
This is a repository copy of Malat1 Suppresses Immunity to Infection through Promoting 
Expression of Maf and IL-10 in Th Cells.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/160307/

Version: Published Version

Article:

Hewitson, James P orcid.org/0000-0002-3265-6763, West, Katie A, James, Kylie R et al. 
(7 more authors) (2020) Malat1 Suppresses Immunity to Infection through Promoting 
Expression of Maf and IL-10 in Th Cells. Journal of Immunology. ISSN 1550-6606 

https://doi.org/10.4049/jimmunol.1900940

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



of May 5, 2020.
This information is current as

IL-10 in Th Cells
through Promoting Expression of Maf and 

 Suppresses Immunity to InfectionMalat1

Lagos
Brown, Sarah A. Teichmann, Paul M. Kaye and Dimitris
Fatima Rani, Nidhi Dey, Audrey Romano, Najmeeyah 
James P. Hewitson, Katie A. West, Kylie R. James, Gulab

ol.1900940
http://www.jimmunol.org/content/early/2020/04/21/jimmun

 published online 22 April 2020J Immunol 

Material
Supplementary

0.DCSupplemental
http://www.jimmunol.org/content/suppl/2020/04/21/jimmunol.190094

        average*

   
 4 weeks from acceptance to publicationFast Publication! •  

   
 Every submission reviewed by practicing scientistsNo Triage! •  

   
 from submission to initial decisionRapid Reviews! 30 days* •  

   
Submit online. ?The JIWhy 

Subscription
http://jimmunol.org/subscription

 is online at: The Journal of ImmunologyInformation about subscribing to 

Permissions
http://www.aai.org/About/Publications/JI/copyright.html
Submit copyright permission requests at: 

Author Choice
 Author Choice option

The Journal of ImmunologyFreely available online through 

Email Alerts
http://jimmunol.org/alerts
Receive free email-alerts when new articles cite this article. Sign up at: 

Print ISSN: 0022-1767 Online ISSN: 1550-6606. 
Copyright © 2020 The Authors All rights reserved.
1451 Rockville Pike, Suite 650, Rockville, MD 20852
The American Association of Immunologists, Inc.,

 is published twice each month byThe Journal of Immunology

 at U
n
iv

ersity
 o

f Y
o
rk

 o
n
 M

ay
 5

, 2
0
2
0

h
ttp

://w
w

w
.jim

m
u
n
o
l.o

rg
/

D
o
w

n
lo

ad
ed

 fro
m

 
 at U

n
iv

ersity
 o

f Y
o
rk

 o
n
 M

ay
 5

, 2
0
2
0

h
ttp

://w
w

w
.jim

m
u
n
o
l.o

rg
/

D
o
w

n
lo

ad
ed

 fro
m

 



The Journal of Immunology

Malat1 Suppresses Immunity to Infection through Promoting

Expression of Maf and IL-10 in Th Cells

James P. Hewitson,*,†,1 Katie A. West,*,†,‡,1 Kylie R. James,x Gulab Fatima Rani,*,‡

Nidhi Dey,*,‡ Audrey Romano,*,‡ Najmeeyah Brown,*,‡ Sarah A. Teichmann,x,{,‖

Paul M. Kaye,*,‡ and Dimitris Lagos*,‡

Despite extensive mapping of long noncoding RNAs in immune cells, their function in vivo remains poorly understood. In this

study, we identify over 100 long noncoding RNAs that are differentially expressed within 24 h of Th1 cell activation. Among those,

we show that suppression of Malat1 is a hallmark of CD4+ T cell activation, but its complete deletion results in more potent

immune responses to infection. This is because Malat12/2 Th1 and Th2 cells express lower levels of the immunosuppressive

cytokine IL-10. In vivo, the reduced CD4+ T cell IL-10 expression in Malat12/2mice underpins enhanced immunity and pathogen

clearance in experimental visceral leishmaniasis (Leishmania donovani) but more severe disease in a model of malaria (Plasmo-

dium chabaudi chabaudi AS). Mechanistically, Malat1 regulates IL-10 through enhancing expression of Maf, a key transcriptional

regulator of IL-10. Maf expression correlates with Malat1 in single Ag-specific Th cells from P. chabaudi chabaudi AS–infected

mice and is downregulated in Malat12/2 Th1 and Th2 cells. The Malat1 RNA is responsible for these effects, as antisense

oligonucleotide-mediated inhibition of Malat1 also suppresses Maf and IL-10 levels. Our results reveal that through promoting

expression of the Maf/IL-10 axis in effector Th cells, Malat1 is a nonredundant regulator of mammalian immunity. The Journal

of Immunology, 2020, 204: 000–000.

L
ong noncoding RNAs (lncRNAs) are .200-nt transcripts

that lack protein-coding potential but have regulatory

functions (1, 2). Mammalian genomes contain thousands

of lncRNAs and demonstrate the highest frequency in lncRNA

transcripts compared with any other species (1). These are mostly

medium to lowly expressed transcripts, displaying poor conser-

vation across mammals. Their modes of action vary, but they often

act as scaffolds, recruiting or sequestering chromatin-modifiers or

RNA-binding proteins (RBPs) to specific genomic sites (2). De-

spite remarkable progress in mapping lncRNAs to mammalian

genomes and exploring lncRNA function at the molecular level in

cellular systems, there is a profound lack of understanding of the

function of lncRNAs (requirement, sufficiency, or redundancy) at

the whole-organism level. For example, although CD4+ Th cells

are central to pathogen-specific adaptive immunity (3), and there

are hundreds of lncRNAs identified as differentially regulated

during CD4+ T cell activation in humans and mice (4–6), fewer

than a handful of lncRNAs have been shown to affect Th cell

function. These include NeST (7), which has been shown to

control its neighboring Ifng locus, and lincR-Ccr2-59 AS (5) and

linc-Maf-4 (6), which affect CD4+ T cell gene expression through

long-range interactions. Therefore, the functional relevance of

lncRNAs in vivo is a largely unexplored and emerging challenge

in both the fields of immunology and RNA biology.

Metastasis-associated lung adenocarcinoma transcript 1 (Malat1)

is a 7.5-kb-long long intergenic noncoding RNA (lincRNA) tran-

script, which is associated with cancer progression and metas-

tasis (8). It is localized in nuclear speckles (9), which are nuclear

foci enriched in factors involved in pre-mRNA splicing and

transcription (10). In contrast to the vast majority of lncRNAs,

Malat1 is highly conserved across mammals and highly and

ubiquitously expressed (5,000–10,000 copies per cell). It has been

somewhat surprising that characterization of three independent

Malat1 knockout (Malat12/2) mouse models did not reveal any
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homeostatic phenotypes (abnormal development, viability, fertility,

or lifespan) or any patent defects in nuclear architecture (e.g.,

speckle formation) (11–13). In the context of CD4+ T cell function,

two recent reports presented contradicting results regarding Malat1

function; Yao and colleagues (14) found that Malat1 does not affect

number of CD4+ T cells and T follicular helper cells or CD8+ T cells

responses to lymphocytic choriomeningitis virus (LCMV) in vivo

and concluded that Malat1 is dispensable for CD4+ T cell function

and development, whereas Masoumi and colleagues (15) reported

that Malat1 is downregulated in tissues from patients with multiple

sclerosis and mice with experimental autoimmune encephalo-

myelitis and that small interfering RNA–mediated knockdown

of Malat1 promoted Th1/Th17 polarization and inhibited T

regulatory cell differentiation in vitro. The above demonstrate

that the physiological function of Malat1 in vivo and potential

role in adaptive immunity remain poorly understood.

In this study, through defining the lncRNA signature of early

Th cell activation, we show thatMalat1 is one of the most highly

abundant transcripts in naive CD4+ T cells and it is downreg-

ulated within the first 24 h of naive CD4+ T cell activation.

Suppression of Malat1 expression is sustained and observed in

in vitro–differentiated Th1 and Th2 cells. Single-cell RNA se-

quencing (RNA-seq) analyses of in vivo–derived Ag-specific

Th1 cells demonstrate that Malat1 expression inversely corre-

lates with expression of transcriptional units involved in RNA

processing and translation, protein degradation, metabolism,

and cellular structure, all hallmarks of Th activation. Similar

correlations are seen in Th2 cells. Conversely, Malat1 expres-

sion positively correlates with expression of Maf (also known as

c-Maf). Functionally, when compared with wild-type (WT) C57BL6

controls, in vitro–generated Malat12/2 Th1 and Th2 cells express

lower levels of Maf and its transcriptional target IL-10. Suppression

of IL-10 expression in Malat1
2/2 CD4+ T cells is also observed in

mice infected with the protozoan parasite Leishmania donovani or

with Plasmodium chabaudi chabaudi AS (PcAS). Malat12/2 mice

demonstrate enhanced macrophage activation and parasite clear-

ance in the visceral leishmaniasis model, but more pronounced

disease in experimental malaria, similarly to phenotypes observed

in IL-10–deficient mice. Overall, our results demonstrate that

Malat1 suppression is a hallmark of CD4+ T cell activation and

controls IL-10 expression in Th cells. We propose that suppression

of Malat1 in activated CD4+ T cells is a critical determinant of

optimal immunity to chronic infection.

Materials and Methods
Ethics

Animal care and experimental procedures were regulated under the
Animals (Scientific Procedures) Act 1986 (revised under European
Directive 2010/63/EU) and were performed under U.K. Home Office
License (project license number PPL 60/4377 with approval from the
University of York Animal Welfare and Ethical Review Body). Animal
experiments conformed to Animal Research: Reporting of In Vivo
Experiments guidelines.

Mouse infections

Female C57BL/6 CD45.2 mice were obtained from Charles River Labo-
ratories. Malat1

2/2 mice (complete knockouts) were obtained from the
Riken Institute (12). All mice were bred in-house, maintained under spe-
cific pathogen-free conditions, and used at 6–12 wk of age. The Ethiopian
strain of L. donovani (LV9) was maintained by passage in RAG-22/2

mice. Mice were infected i.v. with 30 3 106 amastigotes via the tail vein.
Parasite burden was expressed parasite count per 100 host cell nuclei or
as Leishman–Donovan units (the number of parasites per 1000 host cell
nuclei 3 organ weight in milligrams).

Female C57BL/6 or Malat12/2 mice (6–12 wk old) were infected with
PcAS through i.v. injection of 1 3 105 parasitized erythrocytes under
reverse light cycles. Parasitemia was monitored from day 5 onwards by

thin blood smears stained with Giemsa stain (infected red cells per 1000
red cells 3 100). Mice were bled within the first 2 h of the dark cycle.
Weights and signs of disease were monitored daily.

FACS analysis and cell sorting

For FACS analysis, spleens were first digested with 0.4 U/ml Liberase TL
(Roche) and 80 U/ml DNase I type IV in HBSS (both Sigma-Aldrich) for
15 min at 37˚C. Enzyme activity was inhibited with 10 mM EDTA (pH 7.5)
and single-cell suspensions were created with 70-mm nylon filters (BD
Biosciences) in complete RPMI 1640 (Thermo Fisher Scientific) supple-
mented with 10% heat-inactivated FCS (HyClone), 100 U/ml penicillin,
100 mg/ml streptomycin, and 2 mM L-glutamine (all Thermo Fisher Sci-
entific). RBCs were lysed with RBC lysing buffer (Sigma-Aldrich). For
live/dead discrimination, cells were washed twice in PBS, then stained
with Zombie Aqua (BioLegend) before resuspension in FACS buffer (PBS
containing 0.5% BSA and 0.05% azide). Fc receptors were blocked with
100 mg/ml rat IgG (Sigma-Aldrich) for 10 min at 4˚C before surface
staining for 30 min at 4˚C. Combinations of the following anti-mouse Abs
were used: CD45.1 allophycocyanin (clone A20); CD45.2 BV786 (104);
CD3 FITC (145-2C11); B220 FITC (RA3-6B2); TCRb PE-Cy7 (H57-
597); MHC class II (MHCII) Alexa Fluor 700 (M5/114.15.2); Ly-6G
PE-Cy7 (1A8); CD11b Pacific Blue and allophycocyanin (M1/70);
CD11c PerCP/Cy5.5 (N418); F4/80 FITC and Alexa Fluor 647 (BM8);
CD44 FITC (IM7); CD62L PE (MEL-14); CD8a allophycocyanin (53-6.7);
CD4 PE and PerCP/Cy5.5 (RM4-5); IFN-g FITC (XMG1.2); IL-10 PE (JES5-
16E3); and IL-17A PE/Cy7 (TC11-18H10.1). All Abs were from BioLegend.
To measure intracellular cytokines in T cells following ex vivo stimu-
lation, cells were first stimulated in complete RPMI 1640 for 4 h at 37˚C
with 500 ng/ml PMA, 1 mg/ml ionomycin, and 10 mg/ml brefeldin A (all
Sigma-Aldrich). For all intracellular cytokine staining, surface stained
cells were fixed and permeabilized (20 min at 4˚C) using Fixation/
Permeabilization Solution before washes in Perm/Wash buffer (both
BD Biosciences). Cells were then stained with intracellular Abs as
above except in Perm/Wash buffer. Appropriate isotype controls were
included. For FACS analysis, events were acquired on an LSRFortessa
(BD Biosciences) before analysis with FlowJo (FlowJo). For cell sorting
of splenic lymphocytes from naive and L. donovani–infected spleens,
CD4+ T cells were sorted as B2202 CD3+ CD4+ CD8a2. For purifi-
cation of naive and activated CD4+ T cells from uninfected mice,
single-cell suspensions were prepared from pooled spleens and pe-
ripheral lymph nodes (axillary, brachial, and inguinal). CD4+ cells were
enriched using CD4 microbeads and LS columns (Miltenyi Biotec) before cell
sorting of naive CD4+ T cells (CD4+ CD62L+ CD442 CD11b2 CD8a2

MHCII2). Cell sorting was performed with a MoFlo Astrios (Beckman
Coulter), and sorted cells were typically .98% positive.

In vitro activation of CD4+ T cells

Purified CD4+ T cells were stimulated with 10 mg/ml plate-bound anti-CD3ε
(clone 145-2C11) and 2 mg/ml soluble anti-CD28 (37.51) in RPMI 1640 as
before in flat-bottom 96-well plates (Th0 conditions). For Th1 polarization,
cells were also treated with 15 ng/ml mouse rIL-12 and 5 mg/ml anti–IL-4
(11B11) or, for Th2 polarization, 30 ng/ml mouse rIL-4 and 5 mg/ml anti–
IFN-g (XMG1.2). To induce suboptimal Th1 differentiation (weakly polar-
izing conditions), 1% of the original stimulation concentrations of
recombinant cytokine rIL-12 and anti–IL-4 were included in the cell
culture medium. To induce suboptimal Th2 differentiation, 2% of the
original concentrations of rIL-4 or anti–IFN-g were included in the
cell culture medium. Anti-CD3/anti-CD28–dependent activation (4 d)
was followed by rest in 10 U/ml human rIL-2 (2 d). To induce Th17
differentiation, naive CD4+ T cells were stimulated with 10 ug/ml
plate-bound anti-CD3 (145-2c11) and 4 mg/ml soluble anti-CD28 (37.51),
and 1 ng/ml of rTGF-b, 37.5 ng/ml rIL-6, 5 mg/ml anti–IFN-g (XMG1.2),
and 5 mg/ml anti–IL-4 (11B11). After 3 d of stimulation, cells were trans-
ferred to a new 96-well plate in the presence of half the concentration of
recombinant cytokines and inhibiting Abs. Cells were harvested and analyzed
by flow cytometry at day 5. All Abs were from BioLegend and were low on
endotoxin and azide free. Recombinant cytokines were from PeproTech.
Control or Malat1-targeting antisense oligonucleotide gapmers were from
QIAGEN (Hilden, Germany; LG00000002-DDA and LG00000008-DDA,
respectively) and were added to naive CD4+ T cells on day 0 at a final
concentration of 100 nM.

Quantitative RT-PCR

RNA was extracted from tissue samples or purified cell populations using
QIAzol and miRNeasy RNA extraction kits (QIAGEN) according to
manufacturer’s instructions. Tissue samples were first dissociated in
QIAzol using a TissueLyser LT with stainless steel beads (all QIAGEN).
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For mRNA transcripts, reverse transcriptions were carried out with Su-
perscript III (Thermo Fisher Scientific) and random hexamer primers
(Promega) and measured with Fast SYBR Green Master Mix (Thermo
Fisher Scientific). PCR were performed using a StepOnePlus Real Time
PCR System (Thermo Fisher Scientific), and relative transcript levels were
determined using the ∆∆Ct method. The following primer sequences were
used: Malat1 forward, 59-TGCAGTGTGCCAATGTTTCG-39; Malat1

reverse, 59-GGCCAGCTGCAAACATTCAA-39; Neat1 forward, 59-CCT-
AGGTTCCGTGCTTCCTC-39; Neat1 reverse, 59-CATCCTCCACAGGC-
TTAC-39; U6 forward, 59-CGCTTCGGCAGCACATATAG-39; and U6
reverse, 59-TTCACGAATTTGGCTGCTAT-39.

For all other genes commercially available, QuantiTect (QIAGEN)
primer sets were used.

RNA-seq analysis

For single-cell RNA-seq analyses, Smart-seq2 single-cell RNA-seq FASTQ
files were obtained from ArrayExpress (www.ebi.ac.uk/arrayexpress/),
accession numbers E-MTAB-4388 (Th1) and E-MTAB-2512 (Th2).
Sequencing reads were mapped to the mouse mm10 Ensembl 84 ref-
erence genome with External RNA Controls Consortium RNA spike-in
sequences using star 2.5.1b and quantified with HTSeq 0.9.1. Nor-
malization and filtering of data were performed using Seurat (version
3.0.0). Cells with expression of fewer than 200 genes and/or a mito-
chondrial read proportion above 5% were excluded from analysis.
Genes were filtered for minimum expression in three cells. Gene
correlations were determined from log-normalized expression data
using cor.test function (stats package) with Spearman rho statistic to
estimate a rank-based measure of association.

Bulk RNA-seq analyses were performed as previously described (16).
Briefly, we compared four naive CD4+ T cells against four activated (24 h)
samples. We obtained 10 million reads per sample on average (range: 4–20
million). Sequence reads were trimmed to remove adaptor sequences with
Cutadapt and mapped to mouse genome GRCm38 with HISAT2, including
rna-strandness FR option. Transcriptome assembly and quantification was
performed using the Tuxedo pipeline (version 2.2.1). Cufflinks was used to
assemble transcriptomes for each sample using the Gene transfer format
annotation file for the GRCm38 mouse genome. This was followed by
running Cuffmerge to merge individual sample transcriptomes into full
transcriptomes. Quantification and normalization were carried out for
each experiment using Cuffquant and Cuffnorm. Differential expression
on gene fragments per kilobase of transcript per million mapped reads
(FPKM) values was performed by conducting paired and independent t
tests with Benjamini–Hochberg false discovery rate correction. Data are
available at Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/
geo/) accession number GSE125268 (wild-type samples only). Gene
ontology and Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) analysis (http://string-db.org/) were performed where indicated.
STRING settings were highest-confidence interactions only excluding text
mining. Transcription factors and cofactors were extracted by comparing
gene lists to the TFcheckpoint database (http://www.tfcheckpoint.org/).

Western blotting

Cells were washed twice in PBS and protein extracts prepared in radi-
oimmunoprecipitation assay buffer (150 mMNaCl, 10 mM Tris (pH 7.2),
5 mM EDTA, 0.1% SDS, 0.1% Triton X-100, 1% sodium deoxycholate,
1 mM PMSF, 1% protease inhibitor mixture P8340, and 1% phosphate
inhibitor mixtures 2 and 3; all Sigma-Aldrich). Equal total amounts of
protein were resolved on SDS-PAGE gels and transferred to polyvinylidene
difluoride membranes (MilliporeSigma) using a Bio-Rad SD Semi-Dry
Transfer Cell, blocked for 2 h at room temperature in 2% BSA (Thermo
Fisher Scientific) or 5% milk powder (Sigma-Aldrich) in TBST (150 mM
NaCl, 7.7 mM Tris HCl [pH 8], and 0.1% Tween 20; all Sigma-Aldrich)
before overnight probing with primary Abs at 4˚C. Abs were as follows:
Maf (55013-1-AP) and Stat4 (51070-2-AP) from Proteintech, Histone 3
from Cell Signaling Technology. Following extensive washing in TBST,
blots were incubated with secondary Abs (goat anti-rabbit or mouse HRP;
DAKO) for 1 h at room temperature, washed as before, and developed with
ECL Western Blotting Detection Reagent and Hyperfilm ECL (both GE
Healthcare).

Statistical analysis

Statistical analyses were carried out as indicated with Prism 5
(GraphPad Software). Two-way comparisons used paired or unpaired
t tests as indicated, and multiple comparisons used one-way ANOVA,
followed by Bonferroni correction for multiple testing. Any p values
,0.05 were considered significant. All p values are shown when sig-
nificant or borderline.

Results
Malat1 is suppressed at the early stages of CD4+

T cell activation

To gain insight into the role of the noncoding transcriptome in CD4+

T cell function, we began our studies by using bulk RNA-seq to

determine early (24 h) changes in expression of lncRNAs under

in vitro Th1-polarizing conditions. We identified 120 differentially

expressed lncRNAs, the majority of which were intergenic, dis-

tributed across the genome (Fig. 1A). As expression of lncRNAs

varied (Fig. 1B), we set an additional criterion in our analysis and

identified 23 lncRNAs that were expressed in CD4+ T cells at

FPKM . 20 and were differentially regulated (log2 fold change

[LFC] . 1 or LFC , 21) between naive and 24-h-activated CD4+

T cells (Fig. 1C, 1D). We observed a significant correlation between

changes in expression of the identified lncRNAs and their chro-

mosomally adjacent genes (Supplemental Fig. 1A), which inferred

the existence lncRNA-mediated in cis regulatory effects across the

CD4+ T cell transcriptome, in agreement with previous studies (1).

We further investigated the list of highly expressed and differ-

entially regulated lncRNAs and noticed that Malat1 (Fig. 1C) was

the most highly expressed dysregulated lncRNA that was also

conserved between the mouse and human genome (Gm26917 and

Gm26836 were expressed at higher levels than Malat1 but have no

obvious sequence or syntenic homologs in the human genome). Of

note, Malat1 was within the top 2% most highly expressed tran-

scripts in naive CD4+ T cells (Supplemental Fig. 1B). Malat1

suppression was confirmed by quantitative RT-PCR (qRTPCR)

(Fig. 1E). Neat1, an lincRNA adjacent to Malat1 in both mouse

and human genome, was also found to be significantly downreg-

ulated within 24 h of CD4+ T cell activation by qRTPCR (Fig.

1E). The downregulation of Neat1 upon CD4+ T cell activation

did not reach statistical significance in our RNA-seq analysis,

likely because of higher variation and lower absolute expression

of Neat1 compared with Malat1 in CD4+ T cells (Supplemental

Fig. 1C). Suppression of Malat1 and Neat1 expression were also

observed in end point (day 6) differentiated Th0-, Th1-, and Th2-

polarizing conditions in vitro (Fig. 1F). Both Malat1 and Neat1

were downregulated within hours of naive CD4+ T cell activation

(Fig. 1G, Supplemental Fig. 1D). The above results revealed that

the rapid suppression of Malat1 and Neat1 expression is a key

feature of the early lncRNA signature of CD4+ T cell activation.

Malat1 suppression is a transcriptomic hallmark of CD4+

T cell activation

To gain insight into whether Malat1 suppression was associated

with CD4+ T cell function, we first analyzed a single-cell RNA-

seq dataset we previously published exploring emergence of Th1

cells in vivo (17) using Plasmodium-specific TCR transgenic

CD4+ T (PbTII) cells transferred into congenically labeled mice

and recovered at days 2, 3, 4, and 7 postinfection (p.i.) with PcAS.

In agreement with the observed suppression of Malat1 in our

in vitro experiments (Fig. 1), we observed Malat1 and Neat1

downregulation upon CD4+ T cell activation in vivo, reaching a

minimum at days 3 and 4, followed by a relative increase by day 7

(Fig. 2A, 2B). As observed in vitro, Neat1 expression was lower

than Malat1 in Th1 cells in vivo (Fig. 2A, 2B).

Next, we searched for transcriptomic units that show significant

correlation with Malat1 expression at the single-cell level. We

performed these analyses using the data from PbTII CD4+ T cells

at day 7 p.i. because this is the time point that the strongest Th1

responses are observed (17). Analyses were performed in gated

Th1 cells based on IFN-g and CXCR6 expression rather than all

CD4 PbTII cells at this time point. We searched for genes, the

The Journal of Immunology 3
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expression of which was positively or negatively correlated with

that of Malat1. Strikingly, we found that from 687 genes that

demonstrated significant correlation with Malat1 in Th1 cells, 609

(88.6%) correlated negatively (i.e., cells with low Malat1 levels

demonstrate high levels of these genes). We noted that this was not

purely due to the fact thatMalat1 is downregulated in Th1 cells, as

performing the same analysis for Lncpint, an lincRNAwith similar

basal expression in CD4+ T cells that is also downregulated upon

activation (Fig. 1C) did not show a similar bias toward negative

correlation (Supplemental Fig. 2A). Neat1 was within the posi-

tively correlated genes (Supplemental Fig. 2B), consistent with

reports showing that the two lincRNAs are coregulated (18). Gene

ontology analysis of the negatively correlated genes revealed

significant enrichment in genes involved in RNA binding, ribo-

somal function, metabolism, and cellular structure/localization

(Fig. 2C). We noted that these were processes associated with

cellular activation and specifically naive CD4+ T cell differentia-

tion to effector Th cells (19, 20). Analysis of a published set of

FIGURE 1. Identification of differentially regulated lncRNAs upon activation of naive CD4+ T cells reveals Malat1 suppression as a hallmark of Th cell

activation. (A) LFC of statistically significantly differentially regulated lncRNAs (false discovery rate, 0.05) per chromosome following 24 h activation of

naive CD4+ T cells under Th1 conditions. Expression determined by bulk RNA-seq (n = 4). (B) Distribution of lncRNA expression in naive and activated

(24 h, Th1 conditions) CD4+ T cells. (C) Expression versus LFC for all the differentially regulated lncRNAs. Dotted lines indicate LFC = 1 and FPKM = 20.

(D) Expression heatmap of most highly expressed and differentially expressed lncRNAs. For downregulated, lncRNAs with LFC . 1 and naive CD4+

FPKM . 20 are shown. For upregulated, lncRNAs with LFC . 1 and Th1-activated CD4+ FPKM . 20 are shown. (E) Expression of Malat1 and Neat1 in

naive and Th1-activated CD4+ T cells (24 h postactivation) determined by qRTPCR. Expression is normalized to U6 RNA and average expression in naive

CD4+ T cells. (F) Malat1 expression determined in in vitro–differentiated Th0, Th1, and Th2 cells (day 6). Expression is normalized to U6 RNA and

average expression in naive CD4+ T cells. (G) Malat1 expression during in vitro Th1 differentiation, normalized to naive CD4+ T cells.

4 Malat1 LOSS SUPPRESSES IL-10 AND PROMOTES Th CELL IMMUNITY

 at U
n
iv

ersity
 o

f Y
o
rk

 o
n
 M

ay
 5

, 2
0
2
0

h
ttp

://w
w

w
.jim

m
u
n
o
l.o

rg
/

D
o
w

n
lo

ad
ed

 fro
m

 



FIGURE 2. Transcriptional units and transcription factors correlating with Malat1 expression at single-cell level in Th cells in vivo. (A) Normalized

transcript counts of Malat1 in single Plasmodium-specific CD4+ T (PbTII) cells isolated at the indicated timepoints following infection with PcAS. Mean

and 95% confidence intervals are shown. (B) Normalized transcript counts of Neat1 in single PbTII cells isolated at the indicated timepoints following

infection with PcAS. Mean and 95% confidence intervals are shown. (C) Most highly enriched gene ontology (GO) terms among significantly negatively

correlated (p , 0.05) genes with Malat1 in PbTII cells isolated from PcAS-infected mice (7 d p.i.). (D) Heatmap of correlation coefficients of Malat1 and

indicated Malat1-interacting mRNAs (21, cell) in single PbTII cells from PcAS-infected mice 7 d p.i. (E) Correlation coefficient of Malat1 and indicated

Malat1-interacting mRNAs (left y-axis, red) in single PbTII cells from PcAS-infected mice (7 d p.i.) versus average LFC following 24 h Th1 in vitro

activation of naive CD4+ T cells (right y-axis, blue). Values are shown for significantly differentially expressed genes (FDR , 0.05) following 24 h Th1

activation of naive CD4+ T cells. (F) Most highly enriched GO terms among significantly negatively correlated (p , 0.01) genes with Malat1 in single

in vitro–differentiated Th2 cells. (G) STRING network of significantly correlated genes with Malat1 at single-cell levels in both in vivo PbTII Th1 and

in vitro Th2 cells. Functional clusters are numbered and shown.
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Malat1-interacting mRNAs in embryonic stem cells (21) indicated

that Malat1 has the potential to interact with the mRNA of 43 of

the coregulated genes (Fig. 2D). Notably, 19 of these genes were also

statistically significantly differentially expressed within 24 h of Th1

activation, with a dominant trend toward upregulation (Fig. 2E).

To assess whether the aboveMalat1-correlated gene signatures were

specific to Th1 cells, we analyzed a single-cell RNA-seq dataset we

previously published exploring gene expression in in vitro–polarized

Th2 cells (22). Malat1 expression was significantly correlated with a

higher number of genes in in vitro–differentiated Th2 cells (1946) than

in Th1 cells from the PcAS-infected mice. As in the case of Th1 cells,

the majority of statically significant correlations between expression of

Malat1 and other genes were negative (1455 out of 1946, 74.8%).

Similarly, to the observed results with Th1 cells, there was again a

positive correlation between Malat1 and Neat1 (Supplemental Fig.

2C). Of note, Neat1 was the only gene neighboring Malat1 that

showed a significant correlation with Malat1 in both Th1 and Th2

cells (Supplemental Fig. 2D), suggesting thatMalat1 has limited in cis

regulatory effects in Th cells. This was further supported by expres-

sion analyses inWT andMalat1
2/2 cells for Neat1 and Scyl1, the two

chromosomally adjacent genes to Malat1. Neat1 levels were lower in

naive Malat12/2 CD4+ T cells, and Scyl1 levels were higher in

in vitro–differentiated Malat12/2 Th2 cells, but these effects were not

consistent among the three cell types (Supplemental Fig. 2E). As in

the case of single Th1 cells, gene ontology analysis of the negatively

correlated genes revealed again significant enrichment in genes in-

volved in RNA binding, ribosomal function, metabolism, and cell

cycle (Fig. 2F). There were 152 genes that were significantly corre-

lated with Malat1 in both single Th1 and Th2 cell–formed functional

clusters with roles in RNA processing, ribosomal function, meta-

bolism, and protein degradation (Fig. 2G, Supplemental Fig. 2F).

Overall, these results indicated that, at the single-cell level, Malat1

suppression in Th cells correlated with induction of key gene networks

upon CD4+ T cell activation.

Malat1 controls IL-10 expression in Th cells in vitro

Having found that Malat1 suppression is a hallmark of Th acti-

vation, we tested the effect of Malat1 deletion on Th activation.

We found that following in vitro differentiation of naive CD4+

T cells to Th1, Malat1
2/2 cells displayed a reduction in levels of

IFN-g that did not reach statistical significance but significantly

reduced expression of the immunoregulatory cytokine IL-10.

Upon Th2 differentiation, there was also a significant reduction

in IL-10 levels, with IL-4 being unaffected (Fig. 3A–C). The ef-

fect on IL-10 was more prominent in Th2 cells, which express

higher levels of IL-10 than Th1 cells in vitro (Fig. 3A, 3B). We

also observed a reduction in IL-10 mRNA levels (Fig. 3D). We

repeated these experiments under weakly polarizing conditions

and found a statistically significant reduction upon Malat1 loss on

IFN-g expression in suboptimally activated Th1 cells but no ef-

fects on IL-10 or IL-4 and Il-10 under weakly polarizing Th2

conditions (Supplemental Fig. 3A). Malat1 loss also suppressed

IL-10 and IL-17 expression under Th17-differentiation conditions

(Supplemental Fig. 3B). In addition to genetic knockout of

Malat1, targeting the RNA product of Malat1 with antisense oli-

gonucleotide gapmers also suppressed IL-10 at the mRNA level in

both Th1 and Th2 cells (Fig. 3E, 3F). The effect was also observed

at the protein level in Th2 cells (Fig. 3G). In Th1 cells, gapmer-

mediated inhibition of Malat1 resulted in a significant decrease in

IFN-g expression with no effects on IL-10 (Fig. 3H). Notably, we

found that the suppression of IL-10 expression occurred in

Malat12/2 CD4+ T cells irrespectively of how many times they

have divided (Fig. 3I, 3J), demonstrating that the effect of Malat1

on IL-10 is decoupled from Th cell proliferation. Overall, these

results demonstrated that Malat1 deficiency results in altered

effector Th cell differentiation and cytokine expression in vitro,

with a common effect among Th1, Th2, and Th17 cells being

suppression of IL-10.

Loss of Malat1 impairs Maf expression in Th cells

To explore the mechanism employed by Malat1 to regulate IL-10,

we determined the effect of Malat1 on transcription factors as-

sociated with Th cell activation and differentiation. Analysis of

our single-cell RNA-seq data revealed 25 transcription factors that

showed a significant correlation with Malat1 expression in Th1

cells from PcAS-infected mice (Fig. 4A). Notably, one of only

three transcription factors that showed positive correlation with

Malat1 was Maf (also known as c-Maf; Fig. 4B), a protein with

fundamental roles in CD4+ T cell biology and, notably, an es-

sential transcriptional regulator of IL-10 expression in Th cells

(23–28). We also observed a positive correlation between Malat1

and Maf in single Th2 cells, which was borderline statistically

nonsignificant (p = 0.0504; Fig. 4C). Despite a lack of a positive

correlation between Malat1 and IL-10 in our single-cell analyses,

possibly because of the low number of IL-10–expressing cells in

the analyzed datasets (Supplemental Fig. 3C), Maf was one of

only five genes positively correlating with expression of IL-10 and

Malat1 in single Plasmodium-specific CD4+ T PbTII cells

(Supplemental Fig. 3D). Investigating a list of previously pub-

lished transcription factors correlating with IL-10 expression in

CD4+ T cells (23) for overlap with genes correlated with Malat1

in single CD4+ T PbTII cells also identified Maf as the only gene

present in both sets.

Next, we tested the effect of lack of Malat1 on levels of tran-

scription factors with key roles in Th cell differentiation. Malat1

did not affect levels of Tbet in Th1 cells or Gata3 in Th2 cells

(Supplemental Fig. 3E, 3F). However, Maf levels were reduced in

both Th1 and Th2 cells, the effect reaching statistical significance

in Th2 cells (Fig. 4D), which express higher levels of Maf than

Th1 cells in vitro (Supplemental Fig. 3G). InMalat12/2 Th1 cells,

we also observed a significant downregulation of Stat4 (Fig. 4E),

with no changes observed in Stat6 in Th2 cells (Supplemental

Fig. 3H). Of note, Stat4 is also known to promote IL-10 tran-

scription in Th1 cells (29) and was also downregulated in

Malat12/2 Th1 cells. At the protein level, we observed only a

modest suppression of Stat4 expression in Malat12/2 Th1 cells

at day 6 (Fig. 4F), whereas suppression of Maf was more pro-

nounced than that observed at the mRNA level (Fig. 4D). Of

note, the kinetics of Maf mRNA levels in Th1 cells demon-

strated an early reduction followed by an increase (Fig. 4G),

suggesting that Malat1 might be playing a role in Maf regulation

at both the early and later stages of Th1 differentiation. Knock-

down of Malat1 with gapmers suppressed Maf levels in both Th1

and Th2 cells, demonstrating that the effect is mediated by the

Malat1 RNA (Fig. 4H). Furthermore, levels of Bhlhe40, a tran-

scription factor involved IL-10 regulation (30) and anticorrelating

with Malat1 (Fig. 4A), were not affected in Malat1
2/2 Th1 or Th2

cells (Supplemental Fig. 3I). Taken together, the above demonstrate

that Malat1 loss suppresses expression of Maf, a central transcrip-

tional regulator of IL-10 in Th cells.

Malat12/2 mice infected with L. donovani demonstrate

reduced IL-10 expression in CD4+ T cells and lower

parasite burden

Next, to explore the functional role of Malat1/Maf/IL-10 pathway

in vivo, we studied the role ofMalat1 in infection models in which

IL-10 deficiency either promotes pathogen clearance or enhances

immunopathology. First, we used L. donovani infection of mice as
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a model of pathogen-induced chronic inflammation (31). We

chose to study a model of visceral leishmaniasis because Th1 cell–

derived IL-10 has been previously shown to be a critical for

protection and pathogen clearance but also a critical determinant

of disease outcomes in humans (16, 32–36). Malat1 expression

was reduced in CD4+ T cells isolated from spleens of infected

mice compared with naive CD4+ T cells (Fig. 5A). Critically, we

found that at the chronic infection stages (day 42 p.i.), IL-10

expression was reduced in splenic CD4+ T cells from infected

Malat12/2 mice without any changes in IFN-g expression

FIGURE 3. Loss of Malat1 in in vitro–differentiated Th1 and Th2 cells results in suppression of IL-10 expression. (A) Representative FACS plots of

IL-10 and IFN-g or IL-10 and IL-4 expression in in vitro–differentiated Th1 and Th2 cells (day 6), respectively. (B) Percentage of IL-10+ live TCRb+ CD4+

WT (blue) orMalat1
2/2 (red) Th1 or Th2 cells. Levels determined by intracellular cytokine staining. Levels in Th0 cells shown for reference (n = 6 for Th1

and Th2, and n = 3 for Th0). (C) Percentage of IFN-g+ or IL-4+ live TCRb+ CD4+ WT (blue) or Malat12/2 (red) Th1 or Th2 cells, respectively. Levels

determined by intracellular cytokine staining. Levels in Th0 cells shown for reference (n = 6 for Th1 and Th2, and n = 3 for Th0). (D) IL-10mRNA levels in

in vitro–differentiated WT (blue) or Malat1
2/2 (red) Th1 and Th2 cells (day 6) determined by qRTPCR. Levels normalized to U6 and average levels in WT

cells. (E) IL-10, IFN-g, and Malat1 RNA levels in in vitro–differentiated Th1 cells (day 6) transfected with control (blue) or Malat1-targeting (brown)

gapmer (100 nM). Levels normalized to U6 and average levels in cells transfected with control gapmer. (F) IL-10, IL-4, and Malat1 RNA levels in in vitro–

differentiated Th2 cells (day 6) transfected with control (blue) or Malat1-targeting (brown) gapmer (100 nM). Levels normalized to U6 and average levels

in cells transfected with control gapmer. (G) Percentage of IL-10+ live TCRb+ CD4+ Th1 or Th2 cells transfected with control (blue) or Malat1-targeting

(brown) gapmer (100 nM). Levels determined by intracellular cytokine staining on day 6. (H) Percentage of IFN-g+ live TCRb+ CD4+ Th1 cells transfected

with control (blue) or Malat1-targeting (brown) gapmer (100 nM) (n = 4). (I) Percentage of IL-10+ CD4+ WT (blue) or Malat12/2 (red) Th1 cells (day 6)

per cell division as determined by intracellular cytokine and CFSE staining (n = 4). (J) Percentage of IL-10+ CD4+ WT (blue) or Malat1
2/2 (red) Th2 cells

(day 6) per cell division as determined by intracellular cytokine and CFSE staining (n = 4).
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(Fig. 5B–D), mirroring our findings from in vitro–activated

CD4+ T cells (Fig. 4). There were no statistically significant

changes in the number of splenic CD4+ T cells or frequency of

naive (CD62L+/CD442) and effector cells (CD62L2/CD44+)

CD4+ T cells between WT and Malat12/2 mice (Supplemental

Fig. 4A, 4B). The reduction in IL-10+ Th1 cells was accom-

panied with increased inducible NO synthase expression from

splenic myeloid cells, particularly CD11b+/CCR2+/Ly-6Chi

inflammatory monocytes in Malat12/2 mice (Fig. 5E). No changes

in MHCII or IL-10 were found in any of the myeloid populations

(Supplemental Fig. 4C, 4D). Critically, the observed reduction in

IL-10 levels was accompanied by significantly reduced parasite

loads in Malat12/2 mice (Fig. 5F, 5G) without any significant

effects on spleen or liver size (Supplemental Fig. 4E). These re-

sults demonstrated that Malat1 regulates IL-10 in Th cells in vivo

and that Malat1 deficiency can lead to enhanced protection during

chronic L. donovani chronic infection.

PcAS-infected Malat12/2 mice demonstrate reduced Th1 IL-10

expression and more severe disease

To further test the functional relevance of Malat1-mediated IL-10

regulation in vivo, we infected Malat12/2 and WT mice with

PcAS. IL-10 plays a prominent role in the outcome of malaria

disease in humans (37, 38), and in the PcAS experimental model

of malaria, IL-10 deficiency promotes severe disease manifested

as more pronounced weight loss and mortality (39). As in the case

FIGURE 4. Malat1 regulates Maf in Th cells. (A) Heatmap of correlation coefficients of significantly correlated transcription factors and coactivators

(p, 0.05) and Malat1 expression by single PbTII cells isolated from PcAS-infected mice at day 7 p.i. (B) Normalized transcript count ofMalat1 versus

Maf in single PbTII cells isolated from PcAS-infected mice at day 7 p.i. (C) Normalized transcript count of Malat1 versus Maf in single in vitro–

differentiated Th2 cells. (D) Maf mRNA levels in in vitro–differentiated WT (blue) or Malat1
2/2 (red) Th1 and Th2 cells (day 6) determined by qRTPCR.

(E) Stat4 mRNA levels in in vitro–differentiated WT (blue) or Malat12/2 (red) Th1 cells (day 6). In (D) and (E), levels are determined by qRTPCR (n = 7)

and normalized to U6 and average levels in WT cells. (F) Maf and Stat4 protein levels in WT (blue) or Malat12/2 (red) Th1 cells at days 4 or 6 post-

activation determined by Western blot. (G) Maf mRNA levels during in vitro Th1 differentiation, normalized to naive CD4+ T cells. Levels normalized to

U6 and average levels in naive CD4+ T cells. (H) Maf mRNA levels in Th1 or Th2 cells transfected with control (blue) orMalat1-targeting (brown) gapmer

(100 nM). Levels normalized to U6 and average levels in cells transfected with control gapmer.
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of L. donovani infection, CD4+ T cells from spleens of PcAS-

infected Malat1
2/2 mice demonstrated lower IL-10 expression

(Fig. 6A, 6B). A borderline nonsignificant trend toward reduction

in IFN-g+ CD4+ T cells was also observed (Fig. 6C). Crucially,

more pronounced weight loss was observed in Malat1
2/2 mice

compared with WT controls within the first week of PcAS infec-

tion (Fig. 6D). Of note, the experiment had to be terminated be-

cause of the increased rate of weight loss in Malat12/2 mice

(expected to exceed 20% of starting body weight by day 9) and

lack of touch escape and pinna reflexes in Malat1
2/2 at day 8

(median score of 0 out of 2 for both). We did not observe any

effects on parasitemia (Fig. 6E). Spleen enlargement was similar

between WT and Malat1
2/2 mice, but a modest reduction liver

size in PcAS-infected Malat12/2 mice was observed (Fig. 6F). Of

note,Malat1 did not affect IL-10 and IFN-g levels in CD8+ T cells

in infected mice (Supplemental Fig. 4F, 4G). The above findings

FIGURE 5. Loss of Malat1 results in suppression of IL-10 expression in Th1 cells in vivo and enhanced immunity to L. donovani. (A) Malat1 levels

determined by qRTPCR in naive (N) CD4+ T cells and CD4+ T cells isolated from spleens of L. donovani–infected mice (day 28) p.i. Levels normalized to

U6 and average levels in N CD4+ T cells. (B) Representative FACS plots of IL-10 and IFN-g expression in splenic CD4+ T cells from L. donovani–infected

WT and Malat12/2 mice (day 42 p.i.) following restimulation with PMA/ionomycin. (C) Percentage of IL-10+ live TCRb+ CD4+ cells from L. donovani–

infectedWT (blue) or Malat1
2/2 (red) mice (day 42 p.i.), determined by intracellular cytokine staining. Levels from noninfected N mice are also shown for

reference. Levels are shown in cells directly postisolation (brefeldin A [bref] alone) or following restimulation with PMA and ionomycin (PMA/iono).

(D) Percentage of IFN-g+ live TCRb+ CD4+ cells from L. donovani infected WT (blue) or Malat12/2 (red) mice (day 42 p.i.), determined by intracellular

cytokine staining. Levels from noninfected N mice are also shown for reference. Levels are shown in cells directly postisolation (bref alone) or following

restimulation with PMA/iono. (E) Percentage of inducible NO synthase-positive (iNOS+) myeloid live cells from spleens of noninfected (N) or

L. donovani–infectedWT (blue) orMalat12/2 (red) mice (day 42 p.i.; n = 5). (F) Spleen and liver parasite counts per 1000 nuclei from L. donovani–infected

WT (blue) or Malat12/2 (red) mice (day 42 p.i.). (G) Spleen and liver Leishman–Donovan units from L. donovani–infected WT (blue) or Malat12/2 (red)

mice (day 42 p.i.). For (C), (D), (F), and (G), n = 11, and for (E), n = 5.
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further demonstrated the role ofMalat1 in regulation of IL-10 in

Th cells in vivo and supported that the extent of Malat1

downregulation and its expression kinetics during Plasmodium

infections can be a significant determinant of infectious disease

outcome.

Discussion
Despite its high abundance and conservation, the physiological

function of Malat1 at the whole organism level has remained

elusive. We demonstrate that regulation of adaptive immunity is

one of the essential functions of this unique noncoding RNA. We

show that suppression ofMalat1, one of the most highly expressed

transcripts in naive CD4+ T cells, is a hallmark of Th1 and Th2

activation, but its complete deletion results in altered Th cell

phenotype and enhanced Th cell responses in vivo, which can lead

to protection from infection but also severe immunopathology. It

is possible that suppression of Malat1 can be due to dilution oc-

curring during the initial transcriptional burst at the early stages of

naive CD4+ T cell activation. This would mean that there are

transcriptional mechanisms excluding Malat1, a very highly

expressed and transcribed transcript, from this general burst. We

note that these mechanisms would be specific to Malat1, as we

show that the expression of other highly expressed lncRNAs is not

altered or diluted upon naive CD4+ T cell activation (Fig. 1C).

Furthermore, Malat1 suppression is sustained up to 6 d post-

activation, suggesting the existence of active transcriptional sup-

pression and/or posttranscriptional destabilization mechanisms

regulating its expression in Th cells. The observed inverse cor-

relation between Malat1 expression and transcriptional signatures

associated with cellular activation in single Th cells might signify

that high Malat1 expression is necessary for maintenance of

the naive CD4+ T cell state or that suppressed Malat1 expression

is required for appropriate Th cell differentiation. The seeming

contradiction between our findings and those reported by Yao and

colleagues (14) during acute LCMV infection can be explained by

the predominant focus of that study on CD8+ T cell responses and

the fact that IL-10 determines susceptibility to infection only in

chronic LCMV infection models (40). In our study, the effect of

Malat1 on IL-10 expression is observed both in in vitro differ-

entiated Th cells and in vivo in two distinct infection models

progressing at significantly different timescales (days for PcAS

versus weeks for L. donovani), demonstrating a CD4+ T cell–

intrinsic regulatory role for Malat1. We note that because of the use

of a full Malat1
2/2 mouse, we cannot exclude other CD4+ T cell–

independent mechanism contributing to L. donovani clearance or

PcAS-induced immunopathology. However, we propose that despite

its widespread expression across tissues, Malat1 has striking CD4+

T cell–specific functions, one of which involves promoting Maf and

IL-10 expression.

It is thought that Malat1 controls gene expression through

interacting with multiple RBPs (9, 21, 41, 42). Our experiments

with Malat1 inhibitors confirmed that the Malat1 RNA is re-

sponsible for altered Th cell differentiation. We note that we ob-

served slight differences between the effect of Malat1 knockout

and that of knockdown in Th1 cells (e.g., with regards to IFN-g

expression). These observations can be the result of the fact that

Malat1 is deleted in naive CD4+ TMalat12/2 cells before they are

activated, whereas in cells treated with gapmers, depletion occurs

concurrently with activation and endogenous downregulation of

Malat1. In any case, we show that inhibiting or deleting Malat1

can lead to reduction of IL-10 and Maf expression in vitro and

in vivo. We propose that the specificity of Malat1 functions in

CD4+ T cells is mediated through a network of interactions be-

tween Malat1 and RBPs, which, in turn, have cell-type specific

RNA targets and functions (43). Indeed, we anticipate that Malat1

functions in Th cell differentiation are likely to extend beyond

regulation of Maf and IL-10. The work presented in this study

reveals one mechanism employed byMalat1 to shape immunity to

FIGURE 6. Loss of Malat1 results in suppres-

sion of IL-10 expression in Th1 cells and more

severe disease in PcAS-infected mice. (A) Per-

centage of IL-10+ live TCRb+ CD4+ cells from

PcAS-infected WT (blue) or Malat12/2 (red) mice

(day 8 p.i.), determined by intracellular cytokine

staining. Levels from noninfected naive (N) mice

are also shown for reference. Levels are shown

in cells directly postisolation (brefeldin A [bref]

alone) or following restimulation with PMA and

ionomycin (PMA/iono). (B) As in (A) but for per-

centage of IFN-g+/IL-10+ live TCRb+ CD4+ cells

from PcAS-infected WT (blue) or Malat12/2 (red)

mice (day 8 p.i.). (C) As in (A) but for percentage of

IFN-g2/IL-10+ live TCRb+ CD4+ cells from PcAS-

infected WT (blue) or Malat12/2 (red) mice (day 8

p.i.). (D) Body weight of PcAS-infected WT

(B6, blue) or Malat1
2/2 (red) mice on indicated

days p.i. Weight expressed as percentage of starting

weight for each mouse. Black line shows weights of

noninfected mice. *p , 0.05, **p , 0.01, between

infected WT and Malat1
2/2 mice. (E) Parasitemia

(percentage of infected cells) in PcAS-infected WT

(B6, blue) or Malat12/2 (red) mice on indicated

days p.i. (F) Spleen and liver weights as per-

centage of body weight in PcAS-infected WT

(B6, blue) or Malat12 /2 (red) mice at day 8 p.i.

For (A)–(F), n = 4–6.

10 Malat1 LOSS SUPPRESSES IL-10 AND PROMOTES Th CELL IMMUNITY

 at U
n
iv

ersity
 o

f Y
o
rk

 o
n
 M

ay
 5

, 2
0
2
0

h
ttp

://w
w

w
.jim

m
u
n
o
l.o

rg
/

D
o
w

n
lo

ad
ed

 fro
m

 



infection and indicates that this lncRNA, like IL-10, plays a critical

role in controlling the fragile equilibrium between effective patho-

gen clearance and enhanced immunopathology. Our work suggests

that exploring how Malat1-binding RBPs regulate Maf and IL-10

expression through Malat1-dependent or -independent mechanisms

can provide key insight into the posttranscriptional regulation of this

critical immunoregulatory axis.

Implicating Malat1 in the regulation of IL-10 can have far-

reaching consequences. Although all activated (effector and

regulatory) CD4+ T cells express IL-10 at some point of their

differentiation trajectory (26), the magnitude and kinetics of

expression differ drastically between subsets. Yet, despite sig-

nificant progress on the transcriptional cues that initiate and

maintain IL-10 expression in CD4+ T cells, much less is known

about the molecular controllers that ensure accurate timing and

magnitude of IL-10 expression. Our work supports that Malat1

plays a key role in the complex process that ensures optimal IL-10

levels. Notably, the high abundance of Malat1 in naive CD4+

T cells is evolutionary-compatible with this role. Although Malat1

expression is reduced early during CD4+ T cell activation, its high

absolute abundance means that there is still a significantMalat1 pool

within effector Th cells to allow for appropriate IL-10 expression.

This provides a flexible molecular mechanism of regulating immune

responses mediated by Malat1, a major component of the CD4+

T cell noncoding transcriptome. Although predominantly focused on

Th1 and Th2 cells, our work suggests that Malat1 might be a sig-

nificant functional determinant of other Maf- and IL-10–expressing

immune cell types, such as regulatory T cells (44), follicular Th cells

(45, 46), or innate lymphoid cells (47).

Overall, our findings reveal Malat1 as a negative regulator of

immunity to infection. We uncover the functional significance of

Malat1 in the context of two major parasitic infectious diseases,

malaria and visceral leishmaniasis, providing new insight into

molecular determinants of disease susceptibility. We speculate

that through its fundamental role in Th cell differentiation and

function,Malat1 is likely to govern immune responses and disease

outcomes in a broad range of infectious, autoimmune, or inflam-

matory pathological conditions, reflecting the centrality of the

noncoding transcriptome in the immune system.
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