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A study on the use of chemical conversion coating as a preparative technique for foam-

based structured catalysts, in the water gas shift reaction, is presented. The results 

showed a significant correlation between the topological properties of the structure 

and the preparation technique, highlighting how chemical conversion coating is a 

suitable technique for highly porous structures. In the first part of the paper, the 

performance of two structured catalysts obtained by coating commercial aluminium 

foams, with different porosity, was compared. The activity tests suggested that 

diffusion phenomena occurred in the case of the uncompressed foams. These results 

were confirmed by evaluating the performance of a catalyst obtained by coating a 

compressed 5 PPI pore size commercial aluminium foam, which showed much higher 

activity, at the same contact time, with respect to the catalyst obtained with the 

corresponding non-compressed foam. Finally, the performance of a catalyst obtained 
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by coating an aluminium sponge, synthesized by the replication technique, was 

compared to that of a catalyst obtained by coating a compressed 40 PPI pore size 

aluminium foam. The higher activity of the sponge-based catalysts confirmed the 

dependence of the activity on the topological properties of the structure: X-ray 

computed tomography images highlighted the narrow distribution of the pore sizes and 

the presence of “bottleneck type” connections in the sponge structure, which are 

beneficial for the activity of the catalyst. 

 

Keywords: Water gas shift; Chemical conversion coating; Aluminum foams: 

Structured catalyst 

 

1. Introduction 

Hydrogen is the first and lightest element in the periodic table and, therefore, the most 

abundant in the universe; its existence, as well as its flammability, have been known 

since the second half of the eighteenth century. The high abundance of hydrogen, 

coupled with its high energy density, make it the first candidate to become the energy 

vector of the next energy transition [1]. Hydrogen can be produced from both fossil 

and renewable sources [2][3], but the majority is still derived from fossil reserves. The 

hydrogen first has to be extracted from the fossil source, then it can be used in a fuel 

cell to generate electrical power [4][5]. Furthermore, problems related to storage [6], 

transport and security of hydrogen remain partially unresolved. The large-scale 

centralized production of hydrogen [7], therefore, appears to be difficult, while 

distributed production is much more attractive [8], as distributed production would 

considerably limit the problems associated with storage and transport. Unfortunately, 
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most hydrogen is produced by reforming processes, which, though effective, generate 

a syngas rich in carbon monoxide; a poison for proton exchange membranes. 

Therefore, the syngas goes through a series of further transformations, such as two 

stages of water gas shift [9][10] and one of methanation [11][12], preferential 

oxidation [13] or a treatment with permselective membranes [14]. The overall process 

is effective, but inefficient and not suitable for distributed production; where small and 

smart plants are needed. In recent decades, the attention of many research groups has 

been focused on the intensification of the CO Water Gas Shift (WGS) process [15] 

which is clearly, among the process listed above, the most inefficient. The two-stage 

approach to water gas shift presents several disadvantages: the intermediate cooling 

phase requires the presence of an auxiliary unit, which adds considerable cost to the 

process; moreover, the two stages can be considered as two separate processes, further 

multiplying the costs. In addition, a two-stage process plant is not suitable for the 

small-scale applications used in distributed hydrogen production. Increasingly 

sophisticated catalytic formulations [16], proposed in recent years, can be considered 

competitive alternatives to those actually used in current catalytic systems. In 

particular, the noble metal-based catalysts supported on reducible oxides, due to the 

level of catalytic performance, are suitable for the design of single-stage WGS reaction 

processes [17]. However, these formulations do not solve the underlying problem; that 

the double-stage process is not efficient. The single-stage process is the only viable 

way to achieve a robust reduction in costs and plant sizes. A possible solution comes 

from the use of highly conductive structured carriers, coupled with highly active 

catalytic formulations [18], i.e. structured catalysts. In the last decades, structured 

catalysts have been extensively studied, as profitable alternatives to the traditional 
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powder and pellets catalysts, providing better performance in terms of pressure drops 

(thus decreasing the energy costs of operation and increasing the lifetime of the 

catalyst) [19] and heat and mass transfer [20]. In this regard, the development of highly 

efficient structured catalysts allow processes to be operated in a continuous mode, thus 

avoiding the barrier towards scaling up [21]. In addition, due to their standard shape 

and well-defined geometrical and flow properties, foams are highly suitable for easy 

scale up of the catalytic reactors [22]. 

One of the main issues related to the use of pellet-shaped catalysts is their inefficient 

heat conduction, which leads to a disadvantage both in endothermic and exothermic 

processes: in the first case, temperature gradients along the catalytic bed induce the 

formation of cold zones that reduce the reaction kinetic; in the latter case, the presence 

of hot-spots can cause damage to the catalyst and induce its early deactivation. To 

overcome the limitations of conventional catalysts, higher surface area for the thermal 

exchange is required, which is normally achieved by using multiple long reactor tubes 

and/or small diameter, with a negative impact in terms of pressure drops. On the other 

hand, the route of increasing the diameter of catalyst pellets has a detrimental impact 

in terms of radial heat transfer, decreased effectiveness factor and more catalyst 

volume required [23]. Therefore, the high thermal conductivity of the structured 

carriers plays a key role in the intensification of endothermic and exothermic reaction-

based processes, allowing for effective management of the heat of the reaction [24]. 

In particular, highly conductive carriers may allow the achievement of a pseudo-

isothermal profile along the catalytic bed, which is a necessary condition for the 

realization of a single stage WGS process [25]. Different types of structured carriers 

have been proposed, such as honeycomb monoliths, open-cell foams and wire meshes. 
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Among all of the possible geometries, foams appear to be the most promising: 

comparative studies have shown that open-cell foams provide optimal geometry in 

many catalytic processes, where tortuosity ensures better axial and radial heat 

dispersion and mass transfer [26]. In fact, the tortuosity of the structure induces a 

turbulence in the gas flow which promotes transport phenomena, while other systems 

such as honeycomb monoliths have ordered channels that split the total flow, thus 

reaching conditions for laminar flow in each of them. In addition, compared to 

commercial pelletized catalysts, higher geometrical surface areas are possible, which 

enhance the activity per unit reactor volume and the external mass transfer rates [27]. 

Foams can be easily coated with high surface area materials and various well-

estabilished technologies are available to do this [28]. Among these, the washcoating 

technique is the most conventional preparation method; it allows very high active 

metal loading of the pellets, and thus every pellet catalyst formulation can be replicated 

with the structured catalyst. In previous studies, the effective thermal conductivity of 

aluminium foam-based catalysts has been related to the performance, in terms of CO 

conversion, for the water gas shift reaction [29]. Heat exchange in porous structures is 

a relatively complex phenomenon, because it takes place in two phases: in the solid 

network and in the fluid [30]. Many investigations have focused on the correlation 

between the effective thermal conductivity and the porosity; for high porosity 

commercial metal foams, it has been suggested that the effective thermal conductivity 

strongly depends on the cross-sections of the fibre and intersections. However, no 

systematic dependence has been found on pore density [31]. On the other hand, the 

effective thermal conductivity of open cell replicated aluminium metal sponges [32], 

with a porosity (expressed as a fraction of the whole volume) from 0.57 to 0.77 and 
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pore size between 0.7 mm and 2.4 mm, decreases with increasing porosity, while no 

pore size influence was found [33]. Another critical issue related to the preparation of 

structured catalysts is the loading of the active species on the structured carrier. 

Currently, the most common method to prepare structured catalysts is washcoating: 

this method consists of loading the carrier with a primer through a colloidal suspension 

of alumina [34] or silica [35] as a binder. This method involves exploiting the adhesion 

capacity of these species with the carrier, while the active species can be loaded by 

mixing with the primer or by subsequent impregnation. This method has been 

extensively studied over recent decades [36], with the aim of optimizing the procedure. 

Alternative binders have been proposed, allowing the wide use of structured catalysts, 

in important industrial processes [37]. Despite its wide use in structured catalysts 

preparation, washcoating has some disadvantages that affect its use in some cases: it 

is not suitable for small pore size foams [38] and the resistance to mechanical stresses 

of the coating depends on the type of binder [39]. Additionally, the primer may not be 

inert towards the process, and may be detrimental in some cases [40]. Moreover, high 

specific surface areas can be reached only by loading a large amount of primer and 

thus, through the formation of too thick a coating. A possible alternative to 

washcoating is chemical conversion coating, which allows a thin coating of ceria [41], 

zirconia or titania [42] to be created on aluminium surfaces. This technique has been 

successfully used in protecting aluminium alloys from corrosion. Moreover it is easy 

to perform and the resulting coating is highly resistant to mechanical stresses [43] [44]. 

Conversely, the maximum loading of the protecting species is related to the surface 

area per unit volume. In previous work, the possibility of using this technique to 

prepare a ceria-based structured catalyst for the WGS reaction was demonstrated [45]. 
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Ceria is considered an excellent support, thanks to its high oxygen storage capacity 

[46], in fact it is actively involved in redox behavior and the catalytic activity of the 

supported catalysts.  This leads to improved reaction rates, not only in WGS but also 

in reforming reactions [47]. It is widely recognized that ceria has the ability to enhance 

the CO conversion in the WGS reaction because it has a higher redox couple capability 

than other oxides, due to the high oxygen mobility in the lattice [48]. This mobility, 

which is related to the oxygen storage capacity, is also responsible for the higher strong 

metal to support interaction (SMSI) of ceria compared to non-reducible supports [49] 

[50]. Moreover, CeO2 has also basic properties, which can inhibit coke formation, 

resulting in more stable catalysts [51].  

Herein, we report a comparative study on some structured catalysts, highlighting the 

high correlation between the topological properties of the carriers and the activity of 

the corresponding structured catalysts obtained by chemical conversion coating, with 

a ceria precursor, followed by impregnation with a platinum precursor, in the CO WGS 

reaction. Discussion of the activity tests is divided in two parts: in the first part, we 

discuss the effect of porosity and the relative density of commercial aluminium foams 

on the activity of the corresponding catalysts in the WGS reaction. In the second part, 

we compare the activity of a catalyst obtained by coating an opportunely-shaped 

commercial foam with a catalyst obtained by coating a replicated aluminium sponge.  

2. Materials and Methods 

2.1 Replicated aluminium sponge preparation 

Samples were made by the replication process [52]. Bread flour (Shipton Mill) and 

NaCl (Fisher Scientific) were blended and mixed with water (in the ratio 70% NaCl, 

15% flour and 15% water by mass) to form a dough-like paste.  These were then 
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shaped into spheres of diameter 2.36 mm to 2.80 mm (checked by sieving the spheres 

to separate those outside this range), and gradually heated up to 973 K in air (held at 

the maximum temperature for 1 hour) to harden. 

The preforms were then placed into a vacuum chamber with a block of 99.85% pure 

aluminium on top (supplied by William Rowland Ltd, Sheffield, UK). The temperature 

was raised at 293 K per minute to 1013 K and held at that level for 105 minutes. Argon 

gas was then let into the chamber up to a pressure of 2.5 bar to cause the aluminium to 

infiltrate the spaces between the spheres in the preform, and the chamber was cooled 

under pressure. After solidification, a dissolution treatment in water was used to 

remove the NaCl, and samples were cut by electro-discharge machining (EDM) into 

cylinders of length 32 mm, diameter 19 mm and mass 6.9 g. 

 

2.2 Shaping of commercial aluminium foam  

The commercial aluminium foam samples studied were prepared by machining from 

larger blocks of the commercial product (5 PPI, 40 PPI open cell, 10% relative 

density). The first set of aluminium carriers (designated as Fn, where n = 5, 40 

corresponds to the P.P.I. of the foam) was obtained by machining to realize a cylinder 

with a diameter of 13 mm and a length of 103 mm. Moreover, a 5 PPI foam (size 

(30×13×103) mm) was compressed and shaped (designated as Fn, where n = 5_C, n is 

the porosity of the parent foam and C identifies that it has been compressed) to make 

a cylinder with the same size, but with increased relative density. The second set was 

composed of a replicated aluminium sponge, processed as discussed above, and a foam 

obtained by compressing and shaping a 40 PPI foam (Fn where n = 40_C) (see Table 

1). 
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Table 1. Textural properties of the structured carriers 

Carrier Length 
(mm) 

Diameter 
(mm) 

Pore size 
 (PPI) 

Relative 
density (%) 

F5 103 13 5 10 
F40 103 13 40 10 
F5_C 103 13 - 29 
F40_C 32 19 - 28 
R_Sponge 32 19 - 28 

 

2.3 Ceria coating process and catalyst preparation 

The aluminium carriers were initially degreased with acetone, then etched with sodium 

hydroxide solution (1.5 M) for 1 minute and finally treated with nitric acid solution 

(35 wt%) for 30 s. After each treatment, the carriers were thoroughly washed with 

distilled water. Immediately after pre-treatment, the carriers were immersed in the bath 

for coating deposition at a temperature of 323 K for the first set of foams, and at a 

temperature of 313 K for the latter set. The bath was made by dissolving CeCl3•7H2O 

and H2O2 35 wt% in distilled water, in a mass ratio 1/3/75, acidified with HCl until a 

pH of 3 was reached. The chemical treatment was repeated four times for 2 hours; after 

each treatment the resulting coated carriers were washed with distilled water, the 

excess of water was removed with compressed air and dried at 393 K for 2 hours. The 

active metal was then loaded by impregnation of the coated carriers with a solution of 

tetrammineplatinum (II) nitrate, dried at 393 K for 2 hours and calcined at 723 K for 

3 hours. 

2.4 Characterization techniques 

The coating coverage and active species loading were evaluated by means of energy 

dispersive X-ray fluorescence (ED-XRF) using an ARL QUANT'X ED-XRF 

spectrometer (Thermo Scientific). The resistance of the coating to mechanical stress 

was evaluated using an ultrasound adherence test with an ultrasonic bath CP104 (EIA 



 

10 
 

S.p.A.). The coated carriers were dipped in ethanol at 298 K and submitted to 

ultrasound, at 60% of the rated power of the equipment (200 W; 39 kHz), for six cycles 

of 5 minutes. The XRD diffractograms were obtained with a Brucker D8 Advance, 

with a Cu Kα radiation source (35 kV; 40 mA) in the 2θ range (20 to 80) °, (Stp = 737; 

Stp size = 0.0814; t/Stp = 0.5 s). Crystallite dimensions were calculated from the 

diffractograms by applying the Scherrer equation. The structural changes were 

evaluated using an inVia Raman microscope (Renishaw), equipped with a 514 nm Ar 

ion laser operating at 25 mW. Sample morphology was observed by a field emission 

scanning electron microscope (FE-SEM, mod. LEO 1525, Carl Zeiss SMT AG, 

Oberkochen, Germany). The H2-TPR experiments were carried out before the activity 

tests, with a reducing stream of 500 Ncc/min containing 5 vol% of H2 in N2, in the 

temperature range of 298 K to 723 K, with a heating rate of 10 K/min. 

X-ray computed tomography (XCT) measurements were made using a Nikon MCT 

225 system with two different scan setups, optimised for each scanned sample. Two 

samples were obtained by cutting the PtCeR_Sponge and PtCeF40_C exhausted 

catalysts and these were analyzed by XCT. The scan of the PtCeR_Sponge sample was 

performed at a geometric magnification of 14×, providing a voxel size of 14.3 μm. The 

following parameters were used: 3142 X-ray projections formed by averaging two 

frames per projection, each lasting 2000 ms, a detector gain 24 dB; X-ray tube voltage 

115 kV and current 124 μA. The scan of the PtCeF40_C sample was performed at a 

geometric magnification of 9×, providing a voxel size of 22.2 μm. The following 

parameters were used: 3142 X-ray projections formed by averaging two frames per 

projection, each lasting 1425 ms, a detector gain 24 dB; X-ray tube voltage 115 kV 

and current 191 μA. For both XCT scans, a 0.5 mm copper X-ray pre-filter was used 
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and a warmup scan of approximately one hour was performed prior to the scan. A 

detector shading correction was applied by averaging 256 reference frames (128 bright 

and 128 dark), and flux normalisation was applied during the scan. 

XCT data were acquired using Nikon’s proprietary acquisition software (X-Inspect) 

and reconstructed using Nikon’s proprietary reconstruction software (CT-Pro). 

Surface determination was performed on the reconstructed XCT volume in 

VGStudioMAX 3.2 using the iterative maximum gradient method with the ISO-50 

isosurface as a starting point [53], over an initial search distance of 4 voxels. Data were 

then triangulated and exported from VGStudio using no mesh simplification and 

imported into MeshLab 2016 for visualisation. 

2.5 Catalytic activity tests 

The activity tests were performed at atmospheric pressure, in the temperature range of 

553 to 673 K, decreasing the temperature in steps, and then by evaluating the products 

composition when steady state temperature conditions were obtained. The reactor was 

fed with a reaction mixture of 8 % CO, 30 % H2O and 62 % N2, in a stainless steel 

tubular reactor with an internal diameter of 22 mm and 400 mm length, at a contact 

time (τ) between 24 ms and 99 ms (GHSV = 36364 - 150000 h-1). The reaction product 

composition was evaluated, on dry basis, by means of an ABB system equipped with 

the non-dispersive infrared analyser Uras 14 for CO, CO2 and CH4 and a thermal 

conductivity detector Caldos 17 for H2. 

2.6 Kinetic evaluations 

In order to develop a kinetic model able to predict the catalytic behaviour of Al-foams 

during the WGS reaction, the mass balance equations were written for every 

component and derived by assuming a steady state and a piston flow of the gas. A 
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finite increment of 5 × 10-5 g was selected for the catalytic mass in order to ensure that 

the numerical integration remained stable; the Euler numerical method was used to 

solve the differential equations and to integrate the system. After the solution of the 

mass balance, the results of the model were compared with the experimental values, 

through an objective function which involves the minimization of the differences 

between the above values through a least-squares method, using the kinetic constants 

as the variable terms. The model was implemented in the software Microsoft Office 

Excel 2016. 

3. Results and discussion  

3.1 Characterization results 

The chemical composition of the catalysts was also measured by means of ED-XRF, 

to evaluate the loading of ceria and platinum (Table 2). The results showed that by 

increasing the pore density of the foam (5, 40 PPI) an increase of the ceria loading is 

obtained. This result may be explained by considering that a higher foam surface area 

per unit volume is available at higher values of PPI (which correspond to smaller 

pores) [54]. As a consequence of the higher ceria loading, the samples with higher PPI 

values also showed higher Pt loading. Apart from this effect, the difference in the ceria 

loading between the compressed and uncompressed F40 foam was attributed to the 

different coating reaction temperature. The chemical conversion coating is the result 

of an oxidation reaction between the metallic surface and the salt precursor of the 

protecting oxide (in our case cerium (III) chloride), so under the same overall reaction 

conditions, the extent of the coating available for reaction depends on the metallic 

surface area. The reaction mechanism for the ceria conversion coating provides a series 

of redox reactions in which the surface aluminium is oxidized in acidic media with the 
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formation of hydroxyl ions [55]. At the same time, cerium (III) chloride is itself 

oxidized to give a cerium (IV) hydroxide or peroxide on the aluminium surface and 

the transformation to cerium (IV) oxide is subsequently obtained by calcining. This 

technique exploits limited and controlled corrosion to arrive at a material condition 

which protects against further, unwanted corrosion and, therefore, as the reaction 

proceeds, the surface is increasingly covered and less and less remaining aluminium 

can be oxidized. At the same time, the loading is strongly dependent on the reaction 

temperature, with a higher temperature corresponding to a higher loading. Platinum 

loading was carried out by impregnation of the coated foams before calcining, in a hot 

solution of tetramine platinum nitrate. The XRF results showed that the ratio between 

platinum and ceria was similar for all the catalysts. 

  

Table 2. Catalysts characterization results 

Catalyst Chemical composition (wt%) Crystallite size 
(111) (nm) 

BET 
surface 

area 
(m2/g) 

 Al CeO2 Pt CeO2 Pt  
PtCeF5 96.0 3.2 0.4 7.4 35 2.1 
PtCeF40 89.0 9.9 1.1 7.8 33 8.1 
PtCeF5_C 95.8 3.8 0.4 7.7 32 1.9 
PtCeR_Sponge 95.9 3.7 0.4 7.3 22 2.0 
PtCeF40_C 90.4 8.7 0.9 7.4 22 7.1 

 

BET surface area measurements showed a progressive increase in the surface area of 

the structured catalysts with increasing active component loading. From the obtained 

data, we hypothesized that the surface area of the coating created was about 70 m2/g. 

In order to evaluate the resistance of the coating to mechanical stress, the coated 

carriers were subjected to an ultrasound adherence test, as indicated above. No mass 
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loss was detected, suggesting the formation of a strongly bonded coating.  

XRD diffractograms of the samples showed characteristic peaks for the aluminium 

carriers (Figure 1), of the cubic ceria fluorite type coated to the aluminium surface. 

The three peaks at 2θ = 39.9, 46.4 and 67.7 were attributed to platinum. The crystallite 

size of platinum was also calculated by means of the Scherrer equation (Table 2), 

highlighting similar sizes for all the catalysts. 

 

Figure 1. Diffractograms of PtCeF40 and CeF40. 

Raman analysis showed that the coated surface of the foams contains a highly 

defective ceria, while the calcined catalyst clearly shows the formation of the typical 

cubic fluorite structure (Figure 2). The CeF40 spectrum showed a large peak at about 

469 cm-1, which was attributed to the F2g mode typical of a fluorite-type cubic 

structure. This peak corresponds to the symmetrical stretching of oxygen around Ce4+. 

The two bands at approximately 270 cm-1 and 600 cm-1 were attributed respectively to 

the second-order transverse acoustic mode (2TA) and the defect induced mode (D) of 

ceria. It has been observed that these defects promote the catalytic activity of ceria, as 

they regulate the oxygen storage capacity of the support, through the redox cycles 

between the species Ce4+ and Ce3+ [56][57]. The peak at 842 cm-1 has been attributed 

to the stretching of the O-O bonds of the peroxide species [58]. This identification 

supports the reaction mechanism previously proposed, according to which ceria is 
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formed in the presence of H2O2 and there is subsequent decomposition of Ce(O2)(OH)2 

at high temperature. The PtCeF40 spectrum showed two peaks at 461 cm-1 and 516 cm-

1. The 461 cm-1 peak was ascribed once again to F2g mode, while the peak at 516 cm-1 

was attributed to the interaction with platinum [59]. 

 

Figure 2. Raman spectra of PtCeF40 and CeF40 

The SEM image of the coated foams highlighted the nanometric morphology of the 

coating. Moreover, canal-like or fracture-like cavities are present, which could be 

beneficial structures to increase the catalytic activity (Figure 3). 

 

Figure 3. SEM image of CeF40 
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Good coverage of the surface with ceria and the good dispersion of metallic platinum 

were indicated by the EDS imaging. The distribution of aluminium on the surface 

shows that the majority of the surface is covered by ceria and that there are no cerium-

free islands. 

 

 

Figure 4. EDS of PtCeF40 

While the platinum distribution is satisfactory, the ratio between platinum and cerium 

is not constant throughout the image. This factor implies an imperfect dispersion, 

attributed to the method used in the platinum impregnation (see Figure 4). 

3.2 Activity tests results 

In a preliminary comparison, the activity of the two structured catalysts PtCeFn with 

n = 5, 40 was evaluated by performing the tests at the same contact time (τ = 30 ms). 
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For all the catalysts, the results showed a progressive reduction of the CO conversion 

with increasing temperature (see Figure 5 A).  

 

 

Figure 5. CO conversion as function of temperature at τ= 30 ms, feeding 
conditions: 8%CO, 30% H2O, 62% N2, P=1 atm. Comparison among the PtCeFn 
catalysts with n=5, 40, 5_C (A) and PtCeF5 catalyst at three different flow rate: 
200, 400 and 600 Ncc/min (B). 

By comparing the performances of the two uncompressed catalysts, the foam having 

a smaller pore diameter (PtCeF40) displayed slightly increased CO conversion. These 

results suggest a correlation between the porosity of the foam and the catalytic activity. 

In fact, two main phenomena were relevant; the reaction and the mass transport within 

the foam. The latter phenomenon was dominant in the case of the PtCeF5, whose lower 

CO conversion showed that the chemical reaction is not controlling the process in this 

case. This problem may be due instead to an insufficient diffusion of the reactant 

within the catalytic bed. This hypothesis is suggested by the fact that, in the case of 

PtCeF40, an enhanced CO conversion was obtained by increasing the temperature; 

this foam, in fact, has a smaller pore dimension, which forces the gas distribution into 

the structure and increases the local gas velocity. As such, a higher turbulence in the 

flow (and, therefore, better diffusion) is achieved. To experimentally verify the 

eventual external diffusion limitation, the PtCeF5 sample was prepared at three 



 

18 
 

different catalytic masses and tested under three flow-rates: 200, 400 and 600 Ncc/min, 

by maintaining the same hourly gas space velocity, as well as contact time. The results, 

shown in Figure 5 (B), demonstrate that, at temperatures lower than 640 K, when the 

gas velocity though the catalytic bed is changed, the CO conversion remains the same. 

On the other hand, at higher temperatures, the contribution of diffusion is more 

pronounced compared to that of the chemical reaction. These results also explain the 

similar trend of the curves for PtCeF5 and PtCeF40 observed below 640 K in Figure 

5 (A). To better explore this phenomenon, as mentioned above, an aluminium foam of 

size (30 × 13 × 103) mm and porosity 5 PPI, was compressed with a bench vice in the 

radial direction, to obtain a cylindrical structure with 13 mm diameter and 103 mm 

length. The pressed structure was coated, and the performance of the resulting catalyst 

compared to the corresponding PtCeFn catalyst (Figure 5 (A)). The CO conversion 

exceeded 75% at 673 K and reached 25% at 610 K. The compression of the carrier 

increased the relative density of the foam, deforming the pores and generating 

something similar to a dense wire mesh. Thus, a great increase of the tortuosity was 

achieved and the huge turbulence created in the reduced size pores gave a boost to the 

reaction. 

In the second part of this work, the activity of a catalyst obtained by coating a 

compressed 40 PPI aluminium foam (PtCeF40_C) was compared with a catalyst 

obtained by coating a replicated aluminium sponge (PtCeR_Sponge), with the same 

relative density, as described in section 2.1; the activity test results were compared in 

terms of the reaction rate. For both the catalysts investigated in this work, the kinetic 

constant k of the WGS reaction was calculated on the base of the Arrehnius equation 

by optimizing the pre-exponential factor and the activation energy values following 
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the rate expression used in previous work [21], under the hypothesis of first-order 

dependency on the CO and H2O reactants. (Eq.1, where Keq is the equilibrium constant 

calculated through the GasEQ tools and Pi refers to the partial pressure of the various 

components). This assumption, which is coherent with the experimental data, was also 

used by other authors for CeO2-based catalysts [60]. 

𝑟 = 𝑘 ൬𝑃ை𝑃ுଶை − ଵ 𝑃ைଶ𝑃ுଶ൰. Eq. 1 

From the slope and the intercept of the fitting line, it was possible to evaluate the 

kinetic expression (activation energy and pre-exponential value, respectively) and the 

values found for the two samples are shown in Table 3.  

Table 3. Kinetic parameters 

Sample Activation Energy  

(kJ·mol-1) 

Pre-exponential factor 

(kmol·s-1·atm-2) 

PtCeR_Sponge 100 1758 

PtCeF40_C 104  1195 

Very close activation energies were calculated for the two catalysts, implying that the 

difference is coherent with the experimental error. Moreover, the activation energy 

found for the Pt-based catalyst of the present report is coherent with the values reported 

for similar catalytic systems in the recent literature [61]. The CO reaction rate (rCO, 

molCO·gcat
-1·s-1) was calculated according to previously reported expressions [62]. A 

comparison between the two catalysts at different contact times was undertaken, and 

in 
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Figure 6, the result at 29 ms is reported. From the obtained data, it is clear that the 

prediction of the first-order expression is in agreement with the experimental values; 

moreover, for all the investigated contact times, the CO reaction rate measured for the 

PtCeR_Sponge was higher than that observed over the PtCeF40_C catalyst. The time 

on stream experiment carried out on the PtCeR_Sponge catalyst (see Figure 7), showed 

a high stability of this catalyst: less than 10% of CO conversion was lost during the 

first 8 hours of reaction, while in the following hours the conversion remained stable. 

Figure 6. Arrhenius plots of kinetic reaction rates; feeding conditions: 8%CO, 
30% H2O, 62% N2, P=1 atm. (A) Comparison between PtCeR_Sponge and 
PtCeF40_C at a contact time of 29 ms. (B) Comparison between two contact times 
(24 ms and 29 ms) for PtCeR_Sponge. 

After 35 hours, a cycle of oxidation (TPO) and reduction (H2-TPR) was performed 

without affecting the CO conversion in the following experiment. 
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Figure 7. Time on stream on PtCeR_Sponge catalyst. Feeding conditions: 8%CO, 
30% H2O, 62% N2, P=1 atm, T= 593 K, τ= 38 ms 

In all tests, no methanation occurred, such that high selectivity to hydrogen was 

achieved. The activity tests results confirmed that the textural characteristics of the 

structure can affect the performance of the catalysts. In Figure 8, images of the XCT 

data of the two catalysts are reported. These images highlight the physical differences 

between the two structures: the pores of the sponge had a spherical form, and small 

openings between the pores, while in the compressed foam it was impossible to define 

the individual pores. 

 

Figure 8. 3D XCT images of PtCeR_Sponge (A) and PtCeF40_C (B). Lateral 
view. 

However, pseudo-elliptical cavities can be identified in the compressed foam 

structures, formed from the initial porous structure as the result of the compression. 

Moreover, the compression process seems to have distorted the structure in an uneven 

manner. Nevertheless, as can be seen in the XCT data, the pores of the sponge are 
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interconnected with smaller channels through which the gas is forced to flow. The top 

view of a segment of the two structures highlights the difference between the void 

distribution in the two cases (Figure 9).  

 

Figure 9. “D XCT slice data of PtCeR_Sponge (A) and PtCeF40_C (B). View from 
the top. 

The pores in the sponge have a limited number of small connections with the adjacent 

pores, giving rise to “bottleneck”-type structures (see Figure 9A) [63], which could be 

beneficial in catalytic systems. By contrast, the structure of the compressed foam is 

more open and the distribution of the void spaces through the entire volume is 

disordered, generating preferential directions for flow (Figure 9B), that are detrimental 

for catalysis applications. 

Conclusions 

In the first part of this paper, we compared the activity of structured catalysts prepared 

by chemical conversion coating of commercial open cell aluminium foams with 

different porosities in the WGS reaction. The activity tests showed that diffusion 

phenomena occurred in the case of the uncompressed foams. In the second part of this 

work, we compared the activity of two structured catalysts obtained by coating two 

different structures. In one case, the structure was obtained by compressing a 

commercial open cell aluminium foam; in the other case the structure was obtained by 

producing a different open cell foam through a replication process. The results showed 

better performance for the catalysts obtained using the replicated sponge. XCT 
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analysis highlighted a different distribution of the pores in the structures: the sponge 

was characterized by a regular distribution of spheroidal pores with limited 

interconnection, while the compressed foam was characterized by an irregular 

structure in which the compression was not able to completely eliminate the 

preferential directions. On the basis of these results, we can conclude that: 

1. The chemical conversion coating is not an alternative technique to 

washcoating; rather, it is a technique that can be used in highly porous systems, 

where washcoating would not be feasible. On the other hand, the choice of the 

coating technique is intimately related to the textural characteristics of the 

structure. 

2. The replication process can be considered to be a highly suitable technique for 

sponge preparation as it allows design and creation of porous structures under 

controlled conditions. The narrow distribution of porosities and “bottleneck”-

type connections can prevent the formation of preferential directions, obtaining 

benefits in the field of catalysis. Conversely, the simple compression of 

commercial structure does not guarantee the elimination of bypass phenomena. 
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