of the natural properties that Android

supports NDK development [23], solving the long-standing

performance issue introduced by app packers. Further, we

also propose a double-layer Android packer to transfer code

virtualization from DEX level to native level.

There are some challenges in our work. First of all, com-

pletely transforming the whole DEX file into native code is

such a challenging task that will lead to excessive overhead.

We propose a Decision-making model to determine which

function in a DEX file is worth pre-compiling in terms of the

execution time. Secondary, how to implement pre-compilation

directly on DEX bytecode without Java source code. We

implement a decompilation engine that converts DEX byte-

code into C/C++ code. Finally, how to make the decode-

dispatch pattern more hidden and not easy to be found by

attackers. We propose a hiding method to change the control

flow of the decode-dispatch, then take advantage of passes in

the LLVM compiler framework, compiling the virtualization

related information into a new SO file. Although the newly

generated SO file still contains the decode-dispatch pattern,

compared to the protected DEX file, it exposes less semantic

and structural information to the attacker.

Summary of Results:

We develop a compile-time code virtualization tool of

Dex2VM based on LLVM and evaluate it with four indica-

tors of resilience, stealth, cost, functionality. They represent

the ability to resist real reverse analysis or deobfuscation

tools, the existence of obfuscation, performance overhead, and

functional integrity. In the experiment, the Android versions

are 4.4.4r1(with Dalvik runtime), 5.0(with ART runtime), and

9.0(the latest version). Our experiments lead to the following

results:

• Our experimental cases of resilience include manual

attack, general unpacker tool attack, and the-state-of-art

deobfuscation on virtualization, but all fail on Dex2VM.

The experimental results demonstrate that Dex2VM is

effective for code protection.

• As to stealth, we use Artificiality [29] and sample register

address space. Compared with other well-known protec-

tion tools of Android applications, such as Tigress [14]

and OLLVM [26], the experimental results show that

Dex2VM is still the least exposure of sensitive features.

• Our performance test cases include CPU, size, memory

overhead, power consumption, and 0xbench suite [1].

Compared with the original app, the experimental results

show that when 20% of the code is virtualized, the power

Fig. 1. The classic code virtualization on DEX. (Decode-dispatch based inter-
pretation: Step 1–3 forms a central loop to dispatch, decode and execute the
bytecode. Decode-dispatch pattern has been identified as a severe vulnerability
of security and can be exploited by various attacks. The open file format of
DEX makes it easier to expose.)

consumption decreased by 6%, and memory overhead

increased by more than 5%.

• According to user study results, compared with the origi-

nal app, the protected one by Dex2VM has no significant

changes except for the increase in installation time.

Contributions: This paper makes the following contribu-

tions:

• It presents the first reliable scheme that transfers code

virtualization from DEX level to native level.

• It is also the first to apply virtualization at the compilation

phased for Android app protection, presenting a language-

independent and platform-independent virtualization ar-

chitecture. As a result, the design delivers all kinds of

Android system resolution.

• It is the first to propose a solution to improve performance

overhead when doing virtualization on the android app.

• It does experiments from dimensions of resilience,

stealth, cost, and functionality to verify the effectiveness

and feasibility of our approach.

II. BACKGROUND AND MOTIVATION

In this section, we describe the motivation and attack model.

In addition, we introduce JNI and LLVM, with which we put

our idea into practice.

A. Motivation

Code virtualization converts the critical code segment of

the original DEX bytecode to written in a custom-defined

virtual instruction set, which the attacker is not familiar with.

A new VM section that contains all code virtualization related

information will be linked (or inserted) into the original DEX

file, where the entry point of the protected code region will

be redirected to a function call to invoke the VM to translate

the bytecode instructions.

Figure 1 illustrates the classic way to implement code

virtualization on DEX bytecode with the decode-dispatch

pattern. A dispatcher that determines which instruction is

ready for execution, a set of bytecode handlers that first

decode the bytecode and then translate it into native machine

code. Step 1-3 forms a central loop to dispatch, decode, and

execute the bytecode. Many previous works perform reverse

analysis to identify these central loops and then find the

mapping between each bytecode and its corresponding handler
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function [59], [63], [15], [45]. Further, the open file format

of DEX provides enough semantic information for attackers

to discover new sections. With many existing DEX analysis

tools, such as DexHunter [66], TIRO [58], PackerGrind [61],

DROIDUNPACK [18] etc., attackers can quickly find the

DexFile data structure, and then obtain the control flow and

data flow of the program, which makes the decode-dispatch

pattern easier to expose.

In addition, decode-dispatch interpretation frequently uses

indirect branches in this structure to introduce extra overhead.

That is why code virtualization always results in increased

performance overhead [19]. However, Android usually runs

on a variety of smartphone devices aiming at the requirement

of high-performance, including fast speed, small size, and

low power consumption. Therefore, it is a huge challenge to

implement code virtualization on Android while overcoming

the limitations of performance. This motivates us to design

compile-time virtualization for Android.

B. The Attack Model

The classical approach to reverse analysis on a VM-

protected program typically follows three steps [33]:

Step1: Find the entry point address of the VM interpreter.

Step2: Find the mapping between each bytecode and its

corresponding handler function.

Step3: Recover the logic of the target code region.

Our attack model assumes that the attacker has accumulated

some experience and skills in reverse analysis and is familiar

with the environment of Anroid ecosystem. We also assume

that the attacker can skillfully use reverse analysis tools such

as IDA [42], Ollydbg [65], etc. Further, we assume that the

attacker has the ability to perform static analysis and dynamic

analysis, and is capable of debugging, tracing, and even

modifying memory. The aim of the attacker is to completely

reverse the internal implementation of the target program. Our

goal is to increase the difficulties in terms of time and efforts

for an attacker to reverse the app protected using VM-based

code obfuscation.

C. JNI

JNI(Java native interface) acts as a bridge between the

Java code and native code, allowing them to interact with

each other. JNI functions are declared within Java level but

defined in native libraries. There are mainly two ways of

registering the native code in JNI. One is static registration

of naming the JNI functions in a specific way like Java +

package name + class name + function name format so

that the function mapping is automatically handled. The other

is dynamic registration of mapping the native code and Jave

code through RegisterNatives() method in JNI Onload().
In the pre-compilation of Dex2VM, JNI is used to sink code

from DEX level to native level. From the app analysis point

of view, JNI breaks the control flow and data flow analyses so

that we can leverage JNI to hide sensitive behaviors from being

detected. Further, some functions with heavy computations

can be written as native but still be called from Java level

to improve performance.

D. LLVM

As the most popular design for a traditional static compiler,

LLVM [38], [67] compiler infrastructure is also a Three-Phase

compiler contains three major components, the front end, the

optimizer, and the back end. The front end is responsible for

parsing, validating, and diagnosing errors in the input code,

then translating the parsed code into LLVMIR. The optimizer

does a series of transformations to try to improve the IR’s

running time. The back end is to produce native machine code.

LLVM Intermediate Representation (IR) is the form LLVM

uses to represent code in the compiler. Any language can be

converted into IR, and the same IR can be converted into any

architecture assembly language.

In this paper, we replace the LLVMIR instruction with

a custom-defined virtualization instruction, which can effec-

tively improve security. Because depend on LLVM, the back

end compiles the virtualized LLVMIR and related information

into a new SO file. Although the newly generated SO file

still contains the decode-dispatch pattern, compared to the

protected DEX file, it exposes less semantic and structural

information to the attacker.

III. OVERVIEW

In this section, we introduce the workflow of Dex2VM and

describe the excution flow of a protected function.

A. WorkFlow

Dex2VM is a compile-time code virtualization tool that

has essentially put our idea into practice. The tool takes in a

DEX file to be protected. It produces virtualized native codes

in a new SO file. Dex2VM also modifies the original DEX

bytecode by replacing the original critical functions bytecode

with a native header by JNI. Figure 2 depicts the five steps of

building a Dex2VM using our approach. Each of the steps is

described as follows.

Step 1. Extracting functions. In this step, the Decision-

making Model is used to identify critical functions in the DEX

file to be protected. It calculates each function’s occupancy

in terms of execution time and adds the functions whose

occupancy exceeds a predefined threshold to the whitelist. This

is detailed in Section IV-A1. The DEX binaries of functions on

whitelist are disassembled into a human-readable Smali codes

by using baksmali [25] and dexdump tool.

Step 2. Decompilation Engine. Decompilation Engine takes

in Smali codes and whitelist. On the one hand, it translates

Smali codes into C/C++ codes by the decompilation engine

described in Section IV-A2. On the other hand, it registers all

functions on the whitelist in DVM(Dalvik Virtual Machine)

by using JNI. The output of this step is a modified DEX file

by replacing the original critical function’s bytecode with a

native header, and a new C/C++ file.

Step 3. Clang. C/C++ code is compiled by Clang that is

the front-end of LLVM to generate LLVMIR. C/C++ code

is an intermediate language for translating DEX bytecode to

LLVMIR in Dex2VM.
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Protected_APKOriginal_APK

int a = 0;
If (b>=n){
…...
}

%3 = alloca i32*, align 8
store i32* %0, i32** %3
%6 = load i32*, i32** %3

001000100
100110101

classes.dex

JNI
Key code

Junk Instr

1 2

2

3 4

LibVM.so

000000 const/4  v1,0
000004 if-ge v0, p1:10

classes_new.dex

C/C++ LLVMIR

Smali code

Dex2VM

Const 1
Allocate 
Store 0
Push 1

Virtual Instr

5

Handler

Dispatcher

Decode-dispatch
hiding method

Virtual runtime 
Environment

Pre-compilation Compile-time Virtualization

e

a

VMcontext

VMexit

Bytecode
Program

Handlers

Dispatcher

VMinit

JNI_onLoad

Native_onCreate()

c

b

d

g

f

Fig. 2. Overview of Dex2VM. The workflow is shown as the following steps: 1© Some critical functions is selected by Decision-making Model to pre-
compilation. 2© A decompilation engine is to convert DEX bytecodes to C/C++ codes. 3© C/C++ codes are compiled by front-end Clang to generate LLVMIRs.
4© LLVMIRs are replaced by the custom-defined instructions of Dex2VM. 5© A protected apk with new DEX and a virtualized SO is produced. Runtime

execution flow is shown as the following: a© Register JNI. b© Jump into VM. c© Initialize VM and enter Dispatcher. d©Read virtual instruction bytecode.
e© Dispatch handlers to process bytecodes. f© Exit VM. g© Go back the instruction sequence and continue.

Step 4. LLVMIR virtualization. By using LLVM as a compi-

lation framework, Dex2VM defines its own virtual instructions

in Section IV-B1, handler and dispatcher in Section IV-B2.

To further reduce the exposure of decode-dispatch pattern,

a hidden method of dispatching mechanism is introduced in

Section IV-B3.

Step 5. Apk repackaged. At the end, the package with the

modified DEX bytecode and the Dex2VM protected native

code is built into a new application(.apk). Finally, the newly

protected application can be executed on the DVM and can

switch between the native side and DVM with the help of

JNI.

B. Execution Flow

We take onCreate() as an example to describe the ex-

ecution flow of the protected function. After protection of

Dex2VM, it is implemented in the native level and named

with native onCreate(). It is eventually compiled into

a LibVM.so file. When the application starts, LibVM.so

is loaded into the current application process, and com-

pletes the dynamic registration of native onCreate() in

JNI Onload().
When the application triggering onCreate(), DVM trans-

fers string of native onCreate() to a native process by JNI.

The natvie process passes Native onCreate() signature to

the Dex2VM interpreter, which locates the starting position

of the virtual instruction for native onCreate(). The VM

in LibVM.so(hereinafter referred to as LibVM) finds the

corresponding location to complete the initialization.

The LibVM reads the virtual bytecode and enter into a

central loop to dispatch, decode, and execute the bytecode.

During the virtual execution process, when encountering the

function defined in Java level, the LibVM splices out Java

method names and parameters through virtual instructions,

then passes this information to the related JNI functions, and

transfers execution permissions to the DVM.

Until the execution of the Java layer function ends, the

LibVM regains execution permissions. At this time, if other

native layer functions need to be executed, the dispatcher saves

the currently virtual instruction address in the virtual stack.

Then LibVM exits and hands over the execution rights to

other native process. When other native functions finished, the

execution permission returns to LibVM. Then LibVM re-reads

the virtual instruction address stored at the top of the stack and

continues execution.

After all the virtual interpretations finished, LibVM trans-

fers the operation results from the virtual stack to its caller

and destroys the stack space and virtual register space. The

native onCreate() converts the obtained return value to the

required type and passes it to DVM. Finally, the Java layer

functions continue to be executed.

From this example, we can see that execution permissions

are continuously passed among the DVM, local process, and

LibVM, which mostly destroys the program’s control flow and

data flow to increase the difficulty of the attackers reverse

analysis. Obviously, the frequent interaction between Java and

native levels will also bring additional overhead. That is why

we introduce a pre-compilation to reduce the performance

overhead.

IV. IMPLEMENTATION

A. Pre-compilation

In this section, we will introduce the design thinking of

Dex2C. The framework is composed of two components,

a Decision-making Model and a decompilation engine. The

Decision-making Model is used to find out which functions

are suitable for decompilation. The decompilation engine is

used to translate selected DEX bytecode into C/C++ code.

1) Decision-making Model: Transforming the entire DEX

bytecode into native code is a big challenge. That’s be-

cause JNI suffers from time and space overhead, just like

other mechanisms of supporting interoperability. Further, even

though a small vulnerability in native code would lead to

a system crash. To trade off the balance of security and

efficiency for the Android app, the goal of the Decision-

making model is to select some critical functions and put them

on the whitelist. The critical function here is defined as having
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F
Self：50%

F_1: 10%
F_2: 30%
F_3: 10%(API) F_2

Self：50%

F_2_1: 35%
F_2_2: 15%(API)

F_2_1
Self：70%

F_1
Self：65%

F_1_1: 25%
F_1_2: 10%(API)

F_1_1
Self：50%

F_2:  50%+35%*70%=74.5%
F： 50%+10%*65%+30%*(50%+35%*70%)=78.85%

Fig. 3. An example of Decision-making Model strategies

two properties, one without recursion and the other with the

ability to reduce function calls as much as possible.

The detecting mechanism of the Decision-making Model is

to collect and count the occupancy of each function in the

entire execution-flow and add the functions whose occupancy

exceeds a predefined threshold to the whitelist. The function

runtime ratio is collected via the CPU Profiler [22] provided

by Google. The counting flow is organized into the following

steps:

Step1: Recursively find all child functions of the current

function, until there are no other function calls in the child

functions, generating a function call tree.

Step2: The function call tree is traversed in post-order to

determine which functions are pushed into the whitelist. If the

current function’s self-code execution rate (except for child

functions and API functions) is over a pre-defined threshold,

its name would be added to the whitelist. Mark its parent

function as the selected function.

Step3: Check all child functions of the selected function,

and superimpose the execution time rate of those child func-

tions in the whitelist to the occupancy of the selected function.

Step4: If the total execution time rate of the selected

function is over the pre-defined threshold, add its name on

the whitelist.

An example is given in Figure 3 to show the occupancy

calculation of a method. We assume that this is the function

call tree generated after step1. Since the function F 1 1’s

self-code execution time rate is 50%, which is less than 60%,

it cannot be added to the whitelist. Then we check its father

function F 1, whose occupancy is 65% and is greater than

60%, so it is added into the whitelist. Next, when checking the

father function of F 1, it is found that F also has the other

child. So, along this branch, we find its leaf nodes F 2 1,

whose occupancy is 70%. It means that F 2 1 is also pushed

into the whitelist. Different from F 1, the occupancy of F 2
should be calculated by the occupancy of its child function.

That is, the occupancy of F 2 is equal to 50% + (35% *

70%) = 74.5%, which is greater than the threshold of 60%,

so F 2 is also in the whitelist. The final occupancy of F is

50% + 10% * 65% + 30% * (50% + 35% * 70%) = 78.85%,

which indicates that the execution-flow started from function

F spent 78.85% of its execution time on itself. Therefore, the

final whitelist includes {F 1, F 2 1, F 2, F}
It is worth mentioning that Dex2VM users also can decide

    add-int  v1,v0,p1
    ......
    const-string/jumbo   v1,0x00108

Fig. 4. Value passing instance in Dalvik virtual register. Register v1 is used
to store int and string objects respectively.

which functions or classes are critical and in need of protec-

tion. These function and class names are added directly into

the whitelist.

2) Decompilation Engine: There are two challenges to

resolve when decompiling DEX bytecode into C/C++ code.

They are type conversion and control flow construction.

Type Conversion: The bytecode instructions of

DVM(Dalvik virtual machine) are register-based, and

the number of the registers is up to 65536. All registers are

32-bit untyped. It means that all computations are handled

at the register level by using almost unlimited numbers of

virtual registers. For example, a 64-bit data is composed

of two adjacent 32-bit registers. Therefore, it is a common

phenomenon that different types of data store in the same

register during the execution of a piece of code. As Figure 4

shown that, in the first line instruction, register v1 stores an

int object. While at the last line instruction, register v1 stores

a string object. When translating the pieces of these codes, it

is difficult to determine what the real value is in the register

v1.

Java and C/C++ are both strongly typed language, and all

variables must declare their types in advance. In a function,

each variable has its specific life cycle as well as type.

When DVM compiles Java source code with the DX tool, the

maximum number of registers used by the function has been

filled into the fixed field of the DEX file. To recognize all

variables and their types, we store variables as well as all the

registers they used into a map. The map will be updated if a

new variable appears as the output of an assignment statement

when translating the instruction.

Sometimes, temporary variables are introduced in the trans-

lation process, which is independent of the registers. When

dealing with this kind of conversion, a random variable is

obtained from the variable pool named intermediate variable

assignment, and the final assignment is associated with the

register.

Control Flow Construction: To restore the adjacency

between instructions, we use the Path Tree to represent the

semantic logic of the Smali instructions. We analyze the

destination address of the jump instruction in the instruction

sequence, obtaining the predecessor, successor nodes, out-

degree, and in-degree of each node, then generate the Path Tree

of the Smali instructions. For example, Figure 6 shows the Path

Tree corresponding to the instruction fragment in Figure 5.

The depth-first traversal is used to translate the nodes on each

path until all nodes are covered. During the traversal process,

the accessible variables in the current scope are continuously

passed, relying on the parent-child relationship between the

nodes. Also, the relationship between this variable and its

register is passed. Each node completes the translation of
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    Const/4             v0,2
    If/ge                  p1,v0 : C
    add-int/lit8      p1,p1,0x01
:A
    return
:C
    const/16           v0,0x000A
    if-ge                   p1,v0 :1A
    add-int/lit8       p1,p1,0x04
    goto                   :A
:1A
    add-int/lit8       p1,p1,0x07
    goto                   :A

    a2=0
    a3=2
    if(a1>=a3) goto   :C
    a4=a1+1
:A
    return a5
:C
    a6=10
    if(a1>=a6) goto :1A
    a7=a1+4
    goto                      :A
:1A
    a8=a1+7
    goto                      :A

（a） （b）

Fig. 5. Demonstration of the conversion process from the Smali instructions
to the intermediate representations. (a) is the Smali instruction fragment,(b)
is intermediate representations of C codes.

If/ge

:C

Add-int/lit8

const/16 If/ge :1A goto

:A return

Add-int/lit8

Add-int/lit8

gotoConst/4

Fig. 6. Path Tree is used to scope and value transfer analysis for intermediate
representations of C codes

the current node based on the available variables, generating

intermediate representations of C codes.

The intermediate representations of C codes are not capable

of execution, whose execution scope and value transfer should

be analyzed based on the path tree. When traversing the Path

Tree, starting from the node whose output is greater than 1,

recursively search the first node whose degree of entry is

greater than 1. Make the translation results of these nodes

in the same scope until all nodes in their scopes. According

to the corresponding relationship of variables between parent

and child nodes, the value transfer dependency is established to

merge phi nodes, so that the program has the correct execution

process. The intermediate representation is optimized to delete

irrelevant variables and dead code. As shown in Figure 7,

a2 is not used after initialization, so it is an independent

variable. A3 is only assigned once, and the assignment object

is constant. Therefore, we deleted a2 and replaced a3 with

the right value in the subsequent optimization process. We

transform the optimized intermediate representations into C

codes and write them into the corresponding C function body.

B. Compile-time Virtualization

In this section, we describe some critical techniques about

the compile-time virtualization, which transforms the C/C++

code to native code by implementing code virtualization on

LLVMIR.

1) Virtual instruction: The most critical aspect of LLVM’s

design is the LLVMIR [38], [67], which is the form it uses

to represent code in the compiler. LLVMIR is defined as

three address form, which means that it takes more registers.

However, unlike most RISC instruction sets, LLVMIR is

strongly typed with a simple type system. For example, i32

is a 32-bit integer, i32** is a pointer to pointer to a 32-bit

integer. Another significant difference from machine code is

  {

    a2=0

    a3=2

    if(a1>=a3) goto :C

    a4=a1+1

  }

:A

    return a5

:C

{

  {

    a6=10

    if(a1>=a6) goto :1A

    a7=a1+4

    goto                   :A

  }

:1A

 {

    a8=a1+7

    goto                   :A

 }

}

    if(a1>=2){

      if(a1>=10)

      {

        a8=a1+7

        a5=a8

        goto :A

      }else{

        a7=a1+4

        a5=a7

        goto :A

      }else{

        a4=a1+1

        a5=a4

        goto :A

      }

:A

  return a5

 }

  {

    a2=0

    a3=2

    if(a1>=a3) goto :C

    a4=a1+1

    a5=a4

  }

:A

    return a5

:C

{

  {

    a6=10

    if(a1>=a6) goto :1A

    a7=a1+4

    a5=a7

    goto                   :A

  }

:1A

 {

    a8=a1+7

    a5=a8

    goto                   :A

 }

}

Scope delimitation Merging phi nodes Optimized c code

Fig. 7. Optimization and merging. The intermediate representations go
through three steps to get the final C codes: Scope delimitation, Merging
phi nodes, Optimized code.

that the LLVMIR uses an infinite set of temporaries named

with a % character rather than a fixed set of named registers.

To increase the difficulty of reverse analysis, we define our

instructions as no datatype. Therefore, it’s a big challenge

on how to use the typeless instructions simulating LLVMIRs

without losing their semantics. We design a stack-based virtual

instruction architecture similar to the JVM(Java Virtual Ma-

chine), even though its instructions have data types. The details

of our custom-defined virtual instructions are shown in Table I.

For example, when pushing the data of the corresponding

type to the top of the stack, the JVM instruction set defines

opcodes such as iconst, lconst, fconst, etc.. In this paper, the

data push operation is defined as const virtual instructions,

which requires the data to be aligned to the stack when it is

stored, and converts to a specific data format when taken out.

This not only simplifies the complexity of instruction design

but also increases the complexity of code virtualization reverse

analysis.

TABLE I
PARTIAL VIRTUAL INSTRUCTIONS AND THEIR FUNCTIONAL

DESCRIPTIONS.

Virtual

Instruction
Functional description

const Define unformatted data and push it to the top of the
stack

store Put the data at the top of the stack in the specified
virtual register, and allocate such space if the register
represented by the index does not exist.

alloc Dividing the memory area of the size specified by
the top of the stack in the virtual stack space

load Get unformatted data from the specified virtual reg-
ister and push it to the top of the stack

icmp eq Compare the two data at the top of the stack and
store the comparison result in the stack space (if it
is equal, store unformatted data 1, otherwise save
unformatted data 0)

goto Change the control flow direction, jump to the spec-
ified virtual instruction to execute
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C/C++

int a = 111;
int b = 222+a;

LLVM-IR

%1 = alloca i32, align 4
%2 = alloca i32, align 4
store i32 111, i32* %1, align 4
%3 = load i32, i32* %1, align 4
%4 = add nsw i32 %3, 200
store i32 %4, i32* %2, align4

(a)

Virtual 
instruction

.Initialize virtual 
registers
const 0
store 0
const 1
store 1
const 2
store 2
const 3
store 3

.line 1
const 1
allocate
lstore 0

.line 2
const 1
allocate
store_1

.line 3
load 0
const 111
put

.line 4
load 0
take
store 2

.line 5
load 2
const 222
add
store 3

.line 6
load 1
load 3
put

(b) (c)

Fig. 8. Example native code snippet for a code region to be protected. (a)
the original C/C++ code, (b) is LLVMIR, (c) is the virtual instructions.

LLVMIR is SSA(Static Single Assignment) based represen-

tation that means a variable must be defined before it used

and be assigned only once. So, there is no doubt that the

logic of the virtualized program is more complicated than

the original one. As the Figure 8 shown, to express the

same semantics, different languages need different numbers of

instructions, C/C++ is 2, LLVMIR is 6, and virtual instructions

are 27. The custom-defined instructions have three phases,

which are virtual register initialization, virtual operation, and

virtual register emptying. Firstly, according to the number and

size of the temporary variables used in the LLVMIR, we use

virtual instructions to simulate dynamic allocation registers in

memory. Secondly, we design the virtual instruction to simu-

late the logic flow of the original program on the stack, where

virtual registers are used as intermediate storage. Finally, all

virtual registers’ space is destroyed at the end of a virtual

instructions segment.

2) Handler and Dispatcher: In a VM-based scheme, the

execution path of the obfuscated code is controlled by a

virtual instruction scheduler. A typical scheduler consists of

two components: a set of bytecode handlers that translate

bytecodes into native machine codes and a dispatcher that

determines which bytecode is ready for execution. In this

paper, according to the type of operation, virtual instructions

are classified into three categories, and they are arithmetic

operation, logical operation, and control flow transfer. The

handlers are defined in Table II.

The dispatcher is used to simulate the execution process of a

traditional CPU. There are actions such as fetching, decoding,

virtual execution, and updating the address register. First, the

dispatcher determines which bytecode is ready for execution.

Then, it finds the corresponding handler to explain the current

virtual instruction and decode it. Finally, after interpreting

this instruction, the dispatcher continues to look for the next

instruction to be executed.

3) Scheduling mechanism hiding method: In most cases,

the dispatcher is the weakest point of a virtual machine to

draw attackers’ attention. To further increase the complexity

of reverse analysis, a hidden method of dispatching mechanism

is introduced in this paper. First of all, the control flow of the

dispatcher is transformed into the if-else structure. Moreover,

each basic block is split into two pieces with a flag as

the boundary. Last, all the relationship between each small

pieces of code components is shuffled to reduce the semantic

TABLE II
GENERATED HANDLERS FOR VIRTUAL INSTRUCTIONS.

Category VI Handler

value v1=stack[stack index- -]
value v2=stack[stack index- -]
value v3=cast i32(v1)&cast i32(v2)

and i32

stack[++stack index]=cast i64(v3)
value v1=stack[stack index- -]
value v2=stack[stack index- -]
value v3=cast i32(v1)+cast i32(v2)

Arithmetic

Operation

plus i32

stack[++stack index]=cast i64(v3)

value v1=vmdata[vpc ++]
const

stack[++stack index]=cast i64(v1)
value v1=vmdata[vpc++];
value v2=stack[stack index- -];
if(!Reg[v1]) alloc(Reg[v1]);

Logical

Operation
store

Reg[v1]=cast i64(v2)

value v1=vmdata[vpc++];
value v2=stack[stack index–];
if(v2==0)
vpc=find(Decrypt(vpc++),v1);

ifne

else vpc=find(Decrypt(vpc+2),v1);
value v1=vmdata[vpc++];
value v2=stack[stack index–];

Control

Flow

Transfer

goto
find(Decrypt(vpc+2),v1);

information.

Algorithm 1 is the pseudo-code of the dispatcher component

hiding algorithm. First of all, find all the basic blocks in each

module of the protected source code and save the address of

the basic block in the global address table. Further, traverse all

the instructions in the function, and judge whether the current

instruction is a direct jump or a conditional jump according

to the number of subsequent blocks of the instruction. Next,

if it is a conditional jump, extract the condition of the jump,

and put all subsequent block addresses into the private address

table. An indirect jump is constructed with the private address

table and the jump condition. If it is a direct jump, construct an

instruction to read a destination address from the jump table

and an indirect jump instruction. Finally, replace the original

conditional jump or direct jump with an indirect jump.

Algorithm 1 Dispatcher Component Hiding Algorithm

Input: Module

Output: Branch

1: for Function in Moudle do

2: for BasicBlock in Function do

3: Branch.push(address of BasicBlock);

4: for instruction in BasicBlock do

5: if instruction = branchInstruction then then

6: if instruction Successor >2 then then

7: condition=getCondition(instruction);

8: indrectBranch.push(Address(Successor0);

9: Address(Successor1);

10: branch=newBranch(condition,indrectBranch);

11: else

12: branch=newBranch(Branch(index))

13: replace(branch,instruction)
return Branch

V. EVALUATION

In this paper, we evaluate the obfuscation in four aspects:

resilience, stealth, cost, functionality. They are defined as the
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following:

• Resilience: It measures the ability to withstand attack

from an automatic deobfuscator.

• Stealth: It indicates how much more difficult in detecting

the existence of obfuscation.

• Cost: It measures the execution overhead imposed by

obfuscation.

• Functionality: It measures whether the function of app

changed after obfuscation.

We evaluate Dex2VM and observe to what extent it meets

these four criteria.

A. Environment Setup

The choice of experimental samples should follow the

principle of universality, which means that the selected apps

should cover a wide range of real-world apps. We apply

Dex2VM to eight different kinds of apps, with more than 1

million downloads from Google play. We are limited to 8 apps

because we have to verify the correctness manually. Although

the set is small, the types cover quite different kinds of apps

in the real-world, including services, games, social, and other

major categories. They are shown in Table III.

TABLE III
REAL-WORLD APPS OF DIFFERENT CATEGORIES WITH MORE THAN 1

MILLION DOWNLOADS FROM GOOGLE PLAY.

App Description Size(MB)

AndroMoney keeping accounts 13.5
KakaoBus smart way to ride a bus 17.9
Wandoujia Android app store in China 12.1
Khan Academy free online courses 21.8
pedometer step counts 2.8
klara weather weather Forecast 4.7
MX player Android Media Player 26.8
Swipe Brick Breaker puzzle game 19.9

Starting with Android 5.0 (Lollipop), ART has completely

replaced Dalvik VM as the runtime system for Android 1.

ART runs applications through direct machine code, unlike

the existing Dalvik VM-based runtime system, which does

so by running the applications Dalvik bytecode through the

interpreter [62], [6], [43], [44], [5]. So, in this paper, all Cost

related experiments are performed on versions 4.4.4r1 with

Dalvik, 5.0 with ART, and 9.0 which is the latest version

of Android. Our mobile device is LG Nexus 5 equipped

with a 4x Qualcomm* Krait 400 2.3GHz CPU. We install

android 4.4.4r1 and android 9.0 on it separately. To measure

compatibility, we also create a virtual device for Nexus 5X

with version 5.0 and x86 64-bit CPU/ABI on Android Studio

3.5 Canary 13 emulator.

Especially, due to the large version span from 4.4.4r1 to 9.0,

the two original apps of Wandoujia and MX player cannot be

installed on android 9.0. Therefore, on Android 9.0, we only

did experiments with the other six apps.

B. Resilience

1) Manual Attack: In this section, from the attacker’s point

of view, we use manual work to reverse analysis on Dex2VM

1https://source.android.com/devices/tech/dalvik/

1 p u b l i c i n t onStartCommand ( @Nullable I n t e n t arg3 , i n t

arg4 , i n t a r g5 ){
2 O b j e c t v4 = t h i s . mMonitor ;

3 m o n i t o r e n t e r ( v4 ) ;

4 t r y {
5 t h i s . m S t a r t I d s . add ( I n t e g e r . v a l u e o f ( a r g5 ) ) ;

6 t h i s . m L a s t S t a r t I d = a r g5 ;

7 m o n i t o r e x i t ( v4 ) ;

8 }
9 c a t c h ( Throwable v3 ){

10 t r y {
11 l a b l e 1 4 :

12 m o n i t o r e x i t ( v4 ) ;

13 }
14 c a t c h ( Throwable v3 ){
15 go to l a b l e 1 4 ;

16 }
17 th row v3 ;

18 }
19 }

Fig. 9. Java code decompiled from the original code using JEB. The attacker
can get both the name and body of the function.

1 p u b l i c n a t i v e i n t onStartCommand ( @Nullable I n t e n t

arg1 , i n t arg2 , i n t a rg3 ) {
2 }

Fig. 10. Java code decompiled from the virtualized code using JEB, only the
registered name of the function is retained.

protected codes. First of all, we decompile the Android appli-

cation using a tool named JEB. From Figure 9 and Figure 10,

we can see that the logic of the unprotected code is visible and

the protected code has only the declaration of methods in the

Java layer. At this time, as an experienced attacker will find

that the lib directory is added to the protected file directory,

and this directory is used by Dex2VM for saving binary files of

different ABIs(Application Binary Interface). A binary reverse

tool, such as IDA, will be used for further analysis. Combined

with the function declaration in the java file, we quickly find

implementation of the function by looking at the pseudo-codes

outputted from IDA.

As can be seen from Figure 11(a), these pseudo-codes are

challenging to understand. Secondly, we dynamically track the

local execution, trying to find something useful. Figure 11(b) is

the function implementation for InterpreterFunc(), which is the

interpreter of Dex2VM. However, none of them has complete

semantics. Thirdly, we try to piece together the semantic

information of the function through dynamic debugging over

and over again, but it is invalid. That’s because Dex2VM

implements multiple sets of virtualization solutions for 27

instructions, and randomly selects one of them to replace

the original instructions. And this mapping relationship is

amplified and optimized by the LLVM compiler. Ideally, an

attacker could get the application raw logic in this way, but it

will take enormous time and effort.

2) General Unpacker Tool: In this section, we select six

common unpacker tools on android and use them to analyze

the Dex2VM protected applications. kisskiss [55] relies on the

magic number as a signature to dump odex objects. But it does

not work with unknown new packers or even the upgraded

version of existing packers. ZjDroid [21] relies on Xposed [36]

and locates the DEX files by hooking BaseDexClassLoader to

obtain DexOrJar at Jave level, which can be easily detected

and interrupted by advanced. Further, since ZjDroid waits for
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.text.InterepterFunc:00000378 EXPORT InterepterFunc

.text.InterepterFunc:00000378 InterepterFunc : CODE XREF: test(int)+C p

.text.InterepterFunc:00000378

.text.InterepterFunc:00000378 var_11     = -0x11

.text.InterepterFunc:00000378

.text.InterepterFunc:00000378 STMFD SPI.{R4-R6.R10.R11.LR}

.text.InterepterFunc:0000037C ADO R11. SP. #0x10

.text.InterepterFunc:00000380 SUB SP. SP. #0x40

.text.InterepterFunc:00000384 MOV R0. #1

.text.InterepterFunc:00000388 STRB    R0. [R11.#var_11]

.text.InterepterFunc:0000038C LDR R0. =(table - 0x398)

.text.InterepterFunc:00000390 ADD R0. PC. R10 : table

.text.InterepterFunc:00000394 LDR R0. [R0.#(off_5C4C - 0x5C30)] : loc_39C

.text.InterepterFunc:00000398 BX R10         : loc_39C

.text.InterepterFunc:0000039C : -------------------------------------------------------------------------

.text.InterepterFunc:0000039C

.text.InterepterFunc:0000039C loc_39C : CODE XREF: InterepterFunc+20 j

.text.InterepterFunc:0000039C : sub_3F14+2C j

.text.InterepterFunc:0000039C : DATA XREF: ...

.text.InterepterFunc:0000039C LDGB R0. [R11.#var_11]

.text.InterepterFunc:000003A0 AND R0. R0. #1

.text.InterepterFunc:000003A4 LDR R1. -(.LconditionTable - 0x3B0)

.text.InterepterFunc:000003A8 ADD R1. PC. R1     : .LconditionTable

.text.InterepterFunc:000003AC LDR R0. [R1.R0.LSL#2]

.text.InterepterFunc:000003B0 BX R0

void __fastcall_noreturn 
L098f0ff..{
{ int v5;
  int *v6;
  int *v7;
  int *v8;
  int *v9;
  int v10;
  int v11;
  int v12;
  int v13;
  int v14;
  int v15;
  int v16;
  v16 = a1;
  v15 = a2;
  v14 = a3;
  v13 = a4;
  v12 = a5;
  v11 = 330;
  v5 = a1;
  v6 = &v15;
  v7 = &v14;
  v8 = &v13;
  v9 = &v12;
  v10 = 0;
  InterepterFunc(330,&v5);
}

(a) disassembly  code of a function (b) disassembly code of InterepterFunc

Int InterepterFunc()
{
    Return table();
}

.data.table:00003C00 DCD sub_448, sub_458, ..., sub_498

.data.table:00003C00 DCD sub_4A8, sub_4B8, ..., sub_4F8

.data.table:00003C00 DCD sub_508, sub_518, ..., sub_66C

.data.table:00003C00 DCD sub_720, sub_7DC, ..., sub_81C

.data.table:00003C00 DCD sub_82C, sub_83C, ..., sub_87C

IDA error message：Please position 
the cursor whthin a function.

Fig. 11. Interpreter that can be viewed by using IDA, but IDA can’t recognize its contents and reports an error message.

user commands to dump the DEX files, it may be evaded

by packers that destroy some critical data used only once.

DexHunter [66] recovers DEX files from packed apps in

both Dalvik and ART runtime. But it can not handle packers

with code obfuscation and junk instructions. Moreover, it

only considers the dynamic loading conducted when an app

is executed, with a prerequisite that most packers do so to

shorten launch time. PackerGrind [61] can successfully reveal

the packers protection mechanisms and recover the Dex files

with low overhead. While, it cannot decide which code is

real if packed apps load different code into the same memory

and execute them under different conditions. TIRO [58] is a

unified deobfuscation framework for Android apps that can

deobfuscate runtime-based obfuscation as well as traditional

techniques such as reflection or native method invocation. But

it cannot extract execution paths within native code since it

is limited to Java. Further, it may not be able to cover all

targeted paths in code due to static imprecision and complex

path constraints. DROIDUNPACK [18] certainly suffers from

limited code coverage as it can only dump the code that exe-

cutes. And since it is built on top of whole-system emulation,

packers that enforce anti-emulation techniques will inevitably

break the analysis.

As results are shown in Table IV, DROIDUNPACK is the

most powerful tool for unpacker. It can take off almost all

types of packers, but do nothing on Dex2VM. So we can

get a conclusion: the general unpacker tools are invalid for

Dex2VM. This is because Dex2VM directly compiles the

bytecode in DEX file into native virtual code, rather than

restores code at the running time like the traditional packer

method. Therefore, it can be concluded that Dex2VM has good

resistance to automated attack tools.

3) VMHunt: VMHunt [59] is a state-of-the-art technique to

automatically identify and simplify virtualized code sections

from an execution trace. It locates the boundary of partially-

virtualized code based on an inherent property of standard

virtual machine design: context switches occur between virtu-

TABLE IV
UNPACKING TOOLS AND UNPACKING RESULTS. × INDICATES AN ERROR

DURING THE UNPACKING PROCESS,
√

INDICATES THAT THE PROGRAM

CAN BE EXECUTED NORMALLY AFTER THE UNPACKING RESULT IS

REPAIRED.

Overall

Packing

Function

Packing

DVM

ART

Native

Packing
Dex2VM

kisskiss
√

× × × ×
zjdroid

√
× × × ×

Dexhunter
√ √ √

× ×
PackerGrind

√ √ √
× ×

TRIO
√ √ √ √

×
DROIDUNPACK

√ √ √ √
×

alization application and native OS to ensure isolation. It has

been proved that VMHunt correctly extracts the virtualized

section from the latest version of well-known virtualization ob-

fuscators without false positives, such as Code Virtualizer [51],

VMProtect [47], EXECryptor [53], and Themida [52].

To evaluate whether VMHunt is still valid for Dex2VM, we

take the above eight Dex2VM protected experimental samples

as the input of VMHunt. However, the experimental results

show that VMHunt does not extract a virtualized section from

any of the samples. Analysis of the principle of VMHunt, we

find that it uses a pattern match method to match instruction

sequences that push all registers to stack or pop them back,

such as push edi, push esi, push ebx, push ebp, push ecx,

push eax. Dex2VM is an intermediate represent-based code

virtualization protection technology. The virtualized LLVMIR

will be compiled as a new ELF file rather than rewrote into

the original ELF file like others. There is no such distinct

instruction sequence feature. That is why VMHunt extracts

zero virtualized section from a Dex2VM protected program.

C. Stealth

Commercial obfuscation tools such as Themida, VMProtect,

Code Virtualizer, generally contain a variety of techniques and

are challenging to use as reference objects. In this work, we

use the following three tools. Tigress [49], [14] is a source-
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TABLE V
FREQUENT N-GRAMS IN THE CORPUS. THE VALUES SHOW THE RATIO OF

THE FREQUENCY TO THE TOTAL FREQUENCY[%].

No. 1-gram 2-gram 3-gram

1 ldr 8.58 ldr-ldr 2.17 ldr-add-add 0.85
2 add 6.87 ldr-add 2.00 str-str-str 0.68
3 mov 6.23 add-add 1.70 add-ldr-add 0.65
4 str 4.18 mov-mov 1.50 ldr-ldr-ldr 0.61
5 bl 4.15 bl-ldr 1.42 ldr-cmp-beq 0.57
6 cmp 3.77 ldr-mov 1.36 add-add-ldr 0.56
7 b 2.06 str-str 1.34 cmp-beq-ldr 0.52
8 beq 1.87 add-bl 1.32 add-bl-ldr 0.46
9 strtmi 1.4 mov-bl 1.28 mov-bl-ldr 0.45
10 stm 1.35 ldr-cmp 1.25 ldr-mov-ldr 0.43

to-source virtualizer, Obfuscator-LLVM [20] is an obfuscator

working on respectively LLVM intermediate representation

level. To compare the difference between binary-based virtual

machines and intermediate language-based virtual machines,

we also implemented a virtual machine named Armvmp with

the ideas in this article [34] on the arm instruction set.

1) Artificial: N-gram models are usually used in natural

language processing to calculate the occurrence probability of

a word sequence. Citation [29] proposes a way of using N-

gram to calculate the ”artificial” of protected code. ”Artificial”

can effectively evaluate the degree to which protected code

can be distinguished from unprotected code. However, it only

provides a corpus for some x86 instruction sets. The test

mobile phone used in our experiments is based on the arm

instruction set. So, we extracted about 10 million instructions

from the Android system library as training samples for

building a corpus of the arm instruction set. Then we use

N-gram models to evaluate the strength of Dex2VM. Table V

shows the top10 frequency instruction combinations and their

corresponding probability when N is 1, 2, 3 in our corpus.

We use Dex2VM, Tigress, OLLVM, Armvmp to protect

the same Android application separately for generating the

test objects. According to the corpus provided in Table V,

we calculate the artificiality of the protected target codes,

respectively, when N is from 1 to 3. The results are shown

in Figure 12(a), the artificiality of the obfuscated code of

OLLVM and Dex2VM are high. To some extent, artificiality

depends on the number of instructions. So, to ensure the

accuracy of the experimental results, we calculate the standard

artificial situation of each evaluation object. Figure 12(b)

shows the artificiality of each evaluation target in the case N=3.

The vertical axis represents the artificiality, and the horizontal

axis represents the number of opcodes. The Figure 12(b) shows

that most of the target codes are within the standard deviation.

Dex2VM is the closest to the average.

2) Instruction Access Space Sampling: Attackers are very

sensitive to the features extracted from the program with high-

level information. Runtime address access space is one of the

most apparent features. So, in this experiment, we try to find

out how much of these features can be exposed to the attacker.

We also use four tools to protect the same Android application

separately for generating test objects. Figure 13(a) is access

space sampling. The vertical axis represents the absolute

address of the register, and the horizontal axis represents the
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(b) Result of sampling the partial registers.

Fig. 13. Access space sampling. Binary-based code virtualizer Armvmp has a
significiant cyclic shock. Its register r5 always access a limited address space.
The attacker can use this to derive the context of VM.

sequence of instructions. We can see that Armvmp has a

significant cyclic shock, which is caused by the repeated call of

the dispatcher. The attacker can use this phenomenon to locate

the position of the scheduler for implementing the next attack.

OLLVM is an obfuscator without dispatcher. The dispatcher

of Dex2VM is hidden by the technique used in IV-B3.

To further check the usage of the registers, we use the

IDApython script to dye the registers at the virtual machine

runtime. Figure 13(b) shows instruction access space sampling

for Armvmp. The vertical axis represents the relative address,

which is the value of actual access address of the register mi-

nus a base number. The horizontal axis represents the sequence

of instructions. The register r5 always accesses in a limited

address space, the value of register r6 remains unchanged, and

register r7 approaches linear growth. Therefore, the attacker

can use this information to derive the address table, context

of a virtual machine which is a set of spaces used to emulate

the actual registers, and the associated register pointers of the

virtual instructions.

From the experiments, we can see that Armvmp has distinct

loop characteristics. That’s because code virtualization for

binary code has some limitations. The practical information

10



; Attributes: bp-based frame

; __int64 test(void)

public _Z4testv

_Z4testv proc near

var_8= dword ptr -8

var_4= dword ptr -4

; __unwind {

push    rbp

mov     rbp, rsp

mov     [rbp+var_4], 1

mov     eax, [rbp+var_4]

add      eax, 2

mov     [rbp+var_8], eax

mov     eax, [rbp+var_8]

pop      rbp

retn

;} //starts at 400500

_Z4testv endp

; Attributes: bp-based frame

; __int64 test(void)

public _Z4testv

_Z4testv proc near

; __unwind{

push    rbp

mov     rbp, rsp

call      InterepterFunc

mov     ecx, eax

mov     eax, ecx

pop      rbp

retn

;} //start at 400500

_Z4testv endp

; Attributes: bp-based frame

; __int64 test(void)

public _Z4testv

_Z4testv proc near

; __unwind{

push   rbp

mov    rbp, rsp

pop     rbp

jmp     short InterepterFunc

;} //start at 400500

_Z4testv endp

; __int64 test(void)

public _Z4testv

_Z4testv proc near

; __unwind{

mov    eax, 3

retn

;} //start at 400500

_Z4testv endp

(a) (b)

(c)

(d)

(e)

(f)

loc_400561:
mov   rax, cs:VMDATAindex
mov   ecx, dword ptr vmdata[rax*8]
add    ecx, r9d
cmp   ecx, 67h
ja       loc_400975

loc_40055A:
mov   ecx, dword ptr vmdata[rdi*8]
add    ecx, r9d
cmp   ecx, 67h
ja       short loc_400550

Fig. 14. Experiment result to verify whether optimization affects virtualization in LLVM. All subfigures are produced by IDA. a:original program. b:virtualized
code without optimization. c:optimized code with option -o3. d:virtualized code with optimization option -o3. e:InterepterFunc of b. f:InterepterFunc of d. In
e and f, zoom in to the red box, it is the disassembly instructions.

such as virtual instructions, dispatcher, handler, an interpreter

has to write back into the original binary file. This limitation

leads to less work on the hiding of critical information in

virtualization, so the interpreter is easily removed by de-

virtualization. Our intermediate language-based virtualization

can effectively reduce the exposure of sensitive features of

protected code. The principle behind it is that the intermediate

code is compiled into the target code will lead to a sharp

increase in instructions.

3) Optimizations in LLVM: LLVM is a compiler framework

that aims to make lifelong program analysis and transforma-

tion available for arbitrary software [35]. Such lifelong code

optimization techniques encompass optimizations at compile-

time, link-time, install-time, and runtime. The design of the

compile- and link-time optimizers in LLVM permit the use of

a well-known technique for speeding up interprocedural anal-

ysis. They operate on the LLVM representation directly, taking

advantage of the semantic information it contains. LLVM

currently includes several interprocedural analyses, such as

call graph construction, Mod/Ref analysis, interprocedural

transformations like inlining, dead global elimination, dead

argument elimination, and so on. So whether our instruction

set and the virtual machine will be optimized by the LLVM,

this is what we need to demonstrate.

To verify whether our virtualization code is optimized by

LLVM at compile-time, we do a set of experiments. First,

we write a function called test with Language C. The test

function contains three statements: a=1; c=a+2; return c. We

respectively compile test by clang/LLVM with o0, -o2, -

o3. Second, we implement code virtualization on test with

Dex2VM, then choose the Optimization option with o0, -

o2, -o3. As we can see from the Figure 14(c), there is only

one statement (mov eax, 3) left after LLVM optimized the

original program. (b) is the result of code virtualization on

the original program without Optimizations. (e) is the call

graph of the InterepterFunc function in (b). (d) is the result of

code virtualization on the original program with Optimization

option o3. The LLVM optimizer converts the function call

into a jump table call. Figure 14(f) is the call graph of the

InterepterFunc function in (d). From Figure 14 e) and f), we

can see that the LLVM optimizer changes the structure of the

virtualized code. Then we zoom in to the red box and find

that these two boxes have the same instructions pieces, same

as other basic blocks. The reason is that the optimizer can

not recognize our custom instruction set. If an attacker wants

to use LLVM for instruction-level optimization to achieve the

purpose of streamlining instructions, he needs to rewrite the

specialized backend optimizer.

D. Cost Overhead

1) Benchmark on Dex2C: As mentioned above, Dex2VM

contains two parts, Dex2C and C2VM. Dex2C extracts the

functions that have less interaction with the system through

the Decision-making Model and implements them in the

native layer. This process guarantees the security of Dex

bytecode and also greatly reduces the overhead of the sys-

tem. To verify this conclusion, we pre-compile the 0xbench

suite with our Dex2C. 0xBench [1] is Google’s official test

program, 0xlab integrates 17 benchmarks for 0xBenchmark,

including computing performance, JavaScript benchmark, 2D

graphics rendering, 3D graphics rendering, garbage collection

performance test. In our experiment, we use 2D, 3D, and

SciMark2. As the experimental results are shown in Table VI,

the performance of 2D and 3D have almost no change before

and after protection. Because most of their samples use source

code from Android SDK sample programs and iPhone SDK

sample programs or Android API. So, there is no code that

can be translated from the DEX layer to the native layer.

But SciMark2 is a composite Java benchmark measuring the

performance of numerical codes occurring in scientific and

engineering applications. According to our Decision-making

Model, some java layer code with high-performance overhead
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TABLE VI
RESULTS OF 0XBENCH.

Case Android4.4.4r1 Android5.0 Android9.0

2D

(fps)

before after before after before after

Canvas 58.77 58.91 58.16 58.43 58.49 59.36

Circle 58.17 64.21 55.08 56.13 46.19 67.18

Circle2 36.53 41.68 33.37 38.52 37.94 41.82

Rect 12.68 14.13 10.25 12.13 13.44 16.52

Arc 25.92 30.84 20.60 27.01 26.27 27.99

Image 48.80 54.46 33.02 39.32 23.09 26.85

Text 58.41 59.24 58.77 58.53 59.67 59.33

3D

(fps)

Cube 55.79 55.70 58.87 54.88 59.28 59.19

Blending 63.96 64.11 63.41 63.47 63.7 63.68

Fog 64.06 63.82 63.32 63.60 63.58 63.63

Teapot 60.60 60.60 60.60 60.60 53.41 55.55

SciMark2

(Mflops)

Composite 143.35 172.82 161.1 186.65 191.09 282.69

Fast 95.42 102.36 172.08 187.23 206.18 301.56

Jacobi 347.20 423.70 400.61 466.58 324.51 474.15

MOnte 11.95 11.30 11.87 12.52 10.57 13.99

Sparse 110.70 127.21 58.91 79.80 110.26 179.45

dense 151.47 199.55 162.00 187.13 303.95 444.29

is selected to translate into native-layer code with low over-

head. This experimental result proves that the transformation

of DEX bytecode to C/C++ code in the pre-compilation stage

can indeed improve the execution efficiency of the code.

2) Cost Overhead on Dex2VM: To achieve the measure-

ment of space-time overhead for Dex2VM, we mainly consider

the three aspects including CPU occupancy rate, size, and

runtime memory usage. In this experiment, each of the selected

apps has to run 30 times, and the average value is obtained to

represent the experimental results. During the test, the user’s

behavior is simulated by Monkey [24], which triggers random

clicks, slides, text or character input. The time limit for each

data collection is set to ten minutes. The interval of random

event setting for Monkey is 1000ms, that is, there are at least

600 random inputs in each data collection process. Finally, we

use Tencent’s open-source performance testing tool GT [54] to

obtain the corresponding experimental data. All the experiment

data are showed in Table VII.

CPU usage: It can be seen that the CPU usage of the

protected program is almost the same as the original app.

Size: As can be seen from the table, compared with the

original apps, all the apps protected by Dex2VM contain a

modified DEX file with a larger size and a newly generated SO

file. Although some functions in the DEX file are implemented

in the native layer, the reason why it is still larger than the

original one is that the instructions of the original functions

are filled with nop, and JNI registration information is added.

From the perspective of software complexity, the increased

size contains more instructions, which to some extent, in-

creases the difficulty of an attacker’s reverse analysis.

Memory usage: After the protection, the total memory

usage of the program shows an upward trend, but the increase

is not large. More specifically, the memory consumed by the

Dalvik virtual machine of the program drops, while the mem-

ory space consumed by native code rises, which is consistent

with the protection features of Dex2VM.

In summary, it can be seen from the above experimental

results that there is a big difference in the performance of

the program before and after Dex2VM protection. The main

reason is that the native layer directly executes CPU instruc-

tions, which is more efficient and straightforward. Therefore,

we draw the following conclusions: Firstly, the conversion of

D2C reliably improves the efficiency of the program running,

effectively balancing the performance overhead introduced by

virtualization. Therefore, our scheme is an effective solution

for both security and performance issues. Also, Dex2VM has

good performance from the data of space-time overhead.

3) Power Consumption: TrepnTM Profiler is an on-target

power and performance profiling application for mobile de-

vices, which is developed by Qualcomm. Its principle is that

SnapDragon800 + series chips are built into multiple sensors

on components, such as CPU core, digital core, power moni-

toring, etc., to obtain current data directly from the hardware.

But some Trepn features stopped working when Android 7.0

was released including direct power reporting. So we use

TrepnTM Profiler to collect power consumption of original

samples and protected samples on Android 4.4.4r1 and 5.0.

As to 9.0, we use adb shell dumpsys batterystats to get the

power consumption. The Android framework layer implements

the function of power statistics through a system service called

batterystats. And adb obtains energy consumption by accessing

this system service.

To ensure the correctness of the experimental data, before

the experiments, we turn off all the other apps, and the screen

brightness is minimized. Also, the test time lasts 10 minutes,

and the remaining power of the mobile phone must be higher

than 80% during this process. The experiment is repeated three

times to average.

As shown in Table VII, when running on Android 4.4.4r1,

the power consumption is reduced by 28.5% after protection.

When running on Android 5.0, power consumption is reduced

by 6%. To explain why there is a big difference in power

consumption between the two versions, we do a more in-depth

investigation. Starting with Android 5.0 (Lollipop), ART run-

time has completely replaced Dalvik Virtual Machine. During

the installation of the application, Ahead-of-Time Compiler

in ART translates the DEX bytecode into machine code and

stores it on the device’s memory. This process only happens

when the application is installed on the device. JIT compilation

is no longer needed, the code executes much faster. So, that’s

why there is a 22.5% gap between them.

When coming to Android 9.0, we find that the power

consumption floating range is between plus and minus 5% with

and without Dex2VM. The reason is that the data obtained

by the adb is not stable. Because there are two ways for

batterystats to get information about battery usage. One is

push action that some hardware modules (wifi, Bluetooth) no-

tify batterystats to record the time when the status changes.

The other is pull action that batterystats actively records the

starting point of some hardware modules(CPU) to calculate

the time the activity uses the CPU. So the statistical results of

batterystats are affected by the frequency of data collection.

However, from the experimental results, we can conclude that

the effect of Dex2VM on power consumption is within the

user’s tolerance.

In general, the introduction of virtual machine protection

will cause performance degradation. But our power consump-

tion is lower. First of all, in the pre-compilation phase, we use
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TABLE VII
EXPERIMENTAL EVALUATION DATASET AND RESULTS.

Version Application CPU(%) Size(KB)
Memory(KB)

Power(mW)
Total Dalvik native

before after before(DEX) after(DEX+SO) before after increase before after increase before after increase before after increase

Android4.4.4r1

AndroMoney 42.15 43.81 5019 5442+2487 69298 73845 6.56% 11186 12905 15.37% 4461 5071 13.67% 904.53 615.87 -31.91%

KakaoBus 32.04 33.78 6820 7380+2226 80462 83951 4.34% 23793 22951 -3.54% 3240 4254 31.30% 876.58 606.93 -30.76%

Wandoujia 34.43 35.44 4449 4761+2719 39874 42087 5.55% 5439 3217 -40.85% 4605 6700 45.49% 981.64 651.82 -33.60%

Khan Academy 32.27 36.33 9350 10007+737 110971 125976 13.52% 12702 13989 10.13% 11851 14438 21.83% 942.43 682.26 -27.61%

pedometer 34.19 20.78 3205 3579+681 83208 85309 2.52% 11282 9800 -13.14% 4550 6000 31.87% 888.56 621.09 -30.10%

klara weather 36.72 34.22 6228 6848+719 68231 71868 5.33% 10060 9809 -2.50% 2973 3970 33.54% 822.44 657.54 -20.05%

MX player 44.97 47.66 18391 19734+2591 41579 51969 24.99% 12151 13503 11.13% 2963 10100 240.87% 914.74 653.53 -28.56%

Swipe Brick Breaker 38.23 41.19 5571 6015+144 94578 95370 0.84% 2313 2513 8.65% 2313 31899 1279.12% 2097.93 1573.18 -25.01%

Android5.0

AndroMoney 27.7 36.32 5019 5442+2487 143873 191249 32.93% 33678 30337 -9.92% 200931 25111 -87.50% 644.64 634.94 -1.50%

KakaoBus 20.83 29.34 6820 7380+2226 94395 129800 37.51% 20865 20734 -0.63% 13085 20235 54.64% 683.98 624.65 -8.67%

Wandoujia 42.89 44.61 4449 4761+2719 151928 15686 -89.68% 28365 23380 -17.57% 27370 30211 10.38% 704.55 658.72 -6.50%

Khan Academy 32.28 38.39 9350 10007+737 263860 336925 27.69% 48057 33318 -30.67% 55089 71985 30.67% 758.63 700.49 -7.66%

pedometer 20.06 20.78 3205 3579+681 88527 112451 27.02% 25808 23414 -9.28% 12771 14593 14.27% 663.15 628.54 -5.22%

klara weather 20.62 21.94 6228 6848+719 144591 155514 7.55% 35737 34527 -3.39% 18781 20750 10.48% 737.45 697.34 -5.44%

MX player 19.07 20.52 18391 19734+2591 161569 176764 9.40% 33980 32919 -3.12% 28650 36577 27.67% 686.85 651.11 -5.20%

Swipe Brick Breaker 45.48 46.16 5571 6015+144 112024 113534 1.35% 5896 6133 4.02% 40737 49544 21.62% 1733.52 1607.7 -7.26%

Android9.0

AndroMoney 15.56 17.56 5019 5442+2487 69765 71150 1.99% 2269 2131 -6.08% 28455 31307 10.02% 926.63 977.36 5.47%

KakaoBus 15.15 11.2 6820 7380+2226 53895 79252 47.05% 5014 3089 -38.39% 15917 40754 156.04% 579.56 595.53 2.76%

Wandoujia − − − − − − − − − − − − − − − −
Khan Academy 16.4 26.5 9350 10007+737 141704 146055 3.07% 9958 8182 -17.83% 51579 58065 12.57% 693.08 665.77 -3.94%

pedometer 43 4.88 3205 3579+681 48681 47024 -3.40% 1582 1499 -5.25% 15112 15654 -3.59% 592.27 581.49 -1.82%

klara weather 15.99 10.34 6228 6848+719 71777 75522 5.22% 2639 2304 -12.69% 27960 25830 -7.62% 577.35 584.46 1.23%

MX player − − − − − − − − − − − − − − − −
Swipe Brick Breaker 25.04 29.73 5571 6015+144 70449 70700 0.36% 1368 1364 -0.29% 35561 39173 10.16% 1212.59 1200.89 -0.97%

TABLE VIII
THE FUNCTIONALITY RATING.

App
Install
time

Startup
time

Function
usability

Action
response

Flash
back

AndroMoney 3.5 4.5 5 5 5
KakaoBus 3.5 4.5 5 4 5
Wandoujia 2.5 4.5 4.5 4.5 5
Khan Academy 3.5 4 3.5 4 3
pedometer 3.5 4.5 5 5 4
klara weather 3.5 4.5 4 5 5
MX player 4 4 2.5 4 1.5
Swipe Brick Breaker 4 4.5 5 4 5

Avg 3.50 4.38 4.31 4.44 4.19

the Decision-making Model to filter those functions in DEX

bytecode that interacting less with the context, then replace

them into c code in the native layer, which reduces the per-

formance overhead to some extent. Secondly, in compile-time,

we only virtualized 20% of the codes rather than all codes.

Therefore, from this experiment, we can get a conclusion that

the power consumption is reduced by 6% after protected by

Dex2VM.

E. Functionality Study

The evaluation on the correctness is limited by that there

is no way to check function or semantic equivalence between

obfuscated code and original code, unless manually checking.

In this experiment, we perform user study to quantify the

impact of security features on user experience, including

installation time, startup time, availability of features, the

response speed of actions, and flashback.

Our user study has 16 participants. All of them are at the

age group of under the 30s and are familiar with the Android

system. We give each participant a half-hour experience time

to use a group of original and protected apps without marking.

Experience content includes app installation and function

use. In the user study, we ask each participant to rate the

functionality of apps on a 5-point Likert-scale, where 1 = very

poor and 5 = excellent.

Table VIII is a functionality rating result in our user study.

Each app has two user ratings, and we only record the average.

The apps install time has the lowest user ratings, which is

3.50. This is because when the application is first installed, the

DEX bytecode is precompiled into native code. Although this

process takes some time, it only happens once and does not

affect the startup and execution time of the application. In the

flashback item, two users scored 2 points and 1 point for the

MX player. The reason for this is that a pointer in the protected

app does not release the memory in time. Now we have fixed

this bug. Overall, this user study shows that Dex2VM can

guarantee the availability of features while balancing security

and performance.

It is worth motioning that although code obfuscation has

been actively researched for quite a long time, how to system-

atically measure the effectiveness of an obfuscator remains

an open problem. It has been proven that a perfect obfuscator

does not exist [10]. Thus, there is a widely accepted consensus

that the goal of obfuscation is to protect the code by making

reverse engineering so technically difficult that it becomes

impossible or at the very least economically inviable [12]. In

this paper, the experiment result shows that Dex2VM is a novel

tool which possesses strong security strength and good stealth,

with only modest cost.

VI. DISCUSSIONS

In this section, we discuss Dex2VM’s limitations, poten-

tial countermeasures, and future work. First, the virtualized

function will eventually interact with the Android runtime

anyway. The attacker may use a JNI hooker to listen to the

call, and combine the manual analysis method to guess the

purpose of the program. Although the manual analysis process

is very time-consuming, this interactive feature gives attacker

the possibility to restore the program bytecode. We can defend

this attack to design a lightweight Hook detection mechanism.

Theoretically, our performance experiment results are un-

likely to be so good if all the C codes extracted from the

DEX file are virtualized, instead of only taking 20% of them

to be virtualized. However, we wish to reiterate that whole
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program virtualization rarely happens in practice. Complete

program virtualization translates the entire program to VM

instructions and interprets them during runtime, which will

cause a significant slowdown. In future work, we will discuss

performance changes when the scale of the virtualization codes

reaches 40%,60%, and 80%.

In future work, we can also optimize the disassembly

engine of the Dex2VM to translate directly from dex code to

LLVMIR. In this way, the error rate in the disassembly process

can reduce, and the reduction of the conversion link minimizes

the possibility of reverse engineering by the attacker. Also, the

packing technique is a double-edged sword for both legitimate

and malicious apps. From a design point of view, we should

think about how to avoid it being abused by attackers.

VII. RELATED WORK

Obfuscator-LLVM(OLLVM): It is an open-source code

obfuscator based on LLVM framework [37], [20], [26]. The

whole project contains three relatively independent LLVM

passes. Each pass implements a kind of obfuscation, and they

are Instructions Substitution, Bogus Control Flow, Control

Flow Flattening. Through these obfuscation methods, the

original program flow or part of them can be blurred, bringing

some difficulties to the reverse analysis. Since the above three

passes are implemented based on LLVMIR, in theory, this

obfuscator supports any language and machine architecture in

the world.

OLLVM only changes the grammatical structure and control

flow structure of the program. Therefore, there is a possibility

of deobfuscation by symbol execution [41], [32]. Dex2VM

is a fine-grained code protection method, which acts at the

instruction level. So even if the attacker gains the program

structure by symbol execution, the custom-defined instructions

cannot be recognized.

Packers and Unpackers: At present, function-level obfus-

cation and encryption [30] at both DEX and native levels

are the mainstays of the android packer in industry, such as

Bangcle [8], ijiami [39], Qihoo [2], Baidu [7], Tecent [50], and

so on. However, recent studies have shown that it is feasible

to recognize different types of these commercial packers by

signatures and recover the DEX file by modifying DVM to

hook certain important functions or dump Dalvik data struc-

tures [66], [64], [18], [48], [61], [58]. So far, there has been a

small amount of work trying to use code virtualization in An-

droid packers. Divilar [68] transforms its Dalvik bytecode into

a randomly generated intermediate language and wraps the

resulting binary together with a lightweight virtual instruction

interpreter. Xu [60] transplantes the traditional UPX packing

technology to the ARM architecture for native code protection.

Collberg proposes the Tigress obfuscator [49], [14], which is

a source-to-source-level obfuscation transformation tool based

on Ocaml [40] and only supports the C99 standard language.

However, code virtualization at the Java layer has a limitation

that the newly generated DEX file with the open file format

and semantic meaning makes the decode-dispatch pattern more

exposed. Dex2VM overcome both of these three limitations

with pre-compilation and compile-time code virtualization

based on the LLVM framework.

Although packers have been well studied, a series of solu-

tions have been proposed to defeat them [18], [55], [21], [66],

[64], [61], [58]. According to design choices of extracting

code, current Android unpackers can be categorized into

four types: 1) signature-based memory dump unpacker; 2)

hooking-based memory dump unpacker; 3) DEX file assem-

bly unpacker; 4) whole-system emulation based unpacker.

Most of them focus on various commercial packers, barely

recognizing and analyzing the unknown customer packing

technique. Moreover, they all take an assumption that there is

an apparent boundary between packer’s code and the original

code. However, Dex2VM is a virtualization of the intermediate

language, it is finally compiled into native code with the help

of the LLVM compilation framework. So it can overcome this

limitation since there are no clear boundaries. Finally, few

of them is able to recognize the unknown packing technique,

and understand what happens at the native level, let alone the

interactions between Java and native. DROIDUNPACK [18] is

a state-of-the-art unpacker that has a whole view in multiple

levels of the system and can detect unknown packers. Although

it can dump codes that execute in Dex2VM, it can not recover

the semantic information from custom-defined virtualization

instructions.

Deobfuscation of code virtualization: Automatic deob-

fuscation tools were proposed that could recover the original

functionality [11], [28]. The traditional approaches are either

static or dynamic analysis [27], [31]. Recent approaches for

deobfuscation use techniques based on taint analysis and

symbolic execution [16], [45], [63], [59]. Both of them

have drawbacks. Taint tracking-based solution requires an

IR transformation of the binary instructions and produce a

computational overhead by design, due to the tracking and

simulation of memory operations [16], [17], [63]. Symbolic

execution is the handling of path explosions. Depending on

the symbolic variables, several additional paths need to com-

pute subsequently. These results in an increased number of

computations [63].

There is a widely accepted consensus that developing an

obfuscation scheme resilient to all reverse engineering threats

is too ambitious [9]. If the attacker invests enough time and

energy, he will eventually be able to crack the virtualized

code. Hence, making reverse engineering more difficult (but

not impossible) could be a more realistic goal to pursue. All

the experimental results show that Dex2VM possesses strong

security strength and good stealth, with only modest cost.

VIII. CONCLUSION

When preventing reverse engineering from infringing in-

tellectual property on smartphone devices, vulnerability and

performance are two big challenges due to a decode-dispatch

pattern and energy limitations. In this paper, we present a

double-layer packer with pre-compilation as the first layer and

compile-time code virtualization as the second layer. By utiliz-

ing the certain design and features of the LLVM framework,

we can overcome the limitation of vulnerability and perfor-

mance for code virtualization on the Android platform. We

implement Dex2VM, a tool that translates the DEX bytecode
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into the common LLVM intermediate representations where a

unified code virtualization pass can be applied. We evaluate

Dex2VM concerning resilience, stealth, cost, and functionality

on eight representative Android applications. The experimental

results show that the proposed approach can effectively protect

the target code against a state-of-the-art unpacking tool and

code reverse engineering tool that is specifically designed

for code virtualization, and it achieves at a good stealth and

the cost of little overhead of memory, code size, and energy

consumption.
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