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Abstract 

The use of processing additives to optimize active layer morphology in organic solar cells 

(OSCs) is a simple and impactful way to improve photovoltaic performance. However, the retention 

of high boiling point liquid additives affects the stability and lifetime of OSCs, necessitating the 

development of volatilizable additives that can improve efficiency at no cost to long-term device 

stability. In this study, three novel volatilizable solid additives, INB-1F, INB-3F, INB-5F, with 

different degrees of fluorination are rationally designed, synthesized, and added into photovoltaic 

solutions to fabricate OSCs. These additives evaporate upon thermal annealing and exhibit higher 

volatility as the number of fluorine atoms increases. Our device studies show that these additives 

can enhance the efficiency of PBDB-T-2F:BTP-4F binary cells from 15.2% to 16.5%, and those of 

PBDB-T-2F:IT-4F from 12.1% to 13.4%. Molecular dynamic simulations reveal attractive 

interactions between these additives and the non-fullerene acceptor BTP-4F, leading to enhanced 

intermolecular π−π stacking among BTP-4Fs, which is a favorable morphology change that we 

attribute as the origin of the enhanced performance and long-term stability. Our work presents a 

novel strategy to design new solid additives to replace liquid additives. 

Keywords: fluorinated solid additives, morphology, power conversion efficiency 
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1. Introduction   

   Bulk heterojunction organic solar cells (OSCs) are considered promising technology for the 

realization of renewable solar energy conversion for their attractive advantages, e.g. lightweight, 

low-cost and the feasibility of manufacturing large-area devices on mechanically flexible substrate 

using solution casting methods. 1-5 Besides, semitransparent or fully transparent OSCs can also be 

integrated with building to extend their applications.6-7 New donor and acceptor materials, 

especially non-fullerene small molecule acceptors (NFAs) like BTP-4F (also known as Y6), drive 

the steady progress of OSCs. 8-10 The employment of these new semiconductors11-13, morphology 

control14-15, interfacial engineering 16-17 and device architecture design 18-19 have boosted the 

maximum achievable power conversion efficiencies (PCEs) of OSCs to over 16% in single-junction 

OSCs and over 17% in tandem OSCs. 8,20-24 However, the majority of OSCs achieving over 16% 

PCEs necessarily employ a ternary strategy (i.e. with more than one donor/acceptor pairs in the 

photoactive layer) to achieve complementary light absorption and superior optoelectronic properties. 

23-24,25-28 

   Morphology control steps14, such as thermal annealing 29-30, vapor annealing 31-32, hot-substrate 

casting 15,33 and solvent additive modulation 34-37 have been shown to be effective and crucial to 

realize the maximum achievable PCEs. Among these approaches, solvent additives can effectively 

regulate the molecular packing and orientation of electron donors and acceptors from the solution 

state through to the vitrified solid films, as well as tuning the phase-separated domain size, purity 

and connectivity, which ultimately determines the device PCE. 38 The selection of solvent additives 

for non-fullerene OSCs has largely relied on lessons drawn from fullerene-based OSCs, which 

traditionally use high boiling point additives like 1,8-diiodooctane (DIO) 39, diphenyl ether (DPE) 40 

and 1-chloro-naphthlene (1CN) 41. These additives have been found to reside longer than the 

primary solvent in the dried films and undergo preferential interaction with PCBM to manipulate its 

packing and aggregation. Although these additives appear to be effective, they tend to reside in the 

photoactive layer of OSCs unless they are deliberately removed via further treatments. The presence 

of such additives can lead to instability of the nano-morphology as well as reduced device 

efficiency.42-43 When using additives with non-fullerene OSCs, it has been found that they may not 

help to improve device efficiency at all.44 Recently, novel aromatic solid additives have emerged 

and have been investigated. For example, Hou et al. reported the design and application of volatile 

solid additives to improve the efficiency of non-fullerene OSCs. 45-46 However, with the exception 
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of these reports, new volatile additives are still rare in the literature, and a variety of solid additives 

are of high interest to effectively regulate the morphology and efficiency of non-fullerene OSCs.  

Here, we explore three	 volatilizable organic solid additives with different degrees of 

fluorination, namely INB-1F (2-(4-fluorobenzylidene)-1H-indene-1,3(2H)-dione), INB-3F 

(2-(2,4,6- trifluorobenzylidene) -1H-indene-1,3(2H)-dione), and INB-5F 

(2-((perfluorophenyl)methylene)- 1H-indene-1,3(2H)-dione). These materials were designed, 

synthesized and utilized in non-fullerene OSCs with two typical non-fullerene OSCs, 

PBDB-T-2F:IT-4F and PBDB-T-2F:BTP-4F to investigate their role in controlling morphology and 

PCE. These additives evaporate upon thermal annealing at a temperature of 110 °C for 10 minutes, 

and show increasing volatility as the number of fluorine atoms increases. Molecular dynamic 

simulations reveal attractive interactions between these additives and the non-fullerene acceptor 

BTP-4F, leading to enhanced π−π stacking among BTP-4Fs that is supported by grazing incidence 

wide-angle X-ray scattering experiments. In comparison to binary OSCs processed without 

additives, the maximum achievable PCE was enhanced from 12.1% to 13.4%, and from 15.2% to 

16.5% for PBDB-T-2F:IT-4F and PBDB-T-2F:BTP-4F OSCs respectively. Our work demonstrates 

that such volatilizable yet solid additives can be used to manipulate the molecular packing and 

morphology and thereby enhance device efficiency and stability, and present a new impetus to 

design solid additives to replace high boiling point liquid additives. 

2. Results and discussion 

    The chemical structures of PBDB-T-2F, BTP-4F, IT-4F, and additives INB-1F, INB-3F, 

INB-5F designed in this work, are shown in Fig. 1. In order to obtain good miscibility of additives 

with NFAs, we started with the typical terminal group 1H-indene-1, 3(2H)-dione of NFAs, and 

attached to it benzaldehyde moieties with different number of fluorine atoms to obtain the target 

solid additives through the classic Knoevenagel condensation reaction (Scheme S1, Supporting 

Information). Compared to the solid additives reported by Hou’s group45-46, the fluorine atoms on 

the benzaldehyde unit of additives in this work increase the electron delocalization on the benzene 

ring, potentially can lead to different interactions with non-fullerene acceptors. These additives all 

demonstrate good solubility in common organic solvents, such as chloroform, dichloromethane, 

chlorobenzene, o-dichlorobenzene. As illustrated in Fig. 2(b), INB-1F, INB-3F, INB-5F dissolved 

in chloroform have an absorption peak at 347, 330 and 327 nm, respectively. As the number of 
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fluorine atoms on the benzaldehyde unit increases, the absorption spectrum of the additive gradually 

blue-shifts. The absorption peaks all red shift and broaden in thin films. These additives are solid 

after synthesis, but are volatile and can be sublimed by heating thin films to modest temperatures. 

As shown in Fig. 2(a), the spin-coated additive films virtually disappear after thermal annealing at 

110 °C for 10 min. To further confirm their volatility, the changes of thickness of pure INB-1F, 

INB-3F, INB-5F films (determined by spectroscopic ellipsometry) subject to increasing temperature 

or time are shown in Fig. 2(c-d). By either increasing the annealing temperature with a fixed 

annealing time, or prolonging the annealing time under a fixed temperature, INB-1F, 3F, 5F 

molecules evaporate gradually. For example, by annealing at 110 °C for 10 mins, the thickness of 

all pure additive films reduces to less than 20% of its initial thickness and the intensity of the 

UV-Vis spectrum reduces to nearly zero (see Fig. S1), demonstrating significant volatility. 

Additionally, as the number of fluorine atoms increases, the additive becomes more volatile.  

 

 

Fig. 1 Chemical structures of PBDB-T-2F, BTP-4F, IT-4F and three OPV processing additives 

INB-1F, INB-3F and INB-5F. 
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Fig. 2 (a) Photographs of pure additive films before and after thermal annealing. (b) Normalized 

absorption of three additives in chloroform solution and pure films. Normalized film thicknesses 

after baking (c) for 10 mins under different temperature, and (d) under 110 oC as a function of time. 

       The content of the additives and the annealing temperature were firstly optimized using 

INB-1F as an example with PBDB-T-2F:BTP-4F OSCs, having a device structure of 

ITO/ZnO/PBDB-T-2F:BTP-4F/MoO3/Ag. INB-1F was added at various concentrations with respect 

to the NFA at mole ratios of 1:0, 1:0.2, 1:0.5 and 1:1. The device J-V curves are plotted in Figure 

S2 and the device metric are summarized in Table S1, from which we identify that the optimal 

additive content is BTP-4F:INB-1F=1:0.5, and the optimal annealing temperature is 110 °C for 10 

min. Upon annealing at this condition, the thickness of the active layer is typically reduced from 

140 nm for the as-cast films containing additives, to 120 nm (which is an optimized thickness of the 

photoactive layer and is consistent with previous work10). This process results in increased film 

optical absorption as a result of densification and morphological changes which we will discuss 

below. The UV-Vis spectra of BTP-4F neat films processed with and without additives, in an 

as-cast state and after thermal annealing, are plotted in Fig. 3(a). Compared with the pure BTP-4F 

film, the absorption spectra of films processed with additives red-shifts around 13 nm with 

increased intensity, which could be ascribed to the enhanced intermolecular π–π interaction among 
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BTP-4F molecules. The characteristic absorption peaks of INB-1F, 3F, 5F in the range of 300~400 

nm disappear after thermal annealing, but the intensity of the primary absorption peak of BTP-4F 

further increases and red-shifts, with the INB-5F additive being most effective. The absorbance of 

PBDB-T-2F:BTP-4F binary films processed with INB-1F, INB-3F, INB-5F at a fixed molar ratio 

(half that of BTP-4F) and further treated with/without thermal annealing are shown in Fig. 3(b). A 

similar phenomenon can be observed in the PBDB-T-2F:BTP-4F-based blend film. The pure 

PBDB-T-2F:BTP-4F film without the presence of any additives and annealing exhibits three main 

and broad absorption peaks at ca. 313, 622 and 802 nm. After processed with INB-1F, INB-3F and 

INB-5F, the absorption increases in all cases and is strongest for the INB-5F additive. When these 

films were further processed by annealing, the peak in 300-400 nm vanishes due to the evaporation 

of these additives and the characteristic peak of BTP-4F is obviously red shifted with enhanced 

absorption coefficient, which is confirmed again that additives has good volatility and the obvious 

role on enhancing inter-molecular π–π stacking of electron acceptors. We note here that the location 

of the peak at 622 nm, which is mainly attribute to the donor PBDB-T, has not been shifted, 

suggesting limited effect of these additives on regulating the π–π stacking of PBDB-T. 
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Fig. 3 (a) Absorbance of neat BTP-4F films processed with/without additives, and further treated 

with/without thermal annealing. (b) Absorbance of PBDB-T-2F:BTP-4F blend films processed 

with/without additives, and further treated with/without thermal annealing. (c) J-V characteristics 

and (d) EQE spectra of the corresponding PBDB-T-2F:BTP-4F devices. 

Table 1 Device metrics for PBDB-T-2F:BTP-4F OSCs processed with/without solid additives. The 

standard deviations were obtained from 20 devices.  

Active layer 
composition 

Voc  [V] 
Jsc 

[mA cm
-2

] 

Calculated Jsc 

[mA cm
-2

] 

FF 
[%] 

PCE 

[%] 

PBDB-T-2F:BTP-4F 0.82±0.00 26.2±0.4 25.7 70.1±1.3 15.1±0.1(15.2) 

PBDB-T-2F:BTP-4F 

(INB-1F) 
0.81±0.00 27.0±0.2 26.5 72.0±0.2 15.7±0.2(15.8) 

PBDB-T-2F:BTP-4F 
(INB-3F) 

0.81±0.00 27.1±0.2 26.7 72.2±0.5 15.8±0.1(15.9) 

PBDB-T-2F:BTP-4F 
(INB-5F) 

0.81±0.00 27.7±0.1 27.1 74.3±0.3 16.4±0.1(16.5) 

The current density-voltage (J-V) characteristics of PBDB-T-2F:BDP-4F OSCs are plotted in 

Fig. 3(c) and the corresponding device metrics are summarized in Table 1. For the reference device 

without any additives, a maximum PCE of 15.2% with an average VOC of 0.82±0.00 V, JSC of 

26.2±0.4 mA cm-2 and FF of 70.1±1.3% were obtained. When the films were treated with these 

additives, the JSC and FF both improved (although the device VOC decreased slightly from 0.82 to 

0.81 V), leading to an increase in the maximum PCEs of 15.8%, 15.9% and 16.5% for the additives 

INB-1F, INB-3F and INB-5F respectively. The external quantum efficiency (EQE) of such OSCs is 

shown in Fig. 3(d); here we observe a broad response over the wavelength range 300 to 950 nm. 

When the device was processed using INB-1F, INB-3F and INB-5F, the spectral response increased, 

particularly over the spectral region from 400 to 850 nm; a result consistent with the enhanced 

device JSC. Calculated JSC values from integrating the EQE spectra are 26.5, 26.7 and 27.1 mA cm-2 

for devices processed with INB-1F, INB-3F and INB-5F respectively. These values are only ca. 5% 

less than the JSC values obtained from the J-V testing, and confirm the validity of our J-V 

measurements. 	

    To determine whether the effect of these solid additives generalizes to other non-fullerene 
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OSC systems, PBDB-T-2F:IT-4F devices were also investigated. Fig. S3 shows the absorbance, J-V 

characteristics and EQE spectra of a reference PBDB-T-2F:IT-4F device and those processed with 

INB-1F, INB-3F and INB-5F. Table S2 summarizes specific device metrics. INB-1F, INB-3F and 

INB-5F additives are also found to increase the maximum PCE of PBDB-T-2F:IT-4F devices to 

13.0%, 13.1% and 13.4% for each of the three additives, from a reference of 12.2%. This 

demonstrates that the benefits of these additives are not limited to one specific material system but 

can actually enhance device performance in many non-fullerene OSCs.  

To further understand how these solid additives can enhance device performance, we return to 

the champion system PBDB-T-2F:BTP-4F. Firstly, a space charge-limited current (SCLC) method 

47-48 was used to characterize the charge mobility of PBDB-T-2F:BTP-4F from dark J-V curves of 

hole-only and electron-only devices (see Fig. S4, and Table S3). The electron and hole mobilities of 

the reference PBDB-T-2F:BTP-4F device are 5.9 x 10-4 and 1.6 x 10-4 cm2 V-1 s-1 respectively, 

leading to a µe/µh ratio of 3.7. When the PBDB-T-2F:BTP-4F layer was processed with solid 

additives, both µe  and µh increased but the µe/µh ratio became more balanced. Finding consistent 

with our observed enhancements in device efficiency, INB-5F increasing µe and µh to a maximum 

value of 7.9 x 10-4 and 3.2 x 10-4 cm2 V-1 s-1 respectively. This corresponds to a lowest µe/µh ratio of 

2.5. To gain insights into the charge recombination mechanisms in the active layers, VOC and JSC of 

devices illuminated under different light intensity (Plight) were measured. As we can see from Fig. 

S5, the slopes of VOC versus In(Plight) plots are 1.55, 1.19, 1.12 and 1.03 for the reference cell and 

those processed with INB-1F, INB-3F and INB-5F respectively, which confirms that devices treated 

with additives have reduced trap-assisted recombination compared with the reference device, and 

bimolecular recombination has become the main charge loss. Besides, the slope of log(JSC) versus 

log(Plight) in the device processed with INB-5F is more close to 1 than others, associating with the 

weakest bimolecular recombination.49-50 

    The surface morphology of the PBDB-T-2F:BTP-4F films probed by atomic force microscopy 

(AFM) is shown in Fig. S6. We find the surfaces exhibit very similar morphology, with an absence 

of excessive clusters or holes on the film surface due to the evaporation of these solid additives. The 

average root-mean-square (RMS) roughness increased slightly from ca. 1 nm to 2 nm after 

processing with these three solid additives, demonstrating negligible impact towards the interface 

with the top electrode. Grazing-incidence wide-angle X-ray scattering (GIWAXS) measurements 

were used to characterise changes in molecular packing in the PBDB-T-2F:BTP-4F thin films. The 
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1D profiles along the out-of-plane (OOP) direction were extracted from the 2D GIWAXS patterns 

(see Fig. 4(a-d)) and are shown in Fig. 4(i). Literature reports9-10 indicate that pure PBDB-T-2F 

exhibits a (010) π−π stacking peak at qz=1.66 Å-1 in the OOP direction, and a (100) scattering peak 

at qxy=0.30 Å-1 in the in-plane (IP) direction that is associated with lamellar stacking. BTP-4F 

exhibits π−π stacking peak at qz=1.76 Å-1 and lamellar stacking around qxy=0.29 and 0.42 Å-1. The 

scattering rings at qxy=0.30 Å-1 in Fig. 4(a-d) can be attributed to (100) of PBDB-T-2F or BTP-4F, 

whilst the crescent at qz=1.76 Å-1 can be assigned to the π−π stacking of BTP-4F. When the blend 

film was processed using three different additives, scattering from the π−π stacking at qz=1.76 Å-1 

became more intense, especially in films processed using INB-3F and INB-5F (see Fig. 4(c-d) and 

in comparison with Fig. 4(i)), illustrating significantly enhanced face-on π−π stacking of the 

BTP-4F electron acceptor. This favorable “face-on” oriented molecular packing leads to improved 

electron mobility. It is notable that the (100) ring is also enhanced (see Fig. 4(c&d)), showing the 

same trend with the π−π stacking changes.  
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Fig. 4 2D GIWAXS patterns of (a) neat PBDB-T-2F:BTP-4F film, and those processed with (b) 

INB-1F, (c) INB-3F, (d) INB-5F, and (e-h) the corresponding 2D GISAXS patterns. (i) 1D 

GIWAXS profiles along the qz direction, and (j) 1D GISAXS profiles along the qxy axis, with the 

solid lines as fitted curves using a universal model. 

Table 2 Fitting parameters of 1D GISAXS profiles of various PBDB-T-2F:BTP-4F films.  

Component ξ [nm] η [nm] D 2Rg [nm] 

PBDB-T-2F:BTP-4F 13.0 9.5 3.0 46.5 

PBDB-T-2F:BTP-4F (INB-1F) 11.8 10.7 3.0 52.4 

PBDB-T-2F:BTP-4F (INB-3F) 11.5 11.3 3.0 55.9 

PBDB-T-2F:BTP-4F (INB-5F) 10.5 12.9 3.0 63.2 
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    Grazing-incidence small-angle X-ray scattering (GISAXS) measurements were conducted to 

gain information on the phase-separated domain size within various PBDB-T-2F:BTP-4F blend 

films (see Fig. 4(e-h)). The 1D GISAXS profiles of various blend films along the IP direction are 

presented in Fig. 4(j) and are fitted with a universal model using the software SasView. The solid 

lines in Fig. 4(j) are fitted curves and the best fitting parameters are listed in Table 2. In the table, ξ, 

η, D, and 2Rg represents the average correlation length of the BTP-4F dispersed PBDB-T-2F phase, 

the correlation length of acceptors, the fractal dimension of acceptors and the size of the aggregated 

acceptor domain.51 As we can see from the results, the average correlation length of the BTP-4F 

dispersed PBDB-T-2F phase reduces whilst the domain size of acceptors increases when the films 

were processed using the solid additives. This suggests that these additives facilitate the migration 

of BTP-4F molecules from the PBDB-T-2F phase (which reduces the correlation length of the 

donor phase) and then form larger aggregates (which increases the correlation length of the acceptor 

phase). This observation is consistent with our GIWAXS characterization that the BTP-4F π−π 

stacking becomes stronger after treatment with the additives. Among all these additives, we find 

INB-5F to be the most effective at increasing the π−π stacking and correlation length of BTP-4F. 

Although the increase of the correlation length does not facilitate exciton dissociation (as it will 

reduces the density of heterojunction interfaces), it does improve charge transport as demonstrated 

above. 	 	

    In order to understand the interactions of our additives with the electron acceptor BTP-4F, we 

have performed molecular dynamic simulations. The geometry configuration of additives INB-1F, 

INB-3F and INB-5F are simulated and illustrated in Fig. 5(a-c). The dihedral angles between the 

1H-indene-1, 3(2H)-dione and benzene units of INB-1F, INB-3F and INB-5F are 3.6°, 50.1°, 48.4° 

respectively. Increasing the number of fluorine atoms in the benzene ring results in a substantial 

twists of the two molecular units and destroys the planarity of the molecule. Fig. 5(d-f) show the 

electrostatic potential (ESP) distribution of these additives. The ESP concentration is relatively 

neutral in the center of INB-1F. Negative ESP gradually concentrates from the indanone to the 

fluorobenzene unit in INB-3F and INB-5F due to the strong electronegativity of fluorine atoms, 

leaving the indanone unit positively charged. We firstly determined the interactions between the 

electron acceptor BTP-4F and additives. Fig. 5(g-i) show the optimal configuration of the 

adsorption of one INB-1F, INB-3F, INB-5F molecule onto one BTP-4F, respectively. We observed 

that the additive molecule prefers to stack on the central D-A-D” unit rather than the two 



	 12	

terminating A” units of BTP-4F. The adsorption energy of additive on BTP-4F (EBTP-4F/additive) is 

summarized in Table S4. When the adsorption energy is smaller, the adsorption capacity will be 

stronger. We determined that all additives tend to adsorb to BTP-4F molecules, amongst which 

INB-5F shows the strongest adsorption capacity with the lowest adsorption energy of -38.5 

kcal/mol. This is associated with the smallest stacking distance between the indanone unit of the 

additive and the “D-A-D” unit of BTP-4F (see Table S4). Fig. 5(j-m) shows the molecular 

aggregation states of four BTP-4F molecules with/without the presence of two additive molecules. 

As summarized in Table S5, the average distance between two BTP-4F molecules reduces from ca. 

3.6 Å of the system without the presence of any additive to 3.4 Å when the additives are added. The 

adsorption energies of three BTP-4F molecules on a BTP-4F surface processed with the presence of 

two INB-1F, INB-3F or INB-5F molecules are all below -200 kcal/mol. These values are much 

lower than the absorption energy of -152.1 kcal/mol without any additive, implicating that the 

presence of these additives promotes the π−π stacking tendency of BTP-4F molecules. Our 

molecular dynamic simulations therefore support that these additives have attractive interactions 

with BTP-4F via π-π stacking, and their presence reduces the adsorption energy between BTP-4F 

molecules to improve structural order. These effects are most pronounced with the additive INB-5F, 

which has five fluorine atoms on the fluorobenzene unit. All these observations are consistent with 

our morphology and device performance studies presented in the earlier sections.	
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Fig. 5 (a), (b), (c) The optimal geometry configuration and (d), (e), (f) electrostatic potential (ESP) 

of additive INB-1F, 3F, 5F additives. Optimal configuration of one BTP-4F molecule adsorbing 

with one (g) INB-1F (h) INB-3F and (i) INB-5F molecule, respectively. Optimal configuration of 

one BTP-4 molecule adsorbing another three BTP-4F molecules (j) without additives and with the 

presence of two (k) INB-1F (l) INB-3F, (m) INB-5F molecules. 

 

    Finally, the shelf-stability of encapsulated PBDB-T-2F:BTP-4F OSCs devices was 

investigated. Such devices were tested daily and stored under ambient conditions (at an average 

temperature of 25°C and humidity around 70%) when they were not being tested. Device metrics 

are plotted as a function of time for a total period of 30 days in Fig. 6. It can be seen that the VOC of 

all devices are quite stable and remain largely unchanged after 30 days of storage in air. The JSC and 

FF of the reference device however drop to below 90% of their initial values, resulting in a PCE of 

about 80% of the starting value. For the devices processed with additives, the Jsc values reduce as 

storage time increases but at a much lower rate compared to the reference device. Here the INB-5F 

(a) (b) (c) 

(d) (e) (f) 

(g) 

(j) (k) (l) (m) 

(h) (i) 

-0.04 0.04
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processed device exhibits superior shelf stability than either the INB-3F or INB-1F processed 

devices. The FF degradation rates of these additive processed devices are also improved to a similar 

level. The PCE degradation rates of these additives processed OSCs are largely a reflection of JSC 

changes, as the FF and VOC of these devices change at a similar rate. Around 90% of the initial PCE 

is retained after ambient storage for 30 days, with the INB-5F processed OSCs demonstrating the 

best stability. We believe that the densely packed photoactive layer processed with these fluorinated 

additives is the origin of such enhanced stability. 

 

Fig. 6 The evolutions of (a) PCE, (b) JSC, (c) FF, (d) VOC over storage time for encapsulated 

PBDB-T-2F:BTP-4F OSCs fabricated without or with the presence of different additives. 

3. Conclusion 

   In conclusion, three volatilizable organic solid additives with different degrees of fluorination 

were designed and synthesized, and have been demonstrated to be effective for regulating the 

morphology of non-fullerene OSCs, leading to improved device efficiency and stability. These 

additives evaporate upon thermal annealing and exhibit increased volatility as the number of 
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fluorine atoms increases. When processed using these additives during solution casting, 

PBDB-T-2F:BTP-4F non-fullerene OSCs undergo an improvement in efficiency from 15.2% to 

16.5%, whilst that of PBDB-T-2F:IT-4F improve from 12.1% to 13.4%. Grazing-incidence X-ray 

studies show that the fluorinated additives, especially INB-5F, can significantly enhance the π-π 

stacking among electron acceptors, leading to slightly larger acceptor domain size that improves 

electron mobility. Molecular dynamic simulations shows that the additives have attractive 

interactions with BTP-4F via π-π stacking, and that their presence reduces the adsorption energy 

among BTP-4F molecules to promote structural order. The additive processed devices also exhibit 

enhanced long-term storage stability. Our work demonstrates a promising strategy to design new 

solid additives to effectively improve the device performance of non-fullerene organic solar cell. 
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