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Rural-urban disparities in child nutrition in
Bangladesh and Nepal
Chittur S Srinivasan1*, Giacomo Zanello2 and Bhavani Shankar3

Abstract

Background: The persistence of rural-urban disparities in child nutrition outcomes in developing countries
alongside rapid urbanisation and increasing incidence of child malnutrition in urban areas raises an important
health policy question - whether fundamentally different nutrition policies and interventions are required in rural
and urban areas. Addressing this question requires an enhanced understanding of the main drivers of rural-urban
disparities in child nutrition outcomes especially for the vulnerable segments of the population. This study applies
recently developed statistical methods to quantify the contribution of different socio-economic determinants to
rural-urban differences in child nutrition outcomes in two South Asian countries – Bangladesh and Nepal.

Methods: Using DHS data sets for Bangladesh and Nepal, we apply quantile regression-based counterfactual
decomposition methods to quantify the contribution of (1) the differences in levels of socio-economic
determinants (covariate effects) and (2) the differences in the strength of association between socio-economic
determinants and child nutrition outcomes (co-efficient effects) to the observed rural-urban disparities in child HAZ
scores. The methodology employed in the study allows the covariate and coefficient effects to vary across entire
distribution of child nutrition outcomes. This is particularly useful in providing specific insights into factors
influencing rural-urban disparities at the lower tails of child HAZ score distributions. It also helps assess the
importance of individual determinants and how they vary across the distribution of HAZ scores.

Results: There are no fundamental differences in the characteristics that determine child nutrition outcomes in
urban and rural areas. Differences in the levels of a limited number of socio-economic characteristics – maternal
education, spouse’s education and the wealth index (incorporating household asset ownership and access to
drinking water and sanitation) contribute a major share of rural-urban disparities in the lowest quantiles of child
nutrition outcomes. Differences in the strength of association between socio-economic characteristics and child
nutrition outcomes account for less than a quarter of rural-urban disparities at the lower end of the HAZ score
distribution.

Conclusions: Public health interventions aimed at overcoming rural-urban disparities in child nutrition outcomes
need to focus principally on bridging gaps in socio-economic endowments of rural and urban households and
improving the quality of rural infrastructure. Improving child nutrition outcomes in developing countries does not
call for fundamentally different approaches to public health interventions in rural and urban areas.
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Background
Child nutrition outcomes in developing countries have

been characterised by large rural-urban disparities over

the last few decades [1]. A substantial body of empirical

studies shows that average child nutrition outcomes in

urban areas are significantly better than in rural areas in

a large cross-section of developing countries [2-7]. Van

de Poel et al. [1] in a study of 47 developing countries

show that there are significant differences in rural-urban

stunting rates in all but four countries, and that the me-

dian rural-urban ratio in stunting is 1.4. The rapid pace of

urbanisation in developing countries has at the same time

confronted these countries with the growing incidence of

child malnutrition and greater nutritional inequalities in

urban areas [8]. This persistence of rural-urban disparities

in child nutrition alongside growing urbanisation and in-

creasing inequality of child nutrition in urban areas high-

lights the need for an enhanced understanding of the

main drivers of urban-rural differences in nutrition out-

comes. An important associated public health policy ques-

tion is whether fundamentally different nutrition policies

and interventions are required in rural and urban areas.

For example, in some settings, social support networks are

weaker in urban compared to rural areas, and income/

wealth may therefore be a more critical constraint for

urban compared to rural nutrition outcomes [2]. In such

settings, cash transfers may arguably be a more important

component of public health/nutrition intervention portfo-

lios in urban areas than in rural ones. Also, the quality of

public services of importance to nutrition outcomes, such

as education and ante-natal services, have been found se-

verely wanting in some rural areas [9,10]. Such quality dif-

ferentials could alter the relative effectiveness of key

nutrition determinants in rural compared to urban areas,

resulting in divergent intervention and policy strategies.

Observed rural-urban differences in indicators of child

nutritional outcomes such as Height-for-Age Z scores

(HAZ) may arise because of:

(i) rural-urban differences in the levels of determinants

of nutrition outcomes, such as mother’s education

and household wealth – which may be termed as

‘covariate’ effects in a regression context; or

(ii) rural-urban differences in the strength of association

between particular determinants and nutrition

outcomes – which may be termed as coefficient

effects in a regression context. For example, an

additional year of mother’s education may have a

larger impact on nutrition outcomes in an urban or

a rural population relative to the other, all else held

equal.

Rural-urban disparities in child nutrition may also

arise from a combination of covariate and coefficient

effects. If rural-urban differences arise largely due to co-

variate effects, or differing levels of determinants, similar

policy frameworks and tools could be applied across

urban and rural areas [2]. If differences are largely due to

coefficient effects, however, strategies may need to vary.

A small literature [2,11] has examined these issues in

different settings. We contribute to this literature by ap-

plying recently developed statistical methods that allow

a more nuanced approach to this ‘covariates or coeffi-

cients’ question. These Quantile Regression-based Coun-

terfactual Decomposition (QR-CD) methods allow the

covariate and coefficient effects to differ along the entire

distribution of nutrition outcomes. For example, are co-

variate versus coefficient contributions to rural-urban

disparities different at the lower tail of the HAZ distri-

bution (where severe stunting is likely to be prevalent)

compared to the middle and upper parts of the HAZ

distribution? In a policy atmosphere where targeting of

the most vulnerable is important, such insights can be

valuable. In addition, the methodology we apply also

helps assess the importance of individual determinants –

e.g., what proportion of rural-urban HAZ score differen-

tials may be explained by differential wealth or maternal

education levels, and how does this proportion vary

across the HAZ distribution? QR-CD methods are

well-validated and have been applied in a variety of re-

gression modelling contexts, including labour remuner-

ation, health outcomes and public finance. There have

also been several applications to modelling under as well

as over nutrition outcomes in recent years [12-15]. Our

application case studies are set in Nepal and Bangladesh,

two rapidly urbanising South Asian countries grappling

with substantial undernutrition problems. DHS data

show that 45% of under-fives in rural Bangladesh are

stunted, compared to 36% in urban areas, with a popula-

tion average of 43%. In Nepal, 51% of rural under-fives

are stunted, in comparison to 36% in urban areas, with

the population average being 49%. Our primary hypoth-

esis is that most rural-urban disparity across the HAZ

distribution arises from covariate, rather than coefficient

effects. We are, of course, particularly interested in dispar-

ities in the lower tail. A secondary hypothesis is that, even

if a covariate or a coefficient effect dominates, there are

important differences across the HAZ distribution in the

relative contributions of covariate and coefficient effects

to rural-urban disparities. If the secondary hypothesis is

shown to hold, it would strengthen the rationale for the

use in nutrition outcome modelling of approaches consid-

ering the entire distribution, such as QR-CD.

Literature review: determinants of rural-urban disparities

and methods used in evaluation

The literature on rural-urban nutrition and health dis-

parities discussed in the previous section has largely
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modelled the mean/median of nutrition outcomes such

as height for age z-scores (HAZ), or the prevalence of

stunting or wasting. It has, however, been recognised in

the literature that comparisons of means of child

nutrition indicators is not adequate for understanding

rural-urban disparities. Inequalities of socio-economic

endowments tend to be much greater in urban areas.

The differing patterns of inequalities in urban and rural

areas may imply that rural-urban disparities in the

upper and lower tails of the distribution of child nutri-

tion outcomes may be very different from what is sug-

gested by a comparison of means [1,8]. Our interest in

this study is not only in studying rural-urban disparities

across the entire distribution of nutrition outcomes, but

also in examining the influences of specific determi-

nants such as education and wealth on these disparities,

and the way in which these influences vary across the

distribution of outcomes.

Only a few studies have attempted to quantify the

contribution of socio-economic or ecological variables,

individually or in the aggregate, to rural-urban differ-

ences in child nutrition outcomes. Garrett and Ruel [11]

investigated the determinants of the large rural-urban

differentials in HAZ outcomes in Mozambique using

cross-sectional household survey data in a regression

framework modelling mean HAZ. They concluded that

the explanation predominantly lay in differing levels of

key determinants (covariate effects) rather than differences

in the strength of influence of covariates on nutrition out-

comes (coefficient effects). Smith et al. [2] examined DHS

data from 36 developing countries, again in a (mean) re-

gression framework, and found significant rural-urban

differences in the socio-economic and proximate determi-

nants of child nutrition. The study also found very few sig-

nificant differences in coefficient effects in urban and

rural settings and concluded that rural-urban disparities

could be predominantly attributed to differences in levels

of socio-economic characteristics. Van de Poel et al. [1],

using DHS data from 47 developing countries have

attempted to quantify the contribution of wealth and

other socio-economic characteristics to child nutrition

outcomes by examining how rural-urban relative risk ra-

tios for stunting/child mortality change as these character-

istics are successively controlled for. They find that on

average, rural-urban relative risk ratios fall by 53% when

household wealth is controlled for and by a further 23%

when other socio economic variables are controlled for.

Whilst these studies have provided valuable insights into

the determination of urban-rural nutrition outcome differ-

entials, their results only throw light on the mean of the

outcome variable. Also, their approaches do not yield the

contributions of individual covariates to child nutrition

outcomes. We apply QR-CD methods to examine how co-

variate and coefficient effects, in the aggregate as well as

with respect to individual variables, vary throughout the

HAZ distribution. Our primary hypothesis, that most

rural-urban disparity across the HAZ distribution arises

from covariate, rather than coefficient effects, essentially

tests that the main insight available from the previous lit-

erature modelling the mean of HAZ extends to the entire

HAZ distribution, and in particular, the lower tail.

Data and variables

For the empirical application of this approach, we have

chosen two country case studies in South Asia –

Bangladesh and Nepal. Both countries are developing

countries with a high incidence of poverty-31.5% in

Bangladesh (2010) and 25.2% in Nepal (2011) [16] - and

significant rural-urban disparities in child nutrition –

but differ substantially in the extent of urbanisation.

While only 17% of Nepal’s population lives in urban

areas, nearly 33% of the population of Bangladesh is

urban, making it one of the more urbanised countries in

South Asia [17]. The two countries also differ signifi-

cantly in levels of maternal education and child vaccin-

ation coverage (Table 1). The two case studies allow the

examination of rural-urban differences when key socio-

economic determinants and the extent of urbanisation

are substantially different. We do not pool data from

the two countries. Instead we treat them as distinct case

studies and provide separate estimates for each, although

we provide a broad comparative discussion of results.

We have used datasets from the Demographic and

Health Surveys of the MEASURE-DHS project (http://

measuredhs.com/) which collects and disseminates na-

tionally representative demographic, health and nutrition

information based on household surveys for 90 coun-

tries. The datasets are freely accessible to the public and

researchers subject to a prescribed registration and ap-

proval process. Permission to access and use the datasets

relevant to this study was obtained by the authors from

the MEASURE-DHS archive. The most recent datasets

from the Demographic and Health Surveys for Bangladesh

(2007) and Nepal (2006) were used in the study. The

datasets include data from a nationally representative

sample of urban and rural households. Units for observa-

tion for this study were all children aged below five years

in the households surveyed. After deletion of observations

with incomplete information, the sample for Bangladesh

had 5267 children, with 1842 (35%) living in urban house-

holds and 3425 (65%) living in rural households, while

Nepal had 5219 children with 1168 (22%) living in urban

households 4051 (78%) living in rural households.

We used height-for-age Z-scores (HAZ) as indicators

of child nutrition in rural and urban households.

Stunting, defined as HAZ less than two standard devia-

tions of the NCHS/CDC/WHO International Reference

Standard [18], is a good indicator of child nutrition and
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health status as it reflects the effects of chronic nutri-

tional deficiency. Determinants of child nutrition status

used in this study are mostly based on the previous lit-

erature and include child characteristics as well as socio-

economic characteristics of the household. Gender, age

of the child and child vaccination are the child charac-

teristics included in this study. Socio-economic charac-

teristics of the household included in this study are years

of education of the mother and the spouse, employment

status of the mother (whether the mother is currently

working), dependency ratio (computed as the ratio of

economically inactive members of the household (under

16 and over 64 years old) to active members, the

number of children below five years in the household,

whether the household is an extended family unit and

an indicator of socio-economic status – the DHS wealth

index.

The DHS wealth index [19] is a composite measure of

a household’s relative economic status and has been ex-

tensively used in the assessment of equity in health

services and distribution of services among the poor

[20-26]. In environments where accurate data on income

and expenditure are extremely difficult to collect or may

be subject to considerable volatility, the DHS wealth

index provides a more stable and reliable measure of a

household’s cumulative living standard and access to

Table 1 Child nutrition and socio-economic characteristics in Bangladesh and Nepal

Bangladesh

Aggregate (Urban + Rural)
Number of children = 5267

Urban (Number of
children = 1842)

Rural (Number of
children = 3425)

Rural Urban
differencea

Mean (Std deviation
in brackets)

Mean (Std deviation
in brackets)

Mean (Std deviation
in brackets)

Height/Age (z-score) −1.72 (1.36) −1.49 (1.35) −1.84 (1.35) 0.35***

Gender of Child (female = 1) 0.50 (0.50) 0.47 (0.50) 0.51 (0.50) −0.034*

Age of Child 1.99 (1.41) 1.94 (1.38) 2.01 (1.42) −0.07

Child Vaccinated (yes = 1) 0.49 (0.50) 0.52 (0.50) 0.48 (0.50) 0.043**

Age of mother 25.86 (6.17) 26.00 (5.94) 25.78 (6.29) 0.22

Mother currently working (yes = 1) 0.24 (0.42) 0.24 (0.43) 0.23 (0.42) 0.005

Years of education mother 4.91 (4.33) 5.94 (4.69) 4.35 (4.02) 1.60***

Years of education of spouse 4.88 (4.88) 6.21 (5.22) 4.16 (4.53) 2.04***

Wealth status (index) −0.09 (0.93) 0.55 (1.14) −0.41 (0.58) 1.0***

Extended family dummy (yes = 1) 0.44 (0.50) 0.44 (0.50) 0.44 (0.50) 0.00

Dependency ratio 1.12 (0.72) 0.99 (0.65) 1.19 (0.75) −0.19***

Number of children <5 yrs 1.39 (0.57) 1.34 (0.55) 1.42 (0.58) −0.07***

Nepal

Aggregate (Urban + Rural)
Number of children = 5219

Urban (Number of
children = 1168)

Rural (Number of
children = 4051

Rural Urban
differencea

Mean (Std deviation
in brackets)

Mean (Std deviation
in brackets)

Mean (Std deviation
in brackets)

Height/Age (z-score) −1.96 (1.34) −1.65 (1.36) −2.05 (1.31) 0.4***

Gender Child (female = 1) 0.49 (0.50) 0.50 (0.50) 0.49 (0.50) 0.01

Age of child 2.05 (1.40) 2.11 (1.43) 2.03 (1.39) 0.08

Child Vaccinated (yes = 1) 0.24 (0.42) 0.26 (0.44) 0.23 (0.42) 0.031*

Age of mother 26.96 (6.07) 26.18 (5.27) 27.18 (6.26) −1.00***

Mother currently working
(yes = 1)

0.70 (0.46) 0.54 (0.50) 0.75 (0.43) −0.21***

Years of education mother 2.46 (3.65) 4.21 (4.31) 1.95 (3.27) 2.26***

Years of education of spouse 5.28 (4.09) 6.76 (4.34) 4.85 (3.91) 1.91***

Wealth status (index) −0.21 (0.84) 0.52 (1.16) −0.43 (0.54) 0.96***

Extended family dummy
(yes = 1)

0.51 (0.50) 0.47 (0.50) 0.52 (0.50) −0.05**

Dependency ratio 1.38 (0.96) 1.18 (0.81) 1.44 (0.99) −0.26***

Number of children < 5 years 1.58 (0.63) 1.50 (0.63) 1.61 (0.62) −0.10***
a Asterisk in the column indicate the level of significance of the difference in outcomes/characteristics between rural and urban areas based on independent

sample T-tests. *** denotes significance at 1% level, ** denotes significance at 5% level and * denotes significance at the 10% level of significance.
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utilities and health care. The indicator variables used for

construction of the DHS Wealth Index include house-

hold assets and utility services recorded in the DHS sur-

veys a. For the construction of the Index, these variables

are broken into sets of dichotomous variables and indi-

cator weights are assigned using principal component

analysis (PCA) as suggested by Filmer and Pritchett [27].

The indicator variables are first standardised (z-scores

are calculated) and then factor coefficient (factor load-

ing) scores are calculated. For each household the indi-

cator values are multiplied by the factor loadings to

produce the household’s index value. The index value it-

self is a standardised score with a mean of zero and a

standard deviation of one b.

Methods
Conceptual framework

The conceptual framework underpinning our empirical

analysis is the widely-applied UNICEF framework [28]

outlining the causes of undernutrition. In the UNICEF

framework, child malnutrition can be analysed in terms

of immediate, underlying and basic causes. The immedi-

ate causes are inadequate dietary intakes and infectious

disease, the underlying causes are inadequate maternal

and child care, inadequate health services and health en-

vironment and the basic causes are institutional and

socio-economic determinants and potential resources.

The basic causes can be viewed as “exogenous” determi-

nants – which influence child nutrition through their ef-

fect on the intervening proximate determinants. The

proximate determinants are, therefore, endogenously de-

termined by the exogenous characteristics. In empirical

(reduced form) models examining the relationship be-

tween child nutrition outcomes and exogenous charac-

teristics, the proximate determinants will generally be

excluded to prevent biased and uninterpretable parame-

ters [2,29].

Statistical methods

To assess the rural-urban differentials in HAZ scores,

we first estimate the distributions of HAZ scores separ-

ately for rural and urban children in each country using

kernel smoothing techniques. From the kernel density

estimates of HAZ scores, the rural-urban differential is

computed at each quantile and provides the raw differ-

ence in HAZ scores across the distribution.

A major objective of this study is to decompose the

rural-urban differences in child nutrition outcomes into

the covariate (or composition) effect, i.e., the differences

in HAZ scores due to differences in levels of characteris-

tics of urban and rural households, and the co-efficient

(or structure) effect, i.e., the differences in HAZ scores

due to the differences in the returns to those character-

istics, across the entire distribution of HAZ scores.

Linear or logistic regression approaches assess the mean

response of the outcome variable to changes in covari-

ates and the effect of covariates is constrained to be the

same along the entire distribution of the outcome vari-

able. Decompositions based on linear regression results

[30,31] would apply only to the mean rural-urban differ-

ences in HAZ scores, but not to other distributional

statistics like quantiles. We, therefore, use a quantile re-

gression (QR) approach to assess how child nutrition

outcomes are related to individual and household char-

acteristics. The QR technique allows the impact of ex-

planatory variables to vary along the entire distribution

of the outcome variable – HAZ scores in our case. The

QR method allows us to understand how the effects of

covariates in the lowest quantile of HAZ scores may dif-

fer from those in other quantiles. For instance, the im-

pact of an increase in mother’s education may be very

different in the higher and lower tails of HAZ scores.

Koenker and Hallock [32] warn against the temptation

to simply segment the outcome variable, e.g., HAZ, into

subsets based on outcomes values, e.g., deciles of HAZ

values, and run standard regressions on these segments

separately, since this introduces sample selectivity prob-

lems. Estimating categorical dependent variables models

is one option, e.g., probit or logit models to explain

stunting status. However, apart from constraining the ef-

fect of explanatory covariates to be the same across the

distribution of outcomes, these models sacrifice statis-

tical information in grouping continuously distributed

variables like HAZ into small numbers of categories. QR

methods offer the most robust approach to flexibly

model the shifts in HAZ distribution associated with

changes to covariates.

The quantile regression method developed by Koenker

and Bassett [33] estimates only the conditional quantile

effects of changes in explanatory variables. In assessing

the impact of policy interventions or understanding the

impacts of transitions such as urbanisation, we are more

interested in the effect of a change in an explanatory

variable (e.g., years of education of mothers) in a popula-

tion of individuals with different characteristics (uncon-

ditional effects) rather than in the impact for sub-groups

with specific values of covariates (conditional effects). To

assess the unconditional quantile effects of changes in ex-

planatory variables, we use an unconditional Recentred In-

fluence Function (RIF) QR regression method developed

by Firpo et al. [34]. A linear specification was adopted for

the unconditional QR. However, we did test for the pres-

ence of non-linear associations between parental educa-

tion (mother’s education and spouse’s education) and

HAZ scores by introducing a quadratic term and for

threshold effects by introducing dummy variables for

different levels of education (no education, primary educa-

tion, secondary education). We found no statistically
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significant evidence of non-linear associations or threshold

effects for parental education and the additional variables

did not affect the magnitude or significance of other ex-

planatory variables. This supported the adoption of a lin-

ear specification for the QR.

Following Firpo et al. [34], the decomposition of differ-

ences between rural and urban HAZ scores (for each

country) proceeds in two steps (please see Additional

file 1 for details of the decomposition procedure). In the

first step, a counterfactual distribution of urban HAZ

scores is constructed [35] which is the distribution of

HAZ scores in urban areas that would have prevailed if

urban households had the same returns to their charac-

teristics as the rural population. The difference between

the distribution of the rural HAZ scores and the coun-

terfactual distribution gives the covariate effect and the

difference between the counterfactual distribution and

the distribution of urban HAZ scores gives the coeffi-

cient effect. The covariate and coefficient effects are

each decomposed into the contribution of individual co-

variates using the Recentred Influence Function (RIF)

regression to obtain unconditional quantile effects of

covariates on HAZ scores [36,37].

Although our set of chosen covariates excludes prox-

imate determinants in order to minimize endogeneity

problems, and is consistent with variables used in previous

literature [2,11,13], there is still potential for lingering

endogeneity leading to difficulties in parameter interpret-

ation. The education variables in our models are a case in

point. Parental education may simply be correlated with

unobserved parental values and skills that influence child

height, complicating any causal attribution. However, it is

important to make clear, as O’Donnell et al. [13] note, that

the objective of counterfactual decomposition is not

causal identification, but rather to explain variations in

child height and judge the relative values of covariate and

coefficient effects. Caution is warranted in the interpret-

ation of coefficients of variables that are potentially en-

dogenous, but the decomposition itself remains valid.

Results

Descriptive statistics

Table 1 provides descriptive statistics of child nutrition

outcomes and characteristics in rural and urban areas

within Bangladesh and Nepal. In both Bangladesh and

Nepal, rural households have significantly worse HAZ

scores than urban areas. The difference in mean HAZ

scores between urban and rural households is 0.35 in

Bangladesh, while it is 0.40 in Nepal. In both countries,

urban mothers and spouses have more education than

their rural counterparts. Also urban households in both

countries are wealthier (as measured by the DHS

wealth index), have fewer children under the age of

5 years, a higher proportion of vaccinated children, a

lower dependency ratio and lower likelihood of living in

extended families. Differences in urban and rural out-

comes and characteristics are all statistically significant

in both countries (except for the age of the child in

both countries and the proportion of male and female

children in Nepal).

Quantile regression results

The estimates of the unconditional RIF quantile regres-

sions (QR) separately for rural and urban areas are shown

for Bangladesh and Nepal in Tables 2 and 3 respectively.

In Bangladesh, only child’s age, mother’s education,

spouse’s education and the wealth index are seen to have a

consistently significant association with HAZ scores

across the HAZ distribution in both rural and urban areas.

Increases in child age tend to lower HAZ scores, reflecting

growth faltering in young children in the region. This ef-

fect increases substantially as we move from the lower tail

to the upper tail in both rural and urban areas, indicating

that children starting with better nutritional status stand

to lose more through faltering as they grow older. This

pattern underlines the importance of flexibly modelling

effects across the distribution. Better education of the

mother is associated with improved nutrition, as expected.

In rural areas, this effect is particularly important for the

most undernourished, with the effect wearing off in the

upper half of the HAZ distribution. In urban areas, this re-

lationship remains relatively stable throughout the distri-

bution. Higher spousal education and wealth both display

a positive relationship with HAZ scores in both rural and

urban areas. The spouse education-HAZ relationship re-

mains broadly similar throughout the distributions, while

the wealth index-HAZ relationship gets stronger in the

upper part of the distribution for rural areas.

The distribution-wide relationship between age of the

child and HAZ scores in rural and urban areas in Nepal

is similar to that of Bangladesh. Again, mother’s educa-

tion has a consistently positive relationship with HAZ

scores across the distribution in both rural and urban

areas. There are two key differences between the Nepal

and Bangladesh results. In contrast to Bangladesh, in

Nepal, education of the spouse has only a weak and

largely insignificant relationship with child nutrition.

However, child vaccination has a positive and significant

association with HAZ scores. In both rural and urban

areas, this relationship strengthens as we move up the

HAZ score distribution.

Counterfactual decompositions

Figures 1 and 2 show the cumulative distribution func-

tions for urban and rural HAZ scores in Bangladesh and

Nepal, respectively. They also depict in aggregate the re-

sults of the QR-CD analysis. The curves marked ‘coun-

terfactual’ in the two figures depict the distribution of
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urban HAZ scores that would prevail if urban house-

holds had the same returns to their characteristics (co-

variates) as rural households. The differences in rural

and urban HAZ scores across quantiles, the decompos-

ition of these differences into aggregate covariate and

co-efficient effects and the contribution of individual

characteristics to these effects are presented in Table 4

for Bangladesh and in Table 5 for Nepal.

Figures 1 and 2 and Tables 4 and 5 show that in both

Bangladesh and Nepal, differences between rural and

urban HAZ scores are quite similar across quantiles. In

both countries, the ‘counterfactual’ HAZ distribution

curves nearly coincide with the urban HAZ distribution,

particularly in the lower half of the distribution, suggesting

that covariate differences explain the bulk of the rural-

urban gap in the distribution of HAZ scores. That differ-

ences in socio-economic characteristics (covariate effects)

account for a dominant share of rural-urban differences is

confirmed by the information presented in the Tables 4

and 5. In Bangladesh, the covariate effect accounts for

62%-95% of the overall differences in HAZ scores in dif-

ferent quantiles, while in Nepal the share of the covari-

ate effect ranges from 72%-97%. The covariate effect is

also stronger in the lower quantiles. The co-efficient ef-

fect accounts for 5%-37% of the overall differences in

HAZ scores in Bangladesh and is more pronounced

only in the higher quantiles, while in Nepal the coeffi-

cient effect accounts for 3%-28% of the overall differ-

ences in HAZ score, with the largest contribution in the

median quantile.

Table 2 Unconditional Recentred Influence Function (RIF) quantile regression results for rural and urban households in

Bangladesh

Dependent variable: HAZ score

RURAL URBAN

OLS Quantiles OLS Quantiles

10 25 50 75 90 10 25 50 75 90

Female gender
of child

−0.04 −0.01 0.05 −0.05 −0.08 −0.27*** 0.04 0.00 0.03 0.08 0.08 −0.08

(0.04) (0.08) (0.06) (0.05) (0.06) (0.09) (0.06) (0.10) (0.08) (0.08) (0.08) (0.10)

Age of Child −0.24*** −0.11*** −0.15*** −0.23*** −0.31*** −0.44*** −0.20*** −0.08** −0.14*** −0.19*** −0.26*** −0.28***

(0.02) (0.03) (0.02) (0.02) (0.03) (0.04) (0.02) (0.03) (0.03) (0.03) (0.04) (0.05)

Child vaccinated −0.18*** 0.08 0.01 −0.20*** −0.33*** −0.41*** −0.06 0.05 −0.04 −0.09 −0.12 −0.09

(0.05) (0.08) (0.06) (0.06) (0.06) (0.09) (0.06) (0.10) (0.09) (0.07) (0.08) (0.11)

Age of mother 0.00 −0.02** −0.01 0.00 0.00 0.01* 0.02*** −0.01 0.00 0.01 0.03*** 0.03***

(0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Mother’s working
status

0.09* 0.13 0.13* 0.09 0.10 0.13 −0.04 −0.20 −0.03 −0.05 0.04 0.03

(0.05) (0.10) (0.07) (0.07) (0.07) (0.10) (0.07) (0.14) (0.11) (0.09) (0.09) (0.12)

Mother’s
education (yrs)

0.01* 0.04** 0.02** 0.01* 0.02 0.00 0.04*** 0.03** 0.04*** 0.05*** 0.04** 0.04**

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02)

Husband’s
education
(yrs)

0.02*** 0.02** 0.02*** 0.02*** 0.02*** 0.03** 0.04*** 0.04** 0.05*** 0.04*** 0.05*** 0.03**

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01)

Wealth index 0.26*** 0.20*** 0.27*** 0.29*** 0.27*** 0.37*** 0.13*** 0.09 0.08* 0.16*** 0.11** 0.13**

(0.04) (0.07) (0.06) (0.06) (0.06) (0.11) (0.03) (0.06) (0.05) (0.04) (0.05) (0.06)

Extended family
dummy

0.05 −0.12 −0.02 0.04 0.05 0.22** 0.07 −0.01 0.01 0.12 0.14 0.05

(0.05) (0.09) (0.07) (0.06) (0.07) (0.09) (0.06) (0.10) (0.08) (0.08) (0.09) (0.11)

Dependency
ratio

−0.05 −0.08 −0.04 −0.10** −0.07 −0.05 −0.02 0.01 0.05 −0.08 −0.04 0.06

(0.03) (0.06) (0.05) (0.04) (0.04) (0.06) (0.05) (0.09) (0.07) (0.06) (0.06) (0.09)

No. of children
(<5 yrs)

0.02 −0.07 −0.04 0.06 0.11** 0.12 0.03 0.02 −0.05 0.00 0.10 0.09

(0.04) (0.08) (0.06) (0.05) (0.05) (0.08) (0.06) (0.10) (0.09) (0.07) (0.07) (0.09)

Constant −1.25*** −2.76*** −2.20*** −1.30*** −0.47** 0.50* −2.10*** −3.37*** −2.65*** −2.02*** −1.50*** −0.74**

(0.14) (0.30) (0.20) (0.16) (0.19) (0.27) (0.18) (0.31) (0.25) (0.24) (0.24) (0.32)

N 3425 3425 3425 3425 3425 3425 1842 1842 1842 1842 1842 1842

R-sq 0.11 0.03 0.05 0.08 0.09 0.07 0.18 0.04 0.09 0.15 0.13 0.07

adj. R-sq 0.10 0.03 0.05 0.07 0.08 0.07 0.18 0.04 0.09 0.15 0.12 0.07

Figures in brackets are standard errors: Asterisks denote level of significance -***, ** and * denote significance at 1%, 5% and 10% level of

significance respectively.

Srinivasan et al. BMC Public Health 2013, 13:581 Page 7 of 15

http://www.biomedcentral.com/1471-2458/13/581



The further decomposition of the covariate and co-

efficient effects into the contribution of individual covar-

iates in Bangladesh and Nepal is also presented in

Tables 4 and 5 respectively. This decomposition shows

the relative contribution of individual covariates to child

nutrition outcomes in rural and urban areas in the two

countries and how they vary across quantiles. The nega-

tive sign of the observed raw gap in HAZ scores be-

tween rural and urban areas reflects the fact that rural

HAZ scores are lower than urban HAZ scores in all

quantiles. This must be kept in mind while interpreting

the direction of effect of the contribution of individual

characteristics in the lower part of Tables 4 and 5 –

negative figures imply a contribution to increasing the

rural-urban disparity in HAZ scores, while positive

figures show a contribution to reducing it. A large pro-

portion of the covariate effect is accounted for by a

limited number of characteristics. In Bangladesh, in the

lowest quantile (Q10), wealth (39%), mother’s education

(26%) and spouse’s education (22%) account for 87% of

the covariate effect which is explained by socio-economic

characteristics included in the model. The contribution of

other characteristics like child vaccination, working status

of the mother, number of children below five years, de-

pendency ratio and living in extended families is relatively

small and is significant only in some quantiles. As we

move from the lower to the higher quantiles, the contribu-

tion of mother’s education decreases while that of wealth

increases. The contribution of spouse’s education to the

covariate effect is nearly 20% across all quantiles. In Nepal,

Table 3 Unconditional Recentred Influence Function (RIF) quantile regression results for rural and urban households in

Nepal

Dependent variable: HAZ score

RURAL URBAN

OLS Quantiles OLS Quantiles

10 25 50 75 90 10 25 50 75 90

Female gender
of child

−0.01 −0.03 −0.06 0.02 0.02 0.09 0.02 0.08 0.01 0.02 0.01 −0.09

(0.04) (0.06) (0.05) (0.05) (0.06) (0.08) (0.07) (0.12) (0.11) (0.08) (0.10) (0.14)

Age of child −0.23*** −0.09*** −0.12*** −0.22*** −0.31*** −0.41*** −0.27*** −0.23*** −0.24*** −0.29*** −0.26*** −0.30***

(0.02) (0.03) (0.02) (0.02) (0.03) (0.04) (0.03) (0.04) (0.04) (0.04) (0.04) (0.06)

Child vaccinated 0.21*** 0.16** 0.13** 0.20*** 0.29*** 0.39*** 0.29*** −0.03 0.19* 0.24** 0.45*** 0.62***

(0.05) (0.08) (0.06) (0.06) (0.08) (0.12) (0.09) (0.14) (0.11) (0.11) (0.13) (0.20)

Age of mother 0.00 −0.01 −0.01** −0.01 0.00 0.01 0.01 −0.02 0.00 0.02** 0.01 0.01

(0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)

Mother’s working
status

−0.17*** −0.11 −0.14*** −0.12** −0.14** −0.29*** −0.12 −0.12 −0.10 0.03 −0.22** −0.23

(0.05) (0.07) (0.05) (0.06) (0.07) (0.11) (0.08) (0.14) (0.11) (0.10) (0.11) (0.17)

Mother’s
education (yrs)

0.05*** 0.03** 0.04*** 0.05*** 0.05*** 0.08*** 0.06*** 0.04* 0.06*** 0.07*** 0.06*** 0.06**

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.02) (0.02) (0.01) (0.02) (0.02)

Husband’s
education (yrs)

0.01** 0.03*** 0.02* 0.00 0.01 0.01 0.00 0.01 0.03* 0.01 −0.02 −0.01

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.02) (0.02)

Wealth index 0.22*** 0.17*** 0.22*** 0.31*** 0.30*** 0.16 0.15*** 0.10 0.05 0.15*** 0.24*** 0.16

(0.04) (0.05) (0.04) (0.05) (0.07) (0.11) (0.04) (0.07) (0.05) (0.05) (0.06) (0.10)

Extended family
dummy

−0.01 0.04 0.02 −0.02 −0.05 −0.04 −0.01 −0.06 −0.14 −0.11 0.04 −0.02

(0.04) (0.07) (0.05) (0.05) (0.06) (0.09) (0.07) (0.13) (0.10) (0.09) (0.10) (0.15)

Dependency
ratio

−0.06** −0.05 −0.02 −0.07*** −0.05 −0.08* −0.04 −0.14 −0.14* −0.06 0.05 0.05

(0.02) (0.05) (0.03) (0.03) (0.03) (0.04) (0.05) (0.10) (0.07) (0.05) (0.06) (0.09)

No. of children
(<5 yrs)

−0.03 −0.06 −0.08* −0.04 0.03 0.08 −0.05 −0.09 −0.04 0.00 −0.04 −0.02

(0.03) (0.06) (0.04) (0.04) (0.04) (0.07) (0.06) (0.13) (0.09) (0.07) (0.07) (0.11)

Constant −1.32*** −3.11*** −2.22*** −1.29*** −0.44*** 0.24 −1.44*** −2.33*** −2.20*** −2.00*** −0.76** −0.01

(0.13) (0.22) (0.18) (0.17) (0.19) (0.28) (0.24) (0.48) (0.32) (0.29) (0.34) (0.46)

N 4051 4051 4051 4051 4051 4051 1168 1168 1168 1168 1168 1168

R-sq 0.15 0.03 0.06 0.11 0.12 0.09 0.23 0.07 0.12 0.18 0.16 0.09

adj. R-sq 0.15 0.03 0.06 0.11 0.11 0.08 0.22 0.06 0.12 0.17 0.16 0.08

Figures in brackets are standard errors: Asterisks denote level of significance -***, ** and * denote significance at 1%, 5% and 10% level of

significance respectively.
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Rural 

Urban

Counterfactual

Figure 1 Distribution of Rural and Urban HAZ scores in Bangladesh.

Rural 

Urban

Counterfactual

Figure 2 Distribution of Rural and Urban HAZ scores in Nepal.
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Table 4 Decomposition of rural-urban differences in child nutrition outcomes – Bangladesh

Quantiles

Q10 Q25 Q50 Q75 Q90

Rural HAZ
scores

−3.5188 −2.7013 −1.8577 −1.0179 −0.1760

Urban HAZ
scores

−3.1753 −2.4321 −1.5227 −0.6166 0.2152

Observed raw
gap in HAZ
scoresa

−0.3436*** −0.2692*** −0.3350*** −0.4013*** −0.3912***

Covariate
effect (%
contribution)

−0.2694*** (78.43%) −0.2555*** (94.95%) −0.2493*** (74.39%) −0.2816*** (70.17%) −0.2434*** (62.19%)

Co-efficient
effect (%
contribution)

−0.0741 (21.57%) −0.0136 (5.05%) −0.0858 (25.58%) −0.1197 (29.83%) −0.1478* (37.78%)

Contribution of individual characteristics to rural-urban differences in HAZ scoresb

Covariate effect Co-efficient effect

Q10 Q25 Q50 Q75 Q90 Q10 Q25 Q50 Q75 Q90

Size of effect −0.2694*** −0.2555*** −0.2493*** −0.2816*** −0.2434*** −0.0741 −0.0136 −0.0858 −0.1197 −0.1478*

Explained

Female
gender
of child

−0.0001
(0.05%)

0.0003
(-0.15%)

−0.0002
(0.11%)

−0.0004
(0.22%)

−0.0014
(0.67%)

−0.0001
(0.14%)

0.0010
(-1.42%)

0.0024
(-2.20%)

0.0023
(-2.78%)

−0.0022
(2.09%)

Age of child −0.0060*
(3.16%)

−0.0085*
(4.38%)

−0.0127*
(6.69%)

−0.0171*
(9.59%)

−0.0246*
(11.76%)

−0.0014
(2.00%)

−0.0026
(3.69%)

−0.0035
(3.21%)

−0.0048
(5.81%)

−0.0051
(4.84%)

Child
vaccinated

−0.0039
(2.06%)

−0.0004
(0.21%)

0.0095***
(-5.00%)

0.0161***
(-9.03%)

0.0199***
(-9.52%)

0.0003
(-0.43%)

−0.0002
(0.28%)

−0.0005
(0.46%)

−0.0007
(0.85%)

−0.0005
(0.47%)

Age of
mother

−0.0021
(1.11%)

−0.0009
(0.46%)

0.0000
(0.00%)

0.0004
(-0.22%)

0.0015
(-0.72%)

0.0016
(-2.29%)

0.0011
(-1.56%)

−0.0035
(3.21%)

−0.0080
(9.69%)

−0.0106
(10.07%)

Mother’s
working
status

−0.0027
(1.42%)

−0.0027
(1.39%)

−0.0018
(0.95%)

−0.0021
(1.18%)

−0.0026
(1.24%)

−0.0030
(4.29%)

−0.0004
(0.57%)

−0.0007
(0.64%)

0.0006
(-0.73%)

0.0005
(-0.47%)

Mother’s
education
(yrs)

−0.0495***
(26.09%)

−0.0312***
(16.08%)

−0.0194**
(10.22%)

−0.0214**
(12.00%)

0.0065
(-3.11%)

−0.0066
(9.43%)

−0.0094
(13.33%)

−0.0096
(8.81%)

−0.0076
(9.20%)

−0.0087
(8.26%)

Spouse’s
education
(yrs)

−0.0424***
(22.35%)

−0.0394***
(20.31%)

−0.0339***
(17.85%)

−0.0423***
(23.72%)

−0.0453***
(21.66%)

−0.0103
(14.71%)

−0.0127
(18.01%)

−0.0116
(10.64%)

−0.0141
(17.07%)

−0.0078
(7.41%)

Wealth index −0.0748***
(39.43%)

−0.1026***
(52.89%)

−0.1122***
(59.08%)

−0.1019***
(57.15%)

−0.1404***
(67.14%)

−0.0497**
(71.00%)

−0.0482***
(68.37%)

−0.0948***
(86.97%)

−0.0643***
(77.85%)

−0.0757***
(71.89%)

Extended
family
dummy

0.0122*
(-6.43%)

0.0023
(-1.19%)

−0.004
(2.11%)

−0.0047
(2.64%)

−0.0225***
(10.76%)

−0.0008
(1.14%)

0.0011
(-1.56%)

0.0123**
(-11.28%)

0.0140**
(-16.95%)

0.0055
(-5.22%)

Dependency
ratio

−0.0151
(7.96%)

−0.0079
(4.07%)

−0.0196***
(10.32%)

−0.0130**
(7.29%)

−0.0098
(4.69%)

−0.0001
(0.14%)

−0.0003
(0.43%)

0.0005
(-0.46%)

0.0003
(-0.36%)

−0.0004
(0.38%)

No. of
children
< 5 yrs

−0.0051
(2.69%)

−0.0031
(1.60%)

0.0043
(-2.26%)

0.0082**
(-4.60%)

0.0097**
(-4.64%)

−0.0001
(0.14%)

0.0002
(-0.28%)

0.0000
(0.00%)

−0.0003
(0.36%)

−0.0003
(0.28%)

Total −0.1897***
(100%)

−0.1940***
(100%)

−0.1899***
(100%)

−0.1783***
(100%)

−0.2091***
(100%)

−0.0700***
(100%)

−0.0705**
(100%)

−0.1090***
(100%)

−0.0826***
(100%)

−0.1053***
(100%)

Unexplained

Residual −0.0797 −0.0615 −0.0593 −0.1033* −0.0343 −0.0041 0.0569 0.0233 −0.0371 −0.0426
aRaw gap in HAZ scores computed as rural HAZ scores- urban HAZ scores. The negative sign of the observed raw gap figures reflects the fact that rural HAZ

scores are lower than urban HAZ scores.
bFigures in brackets show percentage contribution of individual characteristics to the total explained effect.

Significant effects are in bold. Asterisks denote level of significance - ***, ** and * denote significance at the 1%, 5% and 10% level of significance respectively.
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in the lowest quantile, wealth (38%), mother’s education

(22%) and spouse’s education (22%) account for nearly

72% of the covariate effect. The contributions of child

vaccination and the working status of the mother are sig-

nificant in all quantiles, while the dependency ratio is sig-

nificant in some of the higher quantiles. However, in

Nepal, the contribution of mother’s education increases as

we move up the quantiles, while that of wealth decreases.

The contribution of spouse’s education is much lower

than in Bangladesh.

Tables 4 and 5 show that the co-efficient effect in both

Bangladesh and Nepal is predominantly due to the

differential effects of wealth in rural and urban settings.

A unit increase in the wealth index has a stronger

Table 5 Decomposition of rural-urban differences in child nutrition outcomes – Nepal

Quantiles

Q10 Q25 Q50 Q75 Q90

Rural HAZ scores −3.6498*** −2.9145*** −2.1065*** −1.2287*** −0.3370***

Urban HAZ
scores

−3.2651*** −2.5150*** −1.6845*** −0.8250*** −0.0186

Observed raw
gap in HAZ
scoresa

−0.3847*** −0.3995*** −0.4220*** −0.4037*** −0.3184***

Covariate effect
(% contribution)

−0.3744*** (97.32%) −0.3484*** (87.21%) −0.3045*** (72.16%) −0.3404*** (84.32%) −0.2608*** (81.91%)

Co-efficient effect
(% contribution)

−0.0103 (2.68%) −0.0510 (12.77%) −0.1175* (27.87%) −0.0633 (15.68%) −0.0576 (18.09%)

Contribution of individual characteristics to rural-urban differences in HAZ scoresb

Covariate effect Co-efficient effect

Q10 Q25 Q50 Q75 Q90 Q10 Q25 Q50 Q75 Q90

Size of effect −0.3744*** −0.3484*** −0.3045*** −0.3404*** −0.2608*** −0.0103 −0.0510 −0.1175* −0.0633 −0.0103

Explained

Female gender
of child

0.0001
(-0.04%)

0.0001
(-0.03%)

0.0000
(0.00%)

0.0000
(0.00%)

−0.0002
(0.06%)

−0.0001
(0.24%)

0.0000
(0.00%)

0.0000
(0.00%)

0.0000
(0.00%)

0.0001
(-0.15%)

Age of child 0.0043
(-1.71%)

0.0057
(-1.99%)

0.0102
(-3.06%)

0.0143
(-4.41%)

0.0189
(-5.66%)

0.0090
(-21.18%)

0.0092
(-31.51%)

0.0112
(-18.54%)

(0.0101
(-10.10%)

0.0118
(-17.35%)

Child vaccinated −0.0032
(1.27%)

−0.0026
(0.91%)

−0.0040*
(1.20%)

−0.0059*
(1.82%)

−0.0080*
(2.40%)

0.0003
(-0.71%)

−0.0020
(6.85%)

−0.0025
(4.14%)

−0.0047
(4.70%)

−0.0064
(9.41%)

Age of mother −0.0102**
(4.05%)

−0.0106***
(3.70%)

−0.0054*
(1.62%)

−0.0041
(1.26%)

0.0085
(-2.54%)

0.0010
(-2.35%)

0.0000
(0.00%)

−0.0011
(1.82%)

−0.0004
(0.40%)

−0.0008
(1.18%)

Mother’s
working status

−0.0210**
(8.33%)

−0.0258***
(9.00%)

−0.0224***
(6.71%)

−0.0267***
(8.23%)

−0.0538***
(16.11%)

−0.0028
(6.59%)

−0.0023
(7.88%)

0.0007
(-1.16%)

−0.0054
(5.40%)

−0.0054
(7.94%)

Mother’s
education (yrs)

−0.0560***
(22.21%)

−0.0944***
(32.93%)

−0.1174***
(35.17%)

−0.1091***
(33.63%)

−0.1794***
(53.71%)

−0.0016
(3.76%)

−0.0022
(7.53%)

−0.0029
(4.80%)

−0.0025
(2.50%)

−0.0022
(3.24%)

Spouse’s
education (yrs)

−0.0554***
(21.98%)

−0.0290***
(10.12%)

−0.0036
(1.08%)

−0.0204*
(6.29%)

−0.0177
(5.30%)

−0.0013
(3.06%)

−0.0026
(8.90%)

−0.0014
(2.32%)

0.0016
(-1.60%)

0.0007
(-1.03%)

Wealth index −0.0950***
(37.68%)

−0.1197***
(41.75%)

−0.1704***
(51.05%)

−0.1626***
(50.12%)

−0.0880**
(26.35%)

−0.0409**
(96.24%)

−0.0218*
(74.66%)

−0.0600***
(99.34%)

−0.0998***
(99.80%)

−0.0655***
(96.32%)

Extended family
dummy

0.0007
(-0.28%)

0.0004
(-0.14%)

−0.0003
(0.09%)

−0.0009
(0.28%)

−0.0007
(0.21%)

−0.0023
(5.41%)

−0.0049
(16.78%)

−0.0037
(6.13%)

0.0013
(-1.30%)

−0.0006
(0.88%)

Dependency
ratio

−0.0114
(4.52%)

−0.0046
(1.60%)

−0.0176***
(5.27%)

−0.0114**
(3.51%)

−0.0202***
(6.05%)

−0.0018
(4.24%)

−0.0017
(5.82%)

−0.0008
(1.32%)

0.0006
(-0.60%)

0.0006
(-0.88%)

No. of children
< 5 yrs

−0.0049
(1.94%)

−0.0061**
(2.13%)

−0.0029
(0.87%)

0.0026
(-0.80%)

0.0065
(-1.95%)

−0.0020
(4.71%)

−0.0009
(3.08%)

0.0001
(-0.17%)

−0.0008
(0.80%)

−0.0004
(0.59%)

Total −0.2521***
(100%)

−0.2867***
(100%)

−0.3338***
(100%)

−0.3244***
(100%)

−0.3340***
(100%)

−0.0425
(100%)

−0.0292
(100%)

−0.0604*
(100%)

−0.1000***
(100%)

−0.0680*
(100%)

Unexplained

Residual −0.0571 −0.0617 0.0294 −0.0160 0.0732 0.0322 −0.0218 −0.0572 0.0367 0.0104
aRaw gap in HAZ scores computed as rural HAZ scores- urban HAZ scores. The negative sign of the observed raw gap figures reflects the fact that rural HAZ

scores are lower than urban HAZ scores.
bFigures in brackets show percentage contribution of individual characteristics to the total explained effect.

Significant effects are in bold. Asterisks denote level of significance - ***, ** and * denote significance at the 1%, 5% and 10% level of significance respectively.
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association with child HAZ scores in urban households

than in rural households. The co-efficient effect of the

wealth index tends to widen rural-urban disparities, but

in Bangladesh the disadvantage of rural areas is partially

offset by the positive effect of extended families on child

nutrition in some quantiles.

Discussion

The QR-based decomposition methods provide specific

insight into the drivers of disparities in the lowest

quantiles of HAZ scores, which is useful for designing

interventions aimed at vulnerable households with the

highest levels of stunting. The quantification of the contri-

bution of individual socio-economic determinants to

rural-urban disparities can be used to assess the “returns”

to different types of interventions. In both countries,

rural-urban gaps in the lower half of the distribution are

largely accounted for by differing levels of covariates,

suggesting that bridging rural-urban inequality in under-

nutrition is largely a matter of equalizing endowments of

the determinants of nutrition. Our results also suggest

that much of this can be achieved by focussing on just

three determinants: maternal education, spouse’s educa-

tion and the wealth index. Other variables, child vaccin-

ation, age of mother, mother’s working status, extended

family dummy and the dependency ratio make a relatively

small contribution to explaining rural-urban disparities,

especially in the lower quantiles. We discuss below the

implications for the design of policies and programmes in

public health and complementary areas.

The preeminent role of maternal education in child

nutrition in the region is emphasised by our results. The

contribution of improved maternal education to bridging

rural-urban disparities is the largest in the lowest

quantiles of HAZ scores and is comparable in magnitude

to the contribution of the wealth index (improvements

in economic status) Plugging the maternal education gap

is, therefore, particularly important for alleviating rural-

urban disparity at the lower tail of HAZ. Bangladesh has

already made great strides in improving rural women’s

education over the last two decades. The Female Second-

ary Stipend (FSS) programme, a conditional cash transfer

programme introduced in 1994, provided impetus for a

rapid and substantial expansion in female secondary

school enrolment that saw enrolment proportion increase

from 35% to more than 50% within a decade [38]. The

FFS was implemented only in rural and non-metropolitan

urban areas, and is thus likely to have served to equalise

the endowment of mother’s education across rural and

urban areas. However, as Table 1 indicates, as of 2006

there was still a gap of 1.6 mean years of mother’s educa-

tion across rural (4.3 years) and urban (5.9 years) areas of

Bangladesh in our sample. Thus continued efforts to

bridge this gap will likely also continue to pay dividends in

terms of reducing rural-urban nutritional inequality. The

scope for attaining this improved nutritional equality divi-

dend is altogether larger in Nepal, where women’s educa-

tional outcomes remain worryingly poor, particularly in

rural areas. This is reflected in the gap of 2.2 mean years

across urban (4.2 years) and rural (2 years) areas in our

sample. As in many other spheres, education policy-

making in Nepal is likely to have been severely hampered

by decades of conflict and state fragility. In the current,

more stable environment, Bangladesh’s conditional cash-

transfer based model to boost women’s education may

serve as a useful model for Nepalese policymakers and de-

velopment agencies.

An important caveat to bear in mind regarding public

policymaking in the education sphere is the potential for

gender-targeted education programmes to encourage the

development of reverse gender-gaps. There is evidence

to show that boys’ enrolment in co-educational schools

in Bangladesh has been falling relative to girls [39], and

that an intra-household reverse gender gap has opened

up that could be associated with the FFS [38]. Our re-

sults indicate that the education of both girls as well as

boys is important for reducing rural-urban nutritional

inequality. From this perspective, while it is still critically

important to further boost the education of girls, it is

also important for policies and programmes to think

carefully about how unintended consequences in terms

of discouragement of the education of boys is avoided.

Bridging the gap in spouse’s education is also import-

ant for reducing rural-urban inequality across the HAZ

distribution in Bangladesh, and for the most nutrition-

ally vulnerable children in Nepal. In Bangladesh our re-

sults are consistent with a scenario wherein investments

in improving the education level of spouses (in addition

to investments in maternal education) have large im-

pacts on child nutrition outcomes across the distribution

of HAZ scores. This probably highlights the role of the

spouse in a context where women may be constrained

by social norms in accessing public health messages or

services. However, in Nepal, investments in improving

the education levels of spouses may have large impact

only in the lower end of the HAZ score distribution.

Similarly, measures to mitigate the adverse effects of

mothers’ working status in rural areas can be expected

to have a substantial impact on reducing rural-urban

disparities in Nepal. But in Bangladesh, such measures

are likely to have only a very limited impact. The decom-

position exercise can, therefore, provide useful inputs for

decisions on the relative priorities for different types of

interventions in specific contexts.

The difference in relative endowments of wealth is the

single most important factor in explaining rural-urban

disparities in our case study countries. Given the wealth

index is a composite of several variables, as discussed
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before, it is difficult to interpret wealth effects in terms

of specific interventions or policies. However, we note

that sanitation (toilet facilities) and water (source of sup-

ply) are two of the key components of the wealth index

in the two countries. Recent research in the region [40]

has highlighted the particular importance of sanitation

for child nutrition in areas of high population density.

As in the case of education, while both countries can re-

duce rural-urban nutrition inequality by bridging gaps in

improved sanitation and water supply, the potential for

doing so is larger in Nepal than in Bangladesh. 27% of

households in the urban sample and 59% of households

in the rural sample in Bangladesh still have access to

only ‘unimproved’ toilet facilities. The corresponding

numbers for Nepal are 45% for urban and 79% for rural

households. In Bangladesh, less than 1% of the urban

sample and only 4% of the rural sample use water from

unimproved sources. In Nepal, the corresponding num-

bers are 9% for the urban sample and 22% of the rural

sample. Bangladesh’s success in providing safe drinking

water over the last few decades has been facilitated by

the promotion of cheap shallow hand-pump technology.

The quality of rural services in the region relevant to

nutrition, such as in health care, have been called into

question [9,10]. The co-efficient effects of the core socio-

economic determinants are however, relatively very small

in magnitude. An important implication for public health

programmes arising from our results is that there is no evi-

dence that there is a substantial rural-urban service quality

differential impinging on rural-urban child nutrition gap.

For example, our results show that mother’s education,

measured in years, is an important determinant of the

rural-urban nutrition gap, and that this is largely a covari-

ate, rather than a coefficient, effect. If rural education were

of inferior quality to urban education, the strength of asso-

ciation between years of education and nutrition is likely

to be weaker in rural areas compared to urban, and the co-

efficient effect would be larger. Also, maternal education

impacts child nutrition partly through the use of more

proximal determinants like diets and use of health care

and ante/post-natal facilities [2]. The lack of importance of

coefficient effects implies that the limiting constraint in

rural-urban inequality is not the relative quality of food

availability or health services in these areas, but rather the

education endowments required to utilize them. Thus in-

terventions that close these endowment gaps will effect-

ively lower nutrition inequality. Note that this is not to say

that service quality issues are not important to child nutri-

tion; rather, the quality differentials are not currently large

enough to be driving rural-urban nutrition inequality.

Limitations of the study

We have used QR-CD methods to assess the relative im-

portance of covariate and coefficient effects in explaining

rural-urban disparities in child nutrition using cross-

sectional data sets for two countries that are at different

stages of development and urbanisation. The efficacy of

socio-economic endowments and public health infra-

structure in promoting improved child nutrition may

change as a country develops. QR-CD methods can pro-

vide more insights into the changes in the efficacy of

public health interventions if they can be applied to re-

peated cross-section datasets within a country. This is

an extension of the study that we intend to explore sub-

ject to the availability of data. It must be noted that QR-

CD methods are computationally intensive and require

large datasets. The method cannot be applied to smaller

datasets such as those available from intervention stud-

ies or RCTs. The CD exercise can provide reliable results

only if the basic quantile regression includes all the im-

portant determinants of child nutrition outcomes and is

well specified. While our choice of determinants has

been constrained by the coverage of the DHS surveys,

we have included the key exogenous demographic and

economic determinants considered in the previous litera-

ture [2,11,13]. The linear specification adopted for the

quantile regression may not accommodate non-linear and

threshold effects associated with the determinants. We

have, however, tested for such effects for key variables like

maternal education and spouse’s education.

Conclusions
Using DHS datasets we examined rural-urban differ-

ences in child nutrition outcomes using HAZ scores for

two South Asian countries – Bangladesh and Nepal

which differ substantially in the extent of urbanisation.

The similarity in the pattern of rural-urban differentials

in these two countries suggests that these differentials

persist even as urbanisation and economic development

proceed. The methodology employed in this paper al-

lows us to decompose rural-urban differences in child

nutrition outcomes into covariate and co-efficient effects

and further enables us to quantify the contribution of in-

dividual explanatory variables (socio-economic charac-

teristics) to rural-urban differences via these effects. The

decomposition of rural-urban differences into covariate

and co-efficient effects shows that the covariate effect is

dominant. A core set of determinants – wealth index

(which incorporates ownership of assets and access to

sanitation and drinking water), maternal education and

spouse’s education – accounts for a very large proportion

of the covariate effects in both countries, which suggests

that there are no fundamental differences in the socio-

economic determinants of child nutrition outcomes in

rural and urban areas. The dominance of covariate effects

confirms findings from earlier studies [2,11] that rural-

urban disparities in child nutrition are primarily attribut-

able to the difference in levels of critical determinants and
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that differences in the strength of association between

determinants and nutrition outcomes are of relatively

small magnitude. Our analysis suggests that public

health interventions aimed at overcoming rural-urban

disparities in child nutrition outcomes need to focus

principally on bridging gaps in socio-economic endow-

ments and improving the quality of rural infrastructure.

The improvement of child nutrition outcomes in devel-

oping countries does not appear to call for fundamen-

tally different approaches to public health interventions

in rural and urban areas.

Endnotes
a The DHS surveys generally cover water supply, elec-

tricity, sanitation, flooring type, ownership of assets such

as radio, television, telephone, and refrigerator, owner-

ship of agricultural land and livestock, persons sleeping

per room and country specific items. Ownership of agri-

cultural land and livestock is not used in the calculation

of the DHS Wealth Index as these assets are not gener-

ally available in urban areas.
b There have been some concerns that the DHS

Wealth Index is too “urban” in its construction depend-

ing on assets and services that the urban population

may have but the rural population may not have. This

has been sought to be addressed in more recent DHS

surveys by inclusion of more items mainly rural in

character (e.g., water pumps, grain grinders). A number

of alternative approaches to construction of rural and

urban wealth indices using DHS data are possible [41]

including construction of separate rural and urban indi-

ces. Separate indices for rural and urban areas would

not be useful for our purposes as the methods used in

this study require that the determinants of HAZ scores

are measured in the same way in rural and urban areas.
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