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       Abstract:  

Evaluation and prediction of wear play a key role in product design and material selection of total hip 

replacements, because wear debris is one of the main causes of loosening and failure. Multifactorial 

clinical or laboratory studies are high cost and require unfeasible timeframes for implant development. 

Simulation using finite element (FE) methods is an efficient and inexpensive alternative to predict 

wear and pre-screen various parameters. This paper presents a comprehensive literature review of 

the state-of-the-art FE modelling techniques that have been applied to evaluate wear in polyethylene 

hip replacement components. A number of knowledge gaps are identified including the need to 

develop appropriate wear coefficients and the analysis of daily living activities.  

Keywords: Artificial Hip Joint; Biotribology; Contact Modelling; Wear Modelling; Wear Mechanics.   

 

Abbreviations:   

UHMWPE: Ultra-High-Molecular-Weight Polyethylene  

FEA: Finite Element Analysis 

THR: Total Hip Replacement 

MoP: Metal-on-Polyethylene 

PoD: Pin-on-Disk 

RSA: Radiostereometric Analysis 

3D: 3-Dimensional 

2D: 2-Dimensional 

MoM: Metal-on-Metal 

CoCr:  Cobalt-Chrome alloy  

CSR: Cross Shear Ratio  
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DLC: Diamond-Like Carbon 

SS: Stainless Steel 

PMO: Principal Molecular Orientation 

Mc: million cycles 

CMM: Coordinate Measuring Machine 

 

1. Introduction 

 

The hip joint is a type of diarthrodial joint, also known as a ball-in-socket joint: the head of the 

femur is the ball and the acetabulum constitutes the socket.  In a normal hip, a smooth layer of 

cartilage separates the ball and the socket, allowing the ball to glide easily within the socket, 

cushioning the joint [1]. However, the hip may wear out, usually as a cause of degenerative 

ĚŝƐĞĂƐĞ ƐƵĐŚ ĂƐ ŽƐƚĞŽĂƌƚŚƌŝƚŝƐ͕ Ăƚ ĚŝĨĨĞƌĞŶƚ ƐƚĂŐĞƐ ŽĨ Ă ƉĞƌƐŽŶ͛Ɛ ůŝĨĞ͘ HŝƉ ũŽŝŶƚ ŝŵƉůĂŶƚƐ ĂƌĞ ĚĞƐŝŐŶĞĚ 
to replace biological materials which are damaged, aiming to reduce joint pain, enhance joint 

function and improve quality of life for patients. Total Hip Replacement (THR) is a successful and 

cost effective solution for hip joint diseases and also one of the most common surgeries 

performed in the world. The number of people undergoing this operation is set to rise, resulting 

from an ageing population. At the same time, increasing numbers of younger and more active 

patients are undergoing THR surgery, placing additional demands on the device performance. 

 

Polyethylene total hip joints, which consist of a metallic/ceramic femoral head articulating against 

an Ultra-High-Molecular-Weight Polyethylene (UHMWPE) liner as shown in Figure 1, are clinically 

the most widely implanted. Hip replacement may require revision (or replacement) for a 

variety of reasons, both biological and mechanical. The most common long term cause is 

͞ĂƐĞƉƚŝĐ ůŽŽƐĞŶŝŶŐ͟ [2], which has been associated with a number of underlying factors [3], 

including the release of UHMWPE wear debris. Over the past decade, cross-linked UHMWPE 

biomaterials have been introduced to decrease surface wear. However cross-linking also reduces 

the mechanical properties [4] and although results to date are encouraging, these materials have 

not been commercialized long enough to clinically demonstrate they can improve the lifespan of 

THR [5]. Therefore, evaluation and prediction of UHMWPE wear play a key role in the product 

design and material selection of THR. The average wear rate of conventional and cross-linked 

UHMWPE in metal-on-polyethylene prostheses, both In vivo and in vitro, are listed in Table 1 [5, 

6].   

 

 

 

Figure 1 Polyethylene total hip joint. Image courtesy of DePuy Synthes, Leeds, UK 
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Table 1 In vivo and in vitro wear rate of MoP (Metal-on-Polyethylene) prostheses [5, 6]  

 

 

There are generally three approaches when analysing the UHMWPE liner wear: laboratory 

experiment, clinical investigation and numerical analysis.  Laboratory studies include Pin-on-Disk 

(PoD) and hip joint simulator testing. PoD testing is useful to characterise wear properties under 

various conditions, e.g. changes in pressure, cross shear or surface roughness. The hip joint 

simulator is a standardised method developed to replicate the motion and loading profile of a 

ƉĂƚŝĞŶƚ͛Ɛ ŚŝƉ ũŽŝŶƚ͕ ŝŶ Ă ƐŝŵƵůĂƚĞĚ in vivo environment, and as such has become an indispensable 

method to assess the wear performance of any new bearing design. However, it is very time 

consuming and expensive to run with a test of few million cycles taking months to complete. 

Moreover most simulators can only run under a set of standard conditions which simulate walking.  

 

Clinical studies include the evaluation of retrieved implants, the assessment of penetration depth 

using measurements of femoral head migration rate on follow-up x-rays or radiostereometric 

analysis (RSA)[7]. However, wear takes place in three dimensions (3D), and it is difficult to obtain 

accurate results by 2D x-ray. Although RSA allows 3D measurement, it is quite expensive and 

intrusive. Most importantly, clinical studies are not under controlled conditions due to the 

variation in patient activity, lubrication, liner oxidation and roughness of the femoral head. Hence 

a wide range of wear rates are found clinically. 

  

Recent developments in understanding of variable outcomes in hip replacement have led to 

increasing need for the development of wear simulation methods which address more complex 

surgical and patient scenarios (e.g. inclusion of stop-dwell-start motion [8, 9], obese patient 

profiles [10, 11], component separation [12, 13], and variation in component positioning [14-17]). 

Carrying out multi-factorial clinical and laboratory studies with material, design and 

manufacturing as well as surgical-patient parameters makes the cost and time for developing 

implants unrealistic. To address those challenges and limitations, long term wear has been 

predicted by more efficient and less expensive numerical approaches e.g. mathematical modelling 

and finite element analysis (FEA). Mathematical wear modelling employs many simplifications 

such as ideal rigid coupling [18] and Hertzian pressure distribution theory [19]; creep, friction and 

the geometrical evolution of wear are neglected [20]. Such modelling is rarely pursued and not 

the focus of this paper. Finite Element Analysis (FEA) of hip joint bearing wear, which was 

pioneered by Maxian et al [21-23] and adapted by a considerable number of researchers over the 

past two decades, allows more comprehensive algorithms to simulate the contact behavior, to 

gain understanding of the wear mechanics and provide initial screening of various parameters. 

More importantly, the numerical technique is also applicable to other types of joint replacements 

and has been employed on the wear prediction of knee [24-31], shoulder [32-36], ankle [37-39] 

and spine [40, 41]. Nevertheless, the accuracy of FEA prediction depends on inputs from 
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laboratory experiments and it is critical to validate the FEA model before it can provide guidance 

to testing and assist product development.  

 

To the best of our knowledge, there has only been one review regarding FEA of wear at the 

articulating surface of THR [42], which was published in 2010. The aim of this paper was to deliver 

a comprehensive literature review of the state-of-the-art FEA modelling techniques and numerical 

wear mechanics analyses of UHMWPE liner wear, including discussion n of the limitations of 

current methodologies and identification of the knowledge gaps for future studies. Theoretical 

foundations of the finite element method are widely explained in textbooks [43, 44] and are not 

discussed here, but specific FEA techniques relevant to this review are summarised in the relevant 

sections. The review was conducted using ScienceDirect (https://www.sciencedirect.com/) and 

PubMed (https://www.ncbi.nlm.nih.gov/pubmed)͘ CŽŵďŝŶĂƚŝŽŶƐ ŽĨ ŬĞǇǁŽƌĚƐ ĐŽŵƉƌŝƐŝŶŐ ͞ƚŽƚĂů 
ŚŝƉ ƌĞƉůĂĐĞŵĞŶƚ͕͟ ͞ŚŝƉ ũŽŝŶƚ͟ Žƌ ͞ŚŝƉ ĂƌƚŚƌŽƉůĂƐƚǇ͟ ĂůŽŶŐ ǁŝƚŚ ͞ƉŽůǇĞƚŚǇůĞŶĞ ǁĞĂƌ͟ ĂŶĚ ͞ĨŝŶŝƚĞ 
element analysŝƐ͕͟ ͞ŵŽĚĞůůŝŶŐ͟ Žƌ ͞ƉƌĞĚŝĐƚŝŽŶ͟ ǁĞƌĞ ƵƐĞĚ͘ PĂƉĞƌƐ ǁĞƌĞ ŝŶĐůƵĚĞĚ ƚŚĂƚ ǁĞƌĞ 
published in English between 1996 and 2016.  The abstracts were then examined for relevance to 

the aim of this study, yielding a total of 28 publications. Section 2 and 3 of this paper detail the 

methodology of contact and wear modelling of the UHMWPE liner, respectively. Section 4 

discusses the mechanics of wear and creep, and parametric studies are presented in Section 5. 

Finally, discussion and conclusion of this literature review are summarised in Section 6 and 7, 

respectively.    

 

 

2. FEA Contact Modelling  

 

Finite Element Analysis (FEA) is a numerical method seeking an approximated solution of a 

complex engineering problem which is difficult to obtain analytically or has no analytical solution. 

FEA has been used widely in the evaluation of orthopaedic devices since the 1970s. The rapid 

development of computational capability has enabled increasingly complex problems to be 

evaluated including the analysis of bone adaption, tissue differentiation, damage accumulation 

and wear [45].  

 

The workflow of modelling UHMWPE liner contact and wear mechanics, which require inputs of 

geometry, material, loading and motion, as illustrated in Figure 2. At every time increment, the 

wear depth of each node on the bearing contact surface is calculated and the nodal position is 

updated accordingly. Then the updated geometry of the UHMWPE liner is used in the contact 

mechanics analysis, and subsequent wear prediction at the next time increment. This process 

repeats until the end of the pre-defined load cycle.  

 

 

 

https://www.sciencedirect.com/
https://www.sciencedirect.com/
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Figure 2 Workflow of FEA modelling of liner wear 

 

2.1 Model Geometry 

Most FEA wear models of THR have employed a 3D ball-in-socket assembly, as shown in Figure 3, 

and consist of three components: the femoral head, metal shell and liner. The supporting bone 

geometry has been found to have negligible effects on wear [46, 47]. In addition, to improve 

computing efficiency, the head and shell were generally assumed to be rigid bodies [48-50], 

because their stiffness is considerably higher than the deformable UHMWPE liner. Other FEA 

models have been simplified by eliminating the metal shell and applying constraints to the outer 

surface of the liner [51-53]. This simplification was justified by Barreto et al [47], because without 

the metal shell the volumetric wear rate was found to increase by less than 1%, compared to the 

FEA with the metal shell. Nevertheless, a limitation of this approach is that it is not able to analyse 

the press fit, locking mechanism and backside wear between the liner and shell.  

   

Figure 3 An exploded view of the three components commonly modelled in FEA of UHMWPE 

liner wear 

 

2.2 Mesh Configuration 

There have been two commonly used mesh configurations for a liner FEA model. The ͞polar͟ 

design [21, 22], as shown in Figure 4(a), employs a circumferential sweep operation, using 

hexahedral elements for majority of the liner and wedge elements in the central region. Two 

possible shortcomings of this mesh configuration are: 1) mixing different type of element often 

results in irregular stress concentrations not related to the load applied [54] and 2) the small 

wedge elements could limit the time increment in an explicit FEA, hence increase the 

computational cost [55]͘ TŚĞ ͞ďƵƚƚĞƌĨůǇ͟ ĚĞƐŝŐŶ [50-54, 56-58], as shown in Figure 4(b), employs 

a radial sweep operation to ensure the accuracy and efficiency of wear modelling by preventing 

the use of wedge elements. Despite the fact that both configurations are widely used, there have 

been no direct comparisons made between them.  

  

Figure 4 Two commonly used liner mesh configurations͗ ;ĂͿ ͞ƉŽůĂƌ͟ ĚĞƐŝŐŶ͕ ;ďͿ ͞ďƵƚƚĞƌĨůǇ͟ 
design.   

 

2.3 Material Model  

In earlier FEA wear models, the UHMWPE liner was assumed as an isotropic and linear elastic 

material, i.e. using a pure elastic model [21-23, 46, 51, 52], ǁŝƚŚ Ă YŽƵŶŐ͛Ɛ ŵŽĚƵůƵƐ ŽĨ ϭ͘ϰ GPa and 

Ă PŽŝƐƐŽŶ͛Ɛ ƌĂƚŝŽ ŽĨ Ϭ͘ϯ [59]. However, this assumption is no longer valid if the UHMWPE material 
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begins to exhibit plasticity due to severe load conditions. To take the nonlinear stress-strain 

behaviour of UHMWPE material into account, a simplified perfectly plastic model was introduced 

[54]. However, this model offers no further resistance to material deformation upon the yielding 

stress limit, as shown in Figure 5. More accurate strain hardening models have also been 

employed [49, 53, 60, 61], where the stressʹ strain relationship of UHMWPE is described by multi-

linear data. Based on a compressive characterisation of UHMWPE at 37°C performed by Cripton 

[62], Matsoukas et al [53, 61] assumed a constant modulus of 110MPa beyond the yielding stress 

of 17MPa and they derived an equation to describe the stress (ʍ) ʹ strain (ɸ) behaviour with 100 

points up to yielding:   ߪ ൌ ʹͲǤʹͻሺͳ െ ݁ିଷଶǤସ଼ହఌሻ                                                       (1) 

 

Figure 5 Schematic stress-strain behaviour exhibited by different material models used to 

represent the UHMWPE liner 

 

2.4 Loading & Boundary Conditions  

The loads and motions applied to the FEA models have been generally obtained from gait studies 

of patients with instrumented THRs [63] or simplified conditions such as ISO 14242 [64] or hip 

simulator inputs [65]. Amongst various daily activities, normal walking has been extensively 

studied. Load inputs for the models were generally applied to the femoral head, consisting of 

either all the three force components [21-23, 48, 51, 54, 61, 66] or just the superior-inferior 

components [50, 53, 58, 65, 67]. Until now, no direct comparative study has been carried out 

between the 3D and 1D loading cases, which may be critical to understand the effects of the less 

dominant anterior-posterior and medial-lateral force components on UHMWPE liner wear. 

Rotations of the head have been applied as boundary conditions on the head [50] or on both the 

head and liner [53, 65], depending on the setup of the hip simulator being modelled. While some 

studies have used all three angular movements [48, 61, 68], only the flexion-extension angle 

profile was used by others [21-23, 50, 51, 58], which may consequently under-predict the wear 

compared to clinical data due to the cross shear effect of the other motions [54] and decrease in 

the sliding distance [57]. In almost all the models, the outer surfaces of the metal shells have been 

constrained, to prevent rigid body motion. To assist model convergence for static wear FEA, 

displacement control has been used to establish the initial contact, then changing to load control 

[23]. It is also worth noting that in early studies, the swing phase of the gait cycle was neglected 

for computational economy [21-23, 46, 51, 56, 57, 69]. However, this simplification may result in 

under-prediction of the wear, as relative motion between the head and liner during swing phase 

would still generate some wear, despite the fact that loading of the swing phase is much lower 

than it is in the stance phase.      
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2.5 Solution Method  

Finite Element solution methods are generally divided into the implicit and the explicit methods 

[70]. The implicit FEA method iterates to find the approximate static equilibrium at the end of 

each load increment. For a nonlinear problem, the computation can be extremely expensive 

because the global stiffness matrix has to be assembled and inverted many times. Therefore, the 

implicit method is preferable to analyse static problems, where the load is time independent and 

inertial effects are negligible in contrast to dynamic problems. Until now, almost all the FEA 

modelling of contact and wear mechanics of UHMWPE hip joints have employed the implicit 

solution method. The explicit method determines a solution by advancing the kinematic state 

from one time increment to the next, without iteration. It is more robust and efficient for 

complicated problems, such as dynamic events, nonlinear behaviours, and complex contact 

conditions. However, in order to obtain accurate results from the explicit method, the time 

increment has to be extremely small to ensure that the acceleration through the time increment 

is nearly constant. Therefore an explicit analysis typically requires many thousands of increments. 

To date, explicit FEA studies have been utilised mainly on knee joint replacements to analyse the 

kinematics and contact mechanics during dynamic loading conditions [71-75] and the complex 

contact mechanics of the MoM hip joint under edge loading conditions [76]. Recently, it has been 

reported that the explicit FEA was able to accurately predict both the contact pressure and sliding 

distance of artificial hip and knee joints [77], when compared with the corresponding implicit FEA. 

However, no attempts have been made to explore the options of predicting UHMWPE liner wear 

by using explicit FEA and to benchmark its computational efficiency against implicit FEA.     

 

2.6 Contact Treatment  

To date, all UHMWPE liner wear FEA models simulated dry contact between articulating surfaces, 

where lubrication was neglected. For a classic three-component ball-in-socket model, there are 

two contact pairs: the head/liner articulating interface and the liner/shell interface. The 

head/liner interface is the main source of wear generation. Friction at this interface was neglected 

in the early studies [21-23]. This assumption, however, is unlikely to remain valid in the longer 

term, especially once wear occurs [54]. Although an experimental study has shown that friction 

between UHMWPE liner and CoCr head decreases as contact stress increases [78], the frictional 

coefficients have been simplified and assumed to be constant in the contact and subsequent wear 

FEA with slightly varying values (0.04 [53]; 0.06 [79]; 0.07 [47, 57]; 0.08 [61]  and 0.083 [50]). 

Nevertheless, it is worth noting that the wear has been found to be insensitive to the frictional 

coefficient within this range [53, 54]. The liner/shell interface has been generally simplified as 

bonded contact [21-23, 46] or modelled as frictional contact with a coefficient of 0.083 in order 

to predict the backside wear  [50]. To analyse a contact problem, master (target) and slave 

(contactͿ ƐƵƌĨĂĐĞƐ ŚĂǀĞ ƚŽ ďĞ ĚĞĨŝŶĞĚ͘ TŚĞ ŵĂƐƚĞƌ ;ƚĂƌŐĞƚͿ ƐƵƌĨĂĐĞ ŝƐ ƚŚĞ ƐƵƌĨĂĐĞ ŽĨ ƚŚĞ ͞ŚĂƌĚ͟ 
material, for instance, acetabular head and shell; whereas the slave (contact) surface is the 

ƐƵƌĨĂĐĞ ŽĨ ƚŚĞ ͞ƐŽĨƚ͟ ŵĂƚĞƌŝĂů Ğ͘Ő͘ UHMWPE ůŝŶĞƌ͘   
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2.7 Contact Algorithm   

  

Contact is a changing-status nonlinearity and is implemented in an incremental manner [80]. 

There are generally three main aspects of the contact modelling algortihm: (1) identifying the area 

on the surfaces that are in contact; (2) calculating the contact force in the normal direction of the 

surfaces due to penetrations; (3) thereafter calculating the tangential force caused by friction. 

Since a surface point of a body is possible to contact any portion of the surface of another body; 

it can even come into contact with a part of the surface of its own body, search for correct location 

may require considerable effort. The search algorithms can be divided in two general approaches 

[81]. The first approach is for contact between a deformable and a rigid body, where the rigid 

body can be described as superquadrics or hyperquadrics [82], resulting simple and efficient 

contact search for surface points on the deformable body. The second approach is for contact 

amongst two or more deformation bodies or in the present of self-contact, where the search is 

more complex and normally split into a global and a local search [83].  The high computing cost 

but less frequently conducted global search is used to find out which bodies, parts of the bodies, 

surfaces or parts of the surfaces are able to come into contact within a given time step. Once the 

potential contacts are known, a less expensive local search is performed to determine if a 

penetration has occurred and its exact location. The penalty method has been applied in a number 

of THR wear FE studies to model the contact in normal direction. The normal contact force, which 

is calculated as the penetration distance multiplied by the penalty stiffness, is applied to the slave 

surface to resist its penetration to master surface. Simultaneously, opposite forces act on the 

master surface at the penetration point. The tangential motion will not start until the frictional 

shear stress reaches a critical value (߬௧), which is defined by Coulomb friction model:  ߬௧ ൌ ߤ ή  (2)                                                                      

 

where ߤ is the coefficient of friction and  is the normal contact pressure. If the shear stress is 

below ߬௧,, there will no relative motion between the contact surfaces (sticking). While when 

the frictional shear stress reaches its critical value relative motion (slipping) occurs [55].  

 

 

3. FEA Wear Modelling  

Wear, progressive damage and material loss which occurs on the surface of a component as a result 

of its motion relative to the adjacent working parts [84], is widely recognised as the most important 

factor affecting the long term integrity of THRs. For this reason, it has been intensively investigated 

both experimentally and clinically, demonstrating the coexistence of abrasive, adhesive, fatigue and 

corrosive wear [42].  Instead of investigating and distinguishing these microscopic wear mechanisms, 

FEA modelling of wear to date has focused on reproducing the geometrical changes at the 

macroscopic scale.       
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3.1 Wear Law  

Almost all of the numerical models on polyethylene liner wear prediction implemented the 

AƌĐŚĂƌĚ͛Ɛ ǁĞĂƌ ůĂǁ [85], either in its original form [21-23, 46, 48, 50-54, 56-58, 61, 66, 69, 86-91] 

or modified forms [18, 19, 25, 31, 41, 49, 60, 65, 67, 68, 92, 93], mostly in commercial FEA software 

(e.g. Ansys or Abaqus) by means of user-defined routines. Due to its simplicity and validity, 

Archard͛Ɛ ůĂǁ ŚĂƐ ďĞĞŶ widely used for many applications, despite the fact that it can only 

describe the adhesive and abrasive wear mechanisms [42]. After determining the contact 

pressure and sliding distance from the contact FEA at the end of each time increment, material 

loss resulting from wear is approximated by repositioning the contact nodes on the contact 

surface [80]. The new coordinates of each node are evaluated by shifting the node along the 

direction opposite to contact normal according to [94]  ܪ ൌ σ ߪܭ ܵୀଵ                                                                    (3) 

where H is the accumulated linear wear, Ki is the wear coefficient, ʍi is the contact pressure and 

Si is the sliding distance at time increment of i .   

It is unfeasible to update the bearing surface after each load cycle, due to the large number of 

cycles required to be simulated (1 million cycles per year is assumed in typical patients). The 

cumulative wear has been generally updated after a number of cycles, known as the update 

interval N0 [48], which has varied from 0.1 million cycles [52], through 0.25 million cycles [49], to 

0.5 million cycles [21, 53]. Both the linear wear and volumetric wear at the end of the interval are 

determined by multiplying by N0.   

  

3.2 Wear Coefficient   

The wear coefficient is one the most critical inputs of wear modelling, and varies greatly as a 

function of a number of experimental variables including polyethylene molecular weight, 

lubricant fluid, counter-face material, roughness of the harder surface and sterilization method. 

Hence, a wide range of wear coefficients have been used in literature, as detailed in Table 2. Wear 

coefficients for the FEA wear prediction have been determined by two means: Pin-on-Disk and 

simulator studies. These each have their limitations: 1) Pin-on-Disk does not mimic the time 

dependent loading which the hip joint is subjected to in vivo [95] and thus some FEA wear 

predictions have varied considerably when compared to corresponding experimental results. 2) 

Simulator studies are not an independent verification as the wear coefficient is only valid for the 

single set of conditions applied [92]. Additional simulator testing is required when analysing 

different geometry designs even with the same bearing material and lubricant composition  [27].  

  

There have generally been four different forms of wear coefficients in the published FEA studies: 

1) constant in space and time; 2) cross-shear dependent; 3) contact pressure dependent; 4) 
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surface roughness dependent. The majority of wear FEA models have used a constant wear 

coefficient, which has not accounted for the variation due to third-body particle wear, oxidation, 

cross shear, contact pressure, or surface roughness. To date there has not been general 

agreement regarding which form of the wear coefficient is the best in predicting UHMWPE liner 

wear and whether using the more complicated cross shear, pressure and roughness dependent 

wear coefficients actually improve the correlation with simulator wear testing results, as 

discussed in Section 3.2.1 ʹ 3.2.3. Hence challenges remain to find a scientific approach for 

measuring and deriving a wear coefficient model for the FEA modelling of UHMWPE liner wear.  

 

Table 2 Wear coefficients used in numerical study of UHMWPE liner wear  

 

3.2.1 Cross Shear Effects 

It has been identified that multi-ĚŝƌĞĐƚŝŽŶĂů Žƌ ͞ĐƌŽƐƐ-ƐŚĞĂƌ͟ ŵŽƚŝŽŶ ŝƐ ŽŶĞ ŽĨ ƚŚĞ ŵŽƐƚ ƐŝŐŶŝĨŝĐĂŶƚ 
factors affecting the wear rate of UHMWPE liners in THR [96]. Under linear tracking motion, the 

molecules of polyethylene material are stretched along the sliding direction, resulting in a 

significant degree of strain hardening hence an increase of wear resistance in that direction [97]. 

However, strengthening in one direction leads to weakening in the transverse direction [98], 

known as orientation softening, which accelerates the wear debris generation. 

The cross shear effect at a point on the bearing surface has been quantified by a Cross Shear Ratio 

(CSR). It was defined as the frictional work (WT) in the direction perpendicular to the Principal 

Molecular Orientation (PMO) divided by the total frictional work (WT+WP), where WP is the 

frictional work in the primary direction [67, 99]:   ܴܵܥ ൌ ்ܹ ሺ ்ܹ  ܹሻൗ                                                          (4) 

 

According to the theory of Wang [97] the PMO was defined as the axis along which most the 

frictional work occurred. It was iteratively calculated by searching for the axis which gave the 

minimum CSR [67]. This approach was later adapted by a number of studies [25, 41, 49, 65]. 

However, by introducing cross shear dependent effects, the predicted wear rate only increased 

by 7.5%, from 24.7 mm3/Mc (cross shear independent) to 26.7 mm3/Mc (cross shear dependent), 

in the case study of a 28mm bearing  [67]. It is worth noting that majority of the cross shear models 

were time independent, i.e. assuming that the molecular orientation remains fixed in a single 

direction over time, which may not be a clinical relevant representation [100]. Hence, time 

dependent cross shear models [31, 93] have been developed to improve the accuracy of wear 

prediction.   
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3.2.2 Contact Pressure Effects  

The wear coefficient has been found to decrease when contact pressure increased according to 

Pin-on-Disk [95, 101-103]  and simulator tests [78]. To take the effect of contact pressure into 

account, pressure-dependent wear coefficients have been employed in numerical studies [68, 79]. 

In addition, a wear coefficient model which is a two-dimensional function of the contact pressure 

and Cross Shear Ratio (CSR) has been used in one FEA study [92]. However, this under-predicted 

the volumetric wear rate by a factor of 2.8, when compared to hip simulator results. Alternatively, 

a contact area dependent wear model has been proposed [49, 60, 65], in which the wear is 

assumed to be independent of the contact pressure, and the volumetric wear (V) calculated by:  ܸ ൌ  (5)                                                                         ܮܣܥ

where C is a dimensionless constant, A is contact area and L is the sliding distance. The wear rate 

was improved but still underestimated by a factor of 1.7 [49]. Until now there is still controversy 

whether the contact pressure effects should be incorporated in numerical wear predictions [93].     

 

3.2.3 Surface Roughness Effects  

Instead of modifying the femoral head surface topography, the effects of head roughness on 

UHMWPE liner wear have been investigated by manipulating the wear coefficient. In some cases, 

the wear coefficient has been scaled over specific regions of the femoral head [56, 69], in order 

to investigate the influences of head roughening severity, roughened area size and roughened 

area location. In other cases, a roughness-dependent wear coefficient has been defined [18-20], 

where mathematical analyses have shown that UHMWPE wear is proportional to head surface 

roughness Ra, and confirmed by laboratory investigations [104, 105].  

 

Furthermore, challenges remain to establish the effects of debris, lubrication regimes and 

frictional heating on wear coefficient. In both clinical and experimental situations, debris would 

still be in the vicinity of the joint space and at some point it may be pulled onto the bearing with 

entrained fluid. However, it would be very difficult to quantify this effect and hence make a 

meaningful modification to any wear models.  

TŚĞŽƌĞƚŝĐĂů ƉƌĞĚŝĐƚŝŽŶ ŽĨ ůƵďƌŝĐĂƚŝŽŶ ƌĞŐŝŵĞƐ ĂƌĞ ƵƐƵĂůůǇ ĚĞĨŝŶĞĚ ďǇ ƚŚĞ ůĂŵďĚĂ ƌĂƚŝŽ ʄ [42]:   ɉ ൌ ோೌ                                                                           (6) 

where hmin corresponds to the minimum film thickness and Ra composites roughness of the 

bearing couple. LƵďƌŝĐĂƚŝŽŶ ƌĞŐŝŵĞ ĐĂŶ ďĞ ŝĚĞŶƚŝĨŝĞĚ ďǇ ƚŚĞ ĨŽůůŽǁŝŶŐ ƌĂŶŐĞƐ͗ Ϭ͘ϭфʄфϭ͗ ďŽƵŶĚĂƌǇ 
ůƵďƌŝĐĂƚŝŽŶ͖ ϭчʄчϯ͗ ŵŝǆĞĚ ůƵďƌŝĐĂƚŝŽŶ ĂŶĚ ʄхϯ͗ ĨƵůů Ĩŝůŵ ůƵďƌŝĐĂƚŝŽŶ͘ Since the film thickness can be 

very close to the average roughness of articulating surfaces, even in simple daily activities mixed 
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and boundary lubrication may occur [106]. In these cases, bearing components enter in contact, 

consequently resulting in wear. Although a significant amount of research has been done studying 

lubrication and wear, they were modelled completely neglecting each other, as highlighted by the 

review of Mattei et al [42]. As such no wear coefficient models have been coupled with lubrication 

regimes.  

Depending on magnitude, temperature increase due to frictional heating at the articulating 

interface may cause creep and oxidative degradation of UHMWPE liner material, degrade the 

mechanical properties of the lubricating fluid and further elevate wear generation as well as 

increase risk of damage surrounding tissues [107]. Currently, only Fialho et al [57] simultaneously 

modelled wear and heat generation in THR. However, the researchers employed a constant wear 

coefficient and their model could not explain the lack of correlation between temperature and 

contact pressure as observed in vivo [108].   

 

3.3 Model Verification & Validation 

It is critical to verify and validate the wear FEA model before it can provide guidance to testing, 

assist product development, and serve as valid scientific evidence in regulatory submissions [109]. 

Verification is defined as ͞ƚŚĞ ƉƌŽĐĞƐƐ ŽĨ ŐĂƚŚĞƌŝŶŐ ĞǀŝĚĞŶĐĞ ƚŽ ĞƐƚablish that the computational 

ŝŵƉůĞŵĞŶƚĂƚŝŽŶ ŽĨ ƚŚĞ ŵĂƚŚĞŵĂƚŝĐĂů ŵŽĚĞů ĂŶĚ ŝƚƐ ĂƐƐŽĐŝĂƚĞĚ ƐŽůƵƚŝŽŶ ĂƌĞ ĐŽƌƌĞĐƚ͟, while 

ǀĂůŝĚĂƚŝŽŶ ŝƐ ͞ƚŚĞ ƉƌŽĐĞƐƐ ŽĨ ĚĞƚĞƌŵŝŶŝŶŐ ƚŚĞ ĚĞŐƌĞĞ ƚŽ ǁŚŝĐŚ Ă ŵŽĚĞů ŝƐ ĂŶ ĂĐĐƵƌĂƚĞ 
representation of the real world from the perspectivĞ ŽĨ ƚŚĞ ŝŶƚĞŶĚĞĚ ƵƐĞƐ ŽĨ ƚŚĞ ŵŽĚĞů͟ [110]. 

TŚŝƐ ŚĂƐ ďĞĞŶ ƐƵŵŵĂƌŝƐĞĚ ĂƐ ǀĞƌŝĨŝĐĂƚŝŽŶ ďĞŝŶŐ ƚŽ ͞ƐŽůǀĞ ƚŚĞ ĞƋƵĂƚŝŽŶƐ ƌŝŐŚƚ͟ ;ŝ͘Ğ͘ ƚŚĞ 
ŵĂƚŚĞŵĂƚŝĐƐͿ ĂŶĚ ǀĂůŝĚĂƚŝŽŶ ďĞŝŶŐ ƚŽ ͞ƐŽůǀĞ ƚŚĞ ƌŝŐŚƚ ĞƋƵĂƚŝŽŶƐ͟ (i.e. the physics) [111]. 

Verification may include examining both the code and the calculation. Code verification ensures 

the mathematical model and solution algorithm work as intended, usually by comparing the 

numerical solution with the exact analytical solutions or semi-analytical solutions [111]. In the 

papers reviewed, code verification was not explicitly reported; instead authors used proprietary 

software and existing codes where verification was assumed to have been undertaken by the 

manufacturer. Calculation verification focuses on errors resulting from discretisation of geometry 

and time domains, respectively, such as by means of mesh convergence study [22, 48, 54] and 

investigation of wear geometrical update interval [23, 48], aiming to achieve the desired 

computational accuracy while maintaining an acceptable computational efficiency. The mesh 

convergence studies [22, 48] may be limited as they were based on contact pressure results rather 

than wear results which can also be affected by nodal sliding distance and geometrical update, 

etc.  To ensure that FEA wear prediction is independent of numerical settings, further sensitivity 

studies have been done on frictional coefficient [53, 54] and wear coefficient [68], as discussed in 

Section 2.6 and 3.2, respectively.   

 

There are two predominant types of validation: direct and indirect. Direct validation aims to 

produce an experiment which closely matched the FE simulation so that its material property and 
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boundary condition can be incorporated [111]. This has been undertaken in the reviewed studies, 

for instance, by benchmarking the numerically predicted volumetric and linear wear (penetration) 

rate [21, 53, 67, 87] as well as wear cross-sectional profile [53, 69] against the corresponding hip 

simulator testing results. The results of these comparisons have shown that FE simulation has the 

potential to provide an excellent estimation of volumetric and linear wear rate. However, 

challenge remains to accurately capture the wear cross-sectional profile, for instance, two distinct 

surface damage peaks were found in experimental case whereas only a single damage peak was 

predicted by FEA [53]. Indirect validation compares the FEA results with published in vivo and in 

vitro wear data that cannot be controlled by the analyst. For example, some wear prediction were 

evaluated against the existing hip simulator tests [48, 49], FE wear predictions [48, 50, 57, 66, 68] 

or clinical studies [22, 54, 57, 58, 87, 91, 92]. Due to the fact that the sources of error and degree 

of variability in published investigations are typically unknown, indirect validation is clearly less 

favoured than direct validation. Hence, unless in the case of patient-specific study, wear FEA 

should be directly validated against well controlled experimental testing conditions, e.g. hip 

simulator testing, which employs the same geometry, loading and kinematics as FEA modelling. 

Indeed, this relies on the assumption that simulator testing is an accurate representation of the 

clinical situation, which has been discussed elsewhere and is not a consideration of this review. 

Table 3 details the input conditions, predicted wear rates and modal validation of the wear FEA 

studies which are reviewed in this paper.  

 

 

Table 3 A summary of the input conditions, predicted wear rates from FEA studies of UHMWPE 

liners and modal validation  

   

 

4. Mechanics of Wear and Creep  

FEA modelling has the advantage of understanding the in-process mechanics of wear and creep, which 

might be difficult for laboratory analysis and clinical studies to accomplish, such as analysing the 

change of contact area, contact pressure and penetration over one loading cycle.  

 

4.1 Wear Mechanics 

Understanding the contact mechanics is important to gain insight into the wear generation of 

UHMWPE liner, as it determines the contact pressure and sliding distance, which are vital in the 

ǁĞĂƌ ƉƌĞĚŝĐƚŝŽŶ ďĂƐĞĚ ŽŶ AƌĐŚĂƌĚ͛Ɛ ůĂǁ͘ TŚĞ ĐŚĂŶŐĞ ŽĨ ĐŽŶƚĂĐƚ ƉƌĞƐƐƵƌĞ ǁŝƚŚŝŶ ŽŶĞ ůŽĂĚ ĐǇĐůĞ 
corresponds to the load history applied, i.e. high pressure and large contact area were found in 

the stance phase while low pressure and small contact area occur in the swing phase of walking 

cycle, as reported by Matsoukas et al [53]. In addition, contact pressure decreases with the 

progression of wear, due to the resulting increase in contact area.  

Wear has been found to be directly proportional to the contact area [49, 65, 103]. The wear 

contour of UHMWPE liner approximately follows the contact pressure distribution [48, 65]. 
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Depending on the loads and motions being used in the FEA models, wear might occur within the 

superior half of the liner [57, 61] or in the superior-posterior region [21, 22, 67], emphasising the 

important effects of different individual gait cycles on the characteristics of wear. Due to the 

variation of load, motion, geometry and wear coefficients used, the predicted wear rates have 

differed considerably in various FEA models, as summarised in Table 3.    

 

 

4.2 Creep Mechanics   

Penetration of the femoral head into the acetabular cup caused by creep accounts for a 

considerable amount of the volumetric change of the UHMWPE liner [112, 113], especially in the 

initial loading stage, known as the ͞ďĞĚĚŝŶŐ-ŝŶ͟ ƉĞƌŝŽĚ͕ ďƵƚ ŝƚ ŚĂƐ ůŝƚƚůĞ ŝŶĨůƵĞŶĐĞ ŽŶ ƚŚĞ ůŽŶŐ ƚĞƌŵ 
volumetric change [114-118]. The FEA study by Liu et al [65] showed that in the first million cycles 

creep contributed to approximately 80% of volumetric change and linear penetration. Then the 

creep remained almost the same and bearing geometry change was mainly the result of wear, as 

shown in Figure 6.     

 

 

Figure 6 FEA prediction of creep, wear and total volume change. Reprinted from Liu et al [65], 

with permission from SAGE Publishing 

 

Due to the existence of creep, volumetric wear assessment, e.g. using Coordinate Measuring 

Machine (CMM), and also any radiographic technique used clinically would almost certainly 

overestimate the true wear of a UHMWPE liner. The detrimental effects of wear are primarily 

related to the effects of the wear particles generated and so from a clinical perspective, it is of 

great interest to separate the bearing geometrical change due to creep to better evaluate true 

wear rate in vivo. The contours of the creep, wear and total penetration after 1 million cycle based 

on an early creep study by Bevill et al [51] are shown in Figure 7.  

 

 

Figure 7 Contour plots showing the magnitude of creep, wear and total penetration after 1 

million cycle, predicted using FEA. Reprinted from Bevill et al [51], with permission from Elsevier 
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Creep strain of UHMWPE material was found to be in linear relationship with time (logarithmic 

scale) and pressure [119]. It can be derived as equation (7) which has been used in all the creep 

and wear FEA of UHMWPE liners [51-53, 61, 65]:  ߝ ൌ  ሻ                                                                  (7)ݐlogሺߪܣ

where ɸcp is the creep strain, A is a constant, e.g. 7.97/[log(min)]MPa [119], ʍ is the contact 

pressure and t is the time.   

 

Creep has been shown to result in an increase in contact area and subsequent decrease in the 

contact pressure between the head and UHMWPE liner. The FEA study by Bevill et al [51] showed 

that creep increased the contact area by up to 56%, subsequently reducing contact pressure by 

up to 41%. Volumetric wear has been found to increase by 25% after five million cycles when 

creep was taken into account, compared to the FEA without creep [65], due to the increase in 

contact area resulting from the ͞ďĞĚĚŝŶŐ-ŝŶ͟ at the articulating surface. Hence in order to 

accurately predict the wear of the UHMWPE liner, it may be necessary to include creep analysis, 

which however was not taken into account in the majority of wear FEA models to date. In addition, 

creep penetration was found to increase when decreasing head diameter or increasing bearing 

clearance [51],  because both scenarios would cause an increase in the contact pressure which 

has a linear relationship to the creep strain.  

 

5. Parametric Studies of Wear  

 

To further understand the wear mechanics, optimise different parameters and ultimately determine 

how to minimise the UHMWPE liner wear, FEA studies have been carried out to investigate the effects 

of design parameters as well as surgical and patient parameters.  

 

5.1 Effect of Design Parameters 

 

5.1.1 Head Diameter  

Femoral head size is one of the most studied parameters in FEA wear modelling of the UHMWPE 

liner. Early clinical practice tended to use smaller head diameters (22, 28mm). In contrast the  

current design of polyethylene bearings tends to use larger head diameters (32 or 36mm), aiming 

to achieve improved joint stability and range of motion [120]. However, a larger femoral head has 

been shown to induce a larger wear volume [18, 19, 21-23, 48, 49, 51, 52, 65, 86, 87] due to 

increase in contact area and sliding distance. By contrast, linear wear has been shown to decrease 

with increased of head diameter [23, 51, 52, 66, 86, 87], due to lower pressure at bearing surfaces.  
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5.1.2 Bearing Clearance 

The interference between two articulating surfaces plays an important role in the wear process. 

In general, similar to the effect of using a small head, increasing the bearing clearance would also 

result in high contact pressure and low contact area. Hence it has been reported that large 

clearance was associated with increase in the linear wear [51] and decrease in the volumetric 

wear [48, 51, 65]. However, higher volumetric wear has also been found when using larger 

clearances [54]. The difference in outcome might be attributed to the fact that, in the latter study, 

Teoh et al [54] applied a perfect plasticity material model, which inevitably over-predicted the 

strain (deformation) of the liner when the stress exceeds the predefined yield limit. In the case of 

large clearance, plastic stress associated with the initial smaller contact area, permanently 

deformed the liner and increased the bearing contact area, leading to an over-prediction of the 

wear rate. It is also worth noting that investigating the effect of bearing clearance by using a 

constant wear coefficient might be of limited clinical relevance [51], considering that lubrication 

is in fact affected by bearing geometry and clearance.  

 

5.1.3 Liner Thickness  

The effects of UHMWPE liner thickness greater than 8mm on the contact and wear mechanics 

were generally negligible [19, 22].  In a study where the UHMWPE liner thickness was increased 

from 4 to 16 mm, volumetric wear was found to only increase slightly and there were modest 

effects on total penetration [51]. Maxian et al [21] reported that for a 22 mm and 32 mm bearing, 

the wear volume increased by 1.4% and 0.05%, respectively, when the liner thickness decreased 

from 10 to 2mm.   

 

5.1.4 Screw Hole 

The majority of FEA wear predictions focused on the articulating head/liner interface, which is the 

primary source of the UHMWPE wear. The only FEA wear study to investigate the liner/shell 

(backside) interface showed that the wear of the backside was 3-4 orders of magnitudes less than 

it at the head/liner (frontside) interface [50], primarily due to the difference in sliding distance of 

the two interfaces. Increasing the number of screw holes on the metal shell was found to reduce 

the backside wear but had negligible effects on the frontside wear [50]. It is worth noting that this 

study was limited to initial wear rates with a polished backside interface; however long term 

backside wear in the presence of screws and screw holes may still influence the clinical 

performance of artificial hip joints  [121, 122].  

 

5.1.5 Liner/Shell Conformity 

Liner/shell nonconformity may be present by design, due to the incorporation of locking 

mechanisms to attach the UHMWPE liner to the metal shell, or limitations on UHMWPE liner 
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manufacturing tolerances [123]. In the FEA model of Kurtz et al [50], a radial clearance of 

0.223mm was used in the spherical region of the interface to simulate the nonconformity. In 

general, the nonconforming shell was found to produce higher linear wear and lower volumetric 

wear at the backside interface. By contrast, wear results of the frontside interface have shown to 

be insensitive to the shell conformity  [50].     

 

5.2 Effect of Surgical and Patient Parameters 

 

5.2.1 Cup Positioning  

CŽŵƉŽŶĞŶƚ ƉŽƐŝƚŝŽŶŝŶŐ ŽĨ ĂŶ ĂƌƚŝĨŝĐŝĂů ŚŝƉ ũŽŝŶƚ ƉůĂǇƐ Ă ŬĞǇ ƌŽůĞ ŝŶ ƉĂƚŝĞŶƚ͛Ɛ ŵŽďŝůŝƚǇ ĂŶĚ ƚŚĞ 
durability of the implant [66]. Steep inclination angles have been shown to cause the contact area 

to decrease and shift to the edge of the cup [58, 124], consequently increase the contact stress 

[124-126]. According to several numerical studies, higher cup inclination angles result in higher 

linear wear [58, 88, 91] due to high contact stress, but lower volumetric wear [18, 19, 58, 127] 

resulting from reduced contact area (sliding distance), as is in agreement with some hip simulator 

testing [128, 129]. However, higher volumetric wear has been observed with higher inclination 

angles in other clinical [15], hip simulator [88, 130] and FEA modelling studies [91]. Further 

investigation is hence necessary to understand the difference amongst various FEA, laboratory 

and clinical studies, especially under the edge loading condition induced by steep cup inclination 

and lateral separation. Additionally, it has been reported that an increased cup anteversion angle 

would cause wear volume to increase, according to a mathematical prediction [19].  

 

5.2.2 Motion Input 

 

It is widely recognised that multidirectional motion in a joint simulator yields realistic wear for the 

UHMWPE liner [131]. However, the type of motion inputs has varied considerably amongst 

simulators, which may explain the differences in wear rate [132]. The importance of articulation 

kinematics has also been emphasised in the FEA of wear [21], where a 23° biaxial rocking simulator 

inputs [133] resulted in an increase of wear rate of 1.7 times compared to human gait inputs [134].  

Recently, the numerically predicted wear results under three motion inputs have been compared 

[60], and it was found that volumetric wear rates of the simplified walking condition including 

ISO14242 [64] and Leeds ProSim simulator [65] were 4% and 13% lower respectively, compared 

with that of the full simulated condition based on a gait measurement [135]. In contrast, the linear 

wear was similar when using those three motion inputs.  

 

5.2.3 Daily Activity 

So far, almost all FEA studies have focused on wear prediction under a normal walking condition, 

as listed in Table 3. Few attempts have been made to model UHMWPE liner wear due to running, 

descending or ascending stairs. In a mathematical study by Pietrabissa et al [18] wear volume 
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increased with a rise in walking speed and decreased slightly when running at the same speed. In 

contrast an FEA study by Fialho et al [57] reported an almost doubling of the wear rate in a running 

cycle compared to a walking cycle. This was associated with a dramatic increase in loading [57], 

while the speeds of those cycles were not specified.  The same study [57] also showed that wear 

results for walking in two different patients varied significantly, primarily due to variation of 

loading and sliding distance as measured clinically by Bergmann et al [136]. In other studies, 

higher wear was predicted under the conditions of descending stairs [79] and ascending stairs [53, 

79] versus normal walking, due to the higher range of motion involved in ascending stairs than 

walking [61]. Combined walking and stair ascending were found to produce higher volumetric 

wear than walking alone [56].   

     

5.2.4 Body Weight  

AĐĐŽƌĚŝŶŐ ƚŽ AƌĐŚĂƌĚ͛Ɛ ůĂǁ͕ ǁĞĂƌ ŝƐ ƉƌŽƉŽƌƚŝŽŶĂů ƚŽ the load applied. The mathematically 

predicted wear was found to increase linearly with body weight [18-20], and is in agreement with 

one clinical study [137]. However, other clinical studies have found no such correlation between 

ƉĂƚŝĞŶƚ͛s weight and clinical wear rate [138-140]. A possible explanation for this may be that 

patient weight and activity may not be independent factors. For example some heavier patients 

may be less active than those who are lighter. 

 

6. Discussion 

 

Due to the variation of load, motion, geometry and wear coefficient inputs, the predicted wear 

rates were found to differ considerably across the various FEA models studied. Further work 

should explore the influences of different meshing methods, the use of the explicit solution 

method, and 3D vs. 1D loading and motion in the FEA modelling technique. Moreover, challenges 

remain to find a scientific approach to measure and derive wear coefficients. It is critical to 

validate the FEA model before it can provide guidance to testing and assist product development.  

Creep can account for a considerable amount of the volumetric change of UHMWPE liner, 

especially in the initial loading stage. Due to the increase of contact area resulting from the 

͞ďĞĚĚŝŶŐ ŝŶ͕͟ ƚŚĞ ǁĞĂƌ ƌĂƚĞ ŽĨ an UHMWPE liner could increase considerably. Hence it is likely to 

be necessary to include creep analysis in the wear simulation. This will be especially true if 

comparisons are being made to simulator or clinical data which have used volumetric 

measurements.    

A number of parametric studies have been carried out to numerically investigate the effects of 

design, surgical and patient parameters on the UHMWPE liner wear. The effect of cup positioning 

is still not fully understood, especially under the edge loading condition associated with steep cup 

inclination and lateral separation. Future FEA work could employ Design of Experiment methods 
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to understand the interaction amongst the multiple factors and derive optimised settings to 

minimise the wear.  

The majority of the FEA studies focused on wear prediction under a normal walking condition.  A 

significant knowledge gap still exists in studying other daily actives, such as cycling, sitting down 

and getting up a chair, etc. Furthermore, a statistical methodology might be needed to combine 

a number of activities in order to ĞƐƚŝŵĂƚĞ ǁĞĂƌ ĚƵƌŝŶŐ Ă ͞ƌĞĂůŝƐƚŝĐ͟ ĚĂŝůǇ ůŝĨĞ͕ ƌĂƚŚĞƌ ƚŚĂŶ ũƵƐƚ 
investigating one activity alone.  

All FEA wear modelling of UHMWPE liner wear simulate the dry contact between articulating 

surfaces, by neglecting the lubrication. Further development could employ Fluid-Structure 

Interaction techniques, in order to take the effects of lubrication into account.   

 

7. Conclusion 

 

Recent developments in understanding of variable outcomes in hip replacement have led to an 

increasing need for development of wear simulation methods which address more complex 

surgical and patient scenarios. Carrying out multi-factorial clinical and laboratory studies with 

material, design, manufacturing and surgical-patient parameters makes the cost and time for 

developing implants unrealistic. To address the challenges and limitations, FEA simulation on 

UHMWPE liner wear in THR has been under development since the 1990s because it is an efficient 

and inexpensive approach to predict wear and provide initial screening of various parameters. 

The present paper is a comprehensive literature review on the state-of-the-art FEA modelling 

techniques, wear mechanics, and parametric studies of UHMWPE liner wear. A number of 

knowledge gaps have been identified for future studies, such as further development of wear 

coefficient models, creep modelling, Design of Experiments, optimisation of cup positioning, 

study of edge loading conditions, analysis of the activities of daily living and implementation of 

Fluid-Structure Interactions. The further development and use of FEA has the potential to make 

the comprehensive testing of new materials and designs a practical proposition. It offers an 

approach to gain in-depth understanding of wear mechanics, to deliver guidelines for new 

product design, and to assist pre-surgical planning.      
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Table 1 In vivo and in vitro wear rate of MoP (Metal-on-Polyethylene) prostheses [5, 6] 

 

Liner Material 
In vivo wear rate 

(mm/year) 

In vitro wear rate 

(mm3/million cycles) 

Conventional UHMWPE 0.1 32.6 

Cross-linked UHMWPE 0.01ʹ0.2 13.6 
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Table 2 Wear coefficients used in numerical study of UHMWPE liner wear 

 

Numerical Study Bearing Material Wear Coefficient (mm3/Nm) 

Surface 

Roughness 

Effect   

Cross 

Shear 

Effect 

Contact 

Pressure 

Effect 

Source of Wear Coefficient 

Maxian et al (1996a, b, c) [21-23]  UHMWPE / CoCr 1.0656e-6 
N N N 

PoD [141] (Streicher and Schon 

1991)  

Maxian et al (1997) [46] UHMWPE / SS 1.53e-6 N N N Couple Simulator and FEA 

Pietrabissa et al (1998) [18] UHMWPE / CoCr 0.235e-4*Ra2.03 Y N N PoD [142] (Fisher et al 1994)  

Kurtz et al (1999) [50] UHMWPE / CoCr 1.0656e-6 N N N Maxian et al (1996a, b, c) [21-23] 

Raimondi et al (2001) [19] UHMWPE / CoCr 8.686e-6*Ra+1.51e-6 Y N N Simulator [143] (Wang et al 1998)   

Brown et al (2002) [69] UHMWPE / CoCr 1.0656e-6 N N N Maxian et al (1996a, b, c) [21-23] 

Hung and Wu (2002) [86]  UHMWPE / CoCr; 

UHMWPE /  SS; 

UHMWPE /  Alumina 

3.5e-7; 

8e-7; 

3.1e-7 

N N N 

PoD [144](Tiainen 2001); 

PoD [145](Saikko 1998); 

PoD [146] (Chanda et al 1997) 
Teoh et al (2002) [54] UHMWPE / CoCr 1.0656e-6 N N N Maxian et al (1996a, b, c) [21-23] 

Patil et al (2003) [88] UHMWPE / CoCr 1.0656e-6 N N N Maxian et al (1996a, b, c) [21-23] 

Wu et al (2003) [87] UHMWPE /  SS 8e-7 N N N PoD [145](Saikko 1998) 

Bevill et al (2005) [51] UHMWPE / CoCr 1.0656e-6 N N N Maxian et al (1996a, b, c) [21-23] 

Kang et al (2006) [48] UHMWPE / CoCr 1.0656e-6;   

2e-7 (cross-linked)  
N N N 

Maxian et al (1996a, b, c) [21-23]; 

Simulator [147] (Galvin et al 2005)  

Onisoru et al (2006) [79] UHMWPE / CoCr 7.99e-6*ʍ-0.653 N N Y Simulator [97]  (Wang 2001) 

Penmetsa et al (2006) [52] UHMWPE / CoCr 1.0656e-6 N N N Maxian et al (1996a, b, c) [21-23] 

Fialho et al (2007) [57] UHMWPE / CoCr 1.0656e-6 N N N Maxian et al (1996a, b, c) [21-23] 

Lundberg et al (2007) [56] UHMWPE / CoCr 1.0656e-6 N N N Maxian et al (1996a, b, c) [21-23] 

Sfantos and Aliabadi (2007a) [89] UHMWPE /  SS 8e-7 
N N N 

Wu et al (2003) [87] 

 

Sfantos and Aliabadi (2007b) [90] UHMWPE / Alumina; 

UHMWPE / CoCr; 

UHMWPE / DLC CoCr 

1.51e-6; 

1.76e-6; 

1.80e-6 

N N N 

Simulator [148] (Saikko et al 2001)  

Kang et al (2008a) [67] UHMWPE / CoCr 3.28e-7*ln(CSR)+1.62e-6 

2e-8*ln(CSR)+2e-7(cross-linked) 
N Y N 

PoD [67] (Kang et al 2008a) 

Kang et al (2009) [92] UHMWPE / CoCr e-13.1+0.19lnCSR-0.29ʍ N Y Y PoD [99] ( Kang et al 2008b)  

Matsoukas et al (2009) [53] UHMWPE / CoCr 5.322e-7 (cross-linked)  N N N Couple Simulator and FEA  

Matsoukas and Kim (2009) [61] UHMWPE / CoCr 5.322e-7 (cross-linked) N N N Matsoukas et al (2009) [53] 

Queiroz et al (2013) [91] UHMWPE / SS 1e-6 N N N PoD [145] (Saikko 1998) 

Ronda and Wojnarowski (2013) 

[66] 

UHMWPE / CoCr;  

UHMWPE / SS 

3.5e-7;  

1.81e-7 
N N N 

Hung and Wu (2002) [86] 

Pakhaliuk et al (2015) [68] UHMWPE / CoCr; 

UHMWPE /  SS; 

UHMWPE / CoCr 

 

7.99e-6*ʍ-0.653; 

2e-6*ʍ-0.84;  

2.7e-6*(ʍ/ʍref) -0.57, when ʍ/ʍref ч 2.53  

6.0e-6*(ʍ/ʍref)-1.44, when ʍ/ʍref > 2.53 

N N Y 

Simulator [97] (Wang 2001); 

PoD [101] (Vassiliou and Unsworth 

2004);  

PoD [102] (Saikko 2006) 

Lin et al (2016) [58] UHMWPE / CoCr 1.48e-6 N N N Self-average PoD [149-153] 
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Table 3 A summary of the input conditions, predicted wear rates from FEA studies of UHMWPE liners and model validation 

 

 

FEA 

Study 

 

Software 

Platform / 

Wear 

Modelling 

Code 

Model Input  Model Output Model Validation 

Further Details 

 

Liner 

Materia

l 

Propert

y 

 

Simulated 

Cycles of 

Wear (Mc) 

/ year 

Load & 

Motion 

Swing 

Phase 

Included 

(Y/N) 

Number of 

Steps per 

Load Cycle 

 

Geometrical 

Update 

Interval due 

to wear (Mc) 

 

 

Friction 

Coefficient 

 

Liner 

Element 

Type / 

Count 

Head 

Diameter 

(mm) 

Radial 

Clearance 

(Liner 

Thickness) 

(mm) 

In silico 

volumet

ric Wear 

Rate 

(mm3/

Mc) 

In silico 

linear 

Wear 

Rate 

(mm/M

c) 

In 

vivo/vitro 

volumetric 

Wear Rate 

(mm3/Mc) 

In 

vivo/vitro 

linear 

Wear Rate 

(mm/Mc) 

Maxian 

et al 

(1996b) 

[22] 

ABAQUS 

v5.3 

+ 

FORTRAN 

UHMP

WE: 

E=1400

MPa 

 

1 

3D 

loading 

+ 1D 

angular 

motion 

[134] 

N 16 ~ 0 

6-node 

wedge + 8-

node brick 

/1080 

elements 

(4 layers) 

22 ~ 13 0.110 0 - 146 0.13 ± 0.10 
Indirect validation 

against in vivo 

data [154] 28 ~ 16 0.111 0 - 225 0.08 ± 0.07 

32 ~ 18 0.116 3 - 256 0.10 ± 0.06 

Maxian 

et al 

(1996c) 

[23] 

ABAQUS 

v5.3 

+ 

FORTRAN 

UHMP

WE: 

E=1400

MPa 

20 

3D 

loading 

+ 1D 

angular 

motion 

[134] 

N 16 0.5 0 

6-node 

wedge + 8-

node brick 

/3864 

elements 

(3 layers) 

22 ~(11) 14.3 0.0433 

~ 
Adaptive meshing 

technique 

22 ~(6) 14.4 0.0438 

22 ~(3) 14.5 0.0441 

28 ~(8) 17.9 0.0366 

32 ~(6) 20.4 0.0319 

Kurtz et 

al 

(1999) 

[50] 

LS-

DYNA3D 

+ 

C 

UHMP

WE(GUR

415): 

E=974M

Pa, 

V=0.46; 

Plastic 

strain: 

0, 0.011, 

0.0367, 

0.0914, 

Yield 

Stress 

(MPa): 

14.0, 

22.1, 

27.1, 

29.5. 

1 

1D 

loading 

+ 1D 

angular 

motion 

[155] 

Y 14 ~ 0.083 

8-node 

brick / ~ 

elements 

(1 layer) 

 

28 0.1(7.8) 
38.6-

39.0 

0.212-

0.229 
16  0.111 

Wear results of 

models without 

screw holes. 

Indirect validation  

against in silico 

data[22] 

Brown 

et al 

(2002) 

[69] 

ABAQUS 

v5.3 

+ 

FORTRAN 

UHMP

WE: 

~ 

1 

3D 

loading 

+ 1D 

angular 

motion 

[134] 

N 16 
0.04 (15 

days) 
~ 

6-node 

wedge + 8-

node brick 

/1800 

elements 

(3 layers) 

28 0.25(8) 19.8 0.08 ~ 

Wear results of 

models without 

head roughening 

Hung & 

Wu 

(2002) 

[86] 

FORTRAN 

UHMP

WE: 

E=800M

Pa, 

V=0.47 

1.5 (1 

year) 

1D 

loading 

+ 1D 

angular 

motion 

Y 16 0.1 ~ 

8-node 

brick / 

1044 

elements 

(3 layers) 

 

22 ~(28) 18.2 0.048 ~ 

UHMWPE / CoCr. 

Indirect validation  

28 ~(22) 23.0 0.037 ~ 

0.247 (in 

vivo 

[157]);  
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[145, 

156] 

0.091 (in 

vitro 

[148]) 

32 ~(18) 29.13 0.036 ~  

0.053 (in 

vitro 

[158]) 

0.022 (in 

vitro 

[159]) 

0.003 (in 

vitro 

[160]) 

Teoh et 

al 

(2002) 

[54] 

ABAQUS 

v5.7 

UHMP

WE: 

E=1400

MPa, 

V=0.3 

~ 

3D 

loading 

+ 1D 

angular 

motion 

[134] 

N 16 ~ 0 ʹ 0.3 

8-node 

brick / 

1500 

elements 

(4 layers) 

 

32 

0.001 122.27 0.23 

~ 

Perfect plasticity 

material model. 

Indirect 

validation.  

0.05 56.69 0.11 

0.1 53.68 0.1 

0.15 56.33 0.1 

0.2 56.89 0.12 

18 (in silico 

[22])  
0.116 (in 

silico [22]) 90 ± 44 (in 

vivo [154, 

161-163])   

0.3 63.10 0.22 ~ 

0.5 114.72 0.31 ~ 

Wu et al 

(2003) 

[87] 

FORTRAN 

UHMP

WE: 

E=800M

Pa, 

V=0.47 

1.5 (1 

year) 

1D 

loading 

+ 1D 

angular 

motion 

[145, 

156] 

Y 16 0.1 ~ 

8-node 

brick / 

1044 

elements 

(3 layers) 

 

22 0(28) 42.04 0.111 

1.9 ʹ 237 

(mean: 74) 

[164]  

 

0.005 ʹ 

0.623 

(mean: 

0.19) [164] 

Indirect validation 

with in vivo [154, 

164, 165] and in 

silico [22] studies  

0 ʹ 147 

(mean: 

47.5) [154] 

0 ʹ 0.39 

(mean: 

0.13) [154] 

~  
0.1 ʹ 0.15 

[165] 

55 [165] 0.2 [165] 

13 [22] 0.11 [22] 

24 ~ 45.639 0.101 
~ 

26 ~ 48.901 0.092 

28 ~ 52.072 0.085 

0 ʹ 225 

(mean:48.

4) [154] 

0 ʹ 0.3 

(mean: 

0.08) [154] 

16 [22] 0.111 [22] 

30 ~ 55.224 0.078 ~ 

32 ~ 58.417 0.073 

3 ʹ 256 

[154] 

0 ʹ 0.32 

[154] 

18 [22] 0.116 [22] 

Bevill et 

al 

(2005) 

[51] 

ABAQUS 

v6.3 

+ 

Python 

UHMP

WE: 

E=1400

MPa, 

V=0.3 

1 

3D 

loading 

+ 1D 

angular 

motion 

[134] 

N 16 0.5 ~ 

8-node 

brick / 

6800-

15500 

elements 

22 0.2 (4-16) 12* 0.07* In-direct validation: 4.4% 

increase in volumetric 

wear per mm increase of 

head dimeter (this study) 

vs. 4.3% (in silico [21]) & 

5% (in vitro [21])    

*Estimated mean 

value of different 

liner thickness 

28 0.2 (4-16) 15* 0.07* 

32 0.01-0.5 
19.1-

16.2 

0.03-

0.08 

36 0.2 (4-16) 19.5* 0.07* 

Kang et 

al 

(2006) 

[48] 

~ 

Cross-

linked 

UHMP

WE: 

20 

3D 

loading 

+ 3D 

angular 

motion 

Y 21 0.125 ~ 

6-node 

wedge + 8-

node brick 

/ mesh 

28 

0.2 

85.2* 0.24* 

~ 

*Cumulated wear 

results over 20 

years 

32 96.4* 0.22* 

34 101.98* 0.21* 

38 113* 0.2* 

42 124* 0.18* 
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E=1400

MPa, 

V=0.3 

[135, 

166] 

grid = 

30*30 

46 134.9* 0.17* 

48 140.3* 0.17* 

Convent

ional 

UHMP

WE: 

E=1000

MPa, 

V=0.4 

28 

0.001 (8) 28.3 0.048 

~ 
Wear results of 

various clearance 

0.1 (8) 28.3 0.047 

0.3 (8) 28 0.046 

0.5 (8) 27.6 0.045 

1 (8) 26.7 0.044 

18 

~ 

18.1 0.065 15.6 0.067 

Average wear 

rates over 20 

years. Indirect 

validation (in silico 

[167])   

22.225 22.4 0.056 19.1 0.056 

26 26.2 0.05 22.2 0.049 

28 26.5 0.044 23.9 0.046 

32 32.3 0.042 27.1 0.041 

34 34.3 0.040 28.6 0.04 

Lundber

g et al 

(2007) 

[56] 

~ ~ 1 

3D 

loading 

+ 1D 

angular 

motion 

[134] 

(walking

) 

N 16 

0.041667 (2 

weeks) 

 

~ 

8-node 

brick / ~ 

elements 

~ ~ 

22.30 0.1 

~ 

Wear results from 

head roughening 

not listed 

3D 

loading 

+ 3D 

angular 

motion 

[63] 

(stair 

ascendi

ng) 

22.21 0.1 

Fialho 

et al 

(2007) 

[57] 

ANSYS 

UHMP

WE: 

E=2200

MPa, 

V=0.3 

1 

3D 

loading 

+ 3D 

angular 

motion 

[63] 

N 28 ~ 0.07 

8-node 

brick / ~ 

elements 

28 0.001 

18 0.09 

16 (in silico 

[22])  

 

0.11 (in 

silico [22])  

 Patient: KWR 

Indirect validation 
0 - 225 (in 

vivo [154]) 

0.08 ± 0.07 

(in vivo 

[154]) 

25.6 0.12 

~ 

Patient: HSR 

40 0.21 
Patient: EBL 

(jogging) 

Kang et 

al 

(2008a) 

[67] 

MATLAB 

7.0 

+ 

Fortran 95 

~ 5 

1D 

loading 

[166]+ 

3D 

angular 

motion 

[135] 

Y ~ 0.125 ~ 

~ / mesh 

grid = 

60*60 

28 ~ 

26.7 0.07 Indirect 

validation:  

1 ʹ 225, 

mean=48.

4 (in vivo 

[154]) 

Indirect 

validation: 

0 - 03 

mean=0.0

8 (in vivo 

[154]) 

Cross shear 

dependent 

24.7 0.06 
Cross shear 

independent 
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Matsou

kas and 

Kim 

(2009) 

[61] 

ANSYS 

+ 

Matlab 

UHMP

WE: ߪ ൌʹͲǤʹͻሺͳ െ݁ିଷଶǤସ଼ହఌሻ 

ߪ) ൏ͳܽܲܯሻ 

E=110M

Pa (ߪ ͳܽܲܯሻ 
39 

1 

3D 

loading 

+ 3D 

angular 

motion 

[63] 

Y 21 0.25 0.08 

8-node 

brick / ~ 

elements 

31 0.255 
16.15 0.025 

17.14 ± 

1.23 

(sample 1);  

19.39 ± 

0.79 

(sample 2) 

[53] 

Total 

damage 

(3Mc)=0.3

29 (in 

silico) vs. 

0.337 

(sample 1, 

0.116 of 

wear & 

0.2221 of 

creep)[53]      

Walking. Direct 

validation by the 

same group [53].   

24.0 0.034 ~ Stair ascending 

Kang et 

al 

(2009) 

[92] 

~ ~ 5 

1D 

loading 

+ 2D 

motion 

[65] 
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Figure 1 Polyethylene total hip joint. Image courtesy of DePuy Synthes, Leeds, UK 
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Figure 2 Workflow of FEA modelling of liner wear 
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Figure 3 An exploded view of the three components commonly modelled in FEA of UHMWPE 

liner wear 
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FŝŐƵƌĞ ϰ TǁŽ ĐŽŵŵŽŶůǇ ƵƐĞĚ ůŝŶĞƌ ŵĞƐŚ ĐŽŶĨŝŐƵƌĂƚŝŽŶƐ͗ ;ĂͿ ͞ƉŽůĂƌ͟ ĚĞƐŝŐŶ͕ ;ďͿ ͞ďƵƚƚĞƌĨůǇ͟ 
design.   
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Figure 5 Schematic stress-strain behaviour exhibited by different material models used to 

represent the UHMWPE liner 
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Figure 6 FEA prediction of creep, wear and total volume change. Reprinted from Liu et al [65], 

with permission from SAGE Publishing 
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Figure 7 Contour plots showing the magnitude of creep, wear and total penetration after 1 

million cycle, predicted using FEA. Reprinted from Bevill et al [51], with permission from Elsevier  

 

 

 

 

 

 
 

 


