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Abstract:  51 

The worldwide decline of coral reefs necessitates targeting management 52 
solutions that can sustain reefs and the livelihoods of the people who depend 53 
on them. Yet little is known about the context in which different reef 54 
management tools can help to achieve multiple social and ecological goals. 55 
Due to non-linearities in the likelihood of achieving combined fisheries, 56 
ecological function, and biodiversity goals along a gradient of human pressure, 57 
relatively small changes in the context where management is implemented 58 
could have dramatic impacts on whether these goals are likely to be met or 59 
not. Critically, management can provide substantial conservation benefits to 60 
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the majority of reefs for fisheries and ecological function, but not biodiversity 61 
goals, given their degraded state and the levels of human pressure they face. 62 

 63 

Main Text:  64 

At the forefront of ongoing efforts to sustain coral reef ecosystems in the 65 

current period of intense social and environmental change is an increasing 66 

need to simultaneously manage for multiple goals, including fisheries, 67 

ecosystem functioning, and biodiversity (1, 2). Yet, critical gaps remain in our 68 

capacity to effectively implement this type of ecosystem-based management 69 

approach, where multiple goals are simultaneously pursued (3). In particular, 70 

little is known about: (i) the context under which key goals can be 71 

simultaneously met, and (ii) the degree to which local management efforts can 72 

help to meet them. 73 

 74 

Here, we compiled data from ~1800 tropical reef sites across 41 countries, 75 

states, and territories to examine the conditions under which reefs 76 

simultaneously support three ecological metrics reflecting key fisheries, 77 

ecological function, and biodiversity goals (4)( Fig. 1, Tables S1-2). These are, 78 

respectively: (1) potential stocks available for multi-species coral reef 79 

fisheries, calculated as the biomass of fishes >20 cm total length (4)( Fig. 1, 80 
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Table S2); (2) scraping potential, reflecting a unique ecological function 81 

performed by parrotfish that is critical for the removal of algal biomass and 82 

the provision of bare substrate for coral settlement (4, 5) (Table S2); and (3) 83 

the diversity of species traits (i.e. home range, body size, diet, diurnal activity, 84 

schooling behavior, position in the water column), which can underpin 85 

aspects of biodiversity such as community assembly processes, ecosystem 86 

productivity, and stability (6). We measured trait diversity using a 87 

generalization of the Shannon entropy index accounting for both the 88 

dissimilarity of trait values present in a reef fish community and the spread of 89 

biomass across these trait values (4, 7) (Table S2). Our analysis shows that the 90 

three metrics are not strongly related to each other (r<0.54; Fig S1).  91 

 92 

To elucidate the capacity of reefs to simultaneously support multiple goals, we 93 

first developed reference conditions for each metric to serve as benchmarks. 94 

Reference conditions (also called reference points) are a key concept in 95 

fisheries and conservation (8, 9), but are nascent in coral reef science (10). As 96 

key reference conditions, we used the top 10% value for each metric 97 

(corrected for sampling), but also included additional reference conditions 98 

(i.e. the top 5% and 20%) in the supplementary materials (4). We then set 99 

aspirational targets of 25, 50, and 75% of reference conditions.  When looking 100 
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at these aspirational targets across multiple goals, we found that only 5% of 101 

reef sites simultaneously had fish biomass, parrotfish scraping, and trait 102 

diversity at 75% of reference conditions (Fig. 1D). These sites, though 103 

reasonably rare, were geographically spread through the Indian, Pacific, and 104 

Atlantic ocean basins (Fig 1D). We found that 12.5% of sites simultaneously 105 

met the 50% target, and 29.3% of sites met the 25% target (Fig. 1D) 106 

 107 

To examine the context under which key goals can be met, we first developed 108 

a series of Bayesian hierarchical models that quantify how the three ecological 109 

metrics are related to key socioeconomic drivers of resource exploitation, 110 

while controlling for environmental conditions and sampling techniques (4, 111 

11, 12)(Fig. S2; Table S3). We then used the posterior distributions from these 112 

models to calculate how the probability of simultaneously meeting multiple 113 

goals changes along a gradient of human pressure, while holding other 114 

covariates constant (4) (Fig. 2, S3, S4). We measured human pressure as the 115 

size of human populations in the surrounding seascape divided by the 116 

accessibility (in minutes of travel time squared) of our reef sites to them - an 117 

adaptation of the economic gravity model used to measure the Ǯgravitational 118 pullǯ of interactions such as trade and migration (4, 13). Human pressure 119 

displayed the most consistent negative relationships to our response variables 120 
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(Fig. S2). The distribution of human pressure and other key socioeconomic 121 

and environmental covariates among our surveyed reefs closely matches that 122 

of reefs globally (Fig. S5). The probability of openly fished reef sites 123 

simultaneously having all three metrics declined with our measure of human 124 

pressure and the ambitiousness of the conservation target (Fig. 2A). In other 125 

words, on openly fished reefs it is extremely unlikely that all three goals will 126 

be simultaneously met where human pressure is intense, but this likelihood 127 

increases where human pressure is low, particularly for the 25% and 50% 128 

targets. There was considerable variability in how the probability of meeting 129 

individual goals changed along a gradient of human pressure (Fig. 2B-D).  130 

 131 

A critical gap remains in understanding the context in which different local 132 

management tools can help to simultaneously achieve key goals (14, 15). To 133 

address this, we first examined the probability of reef sites in both fully 134 

protected Marine Protected Areas (MPAs) (where fishing is prohibited) and 135 

restricted fishing areas (where there are limitations on fishing gears used and 136 

who can access the fishing grounds) in achieving key targets for the individual 137 

and combined ecological metrics (Fig 2E-L). We then calculated the 138 Ǯconservation gainsǯ from employing these different forms of management 139 

along a gradient of human pressure (15) (Fig. 2M-X). By conservation gain, we 140 
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refer to the difference in probability of achieving a specific target (e.g. 25% of 141 

reference condition biomass) when fully protected MPAs or fishery 142 

restrictions are implemented relative to openly fished areas. This concept gets 143 

at the idea that contexts with maximal conservation gains highlight the best 144 

opportunities for management to have the biggest impact; conversely, 145 

implementing management in contexts with minimal conservation gains 146 

(either because goals are already being met or because they are unlikely to be 147 

met regardless of management) provides few returns for limited conservation 148 

resources (16). 149 

 150 

Critically, we find that both fully protected MPAs and restricted fishing areas 151 

have the potential to provide conservation gains, but the context under which 152 

these gains can be maximized is highly variable depending on both the goal 153 

and target (Fig. 2M-X). For simultaneously meeting fisheries, function, and 154 

biodiversity, maximal conservation gains are from fully protected MPAs in the 155 

lowest human pressure locations for the most ambitious target (75% of 156 

reference conditions), but as targets become less ambitious, conservation 157 

gains peak where human pressure is more intermediate (Fig. 2M). For all 158 

three targets, there are minimal conservation gains in locations where human 159 

pressure is most intense, which means that in this context, management is 160 



8 
 

unlikely to help meet these goals. For each independent goal, the context 161 

under which conservation gains can be maximized varies considerably (Fig 2). 162 

Of note is that trait diversity is the least responsive to management, with 163 

conservation gains never reaching above 0.4.  164 

 165 

We then simulated how the number of our openly fished sites achieving key 166 

conservation targets would change if a fully protected MPA (Fig. 3) or 167 

fisheries restrictions (Fig S6) were implemented, given the other conditions at 168 

our reef sites. Our analysis reveals both key opportunities and constraints in 169 

the capacity for local management to simultaneously meet multiple goals. On 170 

one hand, for more than 50% of our fished sites, the implementation of a fully 171 

protected MPA is predicted to help achieve multiple goals (Fig. 3A). On the 172 

other hand, less than 1% of the sites starting below 25% of reference 173 

conditions are predicted to achieve the 75% of reference conditions target, 174 

highlighting how the broader seascape context may stunt MPA potential in 175 

degraded reefs (15). Indeed, more than half of the 87.4% of openly fished 176 

reefs starting below 25% of reference conditions are predicted to remain in 177 

the that same category (Fig 3A). Additionally, our analysis shows that even 178 

where fishable biomass is very low, scraping potential and trait diversity are 179 

often >25% of reference conditions (Fig. 3B-D); a finding supported by 180 
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previous research showing that herbivores and a diversity of traits can still 181 

persist on degraded reefs (17).  182 

 183 

In situations where fishing prohibitions are in direct conflict with achieving 184 

certain fisheries goals, other forms of management may be necessary (18). We 185 

found that fisheries restrictions provide a similar pattern, but typically lower 186 

magnitude, of conservation gains than fully protected MPAs, particularly for 187 

achieving the combined goal and fisheries goal (Fig 2Q-X, Fig S6). Of note is 188 

that for parrotfish scraping potential, fishing restrictions provide the same 189 

conservation gains as MPAs, providing multiple ways to achieve that specific 190 

goal (Fig. 2W). 191 

 192 

Together, our findings provide guidance on what can be realistically achieved 193 

with various forms of local management regarding key fisheries, ecological 194 

function, and biodiversity goals on coral reefs. We highlight key pros and cons 195 

of placing management in different areas by demonstrating how potential 196 

conservation gains vary not only by goal, but also are strongly dependent on 197 

both the ambitiousness of the target and the context (Fig. 2, S3, S4). In 198 

particular, the potential for local management to help in meeting goals is 199 

strongly related to the amount of human pressure in the surrounding 200 
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seascape (Fig. 2, S2). A key finding is that conservation gains tend to change 201 

non-linearly with human pressure, which means that relatively small changes 202 

in the context where management is implemented could have big impacts on 203 

whether key goals are likely to be met (Fig. 2M-X). This not only has important 204 

implications for the placement of new MPAs, but is also relevant to how future 205 

socioeconomic changes, such as infrastructure development and population 206 

growth may impact the efficacy of reef conservation. However, the impacts of 207 

these changes could potentially be buffered by making management more 208 

effective, for example, by leveraging insights about using social norms and 209 

cognitive biases to improve compliance (19, 20) and learning lessons about 210 

key practices and processes from locations that have defied expectations of 211 

global reef degradation (12, 21). Our global analysis makes clear the 212 

limitations of local management, especially in promoting certain aspects of 213 

biodiversity like trait diversity. While international action on climate change 214 

will be crucial for ensuring a future for coral-dominated reefs (1, 2), effective 215 

management will also be critical to sustaining reefs and the millions of 216 

livelihoods that depend on them. 217 

 218 

  219 
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Figure Legends 359 

Figure 1| Meeting multiple goals on coral reefs. The distribution of (A) 360 

biomass of reef fish >20cm (n=1798), (B) parrotfish scraping potential 361 

(n=1662), and (C) trait diversity (n=1662), all in natural log and corrected for 362 

sampling (4). Differences in the number of sites are because one data provider 363 

collected data at the family level, which could not be used in calculating 364 

parrotfish scraping potential or trait diversity. Parrotfishes were not detected 365 

at 31% of our reef sites (Fig. S1). (D) Sites that simultaneously have fish 366 

biomass, parrotfish scraping potential, and trait diversity at >75% (purple), 367 

50-75% (dark pink), 25-50% (light pink), and <25% (black) of reference 368 

conditions (4). Points are jittered to allow for visualization of overlapping reef 369 

sites.  370 

 371 

Figure 2 | The estimated probability of openly fished reef sites having 25, 372 

50, and 75% of reference conditions (light, medium, and dark purple, 373 

respectively). (A) a combination of fish biomass (>20cm), parrotfish scraping 374 

potential, trait diversity, and (B-D) each metric, respectively, along a gradient 375 

of human pressure (gravity). Separate estimates are provided for reef sites in 376 
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fully protected Marine Protected Areas (MPAs) where fishing is prohibited (E-377 

H) and with restricted fishing (I-L). To highlight how the potential benefits of 378 

management change along a gradient of human pressure (gravity), we 379 

extracted the difference in the probability of achieving each target between 380 

MPAs and openly fished sites (M-P), restricted and openly fished areas (Q-T), 381 

and MPAs and restricted areas (U-X).  We plotted the partial effect of the 382 

relationship between gravity and each target by setting all other continuous 383 

covariates to 0 (because they were all standardized) and all categorical 384 

covariates to their most common category (i.e. 4-10m for depth, slope for 385 

habitat, standard belt transect for census method). Gravity (x axis) is 386 

standardized, with an average of 0. 387 

 388 

Fig. 3| Conservation target outcomes from simulating the 389 

implementation of fully protected Marine Protected Areas (MPAs) in 390 

openly fished sites. Alluvial plots show the change in the number of sites 391 

expected to achieve key conservation targets if MPAs were implemented in 392 

our openly fished sites for (A) simultaneously meeting fish biomass, parrotfish 393 

scraping potential, and trait diversity, and (B-D) each goal, respectively. The 394 

left hand side of each plot shows the current conditions and the right hand 395 

side shows the expected conditions if MPAs were implemented. Black <25%, 396 
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light pink =25-50%, dark pink=50-75%, and purple >75% of reference 397 

conditions.  398 

 399 

 400 


