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Sub-grid models for multiphase fluid flow inside fractures in poroelastic

media

Tim Hageman, René de Borst∗

Department of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD, UK

Abstract

Models have been developed for the simulation of multiphase fluid flow within fractured poroelastic media.
They allow for the fluid phases to interact inside fractures, without requiring explicit simulations in the
interior of the fractures. The models retain the ability to retrieve the fluid velocity profile in the fracture
by post-processing. The models for flow within a fracture are combined with a formulation for multiphase
flow within the poroelastic medium. They have been implemented using isogeometric analysis, cast into
a traditional finite element format using Bézier extraction. Pressure oscillations around the fracture are
prevented by using a lumped integration scheme for the pressure capacity. The effect of interactions between
the fluid phases is first demonstrated for a single fracture through parameter studies. Next, two cases with
a more practical orientation are simulated. They show, inter alia, that the inclusion of interactions between
the fluid phases can result in fluid back-flow.

Keywords: poroelasticity, multiphase flow, fractured media, isogeometric analysis, fracture flow

1. Introduction

Multiphase flow inside fractured poroelastic media is a strongly coupled multi-scale and multi-physics
problem. The interstitial fluid inside the porous medium exerts forces on the surrounding solid material,
thereby deforming and fracturing the material. In return, the induced volume changes result in pressure
changes in the fluid. The introduction of multiple fluids, for instance when simulating oil-ground water5

interactions or underground CO2 storage, further increases this coupling by introducing extra interactions
between the fluid phases. Fractures in the porous medium introduce additional challenges: A small fracture
opening can dominate the fluid transport in the entire porous medium, which is orders of magnitude larger
than the fracture opening. Capturing this phenomenon requires an accurate description of the behaviour
of the small-scale phenomena inside the fluid-filled fractures. At the same time, the formulation should be10

capable of simulating large domains. Simulations which include the coupling between a non-fractured porous
medium and multiple fluid phases have been carried out using a variety of methods. Finite volume methods
have shown their capability of simulating large domains, often including complicated fluid behaviour like
capillary and buoyancy based forces [1, 2]. Finite element methods have combined the strengths of methods
developed for solid mechanics, incorporating effects due to inertia or plasticity, with formulations for the15

fluids, either by combining the different models into a single monolithic scheme [3, 4, 5, 6, 7] or by iterating
between the solid and fluid solvers[8, 9] [10]. Whereas the finite volume and element methods have focused on
including macro-scale behaviour and simulating large domains, pore-scale methods have focused on including
the micro-scale behaviour, capturing the behaviour and interactions of the separate fluid phases within the
porous media [11, 12, 13]. These pore-scale methods have been used to verify the relations used for other20
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macro-scale methods, but also to highlight the importance of accurately including micro-scale effects for
macro-scale simulations.

Fluid-transporting fractures have been included using the cubic law, originally derived for single-phase
flow, combined with an empirical correction factor [14, 15]. These simulations have shown the large effect of
the additional fluid transport inside fractures on the overall saturation. A different approach to include this25

fluid flow has been to model the interior of the fractures as a porous material, assuming large deformations
and a variable permeability [16, 17], or by assuming a constant permeability [18, 19, 20, 21]. While all these
methods are successful in including the multiphase fluid transport inside the fractures, they assume that
both fluid phases coexist within the fracture, without the velocity of one phase influencing that of the other
phases. An alternative assumption is assuming immiscible fluids, resulting in the fractures locally only30

transporting a single phase while keeping track of the location of the interface between the phases [22].
Experiments have shown that interaction between the phases in fractures does occur, however, both

in micro-channels with smooth walls [23] and in rough-walled rock joints [24]. Several flow types have
been shown to occur, depending on the degree of saturation and on the velocity. As examples we mention
bubbly flows, in which the phases are well-mixed, and annular flows, in which the phases form separated35

layers. Experiments [25] and analytical solutions [26] have shown that these flow types lead to an interaction
between the phases, showing counter-current flows and the possibility that one fluid phase is dragged along
by another phase.

While it is possible to fully simulate the fluid flow inside the porous medium and inside the fracture
[27, 28], this requires the interior of the fracture to be discretised with sufficiently small elements to capture40

the normal and tangential flow velocities inside the fracture. To avoid these fine meshes, sub-grid models
can be used to incorporate the effects of the fracture on the surrounding porous medium. Commonly used
models predict the fluid flux within the fracture, and apply this to the surrounding elements, either by
directly imposing the flux [29, 30], or altering the permeability [31, 32]. Alternatively, the velocity normal
to the fracture, the fracture inflow, can be used to include the effects of the fluid-transporting fractures.45

This has been used to include fluid-blocking fractures [33] and fluid-transporting fractures with a resistance
to flows in the normal direction [34]. By assuming a continuous pressure across the fracture, these fracture
inflow models are also able to cover similar cases as the imposed fluid flux models [35, 36].

In this paper, we will derive sub-grid models based on the fracture inflow method. For single-phase
flows, these sub-grid models have been derived that are shown to be capable of capturing the physics50

and behaviour of the fluid inside the fracture without explicitly simulating the interior of these fractures
[35, 37, 38] [39, 40, 41, 42]. These models use analytical solutions for the flow within the fracture to impose
fracture inflows on the surrounding poroelastic material. The flow in the interior of the fracture can then
be reconstructed by post-processing, thus allowing for an accurate determination of the fluid velocities in
the fracture [43, 44]. Moreover, it has been proven possible to also consider complex fluids in the interior of55

the fracture as well as in the surrounding porous medium, for instance non-Newtonian fluids [45, 46], and
boundary layers [47, 48], without the need to explicitly simulate this behaviour.

The aim of this study is to extend the aforementioned, physics-based fracture flow models to multiphase
flows. The fracture flow models will be incorporated in an isogeometric analysis based finite element method
for the poroelastic material. This allows for the simulation of large, fractured domains while retaining the60

interactions between fluid phases within the small-scale fracture. Two models, for bubbly flow and for
separated flow, will be derived and, for comparison with existing models, the cubic law will be cast into a
sub-grid fracture flow formulation. The effect of including the interaction between the fluid phases on the
resulting saturation will be analysed, and we will highlight the ability of the post-processing to regain the
detailed velocity profiles within the fracture. A case containing a single fracture will be simulated to show the65

relevance of the choice of the model in fracture-flow dominated and in diffusion dominated regimes. Finally,
two cases will be presented which are more representative of real applications. They will demonstrate the
importance of interactions between the phases on the resulting degrees of saturation.
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Figure 1: Schematic overview of the porous domain showing boundary conditions, interior discontinuity Γd, and the different
subgrid models used for the fracture flow including (s, n) coordinate system, definition of fracture height h and for the separated
flow the phase heights.

2. Governing equations

A domain Ω consisting of a partially saturated poroelastic material is considered, see Figure 1. The70

domain is split by an interface Γd, which represents a fracture through a C−1 discontinuity in the displace-
ments. To allow for fluid transport in the fracture, without explicitly requiring simulation of the flow inside
the fracture, a continuous pressure model is used across Γd [16]. That is, there is C0-continuity at the
interface for the wetting and non-wetting phase pressures.

2.1. Bulk material75

The poroelastic, partially saturated medium is described using the deformations of the porous material
u, the pressure of the wetting phase pw and the pressure of the non-wetting phase pn. The capillary pressure
is defined as:

pc = pn − pw (1)

Based on the capillary pressure, the degree of saturation of the wetting and of the non-wetting phases, Sw

and Sn, respectively, can be determined. While many relations exist which describe the relation between
the capillary pressure and the degree of saturation [49, 50], an exponential relation describing a water-oil
mixture has been chosen here [15]:

Sw = e−pc/B (2a)

Sn = 1− Sw = 1− e−pc/B (2b)

with B an empirical experimentally determined constant.
By assuming the deformations of the solid to occur fast compared to the fluid pressure changes, the system

can be considered to react quasi-statically. The deformations of the porous medium are then described by
using the momentum balance:

∇ · σ = 0 (3)

The total stress σ is given by:
σ = σs − αpI (4)

with α the Biot coefficient, and the stress inside the porous medium, σs, assumed to be linearly related to
the strain by:

σs = D : ε (5)
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with D the elastic fourth order stiffness tensor and ε = ∇
su the infinitesimal strain of the porous material,

using ∇
s to denote the symmetrised gradient operator. The volume-averaged pressure p is determined by:

p = Swpw + Snpn (6)

To describe the interstitial fluid pressure, the mass balances of the porous material, and the wetting and
non-wetting phases are used:

∂(1− nf )ρs
∂t

+∇ · ((1− nf )ρsusvs) = 0 (7a)

∂nfSwρw
∂t

+∇ · (nfSwρwuwvw) = 0 (7b)

∂nfSnρn
∂t

+∇ · (nfSnρnunvn) = 0 (7c)

with ρπ the density and uπ vπ the velocity of phase π = s, w, n, and nf the porosity of the porous material,
which is assumed to be constant. It is further assumed that the effect of density gradients is negligible. The
time derivatives of the density are simplified using the bulk moduli of the solid and fluids as:

1

ρs

∂ρs
∂t

=
1

1− nf

(

α− nf

Ks

∂Swpw + Snpn
∂t

− (1− α)∇ · usvs

)

(8a)

1

ρw

∂ρw
∂t

=
1

Kw

∂pw
∂t

(8b)

1

ρn

∂ρn
∂t

=
1

Kn

∂pn
∂t

(8c)

using the bulk moduli of the solid, wetting phase and non-wetting phase Ks, Kw, and Kn, respectively.
By denoting the velocity difference between the solid and wetting phase as qw = nfSw(uw − us) qw =
nfSw(vw − vs) and between the solid and non-wetting phase as qn = nfSn(un − us) qn = nfSn(vn − vs),
the mass balances of Eq. (7) can be combined with the definitions of the density changes in Eq. (8), resulting
in:

1

Mww
ṗw +

1

Mwn
ṗn + αSw∇ · u̇+∇ · qw = 0 (9a)

1

Mnn
ṗn +

1

Mnw
ṗw + αSn∇ · u̇+∇ · qn = 0 (9b)

Herein the local pressure capacities are given by:

1

Mww
= Sw

α− nf

Ks

(

Sw + pc
∂Sw

∂pc

)

− nf
∂Sw

∂pc
+

nfSw

Kw
(10a)

1

Mwn
= Sw

α− nf

Ks

(

Sn − pc
∂Sw

∂pc

)

+ nf
∂Sw

∂pc
(10b)

1

Mnw
= Sn

α− nf

Ks

(

Sw + pc
∂Sw

∂pc

)

+ nf
∂Sw

∂pc
(10c)

1

Mnn
= Sn

α− nf

Ks

(

Sn − pc
∂Sw

∂pc

)

− nf
∂Sw

∂pc
+

nfSn

Kn
(10d)

The fluid fluxes inside the poroelastic media are given by Darcy’s law:

qw = Swnf (vw − u̇) = −kwkrw∇pw (11a)

qn = Snnf (vn − u̇) = −knkrn∇pn (11b)
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with the permeabilities kw = k/µw and kn = k/µn. k is the intrinsic permeability, and µw and µn are the
viscosities of the wetting and non-wetting phases, respectively. The relative permeabilities, krw and krn,
are functions of the degree of saturation [17]. Here, we use a relation for a water-oil mixture to describe the
relative permeabilities [15]:

krw = S5
w (12a)

krn = (1− Sw)
5

(12b)

2.2. Fractures

The fracture is modelled using isogeometric interface elements [51, 52]. The degree of saturation inside
the fracture is assumed to be equal to that in the surrounding porous medium. An alternative of this
assumption would be using a separate relation to relate the wetting and non-wetting phase pressures to the80

saturations within the fracture. While this may represent the saturation more accurately represent, it would
add complexity to the sub-grid model, and has therefore not been used.

The traction at the discontinuity, tΓd
, is composed of an effective traction td and the pressures acting

on the wall:
tΓd

= td − (Swpw + Snpn)n (13)

Since only non-propagating fractures have been simulated, the effective tractions have been assumed to be
zero for all fractured elements (no cohesive tractions: td = 0).

Interface elements were also inserted in the line which extends from the crack tips. The used spatial
discretisation method requires interface elements to be inserted for both the fractured part of the discon-
tinuity, and in the extension of the fracture where the material is intact. While the interface elements
which represent the fracture are allowed to open freely, the interface elements not located on the fracture
are required to retain a continuous displacement. To prevent these non-fractured interface elements from
opening, a linear relation between the traction and the fracture opening height was assumed:

td = DdJuK (14)

with JuK the fracture opening height and Dd the interface stiffness matrix given by:

Dd =

[

kn 0
0 ks

]

(15)

with kn and ks (dummy) stiffnesses which are sufficiently large to prevent the fracture from opening. Since
these relations are in the local, (s, n), coordinate system, the interface stiffness matrix is rotated using the
rotation matrix R to the global coordinate system:

Dd = RTDdR (16)

The wetting phase fracture inflow is obtained from the mass conservation of the wetting phase inside the
fracture:

∂vw
∂s

−+
∂ww

∂n
= 0 (17)

with vw and ww the velocity components in the s and n directions, respectively. This assumes that density
gradients are negligible inside the fracture compared to the fluid velocity. This is in contrast to the interior
of the porous domain, where due to the lower fluid velocity and the compression by deformations of the
solid the density changes are included in Eq. (7). Integrating Eq. (17) over the fracture height results in
the jump in fluid velocity:

JwKw = ww

(

h

2

)

− ww

(

−
h

2

)

= −
∂qw
∂s

(18)

with the total wetting phase flux inside the fracture defined by:

qw =

∫ h/2

−h/2

vwdn (19)
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Eq. (18) is used to define the coupling between the interstitial fluid pressures and the fluid flow inside the
fracture via [16, 45]:

nΓd
· qw =

1

2
(JwKw − JwKws) (20)

with the inflow due to changes in fracture height and saturation given by:

JwKws =
∂Swh

∂t
(21)

Similarly, for the non-wetting phase:

nΓd
· qn =

1

2
(JwKn − JwKns) (22)

with:

JwKn = wn

(

h

2

)

− wn

(

−
h

2

)

= −
∂qn
∂s

(23)

qn =

∫ h/2

−h/2

vndn (24)

JwKns =
∂Snh

∂t
(25)

Eqs (18) and (23) can be used with different definitions for the fluid velocity profile in the fracture. Next,85

we will describe velocity profiles for bubbly and separated flows. These will be compared to the cubic law,
as this is often combined with an empirical relative permeability function to describe the fluid flow inside
fractures. While we will compare these three models by simulating the same case for all models, the choice
of model should depend on which flow regime the flow is expected to occur. Experiments using water and
air in smooth, non-porous, channels indicate that the bubbly flow model is appropriate for the slow-moving90

fluids [23, 53]. However, separated flow in fractures has been observed for gas/water and oil/water mixtures
[54, 55], and has been used for the simulation of non-porous fractures [56, 26]. It is therefore important
to note that while we will show that these models will provide different results for the same case, the
separated and bubbly flow models do represent different flow regimes and the actual choice of model should
be motivated by the physics of the problem at hand.95

2.2.1. Cubic law

The cubic law describes the fluid flux of phase π inside the fracture as:

qπ = −
kdπh

3

12µπ

∂pπ
∂s

(26)

with kdπ the relative permeability of the wetting and non-wetting phases inside the fracture. Similar to
the relative permeability inside the porous media, we will use a relation from [15] to describe the relative
fracture permeability as:

kdw = S3
w (27a)

kdn = S3
n (27b)

Using the fluid flux of Eq. (26) and the definitions for the relative permeability, Eqs (20) and (21) can be
exploited to derive an expression for the fracture outflow:

2nΓd
· qw =

S3
wh

3

12µw

∂2pw

∂s2
+

h2S3
w

4µw

∂pw
∂s

∂h

∂s
+

S2
wh

3

4µw

∂Sw

∂pc

(

∂pn
∂s

−
∂pw
∂s

)

∂pw
∂s

− Swḣ− hṠw (28a)

2nΓd
· qn =

S3
nh

3

12µn

∂2pn

∂s2
+

h2S3
n

4µn

∂pn
∂s

∂h

∂s
−

S2
nh

3

4µn

∂Sw

∂pc

(

∂pn
∂s

−
∂pw
∂s

)

∂pn
∂s

− Snḣ− hṠn (28b)
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2.2.2. Volume averaged bubbly flow

To describe the flow inside the fracture as a well-mixed flow, we obtain the volume-averaged viscosity
as:

µ = Swµw + Snµn (29)

Using this viscosity the velocity of the mixture is obtained as:

0 = −

(

Sw
∂pw
∂s

+ Sn
∂pn
∂s

)

+
∂

∂n

(

µ
∂v

∂n

)

(30)

Using Eq. (30) with a no slip boundary condition at the walls of the fracture results in the velocity profile,
from which the velocities in the wetting and the non-wetting phases are obtained:

vw = Swv =
1

2

Sw

Swµw + Snµn

(

Sw
∂pw
∂s

+ Sn
∂pn
∂s

)

(

n2 −

(

h

2

)2
)

for −
h

2
< n <

h

2
(31a)

vn = Snv =
1

2

Sn

Swµw + Snµn

(

Sw
∂pw
∂s

+ Sn
∂pn
∂s

)

(

n2 −

(

h

2

)2
)

for −
h

2
< n <

h

2
(31b)

From Eq. (19) we subsequently obtain the total flux as:

qw = −
Swh

3

12 (Swµw + Snµn)

(

Sw
∂pw
∂s

+ Sn
∂pn
∂s

)

(32a)

qn = −
Snh

3

12 (Swµw + Snµn)

(

Sw
∂pw
∂s

+ Sn
∂pn
∂s

)

(32b)

Different from the fluxed s in Eq. (26) obtained for the cubic law, the fluid transported inside the fracture
is influenced not only by the pressure gradient of the phase itself, but also by the pressure gradient of the
other phase. This can be viewed as a high pressure gradient phase dragging the low pressure gradient phase
along. This effect increases the flux of the low-gradient phase and decreases the flux of the high-gradient
phase. The fracture inflow velocities are obtained from Eq. (20):

2nΓd
· qw =

Swh
3

12 (Swµw + Snµn)

(

Sw
∂2pw

∂s2
+ Sn

∂2pw

∂s2
+

(

∂pw
∂s

−
∂pn
∂s

)

∂Sw

∂pc

(

∂pn
∂s

−
∂pw
∂s

))

+
h3

12

(

Sw
∂pw
∂s

+ Sn
∂pn
∂s

)

(

(Swµw + Snµn)
−1

− Sw (Swµw + Snµn)
−2

(µw − µn)
) ∂Sw

∂pc

(

∂pn
∂s

−
∂pw
∂s

)

+
Swh

2

4 (Swµw + Snµn)

(

Sw
∂pw
∂s

+ Sn
∂pn
∂s

)

∂h

∂s
− Swḣ− hṠw (33a)

2nΓd
· qn =

Snh
3

12 (Swµw + Snµn)

(

Sw
∂2pw

∂s2
+ Sn

∂2pw

∂s2
+

(

∂pw
∂s

−
∂pn
∂s

)

∂Sw

∂pc

(

∂pn
∂s

−
∂pw
∂s

))

+
h3

12

(

Sw
∂pw
∂s

+ Sn
∂pn
∂s

)

(

− (Swµw + Snµn)
−1

− Sn (Swµw + Snµn)
−2

(µw − µn)
) ∂Sw

∂pc

(

∂pn
∂s

−
∂pw
∂s

)

+
Snh

2

4 (Swµw + Snµn)

(

Sw
∂pw
∂s

+ Sn
∂pn
∂s

)

∂h

∂s
− Snḣ− hṠn (33b)

2.2.3. Separated flow

For the separated flow profile, the wetting phase is assumed to be the outer phase with layers of height
1
2hw = 1

2Swh at both the top and the bottom of the fracture, as shown in Figure 1. The non-wetting phase

7



is the inner phase with a total height of hn = Snh. The fluid velocity of the wetting and non-wetting phases
are described by Stokes’ equation for the individual phases:

0 = −
∂pw
∂s

+
∂

∂n

(

µw
∂vw
∂n

)

for
Snh

2
< |n| <

h

2
(34a)

0 = −
∂pn
∂s

+
∂

∂n

(

µn
∂vn
∂n

)

for −
Snh

2
< n <

Snh

2
(34b)

with the boundary conditions:

vw

(

−
h

2

)

= vw

(

h

2

)

= 0 (35a)

vw

(

Snh

2

)

= vn

(

Snh

2

)

(35b)

µw
∂vw
∂n

∣

∣

∣

∣

∣

Snh

2

= µn
∂vn
∂n

∣

∣

∣

∣

∣

Snh

2

(35c)

∂vn
∂n

∣

∣

∣

∣

∣

0

= 0 (35d)

Use of Eqs (34a)-(35d) results in expressions for the velocities in each of the phases:

vw =

{

1
2µw

∂pw

∂s

(

|n|
2
−
(

h
2

)2
)

+ Snh
2µw

∂pc

∂n

(

|n| − h
2

)

for Snh
2 < |n| < h

2

0 for − Snh
2 < n < Snh

2

(36a)

vn =















0 for Snh
2 < |n| < h

2
1

2µn

∂pn

∂s

(

|n|
2
−
(

Snh
2

)2
)

+ 1
2µw

∂pw

∂s

(

(

Snh
2

)2
−
(

h
2

)2
)

+ 1
µw

∂pc

∂s

(

(

Snh
2

)2
− Sn

(

h
2

)2
)

for − Snh
2 < n < Snh

2

(36b)

Similar to the model for bubbly flow, these velocities depend on the pressure gradients of the phase itself,
but also on that of the other phase. These velocity profiles result in the fracture fluid transport:

qw = −
h3

µw

∂pw
∂s

(

1

12
−

1

8
Sn +

1

24
S3
n

)

−
h3

µw

∂pc
∂s

(

1

8
Sn −

1

4
S2
n +

1

8
S3
n

)

(37a)

qn = −
S3
nh

3

12µn

∂pn
∂s

−
h3

µw

∂pw
∂s

(

1

8
Sn −

1

8
S3
n

)

−
h3

µw

∂pc
∂s

(

1

4
S2
n −

1

4
S3
n

)

(37b)

Substituting Eq. (37a) in the definition for the fracture inflow velocity, Eq. (20), results in:

2nΓd
· qw =

h3

µw

∂2pw

∂s2

(

1

12
−

1

8
Sn +

1

24
S3
n

)

+
h2

µw

∂pw
∂s

∂h

∂s

(

1

4
h2 −

3

8
Snh

2 +
1

8
S3
nh

2

)

+
h3

µw

∂pw
∂s

∂Sw

∂pc

(

∂pn
∂s

−
∂pw
∂s

)(

1

8
−

1

8
S2
n

)

+
h3

µw

(

∂2pn

∂s2
−

∂2pw

∂s2

)(

1

8
Sn −

1

4
S2
n +

1

8
S3
n

)

+
h2

µw

∂pc
∂s

∂h

∂s

(

3

8
Sn −

3

4
S2
n +

3

8
S3
n

)

+
h3

µw

∂pc
∂s

∂pn
∂s

−
∂pw
∂s

(

−
1

8
+

1

2
Sn −

3

8
S2
n

)

− Swḣ− hṠw (38)
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In a similar way, the fracture inflow for the non-wetting phase is obtained from Eqs (20) and (37b):

2nΓd
· qn =

S3
nh

3

12µn

∂p2n
∂s2

+
h2S3

n

4µn

∂h

∂s

∂pn
∂s

−
h3S2

n

4µn

∂pn
∂s

∂Sw

∂pc

(

∂pn
∂s

−
∂pw
∂s

)

+
h3

µw

∂2pw

∂s2

(

1

8
Sn −

1

8
S3
n

)

+
h2

µw

∂pw
∂s

∂h

∂s

(

3

8
Sn −

3

8
S3
n

)

+
h3

µw

∂pw
∂s

∂Sw

∂pc

(

∂pn
∂s

−
∂pw
∂s

)(

−
1

8
+

3

8
S2
n

)

+
h3

µw

(

∂2pn

∂s2
−

∂2pw

∂s2

)(

1

4
S2
n −

1

4
S3
n

)

+
h2

µw

∂pc
∂s

∂h

∂s

(

3

4
S2
n −

3

4
S3
n

)

+
h3

µw

∂pc
∂s

∂Sw

∂pc

(

∂pn
∂s

−
∂pw
∂s

)(

−
1

2
Sn +

3

4
S2
n

)

− Snḣ− hṠn (39)

3. Discretisation

The weak form of the momentum balance is obtained from Eqs (3)-(6) by multiplying them with the
test function η and using the divergence theorem. This leads to:

∫

Ω

∇η : (σs − αSwpwI − αSnpnI) dΩ−

∫

Γd

η · (td − nd (Swpw + Snpn)) dΓ =

∫

Γ

η · tdΓ (40)

with Ω the domain representing the interior, Γ the external boundaries, and Γd the discontinuity. The weak
forms of the mass balances, Eqs (9a) and (9b), are obtained by multiplying them with the test functions ζ
and ξ, and using the divergence theorem on the fluid flux and fracture inflow terms. This results in:
∫

Ω

ζ
1

Mww
ṗw+ζ

1

Mwn
ṗn+αSwζ∇·u̇+kwkrw∇ζ·∇pwdΩ−

∫

Γd

∂ζ

∂s
qw+ζ

∂Swh

∂t
dΓd = −

∫

Γ

ζqwdΓ−

∫

∂Γd

ζQwd∂Γ

(41)

∫

Ω

ξ
1

Mnw
ṗw+ξ

1

Mnn
ṗn+αSnξ∇·u̇+knkrn∇ξ·∇pndΩ−

∫

Γd

∂ξ

∂s
qn+ξ

∂Snh

∂t
dΓd = −

∫

Γ

ξqndΓ−

∫

∂Γd

ξQnd∂Γ

(42)
with qw and qn depending on the model for the flow inside the fracture, and Qw and Qn the fracture outflow100

at the edges of the discontinuity (∂Γd), assumed to be zero.
Since the velocity inside the porous medium depends on the pressure gradient, and the fracture inflow

depends on second gradients, a C2 inter-element continuity is required to obtain continuous fracture inflows
[45] and smooth interstitial fluid velocities [57]. In order to achieve this inter-element continuity, Non-
Uniform Rational B-Splines (NURBS) are used to discretise the weak forms [58]. To use these NURBS in105

a similar manner as traditional Lagrangian finite elements, Bézier extraction is employed to describe the
continuous NURBS as a combination of Bernstein polynomials [59], which allows the system matrices and
internal force vectors to be calculated on a per-element basis. Similarly, Bézier extracted interface elements
are used to discretise the discontinuity [51, 52].

The weak forms of Eqs (40)-(42) have been discretised using cubic Bézier extracted NURBS for the shape
functions Nw and Nn for the wetting and non-wetting pressures, respectively. In order to prevent spurious
oscillations the inf-sup requirements has to be fulfilled [60]. Therefore, the solid displacements has ve been
discretised using quartic NURBS Ns. This results in the displacements and pressures being discretised as:

u =

nel
∑

e=1

Nsu
el (43)

pw =

nel
∑

e=1

Nwp
el
w (44)

pn =

nel
∑

e=1

Nnp
el
n (45)
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The strain-nodal displacement matrix B is used to map the displacements to the strains on an element level:

ǫel = Buel (46)

Use of the interpolations for the displacements and for the pressures, and the B matrix to discretise the
weak form of the momentum balance, Eq. (40), results in:

fext − fint − fd = 0 (47)

with the external force fext defined in a standard manner as:

fext =

∫

Γt

NT
s tdΓ (48)

The internal force which results from the bulk, fint, is given by:

fint =

∫

Ω

BTσs dΩ−

∫

Ω

αSwB
TmNwp

el
w dΩ−

∫

Ω

αSnB
TmNnp

el
n dΩ (49)

with m = [1 1 0]T . The degrees of saturation Sw and Sn are calculated in the integration points using Eq.110

(2). The strong dependence of this saturation on the wetting and non-wetting phase pressures results in a
non-linear dependence on the pressures.

The fracture is discretised using interface elements and a mapping is introduced which relates the dis-
placements at the interface Γd to the jump in the displacement at the interface:

JuKel = Ndu
el Nd =

[

−Ns 0

0 Ns

]

(50)

Use of this identity at the internal discontinuity Γd allows the term in the momentum balance which pertains
to this discontinuity to be written as:

fd =

∫

Γd

NT
d RTDdRNdu

el dΓ−

∫

Γd

SwN
T
d nΓd

Nwp
el
w dΓ−

∫

Γd

SnN
T
d nΓd

Nnp
el
n dΓ (51)

The weak forms of mass conservation for the wetting phase mass, Eq. (41), and for the non-wetting
phase, Eq. (42), are discretised using Equations (43)–(45). The temporal discretisation is achieved using a
backward finite difference scheme, resulting in:

qw,ext − qw,int − qw,d = 0 (52)

qn,ext − qn,int − qn,d = 0 (53)

with the external fluxes defined as:

qw,ext = ∆t

∫

Γ

NT
w qwdΓ +∆t

∫

∂Γd

NT
wQwd∂Γ (54)

qn,ext = ∆t

∫

Γ

NT
n qndΓ +∆t

∫

∂Γd

NT
n Qnd∂Γ (55)

and the internal fluxes defined as:

qw,int = −

∫

Ω

αSwN
T
wmTB

(

ut+∆t − ut
)

dΩ−

∫

Ω

∆tkwkrw(∇Nw)
T
∇Nwp

t+∆t
w dΩ

−

∫

Ω

1

M ww
NT

wNw

(

pt+∆t
w − pt

w

)

dΩ−

∫

Ω

1

M wn
NT

wNn

(

pt+∆t
n − pt

n

)

dΩ (56)
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qn,int = −

∫

Ω

αSnN
T
n mTB

(

ut+∆t − ut
)

dΩ−

∫

Ω

∆tknkrn(∇Nn)
T
∇Nnp

t+∆t
n dΩ

−

∫

Ω

1

M nw
NT

n Nw

(

pt+∆t
w − pt

w

)

dΩ−

∫

Ω

1

M nn
NT

n Nn

(

pt+∆t
n − pt

n

)

dΩ (57)

The fluxes due to the discontinuity are split into two parts: The fluid absorbed and released due to the
fracture opening, which is independent of the fracture flow model used, and the pressure-driven flow inside
the fracture, which depends on the flow model used.

qπ,d = qπ,dh + qπ,dp (58)

with the fluid flux due to height and saturation changes discretised as:

qw,dh = −

∫

Γd

SwN
T
wnT

Γd
Nd

(

ut+∆t − ut
)

+
(

St+∆t
w − St

w

)

NT
wnT

Γd
Ndu

t+∆tdΓ (59)

qn,dh = −

∫

Γd

SnN
T
n nT

Γd
Nd

(

ut+∆t − ut
)

+
(

St+∆t
n − St

n

)

NT
n nT

Γd
Ndu

t+∆tdΓ (60)

For the cubic-law flow model (Eq. (26), using the relative permeabilities from Eq. (27)), the discretised
form of the fluid flux in the fracture due to the pressure-driven flow is given by:

qcubic
w,dp = −

∫

Γd

∆tS3
w

12µw
(∇Nw)

T (
nT

Γd
Ndu

t+∆t
)3

∇NwP
t+∆t
w dΓ (61)

qcubic
n,dp = −

∫

Γd

∆tS3
n

12µn
(∇Nn)

T (
nT

Γd
Ndu

t+∆t
)3

∇NnP
t+∆t
n dΓ (62)

while for the volume-averaged bubbly flow model we have:

q
bubbly
w,dp = −

∫

Γd

∆tSw

12 (Swµw + Snµn)
(∇Nw)

T (
nT

Γd
Ndu

t+∆t
)3 (

Sw∇Nwp
t+∆t
w + Sn∇Nnp

t+∆t
n

)

dΓ (63)

q
bubbly
n,dp = −

∫

Γd

∆tSn

12 (Swµw + Snµn)
(∇Nw)

T (
nT

Γd
Ndu

t+∆t
)3 (

Sw∇Nwp
t+∆t
w + Sn∇Nnp

t+∆t
n

)

dΓ (64)

and in the case of the separated flow model:

q
separated
w,dp = −

∫

Γd

∆t

µw
(∇Nw)

T (
nT

Γd
Ndu

t+∆t
)3
(

∇Nwp
t+∆t
w

(

1

12
−

1

8
Sn +

1

24
S3
n

)

+
(

∇Nnp
t+∆t
n −∇Nwp

t+∆t
w

)

(

1

8
Sn −

1

4
S2
n +

1

8
S3
n

))

dΓ (65)

q
separated
n,dp = −

∫

Γd

∆t (∇Nn)
T (

nΓd
Ndu

t+∆t
)3

(

1

12µn
S3
n∇Nnp

t+∆t
n +

1

8µw
∇Nwp

t+∆t
w

(

Sn − S3
n

)

+
1

4µw

(

∇Nnp
t+∆t
n −∇Nwp

t+∆t
w

) (

S2
n − S3

n

)

)

dΓ (66)

Significant pressure oscillations were observed around the phase interface due to the presence of strong
gradients, as shown in Figure 2 for the parameters and geometry (excluding the discontinuity) that will be
given in detail in the next section. Since the fracture inflow models are dependent on pressure gradients, a
stabilisation scheme needs to be applied to prevent these oscillations, and to obtain reasonable results from
the fracture inflow models. While many stabilisation methods exist, for instance multi-scale stabilisation
[61, 62, 63] and Galerkin least-squares methods [64, 65], a scheme was used based on the observation that
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(a) (b)

Figure 2: Pressure and degree of saturation for the wetting phase for a non-fractured domain using Gauss integration and
lumped integration of the pressure capacity terms (profiles at different times).

lumped pressure capacity matrices prevent such oscillations [66]. Applying this scheme to multiphase flows
results in the pressure capacity terms given in Eqs (56) and (57), and replace the integral over the domain
by a sum over all control points:

∫

Ω

1

M ww
NT

wNw

(

pt+∆t
w − pt

w

)

dΩ =

ncps
∑

cp=1

Cww

(

pt+∆t
w,cp − pt

w,cp

)

(67)

The representative pressure capacity is determined by integrating the shape function associated with the
control-point (using a standard Gauss integration scheme):

Cww =

∫

Ω

1

Mww
NcpdΩ (68)

with Mww determined at the integration points and Ncp the interpolant corresponding to the control
point. It therefore depends not only on the pressures in the control point which are integrated with lumped
integration, but also on all other control points with non-zero shape functions in the integration point. The115

result of applying this integration scheme is shown in Figure 2. It is noted that this lumped integration
scheme is needed due to the use of NURBS, and a similar lumped pressure capacity would have been achieved
using a standard Newton-Cotes integration rule for standard Lagrangian finite elements.

The discretised equations described in this section have been implemented using a Newton-Raphson
scheme described in Appendix A. Due to the use of consistently linearised tangential stiffness matrices,120

quadratic convergence was obtained in all cases.

4. Comparison of subgrid models

To compare the effect of the fracture flow model on the resulting pressures and degrees of saturation,
a boundary value problem has been solved which contains a single horizontal fracture. The problem is
shown in Figure 3 and contains a single fracture with a length of 0.6 m in a 1 m × 0.2 m porous medium.125

The bottom of the domain is constrained in the vertical direction, and the left edge is constrained in the
horizontal direction.

The simulation has been carried out with a water-like wetting phase (µw = 1 mPa · s, Kw = 2.15 GPa)
and an oil-like non-wetting phase (µn = 0.45 mPa · s, Kn = 1.5 GPa). The porous solid has the following
properties: Porosity nf = 0.2, Poisson ratio ν = 0.2, bulk modulus Ks = 36 GPa, Biot coefficient α = 1.0,130
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Figure 3: Overview of the single fracture case.
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Figure 4: Selected results along the discontinuity from the mesh refinement study, using the bubbly flow model. Results given
for E = 20GPa, t = 2.5hours

and intrinsic permeability k = 10−12 m2. The Young’s modulus E = 20 GPa in Section 4.1, and has been
varied between 1 GPa and 1000 GPa in Section 4.2. The constant used for the saturation relations, Eq. 2,
is B = 105 Pa.

The initial interstitial pressures were pw = 0 MPa and pn = 0.3 MPa, resulting in an initial degree
of saturation of Sw = 0.05. A wetting phase inflow, qw = 10−5 m/s, is imposed on the left edge. This135

inflow will displace the non-wetting phase towards the right edge, on which a constant pressure boundary
condition (equal to the initial pressure) is imposed to allow for an outflow of the non-wetting and wetting
phases. The simulations have been carried out using a time-step size ∆t = 25 s and dummy stiffnesses
kn = ks = 5 · 103 GPa for the non-fractured interface elements. The fracture has been assumed stationary
without cohesive tractions.140

The domain has been discretised using 100× 10 elements , using quartic NURBS for the solid displace-
ments, and cubic NURBS for the wetting and non-wetting pressures. To determine this required number
of elements, a similar analysis as in [45] was performed. The rather large number of horizontal elements has
been chosen to obtain an accurate fracture inflow from the sub-grid model Selected results from this mesh
refinement study are shown in Figure 4. Due to the higher order inter-element continuity of NURBS, the145

fracture outflow remains continuous. While a coarse mesh suffices to describe the saturation and pressures,
a finer mesh was needed to accurately describe the fracture outflow.

4.1. Comparison of the fracture flow models

The degree of saturation for the wetting phase is shown in Figure 5 for the separated flow fracture model.
The fracture transports a large amount of fluid, whereas the fluid is transported much more slowly inside150

the surrounding porous medium. This causes the wetting phase to diffuse both horizontally and vertically
from the fracture , as shown in Figure 6, resulting in a decreased saturation gradient normal to the fracture.
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(a) t = 1.5 hours

(b) t = 2 hours

(c) t = 2.5 hours

Figure 5: Degree of saturation for the wetting phase inside the porous medium using the separated flow model.
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Figure 6: Fluid flux inside the porous medium (black) and maximum fluid velocity inside the fracture (red) at t = 2 hours
using the separated flow model.
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Figure 7: Degree of saturation and pressure along the discontinuity at t = 2.5 hours.
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Figure 8: Fracture outflow velocity for the wetting and non-wetting phases at t = 2.5 hours.
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Figure 9: Fluid transported inside the fracture for the wetting and non-wetting phases at t = 2.5 hours, obtained from
post-processing.
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Figure 10: Velocity profile of the phases inside the fracture at x = 0.5m , t = 2.5 hours, obtained from post-processing.
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Figure 11: Total amount of fluid transported inside the fracture for as a function of the Young’s modulus at t = 2.5 hours.

This behaviour was observed for all the fracture flow models. Furthermore, the fracture opening height was
equal for all models, with a maximum opening height at t = 2.5 hours of h = 0.13 mm.

The degree of saturation for the wetting phase is given in Figure 7a along the discontinuity for the155

different fracture flow models. The separated flow model shows a higher saturation near the left fracture
tip compared to the cubic law model, while the location of the front of the wetting phase is similar. This is
in contrast to the bubbly flow model. While showing a similar increase in saturation near the left fracture
tip, a lower degree of saturation occurs in the middle of the fracture and the saturation front has advanced
further. A similar behaviour is seen for the interstitial pressure of the wetting phase, Figure 7b.160

The fracture outflow at t = 2.5 hours is shown in Figure 8. While the outflow of the wetting phase
shows small differences between the models, large differences are seen for the non-wetting phase outflow.
These differences are caused by the interaction between the phases, with both the bubbly flow model and
the separated flow model dragging along the non-wetting phase, which has a low pressure gradient along the
fracture. This causes a slight decrease in fracture outflow for the wetting phases, since this phase is held back165

by the non-wetting phase, while increasing the amount of non-wetting phase transported. This is confirmed
by the fluid flux inside the fracture as seen in Figure 9. This fluid flux is obtained by post-processing, since
the interior of the fracture is not simulated explicitly.

The velocity profiles inside the fracture, Figure 10, are also obtained by post-processing. The cubic flow
model shows a constant velocity, since the cubic law and the empirical correction factor for multiphase flows170

only describe the total fluid flux. The velocity profiles for the separated flow show the non-wetting phase
being dragged against its pressure gradient by the wetting phase, slowing down the velocity of the wetting
phase while increasing the non-wetting phase velocity. The bubbly flow model has a similar behaviour due
to the volume-averaging of the pressure gradient. However, different from the separated flow model, the
fluid flux of the non-wetting phase is higher than the wetting phase due to the distribution of the total175

velocity being solely based on the degree of saturation of the phases.

4.2. The effect of the sub-grid model

The effect of the fracture on the surrounding porous medium has been investigated by varying the
Young’s modulus, causing a change in fracture height, which scales approximately linearly with the Young’s
modulus. This causes a change in fluid transported inside the fracture and allows the effect of the fracture180

to be varied from dominating the fluid transport to having a negligible influence on the fluid transport inside
the porous medium.
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Figure 12: Relative differences in the pressure along the discontinuity when varying Young’s modulus at t = 2.5 hours.
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Figure 13: Relative differences for the degree of saturation along the discontinuity when varying Young’s modulus at t =
2.5 hours.
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Figure 14: Overview of the multiple fracture case. Dashed lines indicate the C−1 discontinuities, while the dotted lines indicate
C0 continuity lines.

The resulting fluid transport inside the fracture is shown in Figure 11. For high values of the Young’s
modulus, the flux is small, and therefore neither the fracture, nor the choice of the flow model influence the
results. However for low values of the Young’s modulus large amounts of fluid are transported inside the185

fracture. Comparing the separated flow model with the cubic law model shows marginal differences in the
flux of the wetting phase fluid, while any difference disappears in limiting cases where the fracture flow or
the flow in the porous medium dominate. The bubbly flow model, however, shows large differences, for the
fluxes of the wetting as well as for the non-wetting phases.

Figure 12 shows the difference in pressures of the interstitial fluids along the discontinuity, and Figure190

13 shows the degree of saturation. Due to the negligible differences in fluid flux between the separated and
cubic law models at low and high Young’s moduli, no difference in pressure and saturation occurs at these
limits. In the intermediate range of Young’s moduli, small differences in pressure and saturation occur, with
a maximum around E = 20 GPa, which correspond to the small differences in Figure 7-9.

The difference in fluid flux between the bubbly flow model and cubic law model does not disappear for low195

values of the Young’s modulus, and therefore neither does the difference between the degrees of saturation
and the pressures in the fracture flow dominated regime. For high values of the Young’s modulus this
difference does disappear, however, and the volume-averaged bubbly flow model shows a similar behaviour
of the pressure difference and the difference in the degree of saturation as observed for the separated flow
model. This indicates that the coupling between the wetting and non-wetting fluid fluxes due to the volume200

averaging used in this model is sufficiently enough to move extra non-wetting fluid towards and through
the fracture. This results in a local decrease in non-wetting phase pressure around the fracture tip (not
shown here), and therefore a large increase in the degree of saturation of the wetting phase. Since this effect
depends on the fluid transported inside the fracture, the decrease in pressure becomes more pronounced for
higher values of the fracture opening height, and therefore does not disappear in the fracture dominated flow205

limit. Thus, the inclusion of the interaction between the wetting and the non-wetting phase can significantly
alter the degree of saturation.

5. Some further applications

To illustrate the effect of including interaction between the wetting and non-wetting phases, and to show
the influence of the choice of fracture flow model, two cases more representative of real-world applications210

19



(a) t = 30 days (b) t = 40 days

Figure 15: Degree of saturation for the wetting phase using the cubic-law model.

(a) t = 30 days (b) t = 40 days

Figure 16: Degree of saturation for the wetting phase using the volume-averaged bubbly flow model.

were simulated: Underground oil recovery and gas/CO2 storage. These cases were simulated using a geom-
etry containing two diagonal fractures, as shown in Figure 14. Since NURBS were used for the meshing,
C0 continuity lines were inserted to allow for sharp changes in mesh-line direction. Similar to the previous
case, the fractures were assumed stationary and no cohesive tractions were considered. The domain was
discretised using 50× 30 elements, and a time-step of ∆t = 1000 s was used for both cases.215

5.1. Oil-water

We now consider the case of water and oil inside porous rocks, using the same properties as in Section
4. A wetting phase inflow of Qin = 10−5 m3/s is imposed in the top-left corner, while a constant pressure
of pw = 0.0 MPa, pn = 0.3 MPa (Sw = 0.05) is imposed on the bottom right corner to simulate water being
injected for displacing the oil towards a free-flowing outlet. The initial degree of saturation is set equal to220

the outflow boundary condition, Sw = 0.05.
The degree of saturation of the wetting phase is shown in figure 15 after 30 and 40 days using the cubic

law flow model. While the bottom fracture enhances the water transport, it also results in a pocket of oil
in the bottom right being isolated from the outlet. The top right fracture blocks part of the fluid flow,
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(a) t = 30 days (b) t = 40 days

Figure 17: Degree of saturation for the wetting phase using the separated flow model.

4.0 mm/s

0.01 mm/s

(a) Wetting phase

4.0 mm/s

0.01 mm/s

(b) Non-wetting phase

Figure 18: Fluid flux inside the porous medium (black) and maximum velocity inside the fracture (red) using the bubbly
fracture flow model at t = 30 days.
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(a) Volume-averaged bubbly flow model (b) Cubic law and separated flow models

Figure 19: Degree of saturation for the wetting phase for air/water at t = 15.5 hours.

equalising the degree of saturation along the fracture and thereby preventing the oil at the top left from225

becoming separated from the outlet.
Figure 16 shows the resulting degree of saturation using the volume-averaged bubbly flow model. As

was the case with the simplified example, the water inside the fracture drags the oil along, creating a local
minimum in the non-wetting pressure and thereby causing a local increase in the saturation near the fracture.
This saturation is higher on the bottom of the fracture compared to the top due to the water displacing230

the oil towards the fracture near the top. This occurs less at the bottom of the fracture. Comparing these
results to the simulation using the cubic law shows that this local increase in the degree of saturation is
accompanied with a coupling between the water and oil flows inside the fracture.

The separated flow model, Figure 17, shows a balance between the coupling observed using the bubbly
flow model, and fluids purely flowing in the same direction as their pressure gradients observed for the cubic235

law. The coupling still causes a small increase in the degree of saturation along the fracture compared to
the cubic law, but this increase is modest compared to the bubbly flow. Likewise, the water flow is not
slowed down as much due to the interaction with the oil, resulting in a slightly higher degree of saturation
near the end of the fracture.

5.2. Air-water240

The second application is underground gas storage. In this case, air (µn = 2 ·10−5 Pa · s, Kn = 0.1 MPa)
is injected in the top left corner with an inflow of Qin = 5 · 10−2 m3/s. The domain has an initial degree
of saturation for the water Sw = 0.9 (pw = −0.9 MPa, pn = 8.1 MPa), and the pressure and the degree
of saturation at the outlet in the bottom right corner are imposed to be constant. The porous material
is assumed to be sandstone-like, using k = 10−13 m2 and all other material properties equal to the solid
properties used in Section 4. In order to better represent the gas-water interactions inside the porous
medium, the saturation relation of Eq. (2) is replaced with the Van Genuchten relation [49, 67]:

Sw =

(

1−

(

pc
pref

)
1

1−m

)

−m

(69)

and instead of Eq. (12) the relative permeability relations for the flow inside the porous medium read:

krw = S1/2
w

(

1−
(

1− S
1

m
w

)m)2

(70)

krn = (1− Sw)
1/2
(

1− S
1

m
w

)2m

(71)
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Figure 20: Velocity profile of the phases inside the bottom fracture at x = 10.0m , t = 15.5 hours, obtained from post-processing.

using m = 0.4369 and pref = 18.6MPa.
The degree of saturation which has been computed using the separated and cubic-law flow models is

shown in Figure 19b. Due to the low viscosity of the gas, the fractures transport large amounts of gas and
thereby equalise the degree of saturation along the discontinuity. This occurs for both the cubic-law and the
separated flow model. However, use of the volume-averaged bubbly flow model results only a small influence245

of the fracture on the saturation within the porous media, see Figure 19a. This contrast with the other
models is caused by the fact that the volume averaging markedly increases the effective viscosity of the gas
phase due to the high degree of water saturation, which limits the air flow through the fracture.

The fluid velocity profiles resulting from post-processing are shown in Figure 20. The velocity profile for
the cubic law shows a high air velocity, while the water velocity is low. The velocity profiles for the separated250

flow model show a similarly high air velocity, with about an equal amount of air being transported. While
near to no water is transported using the separated flow model, the air dragging the water along causes a
negative pressure gradient, resulting in a back-flow of water near the fracture walls while the water flows in
the same direction as the air near the water-air interface.

6. Concluding remarks255

Sub-grid models capable of representing two-phase flow within a fracture have been presented. These
models are able to include multiphase flow within fractures, without the need to explicitly simulate the
interior of these fractures. This allows for the discretisation of large domains, while still including the fluid
transported by fractures with a small opening height. It is shown that these models are capable of including
the interaction between the wetting and non-wetting phases inside the fracture, and allow for post-processing260

to obtain velocity profiles and fluid fluxes.
These sub-grid models have been compared to the cubic-law, which is commonly used to represent

the fracture flow. It was shown that assuming a volume-averaged bubbly flow or a separated flow inside
the fracture allows the high pressure gradient phase to drag along the low pressure gradient phase, thus
increasing the velocity of the low gradient phase and slowing down the high gradient phase. While this265

effect was stronger for the bubbly flow model, it resulted in a local minimum in the non-wetting phase
pressure. The separated flow model provides results which are more similar to the cubic-law, but still
show the non-wetting phase being dragged along with the wetting phase. Simulations for different values
of Young’s modulus have shown the solution to be independent of the sub-grid model when the fracture
has a negligible effect, with the bubbly flow model providing results which are different from those of the270

separated and cubic-law models for fracture-dominated problems.
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Two cases which are more representative of real-world applications, namely oil recovery and underground
gas storage, have been simulated to show the effect on the degrees of saturation. It has been shown that the
volume-averaged bubbly flow model resultes in a local increase in the degree of saturation by the wetting
phase, dragging along the non-wetting phase. Furthermore, the volume averaging results in low air velocities275

for the case of underground gas storage. In contrast, the separated flow model shows results comparable to
the cubic law. Velocity profiles inside the fractures show a local back-flow inside the fracture while retaining
an overall positive fluid flux. This highlights the ability of the sub-grid fracture models to obtain a detailed
description of the fluid behaviour inside the discontinuity by post-processing, while obviating the need to
discretise the interior of the fracture.280
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Appendix A. Tangential stiffness sub-matrices

The system of non-linear equations is solved using a Newton-Raphson iterative method. For this, the
discretised equations are linearised as:













K +Kd Qsw +Qd,sw Qsn +Qd,sn

Qws +Qd,ws +Hd,ws Hww +Cww +Qww +Qd,ww +Hd,ww Hwn +Cwn +Qwn +Qd,wn +Hd,wn

Qns +Qd,ns +Hd,ns Hnw +Cnw +Qnw +Qd,nw +Hd,nw Hnn +Cnn +Qnn +Qd,nn +Hd,nn

























du

dpw

dpn













=





fext

qw,ext

qn,ext



−





fint + fd

qw,int + qw,d

qn,int + qn,d



 (A.1)

with the external and internal forces defined in Eq. 48, 49, and 51, and the fluxes defined in Eq. 54-57.
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The tangential stiffness sub-matrices related to the interior forces and fluxes are given by:

K =

∫

Ω

BTDBdΩ (A.2)

Qsw = −

∫

Ω

α

(

Sw − pw
∂Sw

∂pc

)

BTmNw + α

(

pn
∂Sw

∂pc

)

BTmNndΩ (A.3)

Qsn = −

∫

Ω

α

(

Sn − pn
∂Sw

∂pc

)

BTmNn + α

(

pw
∂Sw

∂pc

)

BTmNwdΩ (A.4)

Qws = −

∫

Ω

αSwN
T
wmTBdΩ (A.5)

Qww =
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Ω

α
(
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(
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)) ∂Sw

∂pc
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wNwdΩ (A.6)
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Ω

α
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mTB
(

ut+∆t − ut
)) ∂Sw

∂pc
NT

wNndΩ (A.7)

Qns = −

∫

Ω

αSnN
T
n mTBdΩ (A.8)

Qnw = −

∫

Ω

α
(
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(
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)) ∂Sw

∂pc
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n NwdΩ (A.9)
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∫

Ω

α
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n NndΩ (A.10)
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Hnw = −∆t

∫

Ω

kn
∂krn
∂Sw

∂Sw

∂pc

(

(∇Nnpn)
T
∇Nn

)T

NwdΩ (A.17)

Hnn = −∆t

∫

Ω

knkrn (∇Nn)
T
∇Nn + kn

∂krn
∂Sw

∂Sw

∂pc

(

(∇Nnpn)
T
∇Nn

)T

NndΩ (A.18)

with all variables determined by using the updated displacements and pressures, and all values determined285

in the integration points.
The tangential stiffness sub-matrices related to the forces at the discontinuity are given by:

Kd =

∫

Γd

NT
d RDdRNddΓ (A.19)

Qd,sw = −
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The terms related to the fluid absorbed by the fracture opening are independent of the fracture flow
model, and given by:

Qd,ws = −

∫
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)
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The final terms, related to the sub-grid model used to model the fracture in and outflow, depend on the flow
type assumed for the flow inside the fracture. For the cubic-law model, the tangential stiffness matrices are
given by:
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for the volume-averaged bubbly flow by:
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and for the separated flow model by:
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