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Abstract

The modular decomposition of a graph G = (V,E) does not contain prime modules if
and only if G is a cograph, that is, if no quadruple of vertices induces a simple connected
path P4. The cograph editing problem consists in inserting into and deleting from G a set
F of edges so that H = (V,E 4 F ) is a cograph and |F | is minimum. This NP-hard
combinatorial optimization problem has recently found applications, e.g., in the context of
phylogenetics. Efficient heuristics are hence of practical importance. The simple character-
ization of cographs in terms of their modular decomposition suggests that instead of editing
G one could operate directly on the modular decomposition. We show here that editing the
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induced P4s is equivalent to resolving prime modules by means of a suitable defined merge
operation on the submodules. Moreover, we characterize so-called module-preserving edit
sets and demonstrate that optimal pairwise sequences of module-preserving edit sets exist
for every non-cograph. This eventually leads to an exact algorithm for the cograph editing
problem as well as fixed-parameter tractable (FPT) results when cograph editing is param-
eterized by the so-called modular-width. In addition, we provide two heuristics with time
complexity O(|V |3), resp., O(|V |2).

Keywords: Cograph editing, modular decomposition, module merge, prime modules, P4.
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1 Introduction
Cographs are of particular interest in computer science because many combinatorial op-
timization problems that are NP-complete for arbitrary graphs become polynomial-time
solvable on cographs [4, 8, 20]. This makes them an attractive starting point for construct-
ing heuristics that are exact on cographs and yield approximate solutions on other graphs.
In this context it is of considerable practical interest to determine “how close” an input
graph is to a cograph.

An independent motivation recently arose in biology, more precisely in molecular phy-
logenetics [14, 21, 35, 36, 37, 47]. In particular, orthology, a key concept in evolutionary
biology in phylogenetics, is intimately tied to cographs [35]. Two genes in a pair of related
species are said to be orthologous if their last common ancestor was a speciation event. The
orthology relation on a set of genes forms a cograph [30], see [33] for a detailed discussion
and [21, 22, 23, 31, 47] for generalizations of these concepts. This relation can be estimated
directly from biological sequence data, albeit in a necessarily noisy form. Correcting such
an initial estimate to the nearest cograph thus has recently become a computational prob-
lem of considerable practical interest in computational biology [35]. However, the (deci-
sion version of the) problem to edit a given graph with a minimum number of edits into a
cograph is NP-complete [32, 34, 38, 39].

As noted already in [7], the input for several combinatorial optimization problems, such
as exam scheduling or several variants of clustering problems, is naturally expected to have
few induced paths on four vertices (P4s). Since graphs without an induced P4 are exactly
the cographs, available cograph editing algorithms focus on efficiently removing P4s, see
e.g. [16, 24, 25, 38, 39, 53]. The FPT-algorithm introduced in [38, 39] takes as input a graph
that is first edited to a so-called P4-sparse graph and then to a cograph. The basic strategy
is to destroy the P4s in the subgraphs by branching into six cases that eventually leads to
an O(4.612k|V |9/2)-time algorithm, where k is the number of required edits. Algorithms
that compute the kernel of the (parameterized) cograph editing problem [24, 25] as well as
the exact O(3|V ||V |)-time algorithm [53] use the modular-decomposition tree as a guide
to locate the forbidden P4s using the fact that these are associated with prime modules.
Nevertheless, the basic operation in all of these algorithms is still the direct destruction of
the P4s.

Cographs are recursively defined as follows: K1 is a cograph, the disjoint union of
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cographs is a cograph, and the join of cographs is a cograph. This recursive definition
associates a vertex labeled tree, the cotree, with each cograph, where a vertex label “0”
denotes a disjoint union, while “1” indicates the join of the children is formed. It has been
shown in [7] that each cograph has a unique cotree and conversely, every tree whose interior
vertices are labeled alternatingly defined a unique cograph. A simple recognition algorithm
starts with an input graph G. If G is connected, then a node labeled “1” is inserted into
the tree, the complement graph G is formed and the algorithm proceeds recursively on the
connected components of G. If G is not connected, the tree-node is labeled “0”, and the
algorithm recurses on the components of G. If both G and G are connected, then G is not
a cograph, and the algorithm terminates with a negative answer. A natural heuristic for
cograph editing proceeds by finding a minimal cut in G or G, removes the cut-edges and
proceeds with the modified graph. This idea is pursued in [14, 15].

A very different heuristic for cograph modification was recently proposed by Crespelle
[11]. It corrects the neighborhood of each vertex separately. More precisely, an inclusion-
minimal cograph editing Hk of the induced subgraph Gk := G[{x1, . . . xk}] is computed
from the correction Hi−1 of Gi−1 in such a way that only edges involving xi are inserted
or deleted. It has the useful property that in each step the number of inserted or deleted
edges is minimum, and it inserts or deletes no more than |E(G)| edges in total. It is based
on a general property of single-vertex augmentations in hereditary graph classes that are
stable under the addition of universal vertices and isolated vertices, see e.g. [48]. A key
advantage is that it has linear time complexity, i.e., O(|V |+ |E|).

Cotrees are a special case of the much more general modular decomposition tree, which
is well-defined for every graph and conveys detailed information about its structure in a hi-
erarchical manner [19]. A subset M ⊆ V is called a module of a graph G = (V,E), if
all members of M share the same neighbors in V \M . A prime module is a module that
is characterized by the property that both, the induced subgraph G[M ] and its complement
G[M ], are connected subgraphs of G. Cographs play a particular role in this context as
their modular decompositions are of a special form: they are characterized by the absence
of prime modules. In particular, the cotree of a cograph coincides with its modular decom-
position tree [19]. It is natural to ask, therefore, whether the modular decomposition tree
can be manipulated in a such a way that all prime modules of a given graph are converted
into “series” or “parallel” modules for which either G[M ] and or G[M ] is disconnected.
This is equivalent to converting G into a cograph G∗. Every minimum edit set clearly
is inclusion-minimal. However, not every minimum edit set – and in particular not every
inclusion-minimal edit set – respects the module structure of G. Figure 1 below shows a
pertinent example. In contrast to the editing approach of [11], we pursue an approach that
is modul-preserving in the sense that each module ofG is also a module of the edited graph
G∗. We argue that this property is desirable in the context of orthology detection, because
the corrected modular decomposition tree, i.e., the cotree of G∗ has a direct interpretation
as event-labeled gene tree [30, 35].

An alternative way of looking at the connection between cographs and their modular
decomposition trees is to interpret the destruction of all P4s in a cograph editing algorithm
as the resolution of all prime modules in the edited graph G∗. This simple observation
suggests to edit the modules of G. The min-cut approach of [14] is one possibility to
achieve this. Here, we consider the merging of modules instead. Every union

⋃
i∈IMi

of the connected components M1, . . . ,Mk of the edited graph G∗[M ] or G∗[M ] forms
a module G∗, while

⋃
i∈IMi was not a module in the graph G before editing. In this
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situation, we say that “the modules Mi, i ∈ I of G are merged w.r.t. G∗”. Vertices within
a module

⋃
i∈IMi share the same neighbors in V \ (

⋃
i∈IMi). It is sufficient therefore

to adjust the neighbors of certain submodules Mi of M to merge the Mi in a way that
resolves the prime module M to obtain G∗. In this setting, it seems natural to edit the
modular decomposition tree of a graph directly with the aim of converting it step-by-step
into the closest modular decomposition tree of a cograph. To this end, one would like to
break up individual prime modules by means of the module merge operation.

The key results of this contribution are that (1) every prime node M can be resolved by
a sequence of pairwise merges of modules that are children of M in the modular decompo-
sition tree, and (2) optimal cograph editing can be expressed as optimal pairwise module
merging. To prove these statements, we start with an overview of important properties on
cographs and the modular decomposition (Section 2 and 3). In Section 4, we then show
that so-called module-preserving edit sets are characterized by resolving any prime node
by module-merges. In particular, we show that any graph has an optimal edit set that can be
entirely expressed by merging modules that are children of prime modules in the modular
decomposition tree. Finally in Section 5, we summarize the results and show how they can
be used for establishing efficient heuristics for the cograph editing problem. We provide
an exact algorithm that allows to optimally edit a cograph via pairwise module-merges. As
by-product, we obtain an FPT algorithm for the case that cograph editing is parameterized
by the so-called modular-width [1, 18]. We finish this paper with a short discussion on how
the latter method can be used to obtain a simple O(|V |2)-time heuristic.

2 Basic definitions

We consider simple finite undirected graphs G = (V,E) without loops. The complement
G of a graph G = (V,E) has vertex set V and edge set E(G) = {xy | x, y ∈ V, x 6=
y, xy /∈ E}. The notation G4F is used to denote the graph (V,E4F ), where4 denotes
the symmetric difference. The disjoint union G∪· H of two distinct graphs G = (V,E) and
H = (W,F ) is simply the graph (V ∪· W,E ∪· F ). The join G⊕H of G and H is defined
as the graph (V ∪· W,E ∪· F ∪· {xy | x ∈ V, y ∈W}). A graph H = (W,F ) is a subgraph
of a graph G = (V,E), in symbols H ⊆ G, if W ⊆ V and F ⊆ E. If H ⊆ G and xy ∈ F
if and only if xy ∈ E for all x, y ∈ W , then H is called an induced subgraph. We will
often denote an induced subgraph H = (W,F ) by G[W ]. A connected component of G is
a connected induced subgraph that is maximal w.r.t. inclusion. We write G ' H for two
isomorphic graphs G and H .

Let G = (V,E) be a graph. The neighborhood N(v) of v ∈ V is defined as N(v) =
{x | vx ∈ E}. If there is a risk of confusion we will write NG(v) to indicate that the
respective neighborhood is taken w.r.t. G. The degree deg(v) of a vertex is defined as
deg(v) = |N(v)|.

A tree is a connected graph that does not contain cycles. A path is a tree where every
vertex has degree 1 or 2. A rooted tree T = (V,E) is a tree with one distinguished vertex
ρ ∈ V . We distinguish two further types of vertices in a tree: the leaves which are distinct
from the root and are contained in only one edge and the inner vertices which are contained
in at least two edges. The first inner vertex lca(x, y) that lies on both unique paths from
two vertices x, resp., y to the root, is called lowest common ancestor of x and y. We say
that a rooted tree T displays the triple xy|z if x, y, and z are leaves of T and the path from
x to y does not intersect the path from z to the root of T .
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It is well-known that there is a one-to-one correspondence between (isomorphism class-
es of) rooted trees on V and so-called hierarchies on V . For a finite set V , a hierarchy on
V is a subset C of the power set P(V ) such that (i) V ∈ C, (ii) {x} ∈ C for all x ∈ V and
(iii) p ∩ q ∈ {p, q, ∅} for all p, q ∈ C.

Theorem 2.1 ([51]). Let C be a collection of non-empty subsets of V . Then, there is a
rooted tree T = (W,E) on V with C = {L(v) | v ∈ W} if and only if C is a hierarchy
on V .

3 Cographs and the modular decomposition
3.1 Introduction to cographs

Cographs are defined as the class of graphs formed from a single vertex under the closure
of the operations of union and complementation, namely: (i) a single-vertex graph K1 is a
cograph; (ii) the disjoint union G = (V1 ∪· V2, E1 ∪· E2) of cographs G1 = (V1, E1) and
G2 = (V2, E2) is a cograph; (iii) the complementG of a cographG is a cograph. Condition
(ii) can be replaced by the equivalent condition that the join G1 ⊕ G2 is a cograph, since
G1 ⊕G2 is the complement of G1 ∪· G2.

The name cograph originates from complement reducible graphs, as by definition,
cographs can be “reduced” by stepwise complementation of connected components to to-
tally disconnected graphs [50].

It is well-known that for each induced subgraph H of a cograph G either H is discon-
nected or its complementH is disconnected [4]. This, in particular, allows representing the
structure of a cograph G = (V,E) in an unambiguous way as a rooted tree T = (W,F ),
called cotree: If the considered cograph is the single vertex graph K1, then output the tree
({u}, ∅). Else if the given cograph G is connected, create an inner vertex u in the cotree
with label “series”, build the complement G and add the connected components of G as
children of u. If G is not connected, then create an inner vertex u in the cotree with label
“parallel” and add the connected components of G as children of u. Proceed recursively on
the respective connected components that consists of more than one vertex. Eventually, this
cotree will have leaf-set V ⊆ W and the inner vertices u ∈ W \ V are labeled with either
“parallel” or “series” such that xy ∈ E if and only if u = lcaT (x, y) is labeled “series”.

The complement of a path on four vertices P4 is again a P4 and hence, such graphs are
not cographs. Intriguingly, cographs have indeed a quite simple characterization as P4-free
graphs, that is, no four vertices induce a P4. A number of further equivalent characteriza-
tions are given in [4] and Theorem 3.2. Determining whether a graph is a cograph can be
done in linear time [5, 8].

3.2 Modules and the modular decomposition

The concept of modular decompositions (MD) is defined for arbitrary graphs G and allows
us to present the structure of G in the form of a tree that generalizes the idea of cotrees.
However, in general much more information needs to be stored at the inner vertices of this
tree if the original graph has to be recovered.

The MD is based on the notion of modules. These are also known as autonomous sets
[43, 44], closed sets [19], clans [17], stable sets, clumps [2] or externally related sets [27].
A module of a given graph G = (V,E) is a subset M ⊆ V with the property that for
all vertices in x, y ∈ M it holds that N(y) \M = N(x) \M . Therefore, the vertices
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within a given module M are not distinguishable by the part of their neighborhoods that
lie “outside” M . We denote with MD(G) the set of all modules of G = (V,E). Clearly,
the vertex set V and the singletons {v}, v ∈ V are modules, called trivial modules. A
graph G is called prime if it only contains trivial modules. For a module M of G and a
vertex v ∈ M , we define the outM -neighborhood of v as N(v) \M . Since for any two
vertices contained in M the outM -neighborhoods are identical, we can equivalently define
N(v) \M as the outM -neighborhood of the module M , where v ∈M .

We say that a module M of G is parallel, resp., series if the induced subgraph G[M ],
resp., the complement G[M ] is disconnected. If both G[M ] and G[M ] are connected, then
M is called prime.

For a graphG = (V,E) let M and M ′ be disjoint subsets of V . We say thatM and M ′

are adjacent (in G) if each vertex of M is adjacent to all vertices of M ′; the sets are non-
adjacent if none of the vertices of M is adjacent to a vertex of M ′. Two disjoint modules
are either adjacent or non-adjacent [43]. One can therefore define the quotient graph G/P
for an arbitrary subset P ⊆ MD(G) of pairwise disjoint modules: G/P has P as its vertex
set and MiMj ∈ E(G/P ) if and only if Mi and Mj are adjacent in G.

A module M is called strong if for any module M ′ 6= M either M ∩ M ′ = ∅, or
M ⊆ M ′, or M ′ ⊆ M , i.e., a strong module does not overlap any other module. The set
of all strong modules MDs(G) ⊆ MD(G) thus forms a hierarchy, the so-called modular
decomposition of G. While arbitrary modules of a graph form a potentially exponential-
sized family, the sub-family of strong modules has size O(|V (G)|) [26].

Let P = {M1, . . . ,Mk} be a partition of the vertex set of a graph G = (V,E). If
every Mi ∈ P is a module of G, then P is a modular partition of G. A non-trivial modular
partition P = {M1, . . . ,Mk} that contains only maximal (w.r.t. inclusion) strong modules
is a maximal modular partition. We denote the (unique) maximal modular partition of G
by Pmax(G). We will refer to the elements of Pmax(G[M ]) as the the children of M . This
terminology is motivated by the following considerations:

The hierarchical structure of MDs(G) gives rise to a canonical tree representation ofG,
which is usually called the modular decomposition tree TMDs(G) [28, 44]. The root of this
tree is the trivial module V and its |V | leaves are the trivial modules {v}, v ∈ V . The set of
leaves Lv associated with the subtree rooted at an inner vertex v induces a strong module
of G. In other words, each inner vertex v of TMDs(G) represents the strong module Lv . An
inner vertex v is then labeled “parallel”, “series”, resp., “prime” if Lv is a parallel, series,
resp., prime module. The strong module Lv of the induced subgraph G[Lv] associated to
a vertex v labeled “prime” is called prime module. Note, the latter does not imply that
the graph G[Lv] is prime, however, in all cases the quotient graph G[Lv]/Pmax(G[Lv])
is prime [28]. Similar to cotrees it holds that xy ∈ E if u = lcaTMDs(G)(xy) is labeled
“series”, and xy /∈ E if u = lcaTMDs(G)(xy) is labeled “parallel”. However, to trace
back the full structure of a given graph G from TMDs(G) one has to store additionally
the information of the subgraph G[Lv]/Pmax(G[Lv]) in the vertices v labeled “prime”.
Although, MDs(G) ⊆ MD(G) does not represent all modules, we state the following
remarkable fact [12, 43]: Any subset M ⊆ V is a module if and only if M ∈ MDs(G)
or M is the union of children of non-prime modules. Thus, TMDs(G) represents at least
implicitly all modules of G.

A simple polynomial time recursive algorithm to compute TMDs(G) is as follows [28]:
(1) compute the maximal modular partition Pmax(G); (2) label the root node according
to the parallel, series or prime type of G; (3) for each strong module M of Pmax(G),



A. Fritz, M. Hellmuth, P. F. Stadler and N. Wieseke: Cograph editing by module-merging 7

compute TMDs(G[M ]) and attach it to the root node and proceed with Pmax(G[M ]). The
first polynomial time algorithm to compute the modular decomposition is due to Cowan
et al. [10], and it runs in O(|V |4). Improvements are due to Habib and Maurer [27],
who proposed a cubic time algorithm, and to Müller and Spinrad [45], who designed a
quadratic time algorithm. The first two linear time algorithms appeared independently in
1994 [9, 40]. Since then a series of simplified algorithms has been published, some running
in linear time [13, 41, 52], and others in almost linear time [13, 26, 29, 42].

For later reference we give the following lemma.

Lemma 3.1. Let M be a module of a graph G = (V,E) and M ′ ⊆ M . Then, M ′ is a
module of G[M ] if and only if M ′ is a module of G. If M is a strong module of G, then
M ′ is a strong module of G[M ] if and only if M ′ is a strong module of G. Moreover, if M1

and M2 are overlapping modules in G, then M1 \M2, M1 ∩M2 and M1 ∪M2 are also
modules in G.

Proof. The first and the last statement were shown in [43]. We prove the second statement.
Let M ∈ MDs(G). Assume that M ′ ⊆ M is a strong module of G[M ]. Assume for

contradiction that M ′ is not a strong module of G. Hence M ′ must overlap some module
M ′′ in G. This module M ′′ cannot be entirely contained in M as otherwise, M ′′ and M ′

overlap in G[M ] implying that M ′ is not a strong module of G[M ], a contradiction. But
then M and M ′′ must overlap, contradicting that M is strong in G.

If M ′ ⊆ M is a strong module of G then it does not overlap any module of G. Since
every module of G[M ] is also a module of G, there cannot be a module of G[M ] that
overlaps M ′ and thus, M ′ is a strong module of G[M ].

3.3 Useful properties of modular partitions

First, we briefly summarize the relationship between cographs G and the modular decom-
position MDs(G). While the first three items are from [4, 7], the proof of the fourth item
can be found in [3, 30].

Theorem 3.2 ([4, 7, 30]). Let G = (V,E) be an arbitrary graph. Then the following
statements are equivalent.

1. G is a cograph.

2. G does not contain induced paths on four vertices.

3. TMDs(G) is the cotree of G and hence, has no inner vertices labeled with “prime”.

4. Define a set R(G) of triples as follows: For any three vertices x, y, z ∈ V we add
the triple xy|z toR(G) if either xz, yz ∈ E and xy /∈ E or xz, yz /∈ E and xy ∈ E.
There is a tree T that displays all triples inR(G).

For later explicit reference, we summarize in the next theorem several results that we
already implicitly referred to in the discussion above.

Theorem 3.3 ([25, 28, 43]). The following statements are true for an arbitrary graph
G = (V,E):

(T1) The maximal modular partition Pmax(G) and the modular decomposition MDs(G)
of G are unique.



8 Art Discrete Appl. Math. 3 (2020) #P2.01

(T2) Let Pmax(G[M ]) be the maximal modular partition of G[M ], where M denotes a
prime module of G and P′ ( Pmax(G[M ]) be a proper subset of Pmax(G[M ]) with
|P′ | > 1. Then,

⋃
M ′∈P′ M ′ /∈ MD(G).

(T3) Any subset M ⊆ V is a module of G if and only if M is either a strong module of G
or M is the union of children of a non-prime module of G.

Statements (T1) and (T3) are clear. Statement (T2) explains that none of the unions
of elements of a maximal modular partition of G[M ] are modules of G, whenever M is a
prime module of G. Moreover, Statement (T3) can be used to show that all prime modules
are strong.

Lemma 3.4. Let G = (V,E) be an arbitrary graph. Then, every prime module M of G is
strong.

Proof. Let M be a prime module of G. Assume for contradiction that M is not strong in
G. Theorem 3.3(T3) implies that M is the union of children of some non-prime mod-
ule M ′. Hence, there is a subset M ( Pmax(G[M ′]) such that M =

⋃
M ′

i∈M
M ′i .

Note that 1 < |M| < |Pmax(G[M ′])|, since all M ′i ∈ Pmax(G[M ′]) are strong and⋃
M ′

i∈Pmax(G[M ′])M
′
i = M ′ is non-prime. As M ′ is non-prime, it is either parallel or

series. Since M is a non-trivial union of elements in Pmax(G[M ′]), G[M ] is either discon-
nected (if M ′ is parallel) or its complement G[M ] is disconnected (if M ′ is series). But
then M is non-prime; a contradiction. Thus, M is a strong module of G.

In what follows, whenever the term “prime module” is used it refers therefore always
to a strong module.

3.4 Cograph editing

Given an arbitrary graph we are interested in understanding how the graph can be edited
into a cograph. A well-studied problem is the following optimization problem.

Problem 3.5 (Optimal Cograph Editing). Given a graph G = (V,E). Find a set F ⊆
(
V
2

)
of minimum cardinality such that H = (V,E 4 F ) is a cograph.

We will simply call an edit set of minimum cardinality an optimal (cograph) edit set.
For later reference we recall Lemma 9 of [35]. It shows that it suffices to solve the cograph
editing problem separately for each connected component of G.

Lemma 3.6 ([35]). Let G = (V,E) be a graph with optimal edit set F . Then {x, y} ∈
F \ E implies that x and y are located in the same connected component of G.

Let G = (V,E) be a graph and F be an arbitrary edit set that transforms G to the
cograph H = (V,E 4 F ). If any module of G is a module of H , then F is called module-
preserving.

Proposition 3.7 ([25]). Every graph has an optimal module-preserving cograph edit set.

The importance of module-preserving edit sets lies in the fact that they update either
all or none of the edges between any two disjoint modules. It is worth noting that module
preserving edit sets do not necessarily preserve the property of modules being strong, i.e.,
although M might be a strong module in G it needs not to be strong in H .
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Definition 3.8. Let G = (V,E) be a graph, F a cograph edit set for G and M be a non-
trivial module of G. The induced edit set in G[M ] is

F [M ] := {{x, y} ∈ F | x, y ∈M}.

The next result shows that any optimal edit set F can entirely expressed by the union of
edits within prime modules and that F [M ] is an optimal edit set of G[M ] for any module
M of G. Hence, if F [M ] is not optimal for some module M of G, then F cannot be an
optimal edit set for G.

Lemma 3.9 ([25]). Let G = (V,E) be an arbitrary graph and let M be a non-trivial
module ofG. If F ′ is an optimal edit set of the induced subgraphG[M ] and F is an optimal
edit set of G, then (F \ F [M ]) ∪ F ′ is an optimal edit set of G. Thus, |F [M ]| = |F ′|.

Moreover, the optimal cograph editing problem can be solved independently on the
prime modules of G.

4 Module merge is the key to cograph editing
Since cographs are characterized by the absence of induced P4s, we can interpret every
optimal cograph-editing method as the removal of all P4s in the input graph with a min-
imum number of edits. A natural strategy is therefore to detect P4s and then to decide
which edges must be edited. Optimal edit sets are not necessarily unique, see Figure 1.
The computational difficulty arises from the fact that editing an edge of a P4 can produce
new P4s in the updated graph. Hence, we cannot expect a priori that local properties of G
alone will allow us to identify optimal edits.

By Lemma 3.9, on the other hand, it is sufficient to edit within the prime modules.
Moreover, as shown in Figure 1, there are strong modulesM? in an optimal edited cograph
H that are not modules in G. Hence, instead of editing P4s in G, it might suffice to edit
the outMi -neighborhoods for some Mi ∈ Pmax(G[M ]) in such a way that they result in
the new module M? in H . The following definitions are important for the concepts of the
“module merge process” that we will extensively use in our approach.

Definition 4.1 (Module Merge). Let G and H be arbitrary graphs with V (H) ⊆ V (G)
and let MD(G) and MD(H) denote their corresponding sets of all modules. Consider a set
M := {M1,M2, . . . ,Mk} ⊆ MD(G). We say that the modules inM are merged (w.r.t.
H) if

(i) M1, . . . ,Mk ∈ MD(H),

(ii) M :=
⋃k
i=1Mi ∈ MD(H), and

(iii) M /∈ MD(G).

We use the symbols t+ and→ as operations that allows us to illustrate the merge process,
that is, we writeM1t+ · · ·t+Mk = t+ki=1Mi →M , whenever the modulesM1,M2, . . . ,Mk

are merged w.r.t. H resulting in the module M =
⋃k
i=1Mi of H .

The intuition is that the modules M1 through Mk of G are merged into a single new
moduleM , their union, that is present inH but not inG. This, in particular, already defines
all required edits to adjust the neighbors of the vertices in

⋃k
i=1Mi in G resulting in the

module M =
⋃k
i=1Mi of H . It is easy to verify that t+ is commutative in the sense that
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M1 M2
M3

M4 M1 M2
M3

M4''

M4'

M1 M2
M3

M4

prime

M1 M2 M3 M4

series

parallel parallel

series M1

M3 M4´´

M2 M4´

series

parallel parallel

M1 M3 M2 M4

Figure 1: Shown are three graphsG,H1, H2 (from left to right). Maximal non-trivial strong
modules are indicated by gray ovals in each graph and edges are used to show whether two
modules are adjacent or not. The dots/lines within the modules are used to depict the
vertices/edges within the modules. The modular decomposition trees up to a certain level
are depicted below the respective graphs. This tree differs from the modular decomposition
tree of the original graph G,H1, and H2, respectively, only from the unresolved leaf-nodes
(gray boxes).
Left: A non-cograph G is shown. The optimal edit set F has cardinality 4. Center: An
optimal edited cographH1 = G4F is shown, where F is not module-preserving. None of
the new strong modules ofH1 that are not modules ofG can be expressed as the union of the
sets M1, . . . ,M4. Hence, none of these modules are the result of a module merge process.
Right: An optimal edited cograph H2 = G4 F is shown, where F is module-preserving.
The new strong modulesM?

1 ,M
?
2 ofH2 that are not modules ofG are two parallel modules.

They can be written as M?
1 = M1 ∪M3 and M?

2 = M2 ∪M4. Hence, they are obtained by
merging modules of G, in symbols: M1 t+ M3 →M?

1 and M2 t+ M4 →M?
2 . Here we have

FH2
(M1 t+ M3 →M?

1 ) = FH2
(M2 t+ M4 →M?

2 ) = F = {{x, y} | x ∈M1, y ∈M4}.

if M1 t+ M2 → M , then M2 t+ M1 → M . However, t+ is not necessarily associative. To
see this, consider the example in Figure 2. Although the module M?

3 in H is obtained by
merging the modules {3}, {4} and {5}, the set {3} ∪ {4} does not form a module in H .
Hence, although {3} t+ {4} t+ {5} → M?

3 , it does not hold that {3} t+ {4} → M? for any
module M? in H . Thus, we cannot write ({3} t+ {4}) t+ {5} →M?

3 .

It follows directly from Definition 4.1 that every new module M of H that is not a
module of G can be obtained by merging trivial modules: simply set M =

⋃
x∈M{x} and

t+x∈M{x} → M follows immediately. In what follows we will show, however, that each
strong module of H that is not a module of G can be obtained by merging the modules that
are contained in Pmax(G[M ]) of some prime module M of G.

When modules M1, . . . ,Mk of G are merged w.r.t. H then all vertices in M =⋃k
h=1Mh must have the same outM -neighbors in H , while at least two vertices x ∈ Mi,

y ∈ Mj , 1 ≤ i 6= j ≤ k must have different outM -neighbors in G. Hence, in order to
merge these modules it is necessary to change the outM -neighbors in G. However, edit
operations between vertices within M are dispensable for obtaining the module M .
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Definition 4.2 (Module Merge Edit). Let G = (V,E) be an arbitrary graph and F be an
arbitrary edit set resulting in the graph H = (V,E 4 F ). Let H ′ ⊆ H be an induced
subgraph of H and suppose M1, . . . ,Mk ∈ MD(G) are modules that have been merged
w.r.t. H ′ resulting in the module M =

⋃k
i=1Mi ∈ MD(H ′). We then call

FH′(t+ki=1Mi →M) := {{x, v} ∈ F | x ∈M,v ∈ V (H ′) \M} (4.1)

the module merge edits associated with t+ki=1Mi →M w.r.t. H ′.

By construction, the edit set FH′(t+ki=1Mi → M) comprises exactly those (non)edges
of F that have been edited so that all vertices in M have the same outM -neighborhood
in H ′ = (V ′, E′). In particular, it contains only (non)edges of F that are not entirely
contained in G[M ], but entirely contained in H ′. Moreover, (non)edges of F that contain
a vertex in V (H ′) and a vertex in V \ V (H ′) are not considered as well.

Let G be an arbitrary graph and F be an optimal edit set that applied to G results in
the cograph H . We will show that every optimal module-preserving edit set F can be
expressed completely by means of module merge edits. To this end, we will consider the
prime modules M of the given graph G (in particular certain children of M that do not
share the same out-neighborhood) and adjust their out-neighbors to obtain new modules.
Illustrative examples are given in Figure 1 and 2.

We are now in the position to derive the main results, Theorems 4.3 – 4.7. We begin
with showing that each strong module of H that is not a module of G can be obtained by
merging some children of a particular chosen prime module of G. Moreover, we prove that
any strong module of H that is a module of G must also be strong in G.

Theorem 4.3. Let G = (V,E) be an arbitrary graph, F an optimal module-preserving
cograph edit set, and H = (V,E 4 F ) the resulting cograph. Then, each strong module
M? ofH is either a module inG or there exists a prime module PM? ofG that containsM?

and is minimal w.r.t. inclusion, i.e., there is no prime module P ′M? ofG withM? ⊆ P ′M? (
PM? . In the latter case M? is obtained by merging some modules in Pmax(G[PM? ]).

Furthermore, if a strong moduleM? ofH is a module inG, thenM? is a strong module
of G.

Proof. Let M? be an arbitrary strong module of H that is not a module of G. We show
first that for the module M? there is a prime module PM? of G with M? ⊆ PM? such that
there is no other prime module P ′M? of G with M? ⊆ P ′M? ( PM? .

SinceM? is a module ofH but not ofG there are vertices x ∈M? and y ∈ V \M? with
{x, y} ∈ F . Now, let PM? be the strong module of G containing x and y that is minimal
w.r.t. inclusion, that is, there is no other strong module of G that is properly contained
in PM? and that contains x and y. Thus {x, y} ∈ F [PM? ]. Lemma 3.9 implies that
F [PM? ] is an optimal edit set of G[PM? ]. Since PM? is minimal w.r.t. inclusion it holds
that x and y are from distinct children Mx,My ∈ Pmax(G[PM? ]). We continue to show
that this strong module PM? is indeed prime. Assume for contradiction, that PM? is a
non-prime module of G. If PM? is parallel, then editing {x, y} would connect the two
connected components Mx,My of G[PM? ]. Then, it follows by Lemma 3.6 that F [PM? ]

is not optimal; a contradiction. By similar arguments for the complement G[PM? ] it can be
shown that PM? cannot be a series module. Thus PM? must be prime. Since F is module-
preserving, PM? is module in H . Hence, PM? and M? cannot overlap, since M? is strong
in H . However, since x ∈ PM? ∩M? and y ∈ PM? but y /∈ M? we have M? ⊆ PM? .
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21

3

50

H
4
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prime M1

parallel M2 0 1 2

7 prime M3

3 4 5 6

parallel M1

series M1* series M2*

2 parallel M2

7 6 series M3*

parallel M4* 4

3 5

0 1

Figure 2: Illustration of the main results. Consider the non-cograph G, the cograph
H = G 4 F and the module-preserving edit set F = {{1, 2}, {5, 6}}. The modular
decomposition trees are depicted right to the respective graphs.
According to Theorem 4.3, both strong modules M1 and M2 of H that are modules of
G are also strong modules of G and correspond to the prime module M1 and the parallel
module M2 in G, respectively. Moreover, each of the new strong modules M?

1 , . . . ,M
?
4 of

H are obtained by merging children of a prime module of G. To be more precise, M?
1 and

M?
2 are obtained by merging children of the prime module M1 of G: M2t+ {2} →M?

1 and
{0} t+ {1} → M?

2 with FH[M1](M2 t+ {2} → M?
1 ) = FH[M1]({0} t+ {1} → M?

2 ) =
{{1, 2}}. The new strong modules M?

3 and M?
4 are obtained by merging children of

the prime module M3 of G: {3} t+ {5} → M?
4 and {3} t+ {4} t+ {5} → M?

3 with
FH[M3]({3}t+ {5} →M?

4 ) = FH[M3]({3}t+ {4}t+ {5} →M?
3 ) = {{5, 6}}. According to

Corollary 4.7, the set F can be written as the union of the edit sets used to obtain the new
merged modules of H .
It is worth noting that not all strong modules of G remain strong in H (e.g. the prime mod-
ule M3) and that there are (non-strong) modules in H (e.g. the module {6, 7}) that are not
obtained by merging children of prime modules of G.

Finally, since PM? is chosen to be minimal w.r.t. inclusion, there exists in particular no
prime module P ′M? of G with M? ⊆ P ′M? ( PM? .

We continue to show that M? is obtained by merging some child modules of PM? in
G, say M1, . . . ,Mk ∈ Pmax(G[PM? ]). Note that we just formally prove the existence
of such a subset {M1, . . . ,Mk} ⊂ Pmax(G[PM? ]) without explicitly constructing it. To
this end, we need to verify the three conditions of Definition 4.1, i.e., (i) M1, . . . ,Mk ∈
MD(H), (ii) M? :=

⋃k
i=1Mi ∈ MD(H), and (iii) M? /∈ MD(G). Since each Mi ∈

Pmax(G[PM? ]) is module of G and F is module-preserving, Condition (i) is always satis-
fied. Moreover, by assumption M? /∈ MD(G) and thus Condition (iii) is satisfied.

It remains to show that Condition (ii) is satisfied. To this end, we show that there
are modules M1, . . . ,Mk of G (without explicitly constructing them) such that M? =⋃k
i=1Mi. We prove this by showing that each module from PM? is either completely

contained in, or disjoint from M?. First, note that M? 6= PM? , since M? is not a module
of G. Second, M? cannot overlap any Mi ∈ Pmax(G[PM? ]), since Mi is a module of H
and M? is strong in H . We continue to show that there is no Mi ∈ Pmax(G[PM? ]) such
that M? ⊆ Mi. Assume for contradiction that there is a module Mi ∈ Pmax(G[PM? ])
with M? ⊆ Mi. Note that Mi cannot be prime in G, as otherwise M? ⊆ Mi = P ′M? (
PM? , contradicting the minimality of PM? . Moreover, M? cannot overlap any M i

j ∈
Pmax(G[Mi]), since M? is strong in H and any M i

j is a module of H , since F is module-
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preserving. Furthermore, since Mi is non-prime in G for any subset {M i
1, . . . ,M

i
l } (

Pmax(G[Mi]) it holds that the set M ′ =
⋃l
j=1M

i
j is a module of G (cf. Theorem 3.3(T3)).

Since M? is no module of G it cannot be a union of elements in Pmax(G[Mi]). Note that
this especially implies that M? 6= Mi and M? 6= M i

j for all M i
j ∈ Pmax(G[Mi]). Now it

follows, that M? ⊂M i
j for some M i

j ∈ Pmax(G[Mi]). Repeating the latter arguments and
sinceG is finite, there must be a minimal setMa

b withM? ⊂Ma
b ⊂ · · · ⊂M i

j ⊂Mi. Now
we apply the latter arguments again and obtain that M? ⊂ M ′ ∈ Pmax(G[Ma

b ]) which is
not possible, since Ma

b is chosen to be the minimal module that contains M?. Thus, there
is no Mi ∈ Pmax(G[PM? ]) such that M? ⊆Mi.

Now, since M? 6= PM? , andM? does not overlap anyMi ∈ Pmax(G[PM? ]), and there
is no Mi ∈ Pmax(G[PM? ]) such that M? ⊆ Mi, there must be a set {M1, . . . ,Mk} (
Pmax(G[PM? ]) such that M? =

⋃k
i=1Mi. Thus, Condition (ii) is satisfied and therefore

M? is obtained by merging modules in Pmax(G[PM? ]).
Hence, any strong module of H is either a module of G or obtained by merging the

children of a prime module of G.
Finally, assume that there is a strong module M? in H that is a module of G. Assume

that M? is not strong in G. Then there is a module M in G that overlaps M?. Since F is
module-preserving, M is a module in H and thus, M overlaps M? in H; a contradiction.
Thus, any strong module M? of H that is also a module of G must be strong in G.

Theorem 4.3 allows us to give the following definitions that we will use in the subse-
quent part.

Definition 4.4. Let G = (V,E) be an arbitrary graph, F an optimal module-preserving
cograph edit set, and H = (V,E 4 F ) the resulting cograph. Let M? be a strong module
of H but no module of G.

We denote by PM? the prime module of G that contains M? and is minimal w.r.t.
inclusion, i.e., there is no prime module P ′M? of G with M? ⊆ P ′M? ( PM? . Further-
more, we denote by C(M?) ⊂ Pmax(G[PM? ]) the set of children of PM? that satisfies⋃
Mi∈C(M?)Mi = M?.

The next result provides a characterization of module-preserving edit sets by means of
module merge of the children of prime modules.

Theorem 4.5. Let G = (V,E) be an arbitrary graph, F an optimal cograph edit set, and
H = (V,E 4 F ) the resulting cograph. Then F is module-preserving for G if and only
if each new strong module M? of H that is not a module of G is obtained by merging the
modules in C(M?) ⊂ Pmax(G[PM? ]), in symbols t+Mi∈C(M?)Mi →M?.

Proof. If F is an optimal and module-preserving edit-set forG, we can apply Theorem 4.3.
For the converse, assume for contraposition that F is not module-preserving. Then,

there is a module Mi in G that is not a module in H . Hence, there is a vertex z ∈ V \Mi

and two vertices x, y ∈ Mi such that xz ∈ E(H) and yz /∈ E(H) and thus, either
{x, z} ∈ F or {y, z} ∈ F . There are two cases, either xy ∈ E(H) or xy /∈ E(H).
Since H is a cograph we can apply Theorem 3.2 and conclude that either yz|x ∈ R(H) or
xz|y ∈ R(H). Assume that xz|y ∈ R(H) and let T be the cotree of H . Since T displays
xz|y, the strong moduleM? ofH located at the lcaT (x, z) contains the vertices x and z but
not y. Moreover, since there is an edit {x, z} or {y, z} in F there is a strong prime module
PM? in G that contains x, y, z and is minimal w.r.t. inclusion. Note, Mi 6= PM? since
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x, y ∈Mi and z 6∈Mi. Moreover, since Mi is a module in G, but none of the unions of the
children of PM? is a module of G (cf. Theorem 3.3(T3)), we can conclude that Mi ⊆M ′,
where M ′ is a child of PM? in G. Since PM? is the minimal prime module that contains
x, y, z and there is an edit {x, z} or {y, z} in F , the vertex z must be located in a module
different from the module M ′ that contains both x and y. Thus, z /∈ M ′. Therefore, there
is no module in G that contains x and z but not y. Thus, M? is no module of G. Since
there is no module in G that contains x and z but not y, the set M? cannot be written as
the union of children of any strong prime module PM? and thus, M? is not obtained by
merging modules of Pmax(G[PM? ]). The case yz|x ∈ R(H) is shown analogously.

Combining the latter results, it can be shown that for every graph G there is always an
optimal edit set such that the resulting cograph H contains all modules of G and any newly
created strong module M? of H is obtained by merging the respective modules in C(M?).

Theorem 4.6. Any graph G = (V,E) has an optimal edit-set F such that each strong
module M? in H = (V,E4 F ) that is not a module of G is obtained by merging modules
in Pmax(G[PM? ]), where PM? is a prime module of G.

Proof. Proposition 3.7 implies that any graph has a module-preserving optimal edit set.
Hence, we can apply Theorem 4.5 to derive the statement.

Finally, the following result shows that each module-preserving edit set can indeed be
derived by considering the module merge edits only.

Theorem 4.7. Let G = (V,E) be an arbitrary graph, F an optimal module-preserving
cograph edit set, H = (V,E 4 F ) the resulting cograph, and M the set of all strong
modules of H that are no modules of G. Then,

F =
⋃

M?∈M

(
FH[PM? ](t+Mi∈C(M?)Mi →M?)

)
.

Proof. We set F ? =
⋃
M?∈M

(
FH[PM? ](t+Mi∈C(M?)Mi →M?)

)
. Clearly, it holds that

F ? ⊆ F . It remains to show that, F ⊆ F ?. First, observe, that every edit {x, y} ∈ F
is between distinct children Mx,My ∈ Pmax(G[PM? ]) of a prime module PM? of G.
To see this, let PM? be a strong module of G such that x and y are in distinct children
Mx,My ∈ Pmax(G[PM? ]) and assume for contradiction that PM? is non-prime in G. Let
F ′ :=

⋃
Mi∈Pmax(G[PM? ]) F [Mi]. Since PM? is non-prime in G it follows that F ′ is an

edit set for G[PM? ], that is, G[PM? ]∆F ′ is a cograph. But |F ′| < |F [PM? ]|; contra-
dicting Lemma 3.9. Thus, every edit {x, y} ∈ F is between distinct children Mx,My ∈
Pmax(G[PM? ]) of a prime module PM? of G.

Assume that {x, y} ∈ F , but {x, y} /∈ F ?. By the latter arguments, there is a prime
module PM? of G with x ∈ Mx and y ∈ My and Mx,My ∈ Pmax(G[PM? ]). Now
let M ′x be the strong module of H that contains x but not y and that is maximal w.r.t.
inclusion. Since F is module-preserving, Mx is a module in H . Moreover, since M ′x is
a strong module of H , the modules M ′x and Mx do not overlap in H . Therefore, either
Mx ( M ′x or M ′x ⊆ Mx. We show first that the case Mx ( M ′x is not possible. Assume
for contradiction, that Mx ( M ′x. Thus, there is a vertex z ∈ M ′x \ Mx. Since PM?

is prime in G and Mx ∈ Pmax(G[PM? ]), we can apply Theorem 3.3(T2) and conclude
that there is no other module than Mx in G that entirely contains Mx but not y. Since
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Mx ( M ′x ( PM? it follows that M ′x is a new strong module of H and therefore, by
Theorem 4.3, obtained by merging modules M1, . . . ,Mk ∈ C(M ′x) ( Pmax(G[PM? ]).
But then {x, y} ∈ FH[PM? ](t+Mi∈C(M ′

x)Mi →M ′x) ⊆ F ?; contradicting that {x, y} /∈ F ?.
Hence, M ′x ⊆ Mx. Similarly, M ′y ⊆ My for the strong module M ′y of H that contains y
but not x and that is maximal w.r.t. inclusion.

Consider now the strong moduleM? ofH that is identified with the lowest common an-
cestor of the modules {x} and {y} within the cotree of H . Then, there are distinct children
in Pmax(H[M?]), containing x and y, respectively. Since M ′x is the strong module of H
that contains x but not y and that is maximal w.r.t. inclusion, we haveM ′x ∈ Pmax(H[M?]).
Analogously, M ′y ∈ Pmax(H[M?]).

Both, Mx as well as My are modules in H and G. Since F is module-preserving,
either all or none of the edges between Mx and My are edited. Since {x, y} ∈ F we have,
therefore, {x′, y′} ∈ F for all x′ ∈ M ′x ⊆ Mx and y′ ∈ M ′y ⊆ My . Let F ′ := {{x′, y′} |
x′ ∈M ′x, y′ ∈M ′y}. By the latter argument F ′ 6= ∅ and F ′ ⊆ F .

Note, the subgraphs H[M ′x] and H[M ′y] are cographs. Since M? is either a parallel or
a series module in H , we have either (i) H[M ′x ∪M ′y] = H[M ′x]∪· H[M ′y] or (ii) H[M ′x ∪
M ′y] = H[M ′x] ⊕H[M ′y], respectively. Since F ′ comprises the edits {x′, y′} between all
vertices x′ ∈ M ′x and y′ ∈ M ′y , the graph H[M ′x ∪ M ′y] 4 F ′ is in case (i) the graph
H[M ′x] ⊕H[M ′y] and in case (ii) H[M ′x] ∪· H[M ′y]. By definition, in both cases H[M ′x ∪
M ′y] 4 F ′ is a cograph. Note that F ′ did not change the outM ′

x∪M ′
y
-neighborhood and

thus, the graph H[M?] 4 F ′ = G[M?] 4 (F [M?] \ F ′) is a cograph as well. Since
{x, y} ∈ F ′ ∩ F [M?] it holds that |F [M?] \ F ′| < |F [M?]|. But then, F [M?] is not
optimal, and therefore, by Lemma 3.9 the set F is not optimal; a contradiction.

In summary, there exists no edit {x, y} ∈ F with {x, y} /∈ F ?. Hence, F ⊆ F ? and
the statement follows.

From an algorithmic perspective, Theorem 4.7 implies that it is sufficient to correctly
determine the set of strong modules of a resulting cograph H that are no modules of the
given graph G. Afterwards, the module-preserving edit set F is obtained by taking all
the edits needed for the corresponding module merge operations. On the other hand, by
Theorem 4.6 it is ensured that such a closest cograph H that contains all modules of G
always exists.

5 Pairwise module merge and algorithmic issues
So far, we have shown that for an arbitrary graph G = (V,E) there is an optimal module-
preserving edit set F that transformsG into the cographH = (V,E4F ) (cf. Theorem 4.6).
Moreover, this edit set F can be expressed in terms of edits derived by module merge
operations on the strong modules ofH that are no modules ofG (cf. Theorem 4.7). In what
follows, we show that there is an explicit order in which these individual merge operations
can be consecutively applied to G such that all intermediate edit-steps result in graphs that
contain all modules of G, and, moreover, all new strong modules produced in this edit-step
are preserved in any further step. In Section 5.1, we show that an optimal edit set can
always be obtained by a series of “ordered” pairwise merge operations. In Section 5.2, we
show that the latter “order”-condition can even be relaxed and that particular modules can
be pairwisely merged in an arbitrary order to obtain an optimal edited graph.

The next Lemma shows that the number of edits in an optimal edit set F can be ex-
pressed as the sum of individual edits based on the t+-operator to obtain the strong modules
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in a cograph H = G4 F that are no modules in G.

Lemma 5.1. Let G = (V,E) be a graph, F an optimal module-preserving cograph edit-
set, and H = (V,E 4 F ) the resulting cograph. LetM = {M?

1 , . . . ,M
?
n} be the set of

all strong modules of H that are no modules of G and assume that the elements inM are
partially ordered w.r.t. inclusion, i.e., M?

i ⊆M?
j implies i ≤ j.

Let M? ∈ M. We set FM? := {{x, v} ∈ F | x ∈ M?, v ∈ PM? \M?}, that is,
the set FM? ⊆ F comprises all edits in F that are used to obtain the module M? within
G[PM? ].

Furthermore, we set σM?
1

= FM?
1

and σM?
i

= FM?
i
\ (
⋃i−1
j=1 FM?

j
), 2 ≤ i ≤ n. Then

F =

n⋃·
i=1

σM?
i

and, thus, |F | =
n∑
i=1

|σM?
i
| .

Moreover, for each intermediate graph Gj = G 4
(⋃j

i=1 σM?
i

)
and any M?

i ∈ M
with i− 1 ≤ j we have

Gj [M
?
i ] = H[M?

i ] .

In each step j the induced subgraphs Gj [M?
i ] are already cographs for all sets M?

i

with i− 1 ≤ j and hence F [M?
i ] \

⋃j
k=1 σM?

k
= ∅, for all i− 1 ≤ j.

Proof. By Theorem 4.3, for each M? ∈ M there is an inclusion-minimal prime module
PM? inG and a set of children C(M?) ⊆ Pmax(G[PM? ]) such that t+Mi∈C(M?)Mi →M?.
Thus, PM? and C(M?) exists and C(M?) is not empty.

Now, we show that |F | can be expressed by the sum of the size of the edits in σM?
i

To
this end, observe that by Theorem 4.7, F =

⋃
M?∈M

(
FH[PM? ](t+Mi∈C(M?)Mi →M?)

)
.

Thus, F =
⋃
M?∈M FM? . By construction of σM?

i
it holds first that

⋃n
i=1 σM?

i
=⋃n

i=1 FM?
i

and second that σM?
i
∩ σM?

j
= ∅ for all i 6= j. Hence, F =

⋃·ni=1 σM?
i

and thus, |F | =
∑n
i=1 |σM?

i
|.

By construction, M is partially ordered w.r.t. inclusion. We want to show that
Gj [M

?
i ] = H[M?

i ] for all i − 1 ≤ j. To this end, we show that F [M?
i ] \

⋃j
k=1 σM?

k
= ∅,

in which case after each step j there are no more edits left to modify an edge between
vertices within M?

i . We show first that the latter is satisfied for all 1 ≤ i ≤ n and a
fixed j = i − 1. Assume for contradiction that {x, y} ∈ F [M?

i ] \
⋃i−1
k=1 σM?

k
and thus,

x, y ∈ M?
i . Since {x, y} ∈ F =

⋃n
k=1 FM?

k
, there must be a module M?

` ∈ M such
that {x, y} ∈ FM?

`
. By construction, FM?

`
contains only the edits that affect the outM?

`
-

neighborhood. Thus, w.l.o.g. we can assume that x ∈ M?
` and y 6∈ M?

` . Since M?
` and

M?
i are strong modules, they do not overlap, and therefore, M?

` ( M?
i . However, since

M is partially ordered, we can conclude that ` < i and therefore, {x, y} ∈
⋃i−1
k=1 σM?

k
.

Hence, {x, y} /∈ F [M?
i ] \

⋃i−1
k=1 σM?

k
; a contradiction. Thus, F [M?

i ] \
⋃i−1
k=1 σM?

k
= ∅ for

all 1 ≤ i ≤ n. But then, clearly F [M?
i ] \

⋃j
k=1 σM?

k
= ∅ holds for any j ≥ i − 1. Thus,

Gj [M
?
i ] = H[M?

i ] for all i− 1 ≤ j.

The following Lemma shows that, given the explicit orderM = {M?
1 , . . . ,M

?
n} from

Lemma 5.1, in which the edits are applied to the graphG, the intermediate graphsGi retain
all modules of G and also all new modules M?

j , j ≤ i.
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Lemma 5.2. Let G = (V,E) be an arbitrary graph, F an optimal module-preserving
cograph edit set, and H = (V,E 4 F ) the resulting cograph. Moreover, let M =
{M?

1 , . . . ,M
?
n} be the partially ordered (w.r.t. inclusion) set of all strong modules of H

that are no modules of G0 := G, and choose σM?
i

, FM?
i

and the intermediate graphs Gi,
1 ≤ i ≤ n as in Lemma 5.1.

Then, any module M ′ of G is a module of Gi and the set M?
j is a module of Gi for

1 ≤ i ≤ n and any j ≤ i.

Proof. First note that σM?
i

affects only modules that are entirely contained in PM?
i

and
only their out-neighbors within PM?

i
. Moreover M?

j ⊆M?
i implies that PM?

j
⊆ PM?

i
. The

partial ordering of the elements inM implies that PM?
i

remains a module in Gi.
Before we prove the main statement, we show first that the following statement is sat-

isfied:

Claim 1. For every M ′ with M?
i ( M ′ ( PM?

i
we have M ′ 6= M?

j ∈ M, j ≤ i and M ′

cannot be a module of G.

Proof of Claim 1. Let M ′ be an arbitrary set with M?
i ( M ′ ( PM?

i
. By the partial order

of the elements inM we immediately observe that M ′ 6= M?
j ∈ M for any j ≤ i. Now

assume for contradiction that M ′ is a module of G. Note, all elements in Pmax(G[PM?
i
])

are strong modules of G, and thus, do not overlap the module M ′. Moreover, since PM?
i

is prime in G, we can apply Theorem 3.3(T2) and conclude that the union of elements of
any proper subset P′ ( Pmax(G[PM?

i
]) with |P′ | > 1 is not a module of G. Taken the

latter arguments together and because M ′ ( PM?
i

, we have M ′ ⊆ M` ∈ Pmax(G[PM?
i
])

for some `. Hence, M?
i ( M ′ ⊆ M`. However, since M?

i is the union of some children
P′ ⊆ Pmax(G[PM?

i
]) of PM?

i
it follows that M` ⊆ M?

i ; a contradiction. This proves
Claim 1. /

We continue with proving the main statement by induction over i. Since G0 = G, the
statement is satisfied for G0. We continue to show that the statement is satisfied for Gi+1

under the assumption that it is satisfied for Gi.
For further reference, we note that PM?

i+1
is a module of Gi, since PM?

i+1
is a module

of G and by induction assumption. Moreover, PM?
i+1

remains a module of Gi+1, since
Gi+1 = Gi4 σM?

i+1
and σM?

i+1
does not affect the outPM?

i+1
-neighborhood. Furthermore,

M?
i+1 is a module ofH and thus, ofH[PM?

i+1
]. Since σM?

i+1
contains all such edits to adjust

M?
i+1 to a module in H[PM?

i+1
], we can conclude that M?

i+1 is a module in Gi+1[PM?
i+1

].
Therefore, Lemma 3.1 implies that M?

i+1 is a module of Gi+1.
Now, let M ′ be an arbitrary module of G. We proceed to show that M ′ is a module

of Gi+1. By induction assumption, each module M ′ of G is a module of Gi. Since F is
module-preserving,M ′ is also a module ofH . Hence,M ′ ∈ MD(G)∩MD(Gi)∩MD(H).
Moreover, by Claim 1 the case M?

i+1 ( M ′ ( PM?
i+1

cannot occur for any module M ′

of G.
Note, the module M ′ cannot overlap PM?

i+1
, since PM?

i+1
is strong in G. Hence, for

M ′ one of the following three cases can occur: either PM?
i+1
⊆ M ′, PM?

i+1
∩M ′ = ∅,

or M ′ ( PM?
i+1

. In the first two cases, M ′ remains a module of Gi+1, since σM?
i+1

contains only edits between vertices within PM?
i+1

, and thus, the outM ′-neighborhood is
not affected. Therefore, assume that M ′ ( PM?

i+1
. The module M ′ cannot overlap M?

i+1,
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since M?
i+1 is strong in H . As shown above, the case M?

i+1 (M ′ ( PM?
i+1

cannot occur,
and thus we have either (1) M ′ ⊆M?

i+1, or (2) M?
i+1 ∩M ′ = ∅.

Case (1): Since σM?
i+1

affects only the outM?
i+1

-neighborhood, there is no edit between
vertices in M ′ and M?

i+1 \M ′ and, moreover, Gi+1[M?
i+1] = Gi[M

?
i+1]. By as-

sumption, M ′ is a module of Gi. Thus, M ′ is a module in any induced subgraph of
Gi that contains M ′ and hence, in particular in Gi[M?

i+1]. Hence, M ′ is a module of
Gi+1[M?

i+1]. Now, we can apply Lemma 3.1 and conclude that M ′ is also a module
of Gi+1.

Case (2): Assume for contradiction that M ′ is no module of Gi+1. Thus, there must be
an edge xy ∈ E(Gi+1), x ∈ M ′, y ∈ V \ M ′ such that for some other vertex
x′ ∈ M ′ we have x′y /∈ E(Gi+1). Since M ′ is a module of Gi it must hold that
{x, y} ∈ σM?

i+1
or {x′, y} ∈ σM?

i+1
. Since x, x′ /∈ M?

i+1 and each edit in σM?
i+1

affects a vertex within M?
i+1, we can conclude that y ∈M?

i+1. Now, by construction
of FM?

i+1
and since M ′ ( PM?

i+1
, all edits between vertices of M?

i+1 and M ′ are
entirely contained in FM?

i+1
. But this implies that none of the sets σM?

`
with ` > i+1

contains {x, y} or {x′, y}. Hence, it holds that xy ∈ E(H) and x′y /∈ E(H), which
implies that M ′ is no module of H; a contradiction.

Therefore, each module M ′ of G is a module of Gi+1.
We proceed to show that M?

j ∈ M is a module of Gi+1 for all j ≤ i+ 1. As we have
already shown this for j = i + 1, we proceed with j < i + 1. By induction assumption,
each module M?

j is a module of Gi for all j < i+ 1. Note, the module M?
j cannot overlap

PM?
i+1

, since M?
j is strong in H and PM?

i+1
is a module of H , because F is module-

preserving. Hence, for M?
j one of the following three cases can occur: either PM?

i+1
⊆

M?
j , PM?

i+1
∩M?

j = ∅, or M?
j ( PM?

i+1
. In the first two cases, M?

j remains a module
of Gi+1, since σM?

i+1
contains only edits between vertices within PM?

i+1
, and thus, the

outM?
j

-neighborhood is not affected. Therefore, assume that M?
j ( PM?

i+1
. The module

M?
j cannot overlap M?

i+1, since both are strong in H . Due to the partial ordering of the
elements inM, the case M?

i+1 ( M?
j cannot occur. Hence there are two cases, either (A)

M?
j ⊆M?

i+1, or (B) M?
i+1 ∩M?

j = ∅.
Case (A): Since σM?

i+1
affects only the outM?

i+1
-neighborhood, there is no edit between

vertices in M?
j and M?

i+1 \M?
j . By analogous arguments as in Case (1), we can

conclude that M?
j remains a module of Gi+1[M?

i+1]. Lemma 3.1 implies that M?
j is

also a module of Gi+1.

Case (B): Assume for contradiction that M?
j is no module of Gi+1. Thus, there must be

an edge xy ∈ E(Gi+1), x ∈ M?
j , y ∈ V \ M?

j such that for some other vertex
x′ ∈ M?

j we have x′y /∈ E(Gi+1). Since M?
j is a module of Gi it must hold that

{x, y} ∈ σM?
i+1

or {x′, y} ∈ σM?
i+1

. Now, we can argue analogously as in Case (2)
and conclude that xy ∈ E(H) and x′y /∈ E(H), which implies thatM?

j is no module
of H; a contradiction.

Therefore, each module M?
j , j ≤ i+ 1 is a module of Gi+1.

The latter two Lemmata show that there exists an explicit order, in which all new mod-
ules M?

i of H can be constructed such that whenever a module M?
i is produced step i the

induced subgraph Gi−1[M?
i ] is already a cograph and, moreover, is not edited any further

in subsequent steps.
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5.1 Pairwise module-merge

Regarding Lemma 5.1, each moduleM?
i is created by applying the remaining edits σM?

i
⊆

FM?
i

of the module merge t+M ′∈C(M?
i )M

′ →M?
i to the previous intermediate graphGi−1.

Now, there might be linear many modules in C(M?
i ) which have to be merged at once to

create M?
i . However, from an algorithmic point of view the module M?

i is not known in
advance. Hence, in each step, for a given prime moduleM ofG an editing algorithm has to
choose one of the exponentially many sets from the power set P(PmaxG[M ]) to determine
which new module M?

i have to be created. For an algorithmic approach, however, it would
be more convenient to only merge modules in a pairwise manner, since then only quadratic
many combinations of choosing two elements of PmaxG[M ] have to be considered in each
step.

The aim of this section is to show that for each of the n steps of creating one of the new
strong modules M = {M?

1 , . . . ,M
?
n} of H it is possible to replace the merge operation

t+M ′∈C(M?
i )M

′ →M?
i with a series of pairwise merge operations.

Before we can state this result we have to define the following partition of strong mod-
ules of a resulting cograph H that are no modules of a given graph G.

Definition 5.3. Let G = (V,E) be an arbitrary graph, F a module-preserving cograph
edit set, and H = (V,E 4 F ) the resulting cograph. Moreover, let M? ∈ M be a
strong module of H that is no module of G and consider the partitions Pmax(H[M?]) =

{M̃1, . . . , M̃k} and C(M?) = {M̂1, . . . , M̂l}. We define with X (M?) = {M0, . . . ,Mn}
the set of modules that contains the maximal (w.r.t. inclusion) modules of Pmax(H[M?

i ])∪
C(M?

i ) as follows

X (M?) := {M̃i ∈ Pmax(H[M?]) | ∃M̂j ∈ C(M?) s.t. M̂j ⊆ M̃i}

∪ {M̂j ∈ C(M?) | ∃M̃i ∈ Pmax(H[M?]) s.t. M̃i ⊆ M̂j}.

Note that for technical reasons the index of the elements in X starts with 0.
Furthermore, assume thatM = {M?

1 , . . . ,M
?
n} is a partially ordered (w.r.t. inclusion)

set of all strong modules of H that are no modules of G. For each M?
i ∈M let X (M?

i ) =

{Mi,0, . . . ,Mi,li} and set M?
i (j) =

⋃j
k=0Mi,k for all 1 ≤ i ≤ n and 1 ≤ j ≤ li. Then,

we denote with
N (M) = {N?

1 = M?
1 (1), . . . , N?

m = M?
n(ln)}

the set of all such M?
i (j). In particular, we assume that N (M) is ordered as follows: if

N?
k = M?

i (j) and N?
l = M?

i′(j
′), then k < l if and only if either i < i′, or i = i′ and

j < j′, i.e., withinN (M) the elements M?
i (j) are ordered first w.r.t. i, and second w.r.t. j.

Although, we have already shown by Theorem 4.5 that any new strong module M? ∈
M ofH can be obtained by merging the modules from C(M?), we will see in the following
that M? can also be obtained by merging the modules form X (M?). In particular, we will
see that if all elements in X (M?) are already modules of the intermediate graph G?, then
we can use any order of the elements within X (M?) and successively merge them in a
pairwise manner to construct M?. As a consequence of doing pairwise module merges we
obtain in each step an intermediate module N? ∈ N (M).

To see the intention to use the partition X (M?) instead of C(M?) observe the follow-
ing. Due to the order of the elements in M, the modules M?

1 , . . . ,M
?
n are constructed
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from bottom to top, i.e., when module M? is processed then all child modules from
Pmax(H[M?]) are already constructed. So, instead of obtaining M? by merging C(M?)
we can indeed obtain M? also by merging Pmax(H[M?]). However, it might be the case
that a non-trivial subset

⋃
i∈I M̃i = M̂j for some j, e.g., if M̂j is a (strong) prime module

ofG but not a strong module ofH . But also in this case, we have to assure that M̂j remains
a module of H . In particular, we do not want to destroy M̂j by merging the elements from
Pmax(H[M?]) in the incorrect order. Thus, we choose M̂j ∈ X (M?) and do not include
the individual M̃i, i ∈ I into X (M?).

Before we can continue, we have to show that X (M?) as given in Definition 5.3 is
indeed a partition of M?.

Proposition 5.4. Let G = (V,E) be an arbitrary graph, F a module-preserving cograph
edit set, and H = (V,E4F ) the resulting cograph. Moreover, let M? be a strong module
of H that is no module of G and consider the partitions Pmax(H[M?]) = {M̃1, . . . , M̃k}
and C(M?) = {M̂1, . . . , M̂l}. Then X (M?) is a partition of M?. As a consequence, for
each M ∈ X (M?) there are index sets I ⊆ {1, . . . , k} and J ⊆ {1, . . . , l} such that
M =

⋃
i∈I M̃i and M =

⋃
j∈J M̂j .

Proof. First note that all M̃i ∈ Pmax(H[M?]) are strong modules of H . Moreover, all
M̂j ∈ C(M?) are strong modules of G. Since F is module-preserving it follows that none
of the elements M̃i ∈ Pmax(H[M?]) overlap any M̂j ∈ C(M?), and vice versa. Hence, for
each M̃i ∈ Pmax(H[M?]) there are three distinct cases: Either M̃i ⊆ M̂j , or M̂j ( M̃i, or
M̃i∩M̂j = ∅ for all M̂j ∈ C(M?). Now, since Pmax(H[M?]) and C(M?) are partitions of
M? it follows for each x ∈M? that x is contained in exactly one M̃i ∈ Pmax(H[M?]) and
exactly one M̂j ∈ C(M?) and either M̃i ⊆ M̂j or M̂j ( M̃i. By construction of X (M?)

then either M̃i = M̂j ∈ X (M?); or M̃i ∈ X (M?) and M̂j 6∈ X (M?); or M̃i 6∈ X (M?)

and M̂j ∈ X (M?). Thus, X (M?) is a partition of M?.

Using the partitions X (M?),M? ∈ M we now show that there is a sequence of pair-
wise module merge operations that construct the intermediate modulesN?

j ∈ N (M) while
keeping all modules from G as well as all previous modules N?

i , i < j.

Lemma 5.5. Let G = (V,E) be an arbitrary graph, F an optimal module-preserving
cograph edit set, H = (V,E4 F ) the resulting cograph andM = {M?

1 , . . . ,M
?
n} be the

partially ordered (w.r.t. inclusion) set of all strong modules of H that are no modules of G.
For each M?

i ∈ M let X (M?
i ) = {Mi,0, . . . ,Mi,li} and assume that N := N (M) =

{N?
1 , . . . , N

?
m}. Note, each N?

l coincides with some M?
i (j) =

⋃j
k=0Mi,k. We define

FM?
i (j) ⊆ F as the set

FM?
i (j) := {{x, v} ∈ F | x ∈M?

i (j), v ∈ PM?
i
\M?

i (j)}.

Furthermore, set G′0 = G and for each 1 ≤ l ≤ m define G′l = G′l−1 4 θl with

θl =

{
∅, if N?

l is a module of G′l−1

FN?
l
\
⋃l−1
k=1 θk, otherwise.
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If N?
l is no module of G′l−1, then θl contains exactly those edits that affect the out-neigh-

borhood of N?
l = M?

i (j) within G[PM?
i
] that have not been used so far.

The following statements are true for the intermediate graphs G′l, 1 ≤ l ≤ m:

1. Any set N?
k is a module of G′l for all k ≤ l.

2. Any module M ′ of G is a module of G′l, i.e.,
⋃l
k=1 θk is module-preserving.

3. Either G′l−1 ' G′l, or there are two modules M1,M2 ∈ G′l−1 such that M1t+M2 →
N?
l is a pairwise module merge w.r.t. G′l.

Proof. Before we start to prove the statements, we will first show

Claim 1. For each 1 ≤ l ≤ m it holds that N?
l is a module of H .

Proof of Claim 1. By construction N?
l = M?

i (j) =
⋃j
k=0Mi,k for some 1 ≤ i ≤ n

and 1 ≤ j ≤ li with Mi,k ∈ X (M?
i ). Moreover, for each Mi,k it holds either that

Mi,k ∈ PmaxH[M?
i ] or Mi,k is a union of elements in PmaxH[M?

i ]. Therefore, N?
l

is a union of elements in PmaxH[M?
i ]. Since M?

i is a strong non-prime module of H ,
Theorem 3.3(T3) implies that each union of elements in PmaxH[M?

i ] is a module of H
and therefore, N?

l is a module of H , which proves Claim 1. /

We proceed to prove Statements 1 and 2 for each intermediate graph G′l by induction
over l. Since G′0 = G, the Statements 1 and 2 are satisfied for G′0. We continue to show
that Statements 1 and 2 are satisfied for G′l+1 under the assumption that they are satisfied
for Gl.

We start to prove Statement 1. First assume that N?
l+1 is already a module of G′l. Then,

by construction it holds that θl+1 = ∅ and therefore, G′l = G′l+1. Now, by induction
assumption, it holds that all modules of G and all modules N?

k ∈ N , k ≤ l are modules of
G′l = G′l+1. Hence, all modules N?

k ∈ N , k ≤ l + 1 are modules of G′l+1. Hence, if N?
l+1

is already a module of G′l, then Statement 1 is satisfied for G′l+1.
Now assume that N?

l+1 is not a module of G′l. For the proof of Statement 1, we show
first

Claim 2. N?
l+1 is a module of G′l+1.

Proof of Claim 2. By construction it holds that N?
l+1 = M?

i (j) for some 1 ≤ i ≤ n and
1 ≤ j ≤ li. Note that PM?

i
is a module of G and therefore, by induction assumption

it is a module of G′l. Since θl+1 ⊆ FM?
i (j) did only affect the outM?

i (j)-neighborhood
within the prime module PM?

i
of G it follows that PM?

i
is a module of G′l+1. Moreover,

it holds that FM?
i (j) ⊆

⋃l+1
k=1 θk. Note that FM?

i (j) contains all those edits that affect the
outM?

i (j)-neighborhood within the prime module PM?
i

ofG. Hence, for all x ∈M?
i (j) and

all y ∈ PM?
i
\M?

i (j) it holds that xy ∈ E(H) if and only if xy ∈ E(G′l+1). The latter
arguments then imply that M?

i (j) is a module of G′l+1 and therefore, N?
l+1 is a module of

G′l+1. This proves Claim 2. /

Now, we proceed with showing

Claim 3. N?
k , k ≤ l is a module of G′l+1.
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Proof of Claim 3. Let N?
k = M?

i′(j
′) and N?

l+1 = M?
i (j). By induction assumption it

holds that N?
k is a module of G′l. By the ordering of elements in N it holds that i′ ≤ i and

by the ordering of elements inM it then follows that PM?
i′
⊆ PM?

i
or PM?

i′
∩ PM?

i
= ∅.

If PM?
i′
∩PM?

i
= ∅ then N?

k is not affected by the edits in θl+1 since they are all within
PM?

i
and thus, N?

k remains a module of G′l+1.
Now consider the case PM?

i′
⊆ PM?

i
. For later reference, we show

Claim 3’. N?
k ⊆ N?

l+1 or N?
k ∩N?

l+1 = ∅.

Proof of Claim 3’. If i′ = i, then j′ < j and by construction, M?
i′(j
′) ⊆ M?

i (j) which
implies that N?

k ⊆ N?
l+1. Assume now that i′ < i and thus, N?

k = M?
i′(j
′) ⊆ M?

i′ .
Since M?

i and M?
i′ are strong modules of H they cannot overlap. Therefore, and due

to the ordering of the elements in M it follows that either M?
i′ ⊂ M?

i or M?
i′ ∩M?

i =
∅. If M?

i′ ∩ M?
i = ∅, then N?

k ∩ N?
l+1 = ∅. If M?

i′ ⊂ M?
i , then there is a module

M ′ ∈ Pmax(H[M?
i ]) such that M?

i′ ∈ M ′, since M?
i and M?

i′ are strong modules of
H . Furthermore, the set M?

i (j) is a union of elements in X (M?
i ) and for each Mi,h ∈

X (M?
i ) it holds that either Mi,h ∈ Pmax(H[M?

i ]) or Mi,h is the union of elements in
Pmax(H[M?

i ]). Hence, it follows that either M ′ ⊆ M?
i (j) or M ′ ∩ M?

i (j) = ∅. If
M ′ ∩M?

i (j) = ∅, then M?
i′(j
′) ∩M?

i (j) = ∅ and hence, N?
k ∩N?

l+1 = ∅. If, on the other
hand, M ′ ⊆ M?

i (j), then M?
i′(j
′) ⊆ M?

i (j) and thus, N?
k ⊆ N?

l+1. Therefore, in all cases
we have either N?

k ⊆ N?
l+1 or N?

k ∩N?
l+1 = ∅, which proves Claim 3’. �

By Claim 3’, we are left with the following two cases.

Case N?
k ⊆ N?

l+1. Since θl+1 did not effect edges within N?
l+1 it holds that G′l[N

?
l+1] '

G′l+1[N?
l+1]. By induction assumption, N?

k is a module of G′l and hence, of
G′l[N

?
l+1] = G′l[M

?
i (j)]. Thus, N?

k is a module of G′l+1[M?
i (j)]. Now, since N?

l+1

is a module of G′l+1 and by Lemma 3.1 it follows that N?
k is a module of G′l+1.

Case N?
k ∩N?

l+1 = ∅. Recall that N?
k = M?

i′(j
′) and N?

l+1 = M?
i (j) by the fact that

i′ ≤ i. Moreover, as shown in the proof of Claim 2, we have FM?
i (j) ⊆

⋃l+1
k=1 θk.

Therefore, for all x ∈ M?
i (j) and all y ∈ M?

i′(j
′) it holds that xy ∈ E(H) if and

only if xy ∈ E(G′l+1). Now let y, y′ ∈ M?
i′(j
′) and x 6∈ \M?

i′(j
′). Since M?

i′(j
′)

is a module of H , xy as well as xy′ are either both edges H or both are non-edges
in H .

If x ∈M?
i (j), then there are no further edits F \FM?

i (j) that may affect any of these
edges, sinceFM?

i (j) ⊆
⋃l+1
k=1 θk. Thus, xy ∈ E(G′l+1) if and only if xy′ ∈ E(G′l+1).

If x 6∈ M?
i (j), then xy as well as xy′ are not affected by θl+1. Hence, xy′ ∈

E(G′l+1) if and only if xy′ ∈ E(G′l). By induction assumption, M?
i′(j
′) is a module

of G′l and hence, xy ∈ E(G′l) if and only if xy′ ∈ E(G′l) and therefore, xy ∈
E(G′l+1) if and only if xy′ ∈ E(G′l+1). Hence, N?

k = M?
i′(j
′) is a module of G′l+1,

which proves Claim 3. /

By Claim 1, 2 and 3, Statement 1 is satisfied for G′l+1. We continue to prove State-
ment 2 and assume that M ′ is a module of G and by induction assumption M ′ is a module
of G′l.

Again, let N?
l+1 = M?

i (j) and consider the module PM?
i

of G. Since PM?
i

is strong in
G, it cannot overlap M ′. Thus, either M ′ ∩ PM?

i
= ∅, or PM?

i
⊆M ′, or M ′ ⊂ PM?

i
.
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If M ′ ∩ PM?
i

= ∅ or PM?
i
⊆M ′ then M ′ is not affected by the edits in θl+1 since they

are all within PM?
i

and thus, M ′ remains a module of G′l+1.
Hence, we only have to consider the case M ′ ⊂ PM?

i
. We show

Claim 4. Either M ′ ⊆ N?
l+1 or M ′ ∩N?

l+1 = ∅.

Proof of Claim 4. Note again, that the set M?
i (j) is a union of elements in X (M?

i ) and
for each Mi,h ∈ X (M?

i ) it holds that either Mi,h ∈ Pmax(G[PM?
i
]) or Mi,h is the union

of elements in Pmax(G[PM?
i
]). Hence, M?

i (j) is a union of elements in Pmax(G[PM?
i
]).

Theorem 3.3(T2) implies that no union of elements in Pmax(G[PM?
i
]) of the prime module

PM?
i

is a module of G and thus, M?
i (j) cannot be a proper subset of M ′. Therefore, either

M ′ ⊆M?
i (j) orM ′∩M?

i (j) = ∅ orM ′ andM?
i (j) overlap. However, the latter case can-

not occur, since then M ′ would either overlap one of the strong modules in Pmax(G[PM?
i
])

or be a union of elements in Pmax(G[PM?
i
]). Thus, in all cases either M ′ ⊆ N?

l+1 or
M ′ ∩N?

l+1 = ∅, which proves Claim 4. /

Now the same argumentation that was used to show Statement 1 can be used to show
Statement 2. Thus, Statement 2 is satisfied for G′l+1.

Finally, we prove Statement 3. To this end, assume that G′l 6' G′l+1 and that N?
l+1 is

no module of G′l. We show that there are modules M1,M2 ∈ G′l with M1 t+ M2 → N?
l+1

being a pairwise module merge w.r.t. G′l+1. Clearly, Items (ii) and (iii) of Definition 4.1
are satisfied, since N?

l+1 is a module of G′l+1 but no module of G′l. It remains to show that
there are two modules M1,M2 ∈ G′l with M1 ∪M2 = N?

l+1 and M1,M2 ∈ G′l+1, i.e.,
Item (i) of Definition 4.1 is satisfied. Note, N?

l+1 = M?
i (j) for some i and j ≥ 1. Assume

first that j = 1. Then, M?
i (1) = Mi,0 ∪Mi,1 with Mi,0,Mi,1 ∈ X (M?

i ). For each Mi,h

it holds that Mi,h ∈ Pmax(H[PM?
i
]) or Mi,h ∈ Pmax(G[PM?

i
]). If Mi,h ∈ Pmax(G[PM?

i
])

then Mi,h is a module of G and by Statement 2, a module of G′l and G′l+1. If Mi,h is no
module of G, then Mi,h ∈ Pmax(H[PM?

i
]) is a new strong module of H . Therefore, there

exists a k < i such that Mi,h = M?
k . Since M?

k = M?
k (lk) and by the ordering of elements

in N it holds that M?
k (lk) = N?

k′ for some k′ ≤ l. Thus, by Statement 1, all Mi,h and
therefore, Mi,0 and Mi,1 are modules of G′l and G′l+1.

Now, assume that N?
l+1 = M?

i (j) with j > 1. Then, M?
i (j) = M?

i (j − 1) ∪Mi,j . By
the same argumentation as before, it holds thatMi,j is a module ofG′l andG′l+1. Moreover,
by Statement 1, M?

i (j − 1) = N?
l is a module of G′l and G′l+1.

Thus, there are modules M1,M2 of G′l and G′l+1 with M1 ∪M2 = N?
l+1. Moreover,

since for all {x, y} ∈ θl+1 it holds that either x ∈ N?
l+1 and y ∈ PM?

i
\ N?

l+1, or vice
versa, it follows that there are no additional edits contained in θl+1 besides the edits of the
module merge M1 t+ M2 → N?

l+1 that transforms G′l into G′l+1.

We are now in the position to derive the main result of this section that shows that
optimal pairwise module-merge is always possible.

Theorem 5.6 (Pairwise Module-Merge). For an arbitrary graph G = (V,E) and an op-
timal module-preserving cograph edit set F with H = (V,E 4 F ) being the resulting
cograph there exists a sequence of pairwise module merge operations that transforms G
into H .

Proof. Set M = {M?
1 , . . . ,M

?
n}, N = {N?

1 , . . . , N
?
m}, X (M?

i ) = {Mi,0, . . . ,Mi,li},
as well as θk and G′k for all 1 ≤ k ≤ m as in Lemma 5.5. Again, we set G0 := G
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and H ′ := Gm. By Lemma 5.5 for each 1 ≤ k ≤ m there is a pairwise module merge
M1 t+ M2 → N?

k that transforms Gk−1 to Gk. Thus, there exists a sequence of module
merge operations that transforms G to some graph H ′.

In what follows, we will show that
⋃·mk=1 θk = F and therefore H ′ ' H , from which

we can conclude the statement. For simplicity, we put F ′ :=
⋃m
k=1 θk.

We start with showing

Claim 1. F ′ ⊆ F .

Proof of Claim 1. Note first that by construction it holds that θk ∩ θl = ∅ for all k 6= l and
therefore, F ′ =

⋃m
k=1 θk =

⋃·mk=1 θk. By construction of θ it holds that θk ⊆ F for all
1 ≤ k ≤ m. Hence, F ′ ⊆ F . /

Before we show that F = F ′, we will prove

Claim 2. All strong modules of H are modules of H ′.

Proof of Claim 2. Lemma 5.5(1) implies that all modules M ′ of G are modules of H ′.
Moreover, Lemma 5.5(2) implies that all N?

k ∈ N are modules of H ′. Since for all M?
i ∈

M it holds that M?
i = M?

i (li) = N?
k for some 1 ≤ k ≤ m, the set M?

i is a module of
H ′. Since each strong module of H is either a module of G or a new module M?

i ∈ M,
all strong modules of H are modules of H ′. /

We continue to show

Claim 3. F ′ ( F is not possible.

Proof of Claim 3. By Claim 1, F ′ ⊆ F . Thus assume for contradiction that F ′ 6= F . Since
F is an optimal edit set and F ′ ( F it follows that H ′ is not a cograph. Thus, there exist a
prime module M in H ′ that contains no other prime module.

We will now show that M is a module of H and that all Mi ∈ Pmax(H[M ]) are
modules of H ′. Therefore, consider the strong module PM of H that entirely contains M
and that is minimal w.r.t. inclusion. Since PM is strong inH it is, by Claim 2, also a module
of H ′. Moreover, each module Mi ∈ Pmax(H[PM ]) is strong in H and, again by Claim 2,
a module of H ′ as well. If PM = M , then M is a module of H and we are done. Assume
now thatM ( PM . Note that sinceM and allMi ∈ Pmax(H[PM ]) are modules ofH ′ and
M is strong in H ′ it holds that M does not overlap any Mi ∈ Pmax(H[PM ]). Moreover,
M 6⊆Mi since otherwiseMi would have been chosen instead of PM . Thus,M =

⋃
i∈IMi

is the union of some elements Mi in Pmax(H[PM ]). Since PM is a non-prime module of
H it follows by Theorem 3.3(T3) that M is a module of H . Since H is a cograph, the
children Mi ∈ Pmax(H[PM ]) of the non-prime module PM are the connected components
of either H[PM ] (if PM is parallel) or its complement H[PM ] (if PM is series). Since
M =

⋃
i∈IMi is the union of some elements in Pmax(H[PM ]) and H[M ] ⊆ H[PM ], we

can conclude that H[M ], resp., its complement H[M ], has as its connected components
Mi, i ∈ I . Thus, Pmax(H[M ]) ⊂ Pmax(H[PM ]). Hence, all Mi, i ∈ I are strong modules
in H and, by the discussion above, all Mi are modules of H ′.

Since all Mi ∈ Pmax(H[M ]) are modules of H ′ and all M ′j ∈ Pmax(H ′[M ]) are
strong in H ′, it holds that no Mi ∈ Pmax(H[M ]) can overlap any M ′j ∈ Pmax(H ′[M ]).
Therefore, if Mi ∩ M ′j 6= ∅ then either M ′j ( Mi or Mi ⊆ M ′j for any i and j. If
M ′j ( Mi then Mi must be the union of some elements in Pmax(H ′[M ]). However, since
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M is prime in H ′ no union of elements in Pmax(H ′[M ]), besides M itself, is a module of
H ′ (cf. Theorem 3.3(T2)). Thus, Mi cannot be a module of H ′; a contradiction. Hence,
Mi ⊆M ′j and therefore, eachM ′j is the union of some elements in Pmax(H[M ]). Note that
this holds for any M ′j ∈ Pmax(H ′[M ]), i.e., there are distinct sets I1, . . . , I| Pmax(H′[M ])|
with Ij ( {1, . . . , |Pmax(H[M ])|} such that M ′j =

⋃
i∈Ij Mi. Hence, all M ′j are modules

of H .
Since, M is prime in H ′ and M did not contain any other prime module, it holds that

all H ′[M ′j ] are cographs. Moreover, since all M ′j are modules in H and M is prime in H ′

it holds that there are at least two distinct M ′k,M
′
l ∈ Pmax(H ′[M ]) with xy ∈ E(H ′) if

and only if xy 6∈ E(H). Thus, F ′′ = {{x, y} | x ∈ M ′k, y ∈ M ′l} ⊆ F . Now, since all
H ′[M ′j ] are cographs it holds that H ′[M ′k ∪M ′l ] is a cograph.

Now, consider the graph H ′′ = G4 F \ F ′′, and in particular the subgraph H ′′[M ] =
G[M ] 4 F [M ] \ F ′′. Again, since all H ′[M ′j ] with M ′j ∈ Pmax(H ′[M ]) are cographs
it holds that H[M ′j ] ' H ′[M ′j ] ' H ′′[M ′j ]. By construction of F ′′ for the previously
chosen M ′k and M ′l it holds that H ′[M ′k ∪M ′l ] ' H ′′[M ′k ∪M ′l ] as well as H[M \ (M ′k ∪
M ′l )] ' H ′′[M \ (M ′k ∪M ′l )] is a cograph. Moreover, since for all x ∈ M ′k ∪M ′l and
all y ∈ M \ (M ′k ∪ M ′l ) we have xy ∈ E(H) if and only if xy ∈ E(H ′′) it holds
that H ′′[M ] is a cograph as well. Note that F ′′ ⊆ F [M ] and F ′′ 6= ∅ and therefore,
|F [M ] \ F ′′| < |F [M ]|. But then, since F [M ] \ F ′′ is an edit set for G[M ] and by
Lemma 3.9 the set F is not optimal; a contradiction. Thus, F ′ cannot be a proper subset of
F , which proves Claim 3. /

Claim 1 and 3 immediately imply that F = F ′. In particular, we have

F ′ =

n⋃·
i=1

li⋃·
j=1

θ′M?
i (j) =

n⋃·
i=1

li⋃·
j=1

θM?
i (j) = F.

It can easily be seen by the latter results that each of the modules inN (M) = {N?
1 , . . . ,

N?
m} that is created by a pairwise module merge is either already a module ofG, or a union

of elements from Pmax(G[M ]) of some prime module M of G.

5.2 A modular-decomposition-based heuristic for cograph editing

Although the (decision version of the) optimal cograph-editing problem is NP-complete
[38, 39], it is fixed-parameter tractable (FPT) [6, 39, 49]. However, the best-known run-
time for an FPT-algorithm isO(4.612k+|V |4.5), where the parameter k denotes the number
of edits. These results are of little use for practical applications, because the parameter k
can become quite large. An exact algorithm that runs in O(3|V ||V |)-time is introduced in
[53]. Moreover, approximation algorithms are described in [16, 46]. In the following we
provide an alternative exact algorithm for the cograph-editing problem based on pairwise
module-merge. The virtue of this algorithm is that it can be adopted very easily to design a
cograph-editing heuristic.

Algorithm 1 contains two points at which the choice of a particular module or
a particular pair of modules affects performance and efficiency. First, the function
get-module-pair() returns two modules of P in the correct order of the sequence
of pairwise module merge operations that transforms G into H (cf. Theorem 5.6). Second,
subroutine get-module-pair-edit() is used to compute the edits needed to merge



26 Art Discrete Appl. Math. 3 (2020) #P2.01

prime M1

0 1 2 3 4 5

1

G

0
3

4

5 2

1

G

0
3

4

5 2
1

1

H

0
3

4

5 2

prime M1

series M2* 0 1 4

2 parallel M1*

3 5

parallel M1

series M2* series M3*

1 2 parallel M1*

3 5

0 4

Figure 3: Illustration of Lemma 5.1 – 5.5, Theorem 5.6 and the exact algorithm. Consider
the non-cograph G, the cograph H = G4 F and the optimal module-preserving edit set
F = {{0, 1}, {3, 4}}. The modular decomposition trees are depicted below the respective
graphs.
LetM = {M?

1 ,M
?
2 ,M

?
3 } be the inclusion-ordered set of strong modules of H that are no

modules of G. For all modules M?
i ∈ M the inclusion-minimal module PM?

i
is the prime

module M1 in G.
In compliance with Lemma 5.2 we start with constructing the module M?

1 . By definition
FM?

1
= {{3, 4}} = σM?

1
. and we obtainG1 = G4σM?

1
. Thus, {3}t+{5} →M?

1 w.r.t.G1.
Next, we continue with M?

2 . By construction, FM?
2

= {{0, 1}, {3, 4}} and σM?
2

= FM?
2
\

FM?
1

= {{0, 1}}. We then obtain G2 = G1 4 σM?
2

= H . Thus, t+Mi∈C(M?
2 )Mi → M?

2

w.r.t. G2 = H . The module M?
3 is now obtained for free, since FM?

3
= {{0, 1}, {3, 4}}

and σM?
3

= FM?
3
\ (FM?

1
∪ FM?

2
) = ∅.

In compliance with Lemma 5.5, i.e., when considering pairwise module merge only, we
start with constructing the module M?

1 (1). Here, X (M?
1 ) = {M0 = {3},M1 = {5}}

and M?
1 (1) = {3, 5} = M?

1 . By definition, FM?
1 (1) = {{3, 4}} = θM?

1 (1) and we obtain
G1,1 = G1 = G 4 θM?

1 (1). Thus, {3} t+ {5} → M?
1 w.r.t. G1,1 = G1. Next, we

continue with M?
2 (1) and M?

2 (2). Here, X (M?
2 ) = {M0 = {1},M1 = {2},M2 = M?

1 }
and M?

2 (1) = {1} ∪ {2} and M?
2 (2) = {1, 2, 3, 5} = M?

2 . By definition θM?
2 (1) =

FM?
2 (1) \ FM?

1 (1) = {{0, 1}} comprises the edits to obtain the new module {1, 2}. Thus,
{1}t+ {2} →M?

2 (1) w.r.t.G2,1. Then, since FM?
2 (2) = FM?

2
= {{0, 1}, {3, 4}}, we obtain

θM?
2 (2) = FM?

2 (2) \ (FM?
1
∪ θM?

2 (1) = ∅. Thus, there are no edits left to apply in order to
derive at H , since G2,1 = G2,2 = G2 = H . Again, the module M?

3 is now obtained for
free. In all steps, we obtained the new modules by merging pairs of existing modules.



A. Fritz, M. Hellmuth, P. F. Stadler and N. Wieseke: Cograph editing by module-merging 27

Algorithm 1 Pairwise Module Merge
1: INPUT: A graph G = (V,E).
2: G? ← G;
3: F ? ← ∅;
4: MDs(G)← compute-modular-decomposition(G).
5: P1, . . . , Pm be the prime modules of G that are partially ordered w.r.t. inclusion, i.e., Pi ⊆ Pj implies

i ≤ j.
6: for p = 1, . . . ,m do
7: Pp ← Pmax(G[Pp])
8: while G?[Pp] is not a cograph do
9: Mi,Mj ←get-module-pair(Pp). {according to Theorem 5.6}

10: if Mi ∪Mj is no module of G? then
11: θ ← get-module-pair-edit(Mi t+ Mj → N w.r.t. G[Pp]) {according to θl in

Lemma 5.5}
12: G? ← G?∆ θ
13: end if
14: Pp ← Pp \ {Mi,Mj} ∪ {N}
15: end while
16: end for
17: OUTPUT: H = G?;

the modules Mi and Mj to a new module such that these edits affect only the vertices
within Pp (cf. Lemma 5.5).

Lemma 5.7. Let P(G) be the set of all strong prime modules of G and suppose that Algo-
rithm 1 is applied on the graphGwith n = |V (G)|. If get-module-pair() is an “ora-
cle” that always returns the correct pair Mi and Mj and get-module-pair-edit()
returns the correct edit set θ, then Algorithm 1 computes an optimally edited cograph H in
O(mΛh(G)) ≤ O(n2h(G)) time, where m denotes the number of strong prime modules
in G and Λ = maxP∈P(G) |Pmax(G[P ])| is the size of the largest maximal strong parti-
tion among all prime modules P ∈ P(G), and h(G) is the maximal cost for evaluating
get-module-pair() and get-module-pair-edit().

Proof. The correctness of Algorithm 1 follows directly from Lemma 5.5 and Theorem 5.6.
The modular decomposition tree of a graph G = (V,E) can be computed in linear-

time, i.e., O(|V | + |E|) ≤ O(n2) with n = |V (G)|, see [9, 13, 40, 41, 52]. It yields the
partial order P1, . . . , Pm of the prime modules of G (line 5) in time O(n) by depth first
search. Then, we have to resolve each of them prime modules and in each step in the worst
case all modules have to be merged stepwisely, resulting in an effort of O(|Pmax(G[Pp])|)
merging steps in each iteration. Since m ≤ n and Λ ≤ n we obtain O(n2h(G)) as an
upper bound.

In practice, the exact computation of the optimal editing requires exponential effort.
To be more precise, we show now the complexity h(G) as in Lemma 5.7 using a naive
brute-force method. Given a prime module P with λ = |Pmax(G[P ])| child modules
there are

(
λ
2

)
possibilities for selecting the first module pair that has to be merged. After

merging those two modules there are at most λ − 1 modules left from which possibly
two more have to be merged. In general in the i-th merging step there are at most

(
λ−i

2

)
possible merge pairs left. This process have to repeat at most (λ − 4) times, since any
module with less than four child modules cannot be prime. In the worst case this adds up to∏λ
i=4

(
i
2

)
=
∏λ
i=4

i!
2!(i−2)! =

∏λ
i=4

i·(i−1)
2 merge sequences per prime module of G which
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givesO((λ!)2) executions of get-module-pair() per prime module inG. Finding the
optimal edit set for one merge operation of two modules M1,M2 ∈ Pmax(G[P ]) requires
checking the 2λ−2 combinations to add or remove edges to adjust the outM1

- and outM2
-

neighbors w.r.t. to the remaining λ − 2 modules. Therefore, for each of the remaining
modules M ∈ Pmax(G[P ]) \ {M1,M2} there are either only edges or only non-edges
between the vertices from M and M1 ∪M2. In summary, for a given prime module P
the graph G[P ] can be optimally edited to a cograph in O((λ!)22λ) time. Therefore, with
Λ = maxP |Pmax(G[P ])| being the size of the largest maximal strong partition among all
prime modules P of G, it follows that h(G) ∈ O((Λ!)22Λ). We note in passing that Λ is
always less than or equal to the maximum degree in the modular decomposition tree, which
is also known as modular-width [1, 18]. Hence, the latter findings together with Lemma 5.7
imply the following

Observation 5.8. The optimal cograph editing problem parameterized by the modular-
width k can be solved in O((k!)22k|V |2) time and thus, it is in FPT.

Practical heuristics for get-module-pair() and get-module-pair-edit()
can be implemented to run in polynomial time. In particular, as a main result, we can
observe that it is always possible to find an optimal edit set by stepwisely merging only
pairs of modules. Based on this, we provide in the following several strategies to improve
the runtime of these heuristics.

A simple greedy strategy yields a heuristic with O(|V |3) time complexity as follows:
In each call of get-module-pair() select the pair (Mi,Mj) in P where the edit set
that adjusts the outMi

- and outMj
-neighbors so that the outMi∪Mj

-neighborhood becomes
identical in G?[Pp] has minimum cardinality. This minimum edit set can be obtained from
get-module-pair-edit() by adjusting only the out-neighbors of the smaller module
to be identical to the out-neighbors of the larger module. The pseudocode for this heuristic
is given in Algorithm 2 which is, in fact, a natural extension of the exact Algorithm 1. A
detailed numerical evaluation will be discussed elsewhere.

Lemma 5.9. Algorithm 2 outputs a cograph and has a time complexity of O(|V |3).

Proof. First we show that Algorithm 2 constructs a cograph. To this end we show that in
each iteration of the main for-loop (Lines 16 to 41) the corresponding prime module Pp is
edited such that the resulting subgraph G?[Pp] is a cograph and Pp is still a module of G?.

Due to the processing order of the prime modules P1, . . . , Pm constructed in Line 4, we
may assume that, upon processing a prime module Pp, the induced subgraphsG?[M ],M ∈
Pmax(G[Pp]) are already cographs and all M are modules of G?. This holds in particular
for the prime modules that do not contain any other prime module in the input graph G
and which, therefore, are processed first. Hence, it suffices to show that if all G?[M ],
M ∈ Pmax(G[Pp]), are already cographs and all M are modules in G?, then executing the
p − th iteration of the for-loop results in an updated intermediate graph G′ with G′[Pp]
being a cograph and Pp as well as all modules M ∈ Pmax(G[Pp]) remain modules of G′.

In Line 17, we define P = Pmax(G[Pp]) and therefore, by assumption, all G?[M ],
M ∈ P are cographs and all M are modules of G?. In particular, the two sets Mi and Mj

that are chosen first (in Line 20) are already cographs. Moreover, since Mi and Mj are
modules of G? if follows that G?[Mi ∪Mj ] is either the disjoint union G?[Mi] ∪· G?[Mj ]
or the join G?[Mi] ⊕ G?[Mj ] of G?[Mi] and G?[Mj ]. Thus, G?[Mi ∪Mj ] is already a
cograph and none of the edges within Mi ∪Mj is edited further. It remains to show that
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Algorithm 2 Pairwise Module Merge Heuristic
1: INPUT: A graph G = (V,E).
2: G? ← G;
3: MDs(G)← compute-modular-decomposition(G).
4: P1, . . . , Pm be the prime modules of G that are partially ordered w.r.t. inclusion, i.e., Pi ⊆ Pj implies

i ≤ j.
5: A← zero initialized |MDs(G)| × |MDs(G)| matrix
6: B ← zero initialized |MDs(G)| × |MDs(G)| × |MDs(G)| matrix
7: BLines 8 to 15: Initialize A where the entries Aij store the number |V \ {Mi ∪Mj}| of vertices that need

to be adjusted to merge the modules Mi and Mj . Initialize B s.t. Bijk = 1 iff Mi and Mj have different
out-neighborhoods w.r.t. Mk

8: for each {Mi,Mj ,Mk} ∈
(MDs(G)

3

)
withMi,Mj ,Mk being children of one and the same prime module

P do
9: if outMi

∩Mk 6=outMj
∩Mk then Bijk, Bjik ← 1 end if

10: if outMi
∩Mj 6=outMk

∩Mj then Bikj , Bkij ← 1 end if
11: if outMj

∩Mi 6=outMk
∩Mi then Bjki, Bkji ← 1 end if

12: Aij , Aji ← Aij + |Mk| ·Bijk

13: Aik, Aki ← Aik + |Mj | ·Bikj

14: Ajk, Akj ← Ajk + |Mi| ·Bjki

15: end for
16: for p = 1, . . . ,m do
17: P ← Pmax(G[Pp])
18: while |P| > 1 do
19: θ ← ∅ {θ denotes the set of (non)edges that will be edited}
20: select two distinct modules Mi and Mj from P with |Mi| ≥ |Mj | that have a minimum value of

Aij ∗ |Mj |.
21: BLine 22 to 26: Compute the edits for adjusting the outMi∪Mj

-neighborhood s.t. Mj has the same
out-neighborhood as Mi within G[Pp]. Note, since Pp is a module of G, Mj and Mi have the same
out-neighbors in G after editing.

22: if Aij 6= 0, i.e., Mi ∪Mj is no module of G? then
23: for each Mk ∈ P \ {Mi,Mj} do
24: if Bijk = 1 then θ ← θ ∪ {xy | x ∈Mj , y ∈Mk} end if
25: end for
26: end if
27: BLine 28 to 30: Adjust in A the number of edits needed for merging the new module Mi ∪Mj with

some Mk

28: for each Mk ∈ P \ {Mi,Mj} do
29: Aik, Aki ← Aik − |Mj | ·Bikj

30: end for
31: BLine 32 to 34: Adjust in A the number of edits needed for merging two modules Mk and Ml

32: for each {Mk,Ml} ∈
(P\{Mi,Mj}

2

)
do

33: Akl, Alk ← Akl + |Mj | ·Bkli − |Mj | ·Bklj

34: end for
35: remove the j-th row and column A
36: remove the j-th layer in all 3 dimensions of B
37: in P replace Mi with Mi ∪Mj

38: P ← P \ {Mj}
39: G? ← G?∆ θ
40: end while
41: end for
42: OUTPUT: H = G?;
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applying the edits constructed in Line 24 result in the (new) merged module Mi ∪Mj of
G?∆θ. Note, if Mi ∪Mj is already a module of G? then Lines 22 to 26 are not executed
and therefore, θ = ∅, which implies that Mi ∪Mj remains a module of G?∆θ. On the
other hand, if Mi ∪Mj is no module of G? then the for-loop in Lines 12 to 26 iterates
over all modules Mk in P \ {Mi,Mj} and adjusts the edges between Mj and Mk to be in
accordance to the edges between Mi and Mk. Note that all those edits are within Pp. In
particular, the outMi∪Mj

-neighborhood was adjusted only between vertices from Mj and
vertices from Pp \ (Mi ∪Mj). After applying these edits, Mi ∪Mj is therefore a module
in G?[Pp]∆θ. In particular, the outPp

-neighborhood has not changed and Pp is therefore
a module of G? as well as of G?∆θ. Then, it follows by Lemma 3.1 that Mi ∪Mj is a
module in G?∆θ. To see that also all Mk ∈ P \ {Mi,Mj} remain modules in G?∆θ note
first that P is a partition of Pp and second, that only edges between Mj and Mk are edited
for some Mk ∈ P \ {Mi,Mj}. Moreover, if a (non)edge between Mj and Mk is edited,
then all (non)edges {xy | x ∈ Mj , y ∈ Mk} between Mj and Mk are edited. Thus all
Mk ∈ P \ {Mi,Mj} remain modules of G?[Pp]∆θ and therefore modules G?∆θ.

Now consider the prime module Pp+1 that is processed in the next iteration of the main
for-loop. It can be easily seen that for Pp+1 we also have: G?[M ],M ∈ Pmax(G[Pp+1])
is a cograph and all M are modules of G?, since all prime modules of G that are subsets
of Pp+1 are already processed, and therefore, are all those M are non-prime modules of
G? and form cographs G?[M ]. Hence, by the same argumentation as before, G?[Pp+1] is
edited to a cograph by the next execution of the main for-loop. Thus, after processing all
prime modules of G the final graph H is a cograph.

Next, we show that Algorithm 2 has a time complexity of O(|V |3). Creating the mod-
ular decomposition in Line 3 can be done in linear time by the algorithms presented in,
e.g., [13, 41, 52]. Note that “linear” in this context means linear in the number of edges,
i.e., O(|V | + |E|) ∈ O(|V |2). Initializing the matrices A and B (Lines 8 to 15) requires
time O(|V |3) since the corresponding for-loop iterates over every ordered set of 3 strong
modules of G and there are at most O(|V |) such modules. Moreover, checking if the
out-neighborhoods of two modules Mi and Mj w.r.t. a third module Mk are identical (the
if -statements in Lines 9 to 11) can be done in constant time by checking the adjacencies
between three arbitrary vertices, exactly one from each of the three modules. For the re-
maining Lines 16 to 41 we can consider how often the inner while-loop (Lines 18 to 40) is
executed. Therefore, note that within each execution always two modules are merged and
there are O(n) of those merge operations at most. This can most easily be seen by consid-
ering the matrix A which has MDs(G) rows and columns at first with |MDs(G)| < |V |.
Each row, respectively each column, of A represents a module that is possibly selected
for merging. Moreover, within each iteration of the while-loop, the matrix A is reduced
by one row, respectively one column. This leads to no more than |V | many executions of
the while-loop. Selecting the two modules Mi and Mj in Line 20 requires O(|V 2|) time.
Although, the for-loop in Lines 23 to 25 is executed O(|V |) times and each partial edit set
that is computed in Line 24 might contain more than O(|V |) many edits, the whole edit set
θ (constructed within Lines 23 to 25) contains no more thanO(|V |2) edits. Thus, executing
Lines 12 to 26 requires O(|V |2) time at most. Adjusting the matrix A is done in two steps.
Lines 28 to 30 iterates over O(|V |) many modules Mk and Lines 32 to 34 iterates over
O(|V |2) many pairs of modules (Mk,Ml). Shrinking the matrices A and B in Lines 35
and 36 can technically be done in time O(|V |) if we use a labeling function l : N × N to
index the values within the matrices, i.e., instead of reading Aij we read Al(i),l(j). Then
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we just have to relabel those indices, i.e., l(x) ← l(x) + 1 for all x > j. In that way we
do not have to remove anything from A or B. Line 37 and 38 can also be done in O(|V |)
time and applying the edits in Line 39 requires at most O(|V |2) time. In summary, execut-
ing a single iteration of the main for-loop requires O(|V |2) time, which yields a total time
complexity of O(|V |3).

The heuristic as given in Algorithm 2 is deterministic and therefore lacks of a ran-
domization component which would be helpful in order to sample solutions and con-
struct a consensus cograph. However, randomization can be introduced easily by select-
ing a pair of modules Mi and Mj in line 20 with a probability inversely correlated with
the value of Aij · |Mj |. Moreover, with probability p = |Mi|/(|Mi| + |Mj |) the edits
{xy | x ∈ Mj , y ∈ Mk} can be selected in line 24 and otherwise {xy | x ∈ Mi, y ∈ Mk}
with probability 1− p.

An even simpler (but probably less accurate) heuristic with time complexity O(|V |2)
can be obtained by randomly selecting the next pair of modules Mi and Mj that have to
be merged. Such a procedure would not require the computation of the matrices A and B
at all. Nevertheless, this O(|V |2)-time heuristic requires that computing the edit set θ can
be done in O(|V |) time. However, this is possible if we only track the O(|V |) many edits
on the corresponding quotient graph G?[Pp]/Pmax(G[Pp]) and recover the O(|V |2) many
individual edits from that only once in a single post-processing step at the end.

Cograph editing heuristics based on the destruction of P4s requiresO(|V |4) time merely
for enumerating all P4s. Thus, using module merges as editing operation may lead to sig-
nificantly faster cograph editing heuristics.
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