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Abstract

Recent progress has been made in identifying genomic regions implicated in trait evolution on a mi-

croevolutionary scale in many species, but whether these are relevant over macroevolutionary time

remains unclear. Here, we directly address this fundamental question using bird beak shape, a key evo-

lutionary innovation linked to patterns of resource use, divergence and speciation, as a model trait. We

integrate class-wide geometric-morphometric analyses with evolutionary sequence analyses of 10,322

protein coding genes as well as 229,001 genomic regions spanning 72 species. We identify 1,434 protein

coding genes and 39,806 noncoding regions for which molecular rates were significantly related to rates

of bill shape evolution. We show that homologs of the identified protein coding genes as well as genes

in close proximity to the identified noncoding regions are involved in craniofacial embryo development in

mammals. They are associated with embryonic stem cells pathways, including BMP and Wnt signalling,

both of which have repeatedly been implicated in the morphological development of avian beaks. This

suggests that identifying genotype-phenotype association on a genome wide scale over macroevolution-

ary time is feasible. While the coding and noncoding gene sets are associated with similar pathways, the

actual genes are highly distinct, with significantly reduced overlap between them and bill-related phe-

notype associations specific to noncoding loci. Evidence for signatures of recent diversifying selection

on our identified noncoding loci in Darwin finch populations further suggests that regulatory rather than

coding changes are major drivers of morphological diversification over macroevolutionary times.

2



Introduction

Disentangling the interplay between macroevolutionary trends and microevolutionary processes is fun-

damental to understand patterns of diversification over time. Key innovations, defined as traits that

allow species to interact with environments in novel ways (Stroud and Losos 2016), are thought to play

an important role determining macroevolutionary patterns of diversification, by allowing lineages to ac-

cess and exploit new, previously inaccessible resources (Hunter 1998). In birds, evolutionary transitions

in life-history traits and the emergence of de-novo innovations occurred rapidly alongside species and

niche diversification (Balanoff et al. 2013; Xu et al. 2014). Understanding whether convergent molecu-

lar mechanisms underlie independent trait evolution in different organisms is a key question in biology

(Manceau et al. 2010; Rosenblum et al. 2014; Lamichhaney et al. 2019). A variety of approaches to link

molecular and phenotypic changes have been developed (O’Connor and Mundy 2009, 2013; Mayrose

and Otto 2011; Levy Karin et al. 2017; Sharma et al. 2018; Hu et al. 2019) but these are generally

restricted to relatively simple discretized phenotypic information (Prudent et al. 2016) and may not be

easily applicable to more complex phenotypes on a genome-wide scale (Lartillot 2013).

A pertinent example of an important innovation is the evolution of the beak in modern birds. The avian bill

is closely associated with species’ dietary and foraging niches and changes in beak shape are implicated

in driving population divergence and speciation (Grant and Grant 1996; Bhullar et al. 2016). However,

despite considerable effort, the genetic and developmental underpinnings of avian beak shape is still

poorly understood, particularly at macroevolutionary scales. In the wake of the Cretaceous-Paleogene

(K-Pg) mass extinction event, beak shape has been hypothesized to have evolved through a series of

ontogenic stages (Bhullar et al. 2012, 2015), though the exact mechanism is yet to be established.

Beak shape is comprised of separate morphological and developmental parameters, each of which is

likely to be regulated by independent sets of transcriptional factors (Bhullar et al. 2015; Mallarino et al.

2011). Understanding how each of these morphological parameters evolved, how they are modulated,

and how changes in such factors affect patterns of beak shape disparity across modern birds represents

a significant unresolved challenge.

Several candidate genes linked to bird beak shape have been identified within populations or between

recently diverged species. Among the earliest studies to identify genes implicated in beak shape evo-
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lution are comparative transcriptomic analyses in Darwin’s finches (Abzhanov et al. 2004, 2006) that

found BMP4, a gene involved in the regulation of beak depth and width, and CAM (calmodulin), a gene

putatively involved in beak length. Both genes were later identified to be partially-implicated in beak

shape development (Mallarino et al. 2011). In addition, ALX1, a transcription factor involved in cran-

iofacial development, and HMGA2, a gene associated with increases in beak size, were also identified

in Darwin’s finches (Lamichhaney et al. 2015, 2018). In European populations of great tits, a collagen

gene, COL4A5, putatively linked to beak length variation, was found to be under selection (Bosse et al.

2017a). Collectively, these findings illustrate (I) a complex genetic architecture for beak shape, (II) that

genes implicated in beak shape may evolve under strong, detectable selective pressures in populations,

and (III) that such genes are likely to be different across different avian taxonomic groups.

However, despite these clear predictions, no previous attempts have been made to identify genes that

repeatedly play a role in beak shape evolution over broad evolutionary timescales. While previous stud-

ies have explored the genetic basis of other key avian traits (e.g. song, flight), such studies are typically

targeted towards candidate genes, or incorporated clade-specific features (Whitney et al. 2014; Wirth-

lin et al. 2014; Machado et al. 2016; Sackton et al. 2019). Thus, relatively little is currently known

about the genetics underpinning the macroevolution of beak shape. The current lack of insight connect-

ing species or clade specific candidate genes to large scale evolutionary time may be explained by two

main arguments. First, there is a growing consensus that large-effect genes (Fisher 1930) may not be as

important for the evolution of complex traits as small-effect genes (Hill 2010; Rockman 2012; Boyle et al.

2017). This model of adaptation is well-supported by growing population genomic evidence, but does

not explain candidate genes implicated in beak shape evolution with seemingly large-effects on beak

morphology and speciation. Second, genes under strong long-term selective pressures may simply be

difficult to detect due to confounding factors that obscure evolutionary signals. For example, selective

pressures and demography vary over time, making the detection of clear signals of adaptive evolution

and other evolutionary forces using sequence divergence approaches challenging. A third possibility is

that the role of convergent evolution (Stern 2013; Manceau et al. 2010; Rosenblum et al. 2014; Lamich-

haney et al. 2019) is limited if different genes are involved in morphological changes in different parts of

the phylogeny.

Here, we utilize large-scale comparative genomic and phylogenetically reconstructed geometric-
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morphometric data to identify candidate loci that relate to macroevolutionary shifts in trait evolution.

Specifically, we ask whether rates of bird beak shape evolution are explained by loci that experience

long-term, repeated shifts in molecular rates across distantly-related avian taxa. To accomplish this, we

designed an approach to detect loci persistently implicated in beak shape evolution across lineages by

integrating morphological data into substitution rate models in a phylogenetic framework. We analysed

protein coding genes as well as noncoding conserved regions from 72 bird species and combined

them with morphological information from all major avian orders and families spanning >97% of avian

genera (Cooney et al. 2017). Using this approach, we were able to link genetic and morphological

diversification on a macroevolutionary scale.

Results

Previous work has identified several genes and genomic regions that are under selection as likely

species-specific drivers of bird beak shape evolution (Table S1). In order to identify genes that play

a role in beak shape evolution beyond a lineage or species specific scale, we performed sequence

divergence analyses on protein coding genes and avian-specific highly conserved elements, possibly

regulatory, regions.

Detecting protein coding genes repeatedly implicated in beak shape evolution

To test whether protein coding changes of the same protein are repeatedly implicated with beak shape

morphological change across taxa, we designed an approach that incorporates estimates of morpholog-

ical trait evolution into a branch model of sequence diversification. Specifically, we estimated sequence

divergence using the ratio of non-synonymous substitutions to synonymous substitutions (dN/dS), which

provides an indication of selection acting at the protein level. Our model assumes that the rate of molec-

ular evolution (dN/dS) varies between predetermined types of branches, but not between sites in a pro-

tein, which is a reasonable restriction for computational reasons (Yang 1998; Yang and Nielsen 1998).

We obtained estimates of rates of beak shape evolution based on geometric-morphometric data for all

branches and grouped them into ranked bins according to their respective rates of beak shape evolution

(Figure 1). If protein coding genes drive morphological change we hypothesised a positive correlation
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between ranked bins – where bins increased in rates of estimated phenotypic evolution incrementally

– and estimates of dN/dS. For the 10,238 genes included in our analysis, we set up a branch model

assuming different dN/dS for each bin. Accompanying this, for each binned model, we estimated dN/dS

in a null model assuming no difference in dN/dS between bins. A comparison between the binned model

and the null model using a likelihood ratio test will reveal whether there is significant variation in the rate

of protein change across our grouped branches.

We found that 1,434 ( 14%) genes had significant variation in their dN/dS values across the grouped

branches after correcting for multiple testing (e.g. significantly different likelihoods between the two mod-

els, FDR < 0.05). To determine putative functions of these genes, we performed phenotype ontology

and pathway enrichment analyses using WebGestalt (Wang et al. 2017). Among the most enriched

pathways are Wnt Signalling pathway and ESC pluripotency pathways (Figure 2A), both of which have

been implicated in beak morphological development (Wu et al. 2004; Abzhanov et al. 2004; Merrill et al.

2008; Brugmann et al. 2010). Among the top phenotypic ontologies we find several ontology descrip-

tions associated with skin as well as ectopic calcification and hydrocephalus (Table 1). We also used

STRING (Szklarczyk et al. 2015), a comprehensive database combining different evidence channels

for protein-protein interaction networks and functional enrichment analysis, to identify protein interaction

partners of three proteins that have been previously identified as being associated with bird beak shape

morphology independent of size effects (ALX1, BMP4 and CALM1, Table S1). ALX1, in contrast to

BMP4 and CALM1, shows only two predicted interaction partners while the other two proteins are part of

huge interaction networks (Figure S1). Altogether we identified 467 protein interaction partners across

the three proteins and tested whether there is an enrichment of these in our dataset of 1,434 genes,

which is indeed the case (Table 2, 2 test, df=1, P=0.002).

We hypothesized a positive correlation between rates of molecular change and beak shape change,

however after correcting for multiple testing no significant correlations were observed. This might be

caused by limited power, e.g. due to short gene length or branch length, but generally suggests limited

evidence for a simple relationship between the rate of molecular change in protein coding genes and

morphological change.
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Detecting conserved noncoding regions implicated in beak shape evolution

To identify noncoding, possibly regulatory, regions that may be associated with beak shape morpho-

logical change over macroevolutionary time we analysed genomic regions based on avian conserved

elements obtained from the chicken genome (Seki et al. 2017). Specifically, we obtained multiple se-

quence alignments of conserved regions from whole genome alignments comprising 72 bird genomes

(Table S2) and grouped branches in up to 16 different categories using a k-means binning approach on

branch specific morphological beak shape rate change (Cooney et al. 2017), a similar binning approach

as for protein coding genes. Simulations show that 16 bins capture rate heterogeneity among branches

very well at computationally feasible costs (Figure S2).

We successfully processed and analysed 229,001 conserved elements, of which 39,806 ( 17.4%)

showed significant variation in their substitution rates after correcting for multiple testing ( 2-test,

FDR<0.05). As we were interested to link potentially cis-regulatory elements to their target genes

we restricted our analysis to conserved elements within or in close proximity to genes. Although the

location of cis-regulatory elements is not fixed, they frequently occur in introns (Wittkopp and Kalay

2012) or close to the transcription start site, such as promoters and promoter-proximal elements (Butler

and Kadonaga 2002; Andersson and Sandelin 2020). We extracted 884 genes that were overlapping

or within 200bp distance (Piechota et al. 2010) of the identified regions in the chicken genome. To

determine putative functions of these genes, we performed phenotype ontology and pathway enrichment

analyses using WebGestalt (Wang et al. 2017). Among the most enriched pathways are Ectoderm

Differentiation,Mesodermal Commitment Pathway, Focal adhesion and the ESC Pluripotency pathways

(Figure 2B). The latter pathway set was also identified for the protein coding genes and represents

an ensemble of pathways, including BMP and Wnt signalling, necessary for regulating pluripotency of

embryonic stem cells (Okita and Yamanaka 2006). Phenotypic associations included “Abnormality of

mouth shape and nasal bridge”, “cleft upper lip” and “nyctalopia” (Table 1).

We find that the 884 protein coding genes in cis to the identified genomic regions are overrepresented

in a set of 511 genes involved in early craniofacial development in mice (Brunskill et al. 2014) (P=0.012,

2-test, df=1, Table 3). To investigate whether there is any indicator for a biological meaningful rela-

tionship of the rate of molecular change and the rate of morphological change we focused on 2,644
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out of 39,806 genomic regions ( 1.2% of all genomic regions) that individually showed a significant

correlation (Kendall , P<0.05) between beak shape rates and substitution rate. We find that the over-

representation for mice craniofacial genes is driven by a subset of 163 genes nearby the 2,644 regions

(P=2.5×10
5, 2-test), but not the 721 remaining genes (P=0.58, 2-test, df=1). This suggests that

the rate of molecular change in noncoding regions may be correlated to the rate of beak shape change

(Table 3).

These previous analyses are most likely to identify the role of cis-regulatory elements because they focus

on genes nearby to noncoding regions. Hence, we conducted a second strategy to gain further insights

into the role of the identified noncoding regions as possible trans-acting elements. For this, we searched

for short enriched motifs in the set of 39,806 genomic regions using DREME (Bailey 2011), and focused

on the top 20 enriched motifs (Table S3). These motifs are potentially part of genomic regions that are

targets of transcription factors.

To identify potential proteins binding to these motifs we used TOMTOM (Gupta et al. 2007) and obtained

145 potential annotated binding proteins, including GSC and SMAD proteins, both previously identified

to be associated with beak shape morphological evolution (Parsons and Albertson 2009; Lamichhaney

et al. 2015). To discern potential functions related to craniofacial features we conducted a phenotype en-

richment analysis and identified “Abnormal lip morphology” as significant phenotype association and “lip

and craniofacial abnormalities” as disease associated ontologies using a disease annotation database

(Table 1).

Genetic differentiation of the identified noncoding loci in Darwin’s finches

To test whether the identified noncoding loci may play a role in shaping beak morphology in a recent

diversification we obtained polymorphism data from Darwin’s finch populations that either show a pointy

or blunt beak phenotype (Lamichhaney et al. 2015). Using this dataset we find that our identified regions

are characterised by patterns of linked selection that differ to a genomic control. Relative to genomic

control regions, we find a stronger genetic differentiation between blunt and pointy phenotype populations

(Figure 3A), as well as a higher overall genetic diversity at our identified loci (Figure 3B).
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Genes underlying evolutionary hotspots of beak shape divergence

Major evolutionary changes in beak shape may be concentrated within specific time periods and/or

lineages (Cooney et al. 2017), and it is plausible that genes underlying these changes will show corre-

sponding signatures of rapid evolution associated with such instances of ‘quantum evolution’ (Simpson

1944). We tested this prediction by identifying branches with the fastest-evolving rates of beak shape

evolution according to trait evolution estimates derived from our morphological data. We selected three

branches in our phylogeny with the most divergent beak shape evolution and refer to these branches as

‘hotspots’ (Figure S3). We conducted branch model tests (Yang et al. 1998; Yang 1998) for each of the

three rapidly-evolving branches.

After accounting for multiple testing, we detected 36 genes with a signature of rapid evolution (dN/dS

> 1, Figure 4). Although dN/dS>1 is indicative of rapid evolution, a formal significance test (versus a

model with a fixed dN/dS=1 for the tested branch) suggests only for nine of our 36 identified genes a

significant elevation of dN/dS above one, indicative of positive selection (Figure 4). We identified BGLAP,

a gene encoding osteocalcin, a highly-abundant, non-collagenous protein found in embryonic bone and

involved in bone formation (Ducy et al. 1996; Raymond MH, Schutte BC, Torner JC, Burns TL 1999).

Furthermore, we identified SOX5, a gene reported to have an assistive role in regulating embryonic

cartilage formation (Lefebvre et al. 1998). In chickens, the expression of SOX5 and a duplication in the

first intronic region of the gene is associated with the Pea-comb phenotype (Wright et al. 2009).

Discussion

We developed a phylogenetic approach to identify genomic loci underlying the evolution of beak shape

across macroevolutionary time and investigated genetic changes at coding and noncoding DNA across

72 bird species. Specifically, we asked whether loci that are repeatedly implicated in beak shape evo-

lution across the bird phylogeny can be detected. By binning branches according to estimated rates of

beak shape evolution, on the basis that phenotypic evolution is informative of genetic changes, we esti-

mated rates of protein evolution across more than 10,000 genes, as well as rates of DNA substitutions

for more than 200,000 avian-specific conserved regions, in a phylogenetic context.
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Protein coding genes associated with beak shape evolution across birds

For protein coding genes, we found significant variation in dN/dS between binned branches in 14% of

the genes tested, but we did not find a significant correlation between rates of phenotypic evolution and

protein evolution for any gene. The binned model for coding DNA described in this study is not a formal

test for positive selection, however a positive correlation between evolutionary rates and morphological

genes could be indicative of repeated adaptive evolution of the same gene. Although we do not find

evidence for this, some loci may have experienced shifts in dN/dS ratios repeatedly across distantly-

related branches in association with beak shape morphological change. This relation may be explained

by a number of different evolutionary forces, potentially acting independently or in tandem.

An association between dN/dS and morphological changes may not be associated with adaptive events,

but could also be explained by varying levels of genetic drift or purifying selection. For instance, relaxed

purifying selection often occurs in response to environmental changes that weaken the effect of selec-

tion previously required to maintain a trait (Lahti et al. 2009). Furthermore, environments and therefore

selective pressures are unlikely to remain stable over long evolutionary times. So far, only a few anal-

yses have found experimental evidence of fluctuating selection acting on polymorphisms (Lynch 1987;

O’Hara 2005). However, at a broader scale, models estimating the effects of fluctuating selection sug-

gest a contribution to divergence similar to signatures of adaptive evolution (Huerta-Sanchez et al. 2008;

Gossmann et al. 2014). Depending on the strength of fluctuating selection, or other types of varying

selection intensities, it may account for the lack of strong, positive correlation coefficients reported in this

study.

Although we might generally expect that morphological change in beak shape is positively correlated with

dN/dS, an alternative scenario can explain a negative correlation. Adaptive mutations, because of their

functional importance, are expected to experience strong purifying selection after their fixation (Kimura

1983). Functionally-important genes typically show signals of strong purifying selection (dN/dS << 1) and

this is not conducive to a pattern of repeated increase in dN/dS over distantly-related branches. Instead,

a selective sweep would be followed by sustained reduction in dN/dS through a prolonged period of

intense purifying selection. We also did not identify genes with a significant negative correlations. We

want to stress that further exploration of how adaptation occurs over macroevolutionary time, and the
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signals of selection left by ancient adaptive events is necessary to be able to fully elucidate our results.

It may well be that our assumption of a positive correlation with beak shape rate does not hold because

the role of convergent evolution is less pervasive, or that a rate analysis at coding sites does not have

enough power as a measure of repeated directional positive selection.

The effect of varying effective population size and life-history traits

Following the K-Pg extinction, modern birds experienced drastic reductions in body size, and with it,

an increase in shorter generation time – this phenomenon is termed the Lilliput effect (Berv and Field

2018). Critically, reductions in body size and generation time have likely resulted in an increased Ne,

and alongside it, an increase in the efficacy of selection (Kimura 1983; Gossmann et al. 2010; Lanfear et

al. 2014). This gradual decrease in body size and generation time, and with it, an increase in the neutral

substitution rate, could account for an incremental decrease in dN/dS over time. So far, a number of

studies have reported that a relationship exists between body mass and rates of molecular evolution in

birds, with varying results (Weber et al. 2014; Nabholz et al. 2016; Botero-Castro et al. 2017; Figuet

et al. 2017). In apparent contradiction with expectations of the neutral theory, several studies found

that a decrease in body mass in birds did not result in decreased dN/dS estimates (Lanfear et al. 2010;

Nabholz et al. 2013; Weber et al. 2014; Bolívar et al. 2019). In fact, they found a weakly negative

relationship between body mass and dN/dS, although similar studies report the opposite trend: dN/dS

in birds is positively correlated with body mass (Botero-Castro et al. 2017; Figuet et al. 2017). Indeed,

mean and median correlation coefficient of dN/dS with beak shape rate change is 0.047 and 0.048,

respectively (significantly different from zero, P<<0.05, one sample t-test, n=1,434), for the 1,434 genes

with significant heterogeneity in dN/dS, possibly suggesting a co-variation of beak shape change with

other traits, such as body size.

Fluctuations in effective population size (Ne), which are not taken into consideration by models of protein

evolution, may affect interpretations of dN/dS. For example, fluctuations in Ne may cause the fixation

of neutral or slightly-deleterious mutations – in this case, this would mean the interpretation that dN/dS

> 1 is indicative of positive or diversifying selection may be erroneous. Strong shifts in dN/dS may

be driven by sudden changes in population size or genuine positive selection, and might obscure or

oppose incremental increases in dN/dS across bins (Bielawski et al. 2016; Jones et al. 2016). In our
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model, however, the effects of population size changes are partially negated by co-estimating parameters

across branches. Unless specifically accounted for, substitution rate models do not consider the effect

of non-equilibria processes that could affect dN/dS estimates (Matsumoto et al. 2015). For example,

GC-biased gene conversion - described as the preferential conversion of ‘A’ or ‘T’ alleles to ‘G’ or ‘C’

during recombination induced repair – has been shown to significantly affect estimates of substitution

rates, in particular at synonymous sites in birds (Galtier et al. 2009; Weber et al. 2014; Boĺivar et al.

2016; Botero-Castro et al. 2017; Corcoran et al. 2017; Bolívar et al. 2019). However, while differences

in the extent of GC biased gene conversion across genes are known, much less is known about its

variation over time and incorporating such biases into large scale phylogenetic frameworks is far from

trivial (Gossmann et al. 2018).

Noncoding regions associated with beak shape morphology evolution across birds

Branch specific substitution rates of more than 39,000 avian-specific conserved regions are significantly

associated with beak shape rates. We find more than 850 genes that are nearby these regions, possibly

cis-regulatory factors, that show significant enrichment for craniofacial phenotypes in humans and mice.

Unlike for protein coding regions we were unable to correct our substitution rate estimates for the effect

of varying mutation rates (e.g. there is no counterpart for dS as for coding regions). Due to special

features of the avian karyotype, such as a stable recombinational and mutational landscape, it seems

unlikely that variation in mutation rate can contribute to the patterns observed here. However, while inter-

chromosomal re-arrangements are rare in birds, intra-chromosomal changes are more common and

could lead to sudden changes in local mutation rates (Gossmann et al. 2018). Additionally, we restricted

our analysis to noncoding regions that are specific to birds, or highly divergent relative to vertebrates

(Seki et al. 2017). Whether anciently conserved elements, such as vertebrate specific regulatory regions

(Lowe et al. 2015), may play a role in avian beak shape remains an open question. Equally, as the

noncoding regions were identified based on the chicken genome, we lack those conserved regions that

are absent from the chicken genome but present in other parts of the phylogeny.

More than 2,000 of the identified regions showed a significant correlation with binned rates of beak

shape change and genes nearby these regions significantly overlap with genes involved in craniofacical

development in mice (Table 3). The association of sequence divergence and trait divergence, along with
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a strong phenotypic enrichment, might suggest that the accumulation of neutral mutations at noncoding

sites may play a pronounced role in bird beak diversification. This is because in our applied model

we cannot distinguish between the action of selection and the accumulation of drift through fixations

of new mutations (e.g. background variation in mutation rate). Hence, disentangling differences in the

evolutionary pressures these regions experienced remains a major future challenge.

Some of the noncoding conserved genomic regions we identified may not be in physical proximity to

a gene, e.g. many enhancers can be megabases away from the gene they regulate. Potentially, this

could result from missing annotation for the Gallus gallus genome, or the fact that the genomic regions

are trans-acting factors. Identifying the mechanisms underlying trans-acting factors is however very

difficult to approach in-vitro as well as in-silico, and our approach to detect the role of trans-acting factors

over macroevolutionary time is novel. We opted for an in-silico approach through motif enrichment and

harvested vertebrate DNA binding protein databases to identify DNA binding proteins involved in beak

diversification that go beyond a cis-acting role. We identified 145 possible DNA binding proteins using

WebGestalt, including known transcription factors shown to be involved in beak development, that might

be associated with beak shape diversification.

Although there is some overlap between the identified protein coding gene set and the noncoding gene

set (Figure 5A), this is substantially less than expected by chance (P<0.005, 2-test, df=1, protein coding

genes versus genes near noncoding regions, Figure 5B). Indeed, based on the pathway and phenotype

associations we note that the identified ontologies are different between the two datasets (Table 1).

Although genes nearby noncoding regions are associated with facial and anatomical features, such as

mouth shape, cleft and nasal abnormalities, the protein-coding phenotypes are mainly associated with

dermal features. This suggests that the underlying evolutionary mechanisms of protein coding genes and

noncoding, potentially regulatory, regions may be rather distinct in beak morphology evolution. However,

as a common pattern, we identified that the ESC pathways are enriched in the coding and noncoding

gene sets (Figure 5C). This further supports the notion that fundamental cellular pathways, such as BMP

and Wnt signalling pathways, play a crucial role in the development of bird beaks and that this signal is

detectable at a macroevolutionary scale.

A pressing question remains as to whether these long-term associations are also reflected in selection

at the micro-evolutionary level (Shultz and Sackton 2019). To test this we obtained data from Darwin’s
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finch populations that differ in their beak shape morphology (Lamichhaney et al. 2015). Our identified

regions are characterised by pattern of linked selection that differ from genomic control regions with

stronger genetic differentiation between blunt and pointy phenotype populations (Figure 3A), as well

as a higher overall genetic diversity at our identified loci, suggestive of diversifying or partially relaxed

purifying selection (Figure 3B). The signatures of selection are embedded in a genetic environment that

shows local reduction of diversity due to strong purifying selection at these regions, typical of highly

conserved regions. Sophisticated analyses of pinpointed genomic loci will be pivotal for future studies

to disentangle the selective forces at these sites.

Rapid genetic evolution in hotspots of beak shape evolution

In a second approach we focused on the findings of previous studies: beak shape changes are driven

by different genes in specific branches. Applying this rationale, we identified rapidly-evolving lineages

from comprehensive trait evolution analyses specifically focused on beak shape evolution (Cooney et

al. 2017), and tested genes at these branches for accelerated rates of corresponding protein evolution.

We identified 36 protein coding genes with branch specific signals of rapid evolution, with nine of them

showing evidence for positive selection. These genes are putatively linked to branch and lineage-specific

changes in beak morphology.

The most plausible candidates were detected in an internal branch leading to the evolution of the

Strisores, a clade estimated to have diverged over 60 MYA, comprised of swifts, hummingbirds, nightjars

and their allies (Hackett et al. 2008; Prum et al. 2015; Cooney et al. 2017). As well as distinctively short

beaks evolving in swifts and nightjars, the divergence of hummingbirds is characterized by significant

changes beak shape, body size and metabolism. This is supported by reported accelerated rates of

evolutionary change in multiple cranial modules in Strisores (Felice and Goswami 2017). Together,

these changes encapsulate adaptive shifts that have occurred in the Strisores clade.

An important candidate that may explain some of these changes is BGLAP, a gene encoding for osteo-

calcin, a ubiquitous protein found in bones and whose presence is critical for normal bone development

(Ducy et al. 1996). Instead of direct involvement in bone production, osteocalcin regulates insulin ex-

pression and excretion, thereby regulating energy expenditure in muscle tissue, development of bone
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tissue and insulin sensitivity (Lee et al. 2007; Karsenty and Ferron 2012; Mera et al. 2016). Equally, as

with COL4A5, a type IV collagen protein encoding gene, and ALX1, implicated in craniofacial develop-

ment in Darwin’s finches, BGLAP may alternatively play a role in beak shape evolution (Lamichhaney

et al. 2015; Bosse et al. 2017b).

Similarly, we identified SOX5, a gene previously associated with the evolution of craniofacial phenotypes

in chickens, to be under putative positive selection in Strisores (Wright et al. 2009). Specifically, pea-

comb development is associated with ectopic expression of SOX5 caused by copy-number variation at

the first intron of SOX5 (Wright et al. 2009). This is independently corroborated by strong expression

patterns of SOX5 in the brain tissue – a possible proxy for craniofacial tissue, which is not included

in expression profiles – of chickens (Merkin et al. 2012). Beyond the pea-comb phenotype, SOX5 is

an essential transcription factor that acts to regulate chondrogenesis by enhancing a type-2 collage

protein (COL2A1) and promotes the differentiation of chondrocytes. Critically, the expression pattern

of COL2A1 in the pre-nasal cartilage, an important morphological module of beaks and their shape(s),

explains beak shape differences between medium and large ground finches during the 27th embryonic

stage of development (Mallarino et al. 2011). Therefore, we suspect that SOX5 may be important in

explaining beak shape changes in swifts, hummingbirds and nightjars.

Beak shape as a proxy for trait diversification

A key principle of adaptive radiation theory is that diversification of species is associated with ecological

and morphological diversity (Schluter 2000). In birds, the evolution of morphological changes tends

to coincide with speciation events, with some discontinuities, particularly early on in avian evolution

(Foote 1997; Ricklefs 2004; Hughes et al. 2013; Mcentee et al. 2018). Here, we focus particularly on

beak shape evolution because of its putative importance as a key ecomorphological trait and its link to

speciation, demonstrated by long term trends and direct ecological evidence in Darwin’s finches (Cooney

et al. 2017; Ricklefs 2004; Mcentee et al. 2018; Lamichhaney et al. 2018; Han et al. 2017; Grant and

Grant 2009; Podos 2001; Huber and Podos 2006). However, evidently, many of the genes detected

in this study are not associated with beak shape according to their putative functions. There are two

explanations for this: First, some of the identified genes are pleiotropic in character and second, their

functions are associated with traits that co-vary with beak shape evolution. We suspect that, alongside
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strong candidates for beak shape, we have detected genes implicated in a range of adaptive changes

that have allowed species to diversify into different ecological niches. Here, estimates of beak shape

evolution taken from Cooney et al. (2017) may have acted to identify branches with the fastest rate of

phenotypic evolution rather than beak shape evolution specifically. This may be of particular relevance

for the identification of genomic loci underlying beak shape diversification hotspots.

In summary, we were able to identify genomic loci associated with beak shape morphological evolution

over macroevolutionary time by combining morphometric analyses with genomic data. For both, coding

and noncoding regions, less than 20% of the tested loci show significant variation in their molecular rates,

and most of the tested loci in this study are genetically very conserved on a macroevolutionary scale

and hence cannot provide a genetic explanation for the observed phenotypic variation in beak shape

across species. We show that homologs of identified protein coding genes as well as genes in close

proximity to identified noncoding regions, are involved in craniofacial embryo development in mammals

and pinpoint two associated pathways, BMP and Wnt signalling, illustrating that changes in coding as

well as noncoding DNA facilitate phenotypic evolution of avian beak shape. The identified coding and

noncoding loci are highly distinct, with significantly reduced overlap between them and fundamentally

different phenotype associations. At present, the selective forces that contribute to patterns of genetic

and morphological diversification remain difficult to pinpoint. However, as genomic and morphological

data continue to accumulate, our framework offers a potentially powerful approach to further disentan-

gling the interplay of selection and drift responsible for driving the diversification of complex phenotypic

traits at macroevolutionary scales.

Methods

Multiple sequence alignments for protein coding genes

We used genomes of 57 bird species with high quality annotations from NCBI RefSeq (O’Leary et al.

2016) (Table S2). First, 12,013 orthologous protein coding genes were retrieved using RefSeq and

HGNC gene identifiers, alongside reciprocal BLAST approaches based on three focal species, chicken,

great tit and zebra finch - three of the best annotated high quality bird genomes available to date (Li et

al. 2003; Östlund et al. 2009; Afanasyeva et al. 2018). We then performed a first set of alignment runs
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using PRANK (Löytynoja and Goldman 2008). To ensure the quality of these sequence alignments, we

applied a customised pipeline including multiple alignment steps and quality filters. Details are described

in the Supplemental Methods.

Avian specific highly conserved regions (ASHCE) alignments derived from multispecies whole

genome alignments

To estimate substitution rates for noncoding conserved elements across the bird phylogeny, we obtained

whole genome information from NCBI for 72 bird species including the 57 bird species using in the coding

DNA analysis. To generate a multispecies whole genome alignment we aligned the 72 avian reference

genomes (as of 15/2/2017) against version 3 (galGal3) of the chicken (G. gallus) genome (version:

galGal3 available from: ftp://ftp.ensembl.org/pub/release-54/fasta/gallus_gallus/dna/) using the MUL-

TIZ package (Blanchette et al. 2004). Alignments were performed per chromosome following a pipeline

published earlier (Corcoran et al. 2017). A list of query species, genome versions used and down-

load locations can be found in Table S2. We used avian-specific highly conserved elements (ASHCE)

from Seki et al. (2017). They used whole-genome alignments for 48 avian and 9 non-avian vertebrate

species spanning reptile, mammal, amphibian and fish to obtain 265,984 ASHCEs. We were able to

prepare 229,001 (86% of the total number of ASHCE) high-quality alignments as input for the analysis

with baseml. For this target ASHCE regions were intersected with the whole genome alignments us-

ing BEDTools (v2.27.0) and FASTA files were created using customised scripts. Spurious and poorly

aligned sequences were automatically removed using trimAl v1.4 (Capella-Gutierrez et al. 2009).

Rates of morphological beak shape evolution

Information on beak shape evolution was extracted from a recent study (Cooney et al. 2017) that quan-

tified patterns of beak shape evolution across 2,028 species (>97% extant avian genera) covering the

entire breadth of the avian clade. Briefly, this study used geometric morphometric data based on 3-D

scans of museum specimens and multivariate rate heterogeneous models of trait evolution (Venditti et

al. 2011) to estimate rates of beak shape evolution for all major branches in the avian phylogeny.

Based on this information, we hypothesised that branches found to have experienced rapid beak shape

17



evolution should also experience faster evolutionary change at the protein or genomic level. To test

this, we split our evolutionary analyses into two, discrete approaches. First, for the detection of genes

and genomic regions that have recurring effects on beak shape variation across multiple branches, we

devised a binned approach. Second, for the detection of genes undergoing positive selection at branches

that show rapid morphological change, we designed a hotspot approach.

Binned branch approach for the detection of large-effect genes and regulatory regions

To detect genes that may be undergoing repeated periods of rapid, possibly adaptive, evolution across

multiple lineages, we grouped branches in each alignment phylogeny according to their rates of mor-

phological evolution using k-means binning (Lloyd 1982). Here, we opted for up to eight (coding) and

16 (ASCHE) bins, respectively, to enable robust statistical analysis but still reasonable computational

time for the substitution rate analysis. To phylogenetically link the genetic data to the morphological

data we relied on the Hackett et al. backbone (Hackett et al. 2008), hence we did not account for phylo-

genetic heterogeneity among genes and possible gene-tree species tree discordance. Branches were

grouped incrementally based on rates of trait evolution using a k-means binning approach, with the first

bin representing branches with the slowest rates of morphological evolution, and the last bin representing

branches with the fastest rates of morphological evolution (Figure 1). We assumed that genes involved

in beak shape evolution would experience evolutionary rate change at the protein level (dN/dS) pro-

portional to their respective rate of morphological evolution. Theoretically, we hypothesize that genes

important in beak shape evolution across many branches would show a strong positive correlation.

In our analysis, we tested this using a branch model which assumes different substitution rates (dN/dS)

across different, pre-defined, branches in a phylogeny. Critically, the branch model may be useful in

the detection of adaptive evolution occurring on particular branches (Yang et al. 1998; Yang 1998).

Furthermore, we selected the branch model due to computational efficiency; the branch-site model and

free-ratio model was deemed computationally intractable for a phylogeny of up to 57 species. Branches

in each alignment’s phylogeny were marked according to their respective bins (typically ranging from 1

to 8). Labelling bins as distinct types of branches allowed for the estimation of up to eight different dN/dS

values per gene. Conjointly, for each binned model, an alternative null model assuming no difference in

dN/dS between branches was run (one-ratio model). The difference between models was compared us-
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ing a likelihood-ratio test (LRT) by comparing twice the log-likelihood difference between the two models

which is assumed to be 2 distributed, with the relevant degrees of freedom (Yang 2007).

To estimate rate hetereogeneity among branches in noncoding regions, we used a model where we

assumed equal rates among branches (e.g. a global clock, clock=1) and compared it to a model where

we assumed different rates for the binned branches (clock=2), assessing significant differences between

the models using a likelihood ratio test. For the simulations (Figure S2) we randomly chose a 222bp

long genomic region with 67 species. We run a free branch model (clock=0) and used the obtained

parameters as input for INDELible (Fletcher and Yang 2009). We simulated 100 sets of sequences

and applied two types of binning: (1) A binning that grouped similar branch lengths and (2) an arbitrary

binning. We considered 5 different numbers of bins (with 2,4,8,16 and unrestricted number of bins).

We then conducted rate estimation on each of the binning approaches and calculated how well these

estimates correlated (Kendall’s correlation coefficient) with the input parameters for INDELible (e.g. the

simulation input) as well as the estimated values from the free branch model.

Hotspot approach for the detection of genes under positive selection

To formally test for rapid and potentially positive selection on branches with increased rates of morpho-

logical evolution, we used a ‘hotspot’ approach. As opposed to focusing on large-effect genes important

across distantly-related avian taxa, we identified and marked specific, individual branches undergoing

the fastest rates of morphological evolution, according to rate estimates from Cooney et al. (2017). At

these branches, we hypothesize to detect higher dN/dS estimates relative to background branches.

Phenotype and pathway ontologies, protein databases and statistical analyses

To determine the putative function of genes detected and enriched according to pathway and phenotype

enrichment, we used WebGestalt (Wang et al. 2017) based on the human annotation. Specifically, we

used the latest release of WebGestalt (last accessed 11.3.2019), and ran an Overrepresentation En-

richment Analysis (ORA) for phenotypes (Human Phenotype Ontology), pathways (Wikipathways) and

diseases (Glad4U). We set the minimum number of genes for a category to 40 and reported top statisti-

cal significant results as weighted cover set (as implemented in WebGestalt). We also obtained a set of
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511 genes known from mouse knock-out phenotypes to result in abnormal craniofacial morphology or

development (Brunskill et al. 2014). To account for multiple testing in our binned and hotspot models,

2-squared P-values were corrected using the Benjamini-Hochberg procedure (Benjamini and Hochberg

1995). We used Kendall’s correlation coefficient to compare the association between increasing bin

number and corresponding dN/dS (coding) and substitution rates (noncoding) for each gene. Statis-

tical analysis was conducted using the SciPy library in Python, and graphs were produced using the

‘tidyverse’ package in R (Wilkinson 2011; R Core Team 2018) and the ‘matplotlib’ package in Python.

Phylogenies were produced using the ‘phytools’ package in R (Revell 2012). Protein interaction partners

for ALX1, BMP1 and CALM1 were retrieved from the STRING database (Szklarczyk et al. 2015) based

on the human annotation requiring a minimum confidence score of 0.6 for all interaction partners. Motif

detection was conducted using DREME (Bailey 2011) along with the identification of potential binding

proteins using TOMTOM (Gupta et al. 2007). Specifically, we focused on vertebrate binding proteins

using a common set of three available databases (JASPAR2018_CORE_vertebrates_non-redundant,

jolma2013, uniprobe_mouse) that together contained 649 annotated motif binding proteins.

Population genetic analysis in Darwin’s finches population with diverse beak morphology

We obtained per site measurements of population differentiation (fixation index FST and nucleotide di-

versity (Watterson 1975; Weir and Cockerham 1984) by calculating and contrasting genetic diversity

of Darwin finch populations (Lamichhaney et al. 2015) with blunt (5 and 10 individuals from Geospiza

magnirostris and G. conirostris populations, respectively) and pointed beaks (10 and 8 individuals from

G. conirostris and G. difficilis populations, respectively).

Software availability

Scripts concerning the analysis of protein coding regions and noncoding regions are available at GitHub

(https://github.com/LeebanY/avian-comparative-genomics; https://githubcom/mattheatley/bird_project)

and as Supplemental Code.
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Figure Legends

#0 #1 #2 #3 #4 #5 #6

Figure 1: An example tree illustrating the grouping of branches according their beak shape mor-

phological rates. The marked topology was then used as input for branch model in PAML (codeml

for coding DNA and baseml for noncoding DNA). The maximum number of bins is eight for the coding

gene set and 16 for the avian-specific highly conserved elements (ASHCE) set. Here, as an example, a

binning with seven bins (#0 to #6) is shown.
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Figure 2: Pathway enrichment analysis of (A) 1,434 protein coding genes and (B) 848 genes nearby

avian conserved genomic regions that show heterogeneity of substitution rates across branches that

are grouped according to their beak shape morphological change rates. False discovery rate (FDR) and

enrichment ratio stem from the pathway enrichment analysis in WebGestalt (Wang et al. 2017) using all

analysed genes and human annotations, as these are the most comprehensive annotation databases

to date. The color of the dots is denoted in the color scale and proportional to the category size, as

definded by WebGestalt.
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A

B

Figure 3: Identified noncoding genomic regions in a microevolutionary context in populations of

Darwin’s finches. (A) Measures for genetic differentiation among populations, FST , show contrasting

genetic diversity in Darwin finch populations with blunt and pointy beaks, respectively. The identified loci

associated with beak shape evolution over macroevolutionary time and nearby regions show a stronger

differentiation relative to similar loci that are not asscoatiated with beak shape. (B) Total genetic diversity

is higher for beak shape associated loci and nearby regions.
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Figure 4: Elevated rates of protein evolution (dN/dS) associated with hotspots of beak shape
morphological diversification. Shown are dN/dS values for selected hotspot branches for 36 genes

detected with dN/dS>1. Black dotted line formally indicates neutrality (dN/dS = 1) and asteriks indicate

genes for which the branch-specific estimate dN/dS is significantly different from 1 (e.g. indicative of

positive selection). Hotspots 1, 2 and 3 refer to the branches of the tree with the fastest, 2nd fastest

and 3rd fastest rates of beak shape morphological change, respectively (Figure S3). For visualisation

purposes are large dN/dS values truncated at 5.2 (the estimate for SKAP2).
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Figure 5: Comparison of beak shape associated gene sets derived from coding and noncoding

genomic regions. (A) Overlap of the identified gene sets (B) Overlap of genes included in each dataset

(background) (C) 32 Genes identified in our study occurring in the ESC pluripotent pathways, including

BMP and Wnt signalling. Genes highlighted in green were detected in the protein coding analysis,

while genes highlighted in orange were detected in the noncoding analysis. ELK1, labelled in blue, was

detected as one of the transcription motif binding proteins. Coding genes denote all genes analysed for

the protein coding gene analysis, CIS genes are genes in local proximity to analysed noncoding genomic

regions, Motif binding are annotated proteins from the motif binding identification with TOMTOM (Gupta

et al. 2007).
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Table 1: Top phenotype ontology associations identified from the identified genomic loci, coding genes, genes nearby noncoding regions and possible

DNA binding proteins. * marked ontology terms are based on disease annotation database approach (GLAD4U).

Human Phenotype ID Description Set size Expected Ratio P-value

Coding gene set (1,434 genes)

HP:0100585 Telangiectasia of the skin 40 6.1374 2.4440 0.00046

HP:0001651 Dextrocardia 47 7.2114 2.3574 0.00032

HP:0031654 Abnormal pulmonary valve physiology 59 9.0526 2.2093 0.00027

HP:0100242 Sarcoma 65 9.9732 2.1056 0.00040

HP:0000987 Atypical scarring of skin 73 11.2010 2.0534 0.00032

HP:0010766 Ectopic calcification 108 16.5710 1.8104 0.00049

HP:0000238 Hydrocephalus 157 24.0890 1.6605 0.00043

Non-coding gene set

(884 genes nearby non-coding regions)

HP:0011338 Abnormality of mouth shape 59 10.1430 1.7746 0.00736

HP:0010766 Ectopic calcification 73 12.5500 1.6733 0.00824

HP:0100242 Sarcoma 53 9.1115 1.6463 0.02801

HP:0001417 X-linked inheritance 92 15.8160 1.6439 0.00439

HP:0010576 Intracranial cystic lesion 57 9.7992 1.6328 0.02547

HP:0000204 Cleft upper lip 61 10.4870 1.6211 0.02313

HP:0000662 Nyctalopia 59 10.1430 1.5774 0.03478

HP:0000422 Abnormality of the nasal bridge 283 48.6520 1.2538 0.02098

Motif binding proteins (145 genes)

PA443736* Cleft Lip 33 3.9165 2.5533 0.00260

PA446836* Craniofacial Abnormalities 51 6.0527 2.3130 0.00094

PA443223* Congenital Abnormalities 87 10.3250 2.0338 0.00023

HP:0000159 Abnormal lip morphology 65 11.7620 1.4453 0.03522

3
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Table 2: Enrichment test for proteins identified as dN/dS heterogeneous/homogeneous and in-
teraction partners of BMP4/ALX1/CALM1. dN/dS values were retrieved for groups of branches with

similar beak shape morphological rates. The common interactome of BMP4/ALX1/CALM1 consists of

467 proteins, of which 256 were included in our gene analysis. Altogether, we identified 53 proteins of the

BMP4/ALX1/CALM1 interactome that showed significant variation in their dN/dS values (heterogeneous

dN/dS).

Protein category

dN/dS

heterogeneity dN/dS homogeneous Ratio

BMP4/ALX1/CALM1

and interaction partners 53 203 0.26

Other proteins 1381 8601 0.16

————- ——– ———- ——-

P-value ( 2
2 × 2 test,

df=1)

0.002

Table 3: Enrichment tests for genes nearby genomic regions that show significant hetereogene-

ity in their substitution rates (heterogeneity was tested for grouped branches according to beak

shape morphological change rates) versus a set of 511 known genes involved in craniofacial

development in mice. Gene sets were further subset according to whether their was a significant cor-

relation between morphological change of beak shape and substitution rates. P-values were obtained

using a 2
2 × 2 test.

Gene category Subset Total

In

craniofacial

gene set

not in

craniofacial

gene set Ratio

Genes near

identified genomic

regions

884 48 836 0.057

Positively

correlated

163 17 146 0.116

Not

positively

correlated

721 31 690 0.045n.s.

Genes near

non-identified

genomic regions

5572 201 5371 0.037
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Supplemental Methods

Multiple sequence alignments for protein coding genes

We used genomes of 57 bird species with high quality annotations from NCBI RefSeq (O’Leary et
al. 2016) (Table S2). First, 12,013 orthologous protein coding genes were retrieved using RefSeq
and HGNC gene identifiers, alongside reciprocal BLAST approaches based on three focal species,
chicken, great tit and zebra finch - three of the best annotated high quality bird genomes available
to date (Li et al. 2003; Östlund et al. 2009; Afanasyeva et al. 2018). We then performed a first set
of alignment runs using PRANK (Löytynoja and Goldman 2008). To ensure the quality of these
sequence alignments, we applied a customised pipeline. Firstly, alignments were filtered for length
and the number of species they contained. Generally, we applied a length filter that removed
alignments containing more than 1500 amino acid residues (for computational reasons) and less
than 50 amino acid residues (for power reasons). These thresholds were based on distributions
of overall sequence length across all alignments. Furthermore, we compared the number of gaps
and length of sequences to a reference sequence in all alignments. Regarded as the most well-
annotated, high-quality avian genome, we selected the red jungle fowl (i.e. chicken, Gallus gallus)
as our reference sequence for all alignments (Hillier et al. 2004; Warren et al. 2017). Sequences
determined to be too dissimilar (e.g. because of falsely aligning non-homologous regions within a
protein), based on gappyness – the amount of gaps in a sequence – and overall sequence length,
relative to our reference species sequence, were also removed from alignments. Specifically, for
gappyness, if gaps resulted in more than 20% dissimilarity with our reference sequence, sequences
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were removed. We also limited the analyses to alignments containing 20 or more species, and
removed alignments that did not contain the reference chicken sequence.

For reliable estimation of sequence divergence at the protein level, sequences that appeared too
divergent were removed - caused by either elevated local mutation rate or, more likely, by falsely
assigned orthologies. For this pairwise estimation of dN, dS and dN/dS was performed to determine
saturation of non-synonymous and synonymous substitutions. Removal of saturated sequences
was accomplished in two ways. First, pairwise synonymous substitution rates deemed too large
were removed (dS>5), and second, if synonymous substitution rates exceeded twice the pairwise
synonymous substitution rate between G. gallus and Taeniopygia guttata (zebra finch), two of our
focal species, sequences were removed. In addition, if the pairwise non-synonymous substitution
rate, dN, and the non-synonymous to synonymous substitution rate, dN/dS, exceeded two (dN>2
and dN/dS>2) sequences were removed from alignments. By this the sequences are conservatively
aligned which reduces the chances of alignment-error signal of (positive) selection.

After a second alignment step with PRANK, to ensure positional homology, we utilised two masking
programs: GBLOCKS and ZORRO. GBLOCKS calculates and uses positional homology to deter-
mine contiguous segments that are not conserved (Talavera and Castresana 2007). Additionally,
GBLOCKS accounts for rapidly-evolving, homologous positions and flanking positional homology.
For this, we used the following parameters to identify and remove unreliable positions: -t=p, -k=y,
n=y, v =32000, -p=t. To supplement this, we used ZORRO, a probabilistic masking program which
calculates posterior probabilities to determine the reliability of positions (Wu et al. 2012). Posterior
probabilities calculated by ZORRO translate into scores that range from 0 to 10 – the higher
the score, the better the positional homology. Positions that scored below 9 were removed from
sequences. The removal of unreliable positions from sequences was performed with PAL2NAL
(Suyama et al. 2006) using a customised script. Equally, PAL2NAL generated for each protein
alignment the corresponding codon alignment in preparation for evolutionary analyses. A final
length filter was applied to remove any alignments with a sequence length below 50 amino acids.

Rates of morphological beak shape evolution

Information on beak shape evolution was extracted from a recent study (Cooney et al. 2017) that
quantified patterns of beak shape evolution across 2,028 species (>97% extant avian genera)
covering the entire breadth of the avian clade. Briefly, this study used geometric morphometric data
based on 3-D scans of museum specimens and multivariate rate heterogeneous models of trait
evolution (Venditti et al. 2011) to estimate rates of beak shape evolution for all major branches
in the avian phylogeny. Importantly, the beak shape measurements derived from this study are
independent of variation in beak size, the effects of which are removed as part of standard geometric
morphometric analyses (see Cooney et al. (2017) for full details). This is useful for our purposes as
beak size tends to be strongly related to body size (which is known to covary with several genetic
parameters), and because beak shape (rather than size) represents a key axis of ecomorphological
differentiation between major avian groups (Cooney et al. 2017). To extract rate estimates for the
species included in this study, we first pruned the 2,028 tip morphology rate-scaled phylogenies
derived from Cooney et al. (2017) (based on the Hackett et al. (Hackett et al. 2008) backbone)
to include only species for which coding/genomic information was available. We then divided the
branch lengths in this pruned morphology rate-scaled tree by time (i.e. branch lengths from a
similarly pruned time tree, also derived from Cooney et al. (2017)), to generate rate estimates
specific to each branch in the pruned subtree. It is worth noting that our approach of pruning the
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2,028 tip morphology rate-scaled tree is preferable to running a separate rates analysis including
only a limited number of species included in our genomic dataset because the increased density of
sampling in the larger tree will permit more accurate estimation of the magnitude and phylogenetic
position of rate shifts in beak shape evolution across branches of the phylogeny.

Binned branch approach for the detection of large-effect genes and regulatory regions

To detect genes that may be undergoing repeated periods of rapid, possibly adaptive, evolution
across multiple lineages, we grouped branches in each alignment phylogeny according to their
rates of morphological evolution using k-means binning (Lloyd 1982). Here, we opted for up to
eight (coding) and 16 (ASCHE) bins, respectively, to enable robust statistical analysis but still
reasonable computational time for the substitution rate analysis. To phylogenetically link the genetic
data to the morphological data we relied on the Hackett et al. backbone (Hackett et al. 2008),
hence we did not account for phylogenetic heterogeneity among genes and possible gene-tree
species tree discordance. Branches were grouped incrementally based on rates of trait evolution
using a k-means binning approach, with the first bin representing branches with the slowest
rates of morphological evolution, and the last bin representing branches with the fastest rates of
morphological evolution (Figure 1). We assumed that genes involved in beak shape evolution would
experience evolutionary rate change at the protein level (dN/dS) proportional to their respective
rate of morphological evolution. Theoretically, we hypothesize that genes important in beak shape
evolution across many branches would show a strong positive correlation.

In our analysis, we tested this using a branch model which assumes different substitution rates
(dN/dS) across different, pre-defined, branches in a phylogeny using codeml (Yang 2007). Critically,
the branch model may be useful in the detection of adaptive evolution occurring on particular
branches (Yang et al. 1998; Yang 1998). Furthermore, we selected the branch model due to
computational efficiency; the branch-site model and free-ratio model was deemed computationally
intractable for a phylogeny of up to 57 species. Branches in each alignment’s phylogeny were
marked according to their respective bins (typically ranging from 1 to 8). Labelling bins as distinct
types of branches allowed for the estimation of up to eight different dN/dS values per gene. Con-
jointly, for each binned model, an alternative null model assuming no difference in dN/dS between
branches was run (one-ratio model). The difference between models was compared using a
likelihood-ratio test (LRT) by comparing twice the log-likelihood difference between the two models
which is assumed to be χ2 distributed, with the relevant degrees of freedom (Yang 2007) (e.g, seven
degrees of freedom in case eight different branch categories were classified). If the binned model
showed a significant difference to the one-ratio model an association between beak shape change
and molecular rate change was inferred.

To estimate rate heterogeneity among branches in noncoding regions, we used a model where
we assumed equal rates among branches (e.g. a global clock, clock=1) and compared it to a
model where we assumed different rates for the binned branches (clock=2), assessing significant
differences between the models using a likelihood ratio test using baseml from the paml package
(Yang 2007). For the simulations (Figure S2) we randomly chose a 222bp long genomic region
with 67 species. We run a free branch model (clock=0) and used the obtained parameters as input
for INDELible (Fletcher and Yang 2009). We simulated 100 sets of sequences and applied two
types of binning: (1) A binning that grouped similar branch lengths and (2) an arbitrary binning.
We considered 5 different numbers of bins (with 2,4,8,16 and unrestricted number of bins). We
then conducted rate estimation on each of the binning approaches and calculated how well these
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estimates correlated (Kendall’s τ correlation coefficient) with the input parameters for INDELible
(e.g. the simulation input) as well as the estimated values from the free branch model.

Hotspot approach for the detection of genes under positive selection

For each alignment we generated and conducted three independent branch models, corresponding
to the three most rapidly evolving branches in each phylogeny. A null model assuming no differences
in dN/dS across branches in the phylogeny was conjointly computed. Again, the LRT was calculated
to determine whether differences between each ‘hotspot’ model and the null model were significant.
It is important to note that branches are not uniformly selected across alignments and alignment
trees. This is because alignments vary in the number of species and branches they contain
due to the filtering process applied. Hence, the selection of branches is dependent on species
rates of morphological evolution relative to other species – the exclusion of species, particularly
rapidly-evolving branches, causes new branches to be recruited in the hotspot-branch model. In
total, five different branches rotate over our three hotspots (Figure S3). This can be done because
each analysis is conducted per gene on the correctly pruned phylogeny. In most cases our fastest
branch was an internal branch leading to the diversification of swifts (Apodidae), nightjars and their
allies, (Caprimulgidae) and hummingbirds (Trochilidae). This is plausible given the disparity in beak
shape, physiology and ecology that has arisen in this clade (Prum et al. 2015; Cooney et al. 2017).

Phenotype and pathway ontologies, protein databases and statistical analyses

To determine the putative function of genes detected and enriched according to pathway and
phenotype enrichment, we used WebGestalt (Wang et al. 2017) based on the human annotation.
Specifically, we used the latest release of WebGestalt (last accessed 11.3.2019), and ran an
Overrepresentation Enrichment Analysis (ORA) for phenotypes (Human Phenotype Ontology),
pathways (Wikipathways) and diseases (Glad4U). We set the minimum number of genes for a
category to 40 and reported top statistical significant results as weighted cover set (as implemented
in WebGestalt). We also obtained a set of 511 genes known from mouse knock-out phenotypes to
result in abnormal craniofacial morphology or development (Brunskill et al. 2014). To account for
multiple testing in our binned and hotspot models, χ2-squared P-values were corrected using the
Benjamini-Hochberg procedure (Benjamini and Hochberg 1995). We used Kendall’s τ correlation
coefficient to compare the association between increasing bin number and corresponding dN/dS

(coding) and substitution rates (noncoding) for each gene. Statistical analysis was conducted using
the SciPy library in Python, and graphs were produced using the ‘tidyverse’ package in R (Wilkinson
2011; R Core Team 2018) and the ‘matplotlib’ package in Python. Phylogenies were produced
using the ‘phytools’ package in R (Revell 2012). Protein interaction partners for ALX1, BMP1 and
CALM1 were retrieved from the STRING database (Szklarczyk et al. 2015) based on the human
annotation requiring a minimum confidence score of 0.6 for all interaction partners. Motif detection
was conducted using DREME (Bailey 2011) along with the identification of potential binding proteins
using TOMTOM (Gupta et al. 2007). Specifically, we focused on vertebrate binding proteins using
a common set of three available databases (JASPAR2018_CORE_vertebrates_non-redundant,
jolma2013, uniprobe_mouse) that together contained 649 annotated motif binding proteins.
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Population genetic analysis in Darwin’s finches population with diverse beak morphology

We used the 39,806 noncoding genomic loci as focal regions and 1000 bp on either site of their
center. To map our identified genomic loci onto the medium ground finch (Geospiza fortis) reference
genome (Zhang et al. 2014), we used the best BLAST (default parameters) hit per region. We
also extracted the same number of size and chromosome matched genomic regions that did not
show an association with beak shape morphological diversification as control regions. To study
the effect of selection at the focal and nearby sites due to linkage, a sliding window approach
was used, applying a window size of 400bp every 50 bp around the center of the focal regions
(Other window and step sizes gave very similar results). For FST we used the highest per site FST

value for a particular genomic region in a given window and calculated the mean across all regions.
Watterson’s θ was calculated per genomic region in a given window and then averaged across all
loci.
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Supplemental Figures

Supplemental Figure S1

A

B

C

Figure S1: In-silico interaction networks derived from the STRING database for three proteins
previously shown to be involed in the development of beak shape morphology.

6



Supplemental Figure S2

A

B

C

Figure S2: Simulations to capture rate hetereogenity among branches by co-estimating

rates of molecular change for grouped branches, estimated for noncoding regions. (A)
Correlation coefficients (Kendall τ ) of simulated and estimated rate hetereogeneity for different
bin numbers, where branches of similar rates are grouped together. (B) Same approach using an
arbitrary binning of branches (C) Relative computational time requirements for different number of
bins.
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Supplemental Figure S3

Figure S3: An illustration of the hotspot approach containing phylogeny and the five fastest

rapidly-evolving branches selected for hotspot model. For the phylogeny, branch lengths
correspond to the scaled rate of morphological beak shape evolution. Branches coloured and
indicated with a star are rapidly-evolving branches that feature in the hotspot models. Because
the number of available gene sequences vary per species, the fastest branches may differ for a
particular gene. The key shows branches found in each hotspot model. In hotspot 1, branches
found include: Strisores (consisting of nightjars and their allies, swifts and hummingbirds), Darwin’s
finches, and Phasianidae (represented by the red-jungle fowl). In hotspot 2, branches include:
Darwin’s finches, Phasianidae, Aptenodytes (represented by the emperor penguin) and Buceros
(represented by the Rhinoceros hornbill). Hotspot 3 contains the same branches as hotspot 2
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Table S1: Known candidate genes associated with beak shape morphology and size

Gene symbol Gene name Description

ALX1 ALX Homeobox 1 Implicated in Lamichhaney et al (2015) as principle gene in a major locus contributing to beak shape diversity across Darwin’s finches
BMP2 Bone Morphogenetic Protein 2 Shown to correlate with beak size but not shape (Abzhanov et al, 2004).
BMP4 Bone Morphogenetic Protein 4 Shown to correlate strongly with deep and broad beak morphology (Abzhanov et al, 2004).
BMP7 Bone Morphogenetic Protein 7 Shown to correlate with beak size but not shape (Abzhanov et al, 2004).
CALM1 Calmodulin 1 Shown to correlate with thin, elongated beak morphologies (Abzhanov et al, 2006).

COL4A5 Collagen Type IV Alpha 5 Chain Shown to influence beak shape in great tits (Parus major) (Bosse et al., 2018)
DKK3 Dickkopf WNT Signaling Pathway Inhibitor 3 Incidicated to influence different beak shapes in Darwin’s finches through expression variation (Mallarino et al., 2011)
DLK1 Delta Like Non-Canonical Notch Ligand 1 Shown in Chaves et al (2016) to correlate with beak size in Darwin’s finches.
FOXC1 Forkhead Box C1 In the largest Fst value regions between Darwin’s Finches with different beak sizes (Lamichhaney et al 2015).
GSC Goosecoid Homeobox In the largest Fst value regions between Darwin’s Finches with different beak sizes (Lamichhaney et al 2015).

HMGA2 High Mobility Group AT-Hook 2 Implicated in Lamichhaney et al (2016) to influence beak size in species of Darwin’s finches and in Chaves et al (2016).
LEMD3 LEM Domain Containing 3 Part of a locus with significant influence on beak size In Darwin’s finches (Lamichhaney et al 2016)
LRRIQ1 Leucine Rich Repeats And IQ Motif Containing 1 Part of a locus with significant influence on beak size In Darwin’s finches (Lamichhaney et al 2016)
MSRB3 Methionine Sulfoxide Reductase B3 Part of a locus with significant influence on beak size In Darwin’s finches (Lamichhaney et al 2016)
RDH14 Retinol Dehydrogenase 14 In the largest Fst value regions between Darwin’s Finches with different beak sizes (Lamichhaney et al 2015).

TGFBR2 Transforming Growth Factor Beta Receptor 2 Incidicated to influence different beak shapes in Darwin’s finches through expression variation (Mallarino et al., 2011)
WIF1 WNT Inhibitory Factor 1 Part of a locus with significant influence on beak size In Darwin’s finches (Lamichhaney et al 2016)
IGF1 Insulin-like growth factor 1 Associated with bill size in Pyrenestes ostrinus (Vonholdt et al., 2018)
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Table S2: Species names and file locations used for the whole genome alignment.

Species name full Coding analysis ASCHE analysis Location (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA) and version

Acanthisitta chloris x x /000/695/815/GCA_000695815.1_ASM69581v1/GCA_000695815.1_ASM69581v1_genomic.fna.gz
Amazona aestiva x /001/420/675/GCA_001420675.1_ASM142067v1/GCA_001420675.1_ASM142067v1_genomic.fna.gz
Amazona vittata x /000/332/375/GCA_000332375.1_AV1/GCA_000332375.1_AV1_genomic.fna.gz
Anas platyrhynchos x x /000/355/885/GCA_000355885.1_BGI_duck_1.0/GCA_000355885.1_BGI_duck_1.0_genomic.fna.gz
Anser cygnoides domesticus x x /000/971/095/GCA_000971095.1_AnsCyg_PRJNA183603_v1.0/GCA_000971095.1_AnsCyg_PRJNA183603_v1.0_genomic.fna.gz

Apaloderma vittatum x x /000/703/405/GCA_000703405.1_ASM70340v1/GCA_000703405.1_ASM70340v1_genomic.fna.gz
Aptenodytes forsteri x x /000/699/145/GCA_000699145.1_ASM69914v1/GCA_000699145.1_ASM69914v1_genomic.fna.gz
Apteryx australis mantelli x x /001/039/765/GCA_001039765.2_AptMant0/GCA_001039765.2_AptMant0_genomic.fna.gz
Aquila chrysaetos canadensis x x /000/766/835/GCA_000766835.1_Aquila_chrysaetos-1.0.2/GCA_000766835.1_Aquila_chrysaetos-1.0.2_genomic.fna.gz
Ara macao x /000/400/695/GCA_000400695.1_SMACv1.1/GCA_000400695.1_SMACv1.1_genomic.fna.gz

Balearica regulorum gibbericeps x x /000/709/895/GCA_000709895.1_ASM70989v1/GCA_000709895.1_ASM70989v1_genomic.fna.gz
Buceros rhinoceros silvestris x x /000/710/305/GCA_000710305.1_ASM71030v1/GCA_000710305.1_ASM71030v1_genomic.fna.gz
Calidris pugnax x x /001/431/845/GCA_001431845.1_ASM143184v1/GCA_001431845.1_ASM143184v1_genomic.fna.gz
Calypte anna x x /000/699/085/GCA_000699085.1_ASM69908v1/GCA_000699085.1_ASM69908v1_genomic.fna.gz
Caprimulgus carolinensis x x /000/700/745/GCA_000700745.1_ASM70074v1/GCA_000700745.1_ASM70074v1_genomic.fna.gz

Cariama cristata x x /000/690/535/GCA_000690535.1_ASM69053v1/GCA_000690535.1_ASM69053v1_genomic.fna.gz
Cathartes aura x /000/699/945/GCA_000699945.1_ASM69994v1/GCA_000699945.1_ASM69994v1_genomic.fna.gz
Chaetura pelagica x x /000/747/805/GCA_000747805.1_ChaPel_1.0/GCA_000747805.1_ChaPel_1.0_genomic.fna.gz
Charadrius vociferus x x /000/708/025/GCA_000708025.2_ASM70802v2/GCA_000708025.2_ASM70802v2_genomic.fna.gz
Chlamydotis macqueenii x x /000/695/195/GCA_000695195.1_ASM69519v1/GCA_000695195.1_ASM69519v1_genomic.fna.gz

Colinus virginianus x /000/599/465/GCA_000599465.1_NB1.1/GCA_000599465.1_NB1.1_genomic.fna.gz
Colius striatus x x /000/690/715/GCA_000690715.1_ASM69071v1/GCA_000690715.1_ASM69071v1_genomic.fna.gz
Columba livia x x /001/887/795/GCA_001887795.1_colLiv2/GCA_001887795.1_colLiv2_genomic.fna.gz
Corvus brachyrhynchos x x /000/691/975/GCA_000691975.1_ASM69197v1/GCA_000691975.1_ASM69197v1_genomic.fna.gz
Corvus cornix cornix x x /000/738/735/GCA_000738735.1_Hooded_Crow_genome/GCA_000738735.1_Hooded_Crow_genome_genomic.fna.gz

Coturnix japonica x x /000/511/605/GCA_000511605.2_Coja_2.0a/GCA_000511605.2_Coja_2.0a_genomic.fna.gz
Cuculus canorus x x /000/709/325/GCA_000709325.1_ASM70932v1/GCA_000709325.1_ASM70932v1_genomic.fna.gz
Egretta garzetta x x /000/687/185/GCA_000687185.1_ASM68718v1/GCA_000687185.1_ASM68718v1_genomic.fna.gz
Eurypyga helias x x /000/690/775/GCA_000690775.1_ASM69077v1/GCA_000690775.1_ASM69077v1_genomic.fna.gz
Falco cherrug x x /000/337/975/GCA_000337975.1_F_cherrug_v1.0/GCA_000337975.1_F_cherrug_v1.0_genomic.fna.gz

Falco peregrinus x x /001/887/755/GCA_001887755.1_falPer2/GCA_001887755.1_falPer2_genomic.fna.gz
Ficedula albicollis x x /000/247/815/GCA_000247815.2_FicAlb1.5/GCA_000247815.2_FicAlb1.5_genomic.fna.gz
Fulmarus glacialis x x /000/690/835/GCA_000690835.1_ASM69083v1/GCA_000690835.1_ASM69083v1_genomic.fna.gz
Gallus gallus x x /000/002/315/GCA_000002315.3_Gallus_gallus-5.0/GCA_000002315.3_Gallus_gallus-5.0_genomic.fna.gz
Gavia stellata x x /000/690/875/GCA_000690875.1_ASM69087v1/GCA_000690875.1_ASM69087v1_genomic.fna.gz

Geospiza fortis x x /000/277/835/GCA_000277835.1_GeoFor_1.0/GCA_000277835.1_GeoFor_1.0_genomic.fna.gz
Haliaeetus albicilla x x /000/691/405/GCA_000691405.1_ASM69140v1/GCA_000691405.1_ASM69140v1_genomic.fna.gz
Haliaeetus leucocephalus x x /000/737/465/GCA_000737465.1_Haliaeetus_leucocephalus-4.0/GCA_000737465.1_Haliaeetus_leucocephalus-4.0_genomic.fna.gz
Lepidothrix coronata x /001/604/755/GCA_001604755.1_Lepidothrix_coronata-1.0/GCA_001604755.1_Lepidothrix_coronata-1.0_genomic.fna.gz
Leptosomus discolor x x /000/691/785/GCA_000691785.1_ASM69178v1/GCA_000691785.1_ASM69178v1_genomic.fna.gz

Lyrurus tetrix tetrix x /000/586/395/GCA_000586395.1_tetTet1/GCA_000586395.1_tetTet1_genomic.fna.gz
Manacus vitellinus x x /000/692/015/GCA_000692015.2_ASM69201v2/GCA_000692015.2_ASM69201v2_genomic.fna.gz
Meleagris gallopavo x x /000/146/605/GCA_000146605.3_Turkey_5.0/GCA_000146605.3_Turkey_5.0_genomic.fna.gz
Melopsittacus undulatus x x /000/238/935/GCA_000238935.1_Melopsittacus_undulatus_6.3/GCA_000238935.1_Melopsittacus_undulatus_6.3_genomic.fna.gz
Merops nubicus x x /000/691/845/GCA_000691845.1_ASM69184v1/GCA_000691845.1_ASM69184v1_genomic.fna.gz

Mesitornis unicolor x x /000/695/765/GCA_000695765.1_ASM69576v1/GCA_000695765.1_ASM69576v1_genomic.fna.gz
Nestor notabilis x x /000/696/875/GCA_000696875.1_ASM69687v1/GCA_000696875.1_ASM69687v1_genomic.fna.gz
Nipponia nippon x x /000/708/225/GCA_000708225.1_ASM70822v1/GCA_000708225.1_ASM70822v1_genomic.fna.gz
Opisthocomus hoazin x x /000/692/075/GCA_000692075.1_ASM69207v1/GCA_000692075.1_ASM69207v1_genomic.fna.gz
Parus major x x /001/522/545/GCA_001522545.2_Parus_major1.1/GCA_001522545.2_Parus_major1.1_genomic.fna.gz

Passer domesticus x /001/700/915/GCA_001700915.1_Passer_domesticus-1.0/GCA_001700915.1_Passer_domesticus-1.0_genomic.fna.gz
Pelecanus crispus x x /000/687/375/GCA_000687375.1_ASM68737v1/GCA_000687375.1_ASM68737v1_genomic.fna.gz
Phaethon lepturus x x /000/687/285/GCA_000687285.1_ASM68728v1/GCA_000687285.1_ASM68728v1_genomic.fna.gz
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Table S2: Species names and file locations used for the whole genome alignment. (contin-

ued)

Species name full Coding analysis ASCHE analysis Location (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA) and version

Phalacrocorax carbo x x /000/708/925/GCA_000708925.1_ASM70892v1/GCA_000708925.1_ASM70892v1_genomic.fna.gz
Phoenicopterus ruber ruber x /000/687/265/GCA_000687265.1_ASM68726v1/GCA_000687265.1_ASM68726v1_genomic.fna.gz

Phylloscopus plumbeitarsus x /001/655/115/GCA_001655115.1_GWplu1.0/GCA_001655115.1_GWplu1.0_genomic.fna.gz
Picoides pubescens x x /000/699/005/GCA_000699005.1_ASM69900v1/GCA_000699005.1_ASM69900v1_genomic.fna.gz
Podiceps cristatus x /000/699/545/GCA_000699545.1_ASM69954v1/GCA_000699545.1_ASM69954v1_genomic.fna.gz
Pseudopodoces humilis x x /000/331/425/GCA_000331425.1_PseHum1.0/GCA_000331425.1_PseHum1.0_genomic.fna.gz
Pterocles gutturalis x x /000/699/245/GCA_000699245.1_ASM69924v1/GCA_000699245.1_ASM69924v1_genomic.fna.gz

Pygoscelis adeliae x x /000/699/105/GCA_000699105.1_ASM69910v1/GCA_000699105.1_ASM69910v1_genomic.fna.gz
Serinus canaria x x /000/534/875/GCA_000534875.1_SCA1/GCA_000534875.1_SCA1_genomic.fna.gz
Setophaga coronata coronata x /001/746/935/GCA_001746935.1_mywagenomev1.1/GCA_001746935.1_mywagenomev1.1_genomic.fna.gz
Struthio camelus australis x x /000/698/965/GCA_000698965.1_ASM69896v1/GCA_000698965.1_ASM69896v1_genomic.fna.gz
Sturnus vulgaris x x /001/447/265/GCA_001447265.1_Sturnus_vulgaris-1.0/GCA_001447265.1_Sturnus_vulgaris-1.0_genomic.fna.gz

Taeniopygia guttata x x /000/151/805/GCA_000151805.2_Taeniopygia_guttata-3.2.4/GCA_000151805.2_Taeniopygia_guttata-3.2.4_genomic.fna.gz
Tauraco erythrolophus x x /000/709/365/GCA_000709365.1_ASM70936v1/GCA_000709365.1_ASM70936v1_genomic.fna.gz
Tinamus guttatus x x /000/705/375/GCA_000705375.2_ASM70537v2/GCA_000705375.2_ASM70537v2_genomic.fna.gz
Tympanuchus cupido pinnatus x /001/870/855/GCA_001870855.1_T_cupido_pinnatus_GPC_3440_v1/GCA_001870855.1_T_cupido_pinnatus_GPC_3440_v1_genomic.fna.gz
Tyto alba x /000/687/205/GCA_000687205.1_ASM68720v1/GCA_000687205.1_ASM68720v1_genomic.fna.gz

Zonotrichia albicollis x x /000/385/455/GCA_000385455.1_Zonotrichia_albicollis-1.0.1/GCA_000385455.1_Zonotrichia_albicollis-1.0.1_genomic.fna.gz
Zosterops lateralis melanops x /001/281/735/GCA_001281735.1_ASM128173v1/GCA_001281735.1_ASM128173v1_genomic.fna.gz
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Table S3: Top 20 identified motifs from 39,806 genomic regions that show significant substi-
tution rate variation in a phylogeny-based approach were branches were binned according their
beak shape morphological rate. The canonical sequences of the 20 motifs are listed along with the
number of predictions from the genomic regions, the respective sequence logos and the top 5 GO
predictions.

Motif Logo Predictions Top 5 specific predictions 

AAAYR 63

MF olfactory receptor activity

BP sensory perception of smell

BP G-protein coupled receptor protein signaling pathway

BP calcium-dependent cell-cell adhesion

MF taste receptor activity

ACGT 373

MF RNA binding

BP nuclear mRNA splicing, via spliceosome

CC spliceosomal complex

BP rRNA processing

BP cell division

ACRG 219

BP G-protein coupled receptor protein signaling pathway

MF serine-type endopeptidase activity

BP defense response to bacterium

MF hormone activity

MF serine-type endopeptidase inhibitor activity

AWTAAW 15

MF olfactory receptor activity

BP sensory perception of smell

BP G-protein coupled receptor protein signaling pathway

BP response to stimulus

BP gene expression

AWTTAC 15

MF olfactory receptor activity

BP sensory perception of smell

BP G-protein coupled receptor protein signaling pathway

BP inflammatory response

MF eukaryotic cell surface binding

BCCATTA 13

MF olfactory receptor activity

BP sensory perception of smell

BP G-protein coupled receptor protein signaling pathway

BP response to stimulus

MF motor activity

CACG 438

BP rRNA processing

MF ATP binding

BP DNA repair

MF translation regulator activity

BP protein folding

CAG 631

MF calcium ion binding

MF serine-type endopeptidase activity

CC keratin filament

MF potassium ion binding

BP excretion

CAKCTGB 58

CC extracellular space

BP muscle contraction

CC proteinaceous extracellular matrix

MF calcium ion binding

CC Z disc

CATAAAHC 18

MF olfactory receptor activity

BP sensory perception of smell

BP G-protein coupled receptor protein signaling pathway

BP defense response

BP immune response

CTBCC 765

MF potassium ion binding

BP potassium ion transport

MF protein homodimerization activity

MF growth factor activity

MF extracellular matrix structural constituent

CTBCWG 424

CC extracellular space

CC proteinaceous extracellular matrix

MF calcium ion binding

CC keratin filament

MF sugar binding

CTCCTMC 394

BP transmembrane receptor protein tyrosine kinase signaling pathway

BP anterior/posterior pattern formation

BP lung development

BP gland development

MF SH3 domain binding

CTGKVA 125

MF serine-type endopeptidase activity

BP excretion

CC keratin filament

BP innate immune response

BP regulation of production of small RNA involved in gene silencing by RNA

DAAWTA 19

MF olfactory receptor activity

BP sensory perception of smell

BP G-protein coupled receptor protein signaling pathway

BP defense response

CC ER to Golgi transport vesicle

GGGATTW 17

MF olfactory receptor activity

BP sensory perception of smell

BP phototransduction

BP nucleobase, nucleoside, nucleotide and nucleic acid metabolic process

BP translation

GTGGGTGK 456

CC integral to plasma membrane

BP muscle contraction

MF sequence-specific DNA binding

CC receptor complex

MF transcription factor activity

MCATATGK 56

MF olfactory receptor activity

BP sensory perception of smell

BP G-protein coupled receptor protein signaling pathway

BP defense response to bacterium

MF serine-type endopeptidase inhibitor activity

TTYCCW 197

MF olfactory receptor activity

BP sensory perception of smell

BP G-protein coupled receptor protein signaling pathway

CC extracellular space

BP signal transduction

WAAYGW 44

MF olfactory receptor activity

BP sensory perception of smell

BP G-protein coupled receptor protein signaling pathway

MF taste receptor activity

BP defense response to bacterium
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