
This is a repository copy of Prediction of bead geometry using a two-stage SVM–ANN 
algorithm for automated tungsten inert gas (TIG) welds.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/160161/

Version: Published Version

Article:

Kshirsagar, R., Jones, S., Lawrence, J. et al. (1 more author) (2019) Prediction of bead 
geometry using a two-stage SVM–ANN algorithm for automated tungsten inert gas (TIG) 
welds. Journal of Manufacturing and Materials Processing, 3 (2). 39. ISSN 2504-4494 

https://doi.org/10.3390/jmmp3020039

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Manufacturing and
Materials Processing

Journal of

Article

Prediction of Bead Geometry Using a Two-Stage
SVM–ANN Algorithm for Automated Tungsten Inert
Gas (TIG) Welds

Rohit Kshirsagar 1,*, Steve Jones 2, Jonathan Lawrence 1 and Jim Tabor 3

1 Institute for Advanced Manufacturing and Engineering, Coventry University, Coventry CV6 5LZ, UK;

ac5588@coventry.ac.uk
2 Nuclear Advanced Manufacturing Research Centre, University of Sheffield, Rotherham S60 5WG, UK;

steven.jones@sheffield.ac.uk
3 sigma Maths and Stats Support Centre, Coventry University, Coventry CV1 5FB, UK; mtx041@coventry.ac.uk

* Correspondence: kshirsar@uni.coventry.ac.uk

Received: 22 April 2019; Accepted: 5 May 2019; Published: 8 May 2019
����������
�������

Abstract: Prediction of weld bead geometry is critical for any welding process, since several

mechanical properties of the weldment depend on this. Researchers have used artificial neural

networks (ANNs) to predict the bead geometry based on the input parameters for a welding process;

however, the number of hidden layers used in these ANNs are limited to one due to the small amount

of data usually available through experiments. This results in a reduction in the accuracy of prediction.

Such ANNs are also incapable of capturing sudden changes in the input–output trends; for example,

where a wide range of heat inputs results in flat crown (zero crown height), but any further reduction

in the current sharply increases the crown height. In this study, it was found that above mentioned

issues can be resolved on using a two-stage algorithm consisting of support vector machine (SVM)

and an ANN. The two-stage SVM–ANN algorithm significantly improved the accuracy of prediction

and could be used as a replacement for the multiple hidden layer ANN, without requiring additional

data for training. The improvement in prediction was evident near regions of sudden changes in

the input–output correlation and can lead to a better prediction of mechanical properties.

Keywords: bead geometry prediction; support vector machines; artificial neural networks; data

classification

1. Introduction

Controlling the weld bead geometry is critical for any welding process since it can greatly

influence several mechanical properties, such as the yield strength (σy), tensile strength (TS), elongation

before failure (ε), stress concentration factor (Kt), and consequently the fatigue life of the weldment.

Prediction and optimization of the bead geometry is becoming increasingly important in many

industrial applications, as it can save a significant amount of time and material involved in unnecessary

trials. Geometry related imperfections on the weld bead include crown concavity, excess crown,

incomplete penetration, excess penetration, and incorrect weld toe [1]. Many industries have developed

their own specifications to limit the size of these imperfections depending on the application, beyond

which they are classified as defects. Some international standards, such as ISO 5817 [1], also provide

guidelines to classify such imperfections as defects. ISO 5817 states three different quality levels—B,

C, and D—to allow a wide range of applications to be considered under it. Level B corresponds to

the highest quality requirement on finished welds. In the present research, since no specific application

of the welds is considered, the geometrical features are assessed against the ISO 5817 Level B standard,

which is explained in subsequent sections.
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Conventionally, computational models developed to predict bead geometry used techniques such

as regression analysis and response surface methodology [2]. Schneider et al. [3] used the Taguchi

method for optimizing the parameters of hybrid welds made using the tungsten inert gas (TIG)

and metal inert gas (MIG) processes through 27 different experiments. Some other researchers who

have used regression models to predict weld properties include [4], who used linear regression for

modelling a submerged arc welding (SAW) process, [5], who used regression analysis and response

surface methodology for optimising the parameters of the SAW process, and [6], who modelled

the MIG process using second-order regression analysis. However, in recent years, artificial intelligence

and machine learning has led to the development of advanced models using artificial neural networks

(ANNs) that have a better capability to approximate non-linear processes. These algorithms typically

use a large amount of data to learn the input–output correlation. Several researchers have attempted

the prediction of weld features using such algorithms. Dutta and Pratihar [7] used regression analysis

as well as ANN to predict the crown width (CW), crown height (CH), back width (BW), and back

height (BH) of the welds obtained through the TIG welding process, based on the welding speed (S),

wire feed rate (R), cleaning, root gap, and current. They found that the ANN-based approaches give

better results than the regression-based approaches. In a similar investigation, [8] also concluded that

although second-order regression analysis as well as ANNs can predict the bead geometry of the welds

within a considerable accuracy, ANNs show a better performance. ANNs can not only predict the bead

geometry, but also the mechanical properties of the welds. Okuyuku et al. [9] used an ANN to predict

the TS, σy, ε, and hardness of friction stir welded joints on aluminium plates, based on the weld speed

and the tool rotation speed. They found an excellent agreement between the experimentally obtained

and predicted data. Similarly, Vitek et al. [10] developed an ANN model (Oak-Ridge Ferrite Number,

ORFN) to predict the amount of retained δ-ferrite in austenitic stainless-steel welds, depending on

the base material chemistry and the cooling rate of the weld pool. This model outperformed all the other

internationally accepted models that had been developed before then. It has been reported that the root

mean square error (Erms) in the prediction of ferrite number reduced from 5.84 for WRC-1992 model

to 3.88 for the ORFN model. Several other researchers have used ANNs to predict weld features,

including [11], who used an ANN for real time arc-welding defect detection and classification; [12],

who used ANN along with genetic algorithm to optimise laser welding process parameters for super

austenitic stainless steels; and [13], who used an ANN to predict the joint strength of pulsed MIG

welding, based on the arc signal. Additionally, [14] compared the performance of an ANN to that of

regression analysis to model the heat source parameters in a TIG welding process. They reported

that the ANN model outperforms the regression model. Convolutional neural networks (CNNs)

were used by [15] to predict the penetration of the weld seam using time-frequency imaging of the arc

sound. They achieved 98.2% accuracy in the predictions using the CNN, which outperformed most of

the previously developed models.

Apart from ANNs, other machine learning algorithms, such as support vector machines (SVMs),

have also been used by researchers to predict the weld features. Hang et al. [16] used an SVM

to predict the backside weld bead shape for online weld quality control. They reported that such

algorithms can be effectively used to estimate the weld quality. Rong et al. [17] attempted to use

machine learning techniques to predict the bead penetration from the weld pool surface. This could be

done using multi-layer perceptron (MLP) ANN, however, due to the limited amount of data available,

they proposed using support vector regression (SVR) instead. The SVR model showed an improved

accuracy of prediction over the ANN in their study.

From all the above mentioned research, it is evident that machine learning models can be effectively

used to predict many of the weld features. However, the parameter ranges considered during these

studies, especially the ones that involve prediction of bead geometry, are very limited, owing to

the nature of these models. Usually, the number of data points available to develop the computational

models in the case of welding are limited to just over one hundred, due to the large amount of time

and effort required to prepare the metallographic samples for obtaining the data. This limits the number



J. Manuf. Mater. Process. 2019, 3, 39 3 of 18

of hidden layers and the number of neurons in these hidden layers that can be used to predict the weld

features [18]. Most of the models mentioned above make use of single hidden layer ANNs. Such single

hidden layer ANNs have a one-to-one correspondence from input to output, meaning that any change

in an influential input parameter will be reflected in the output of the network. For example, it is

well known that the welding current significantly influences the geometrical features of the weld

bead in the TIG welding process. Its effect is that the CH of the bead decreases with an increase in

the welding current if all the other parameters are kept constant. Beyond a certain cut-off value, the CH

becomes practically zero for a wide range of current values before it starts becoming concave. It is

difficult to train a single hidden layer ANN to predict a zero CH for a wide range of input currents,

while predicting it positive for the other values. Similarly, the back width (BW) and back angle (BA)

are zero for all the weld profiles that have incomplete penetration, and sharply become positive beyond

a certain heat input to the weld. Such sharp changes in the effect of input parameters on the outputs of

the process lead to a high Erms when a single hidden layer ANN is used. This problem can be addressed

by training ANNs with multiple hidden layers, but as mentioned previously, such networks require

a larger amount of data due to the non-linearity in the input–output correlation. Another consideration

before the application of an ANN to any process is the number of outputs that are required to be

predicted. In the case of TIG welds, up to seven outputs, which include the CH, CW, crown angle

(CA), weld penetration (PEN), BW, BA, and weld cross-sectional area (WA), may be required to define

the bead geometry. With the amount of data available, obtaining this large number of outputs from

a smaller number of inputs makes training of the ANNs difficult. Adding a greater number of neurons

in the hidden layer may overcome this issue to a certain extent, but can also lead to overfitting on some

of the features.

Both these issues can be addressed by initially classifying the input parameters into those that lead

to fusion profiles having a zero CH but full PEN (Class 0), positive CH and full PEN (Class 1), or positive

CH but incomplete PEN (Class 2), using support vector machines (SVMs). For classification, Class 0

inputs will only require CW, PEN, BW, BA, and WA to be predicted, since CH and CA are always zero for

this class. Similarly, Class 2 inputs will have CH, CW, CA, PEN, and WA as the outputs of the welding

process, whereas all seven outputs are required to be predicted for Class 1 parameters. Using an SVM

to initially classify the data can significantly improve the overall accuracy of prediction and increase

the range of the input parameters that can be used for training the models. A comparison between

the performance of this two-stage SVM–ANN algorithm with the ANN-only algorithm is shown later

in this paper. Using SVM ensures that the CH and BW are predicted to be zero when the experimentally

obtained welds show no crown or incomplete penetration, respectively. The criticality of accurately

predicting the CH as zero for the welds belonging to Class 0 can be emphasised, considering its

effect on the mechanical properties of the weldment. It was found from the experiments that

the welds with a positive CH elongate roughly 20% more before failure than those that have a zero

CH. They also exhibit a higher TS by approximately the same amount. Predicting a positive CH

when the experimentally obtained value is zero can lead to an over-estimation of the mechanical

properties. Similarly, predicting a positive BW for welds that are only partially penetrated can also

lead to over-estimation of the mechanical properties. The use of a two-stage SVM–ANN algorithm for

the prediction of geometrical features can effectively eliminate such miscalculations.

The aim of this research is to develop a computational model that combines the capabilities of

different machine learning algorithms, such as SVMs and ANNs, in order to improve the accuracy of

prediction of the bead geometry using the limited data available. The data required for developing

the model was acquired through a conventional design of experiment. As reported by other researchers,

the amount of data was not sufficient to develop an MLP ANN. Acquiring additional data was

not feasible due to the significant amount of time and cost involved. In such a case, it was found

that applying an SVM to initially classify the data into different classes and then using an ANN

belonging to those individual classes to predict the bead geometry can act as a replacement for MLP

ANN, without requiring additional data for training. This two-stage algorithm was found to have
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visible benefits for predicting the bead geometry, especially for those features where sharp changes in

the input–output trends were observed (for example the CH).

2. Materials and Methods

The development of the SVM as well as the ANN to classify the inputs and predict the bead

geometry required a large amount of experimental data. In this study, an automated TIG welding

process was used to weld 1.5 mm thick 304L stainless steel (SS) sheets heterogeneously, using a 308LSi

filler wire. Pairs of sheets with dimensions 200 mm × 60 mm were joined together by welding along

the 200 mm length. Three different welds, each with a length of approximately 60 mm and separated

by a small distance, were made on every pair of sheets, as shown later in Figure 12. The chemical

composition of the base material and the filler wire, as provided by the supplier of the sheets, is shown

in Table 1, along with the chromium equivalent (Creq) and Nickel equivalent (Nieq) values that can

indicate the susceptibility to solidification cracking using the WRC-1992 diagram. All the experiments

were performed using a pulsed current waveform. High purity argon (Ar, 99.995% pure) was used

as the shielding gas for most of the welds. However, several researchers have identified the beneficial

effects of adding nitrogen (N2) to Ar in the shielding gas, such as [19], who found that welding in a 20%

N2 + Ar atmosphere requires 40% less current than welding in a pure Ar atmosphere to obtain full

penetration of the weld bead, and [20], who reported that the addition of N2 can improve the impact

toughness of stainless steels at sub-zero temperatures. Hence, for some of the experiments, the pure Ar

shielding gas was replaced with 2.5%, 5%, or 10% mixtures of N2 + Ar. Irrespective of the composition

of the shielding gas, pure Ar was always used as the backing gas. The variable inputs to the welding

process include peak welding current (Ip), torch travel speed (S), pulsing frequency (f ), filler wire

feed rate (R), filler wire diameter (D), and the concentration of N2 in the shielding gas (N). For all

the experiments, the arc length was kept constant at 2.5 mm and the background current (Ib) used was

33% of Ip with a 50% duty cycle.

Table 1. Chemical composition of the materials used in the experiments.

Material C Cr Mn N Ni P S Si Creq Nieq

Base material
(1.5 mm thick)

0.026 17.795 2.000 0.100 8.120 0.025 0.001 0.497 17.795 11.032

Filler 308LSi 0.010 20.000 1.800 0.000 10.000 0.015 0.015 0.800 20.000 10.356

Considering the possibility of a non-linear dependence of the outputs on the inputs, a central

composite design (CCD) scheme was chosen for the experiments. From the abovementioned input

variables, Ip, S, f, and R were continuous variables, whereas D and N were considered discrete due

to the limitation on the material and equipment available. The minimum and maximum limits of

the parameters used in this research are mentioned in Table 2.

Table 2. Minimum and maximum limits of the variable inputs used for the experiments.

Parameter Minimum Value Maximum Value

Peak Current (A) 60 120
Travel Speed (mm/s) 1 4
Pulsing frequency (Hz) 1 6
Filler wire feed rate (mm/min) 100 800
Filler wire diameter (mm) 0.8 1
Nitrogen concentration (%) 0 10
Heat Input (J/mm) 111.69 223.38

However, it was found from initials trials that these parameter ranges were too broad to obtain

measurable data from all the experiments. For example, it was found that if an Ip of 120 A was used with
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an S of 1 mm/s, the heat input was sufficiently high to cause burn-through of the welds, without giving

any useful results. To avoid such welds, the experiments were divided into two sets, based on Ip

and S. If the parameters were not divided, any of the conventional design of experiments, such as

full factorial, half factorial, or central composite, would include the abovementioned combination of

the inputs. Dividing into two sets also ensured that nearly equal amounts of data were available for

all the classes of the SVM, making it easier to train the model. The parameter ranges for the divided

sets are shown in Table 3. Apart from the Ip and S, no division was required based on other variables,

since they are not directly linked to the heat input of the welding process.

Table 3. Parameter ranges after division of the experiments into two sets.

Set 1 Minimum Maximum

Peak Current (A) 60 90
Travel Speed (mm/s) 1 2

Set 2 Minimum Maximum

Peak Current (A) 90 120
Travel Speed 3 4

For each set with four continuous variables, the CCD scheme required 31 experiments at every

level of the discrete parameters. In order to reduce the total experiments, only some of these were

repeated at other levels of the discrete parameters. For example, out of the 31 CCD experiments

performed on Set 1 parameters with 1 mm filler wire and pure Ar shielding gas, only 12 were repeated

for each of the 2.5%, 5%, and 10% N2 + Ar mixtures. With these designs, a total of 62 experiments

were performed using 1 mm filler wire and pure Ar as the shielding gas, including both the sets.

Another 72 experiments were performed at various levels of N2 in the shielding gas and a few random

experiments were repeated using a wire diameter of 0.8 mm. Finally, 14 additional experiments were

performed using random input parameters within the ranges mentioned in Table 2, which were used

for validating the developed computational models at a later stage. This led to a total of 180 data

points to develop the computational models.

On completing the experiments, metallographic samples were extracted and mounted in

conductive bakelite moulds, following which grinding and polishing operations were performed

for better visibility of the geometrical features. All the geometrical features mentioned previously

could be measured using a Leica DM2700 microscope. Figure 1 illustrates the measurements taken to

quantify the considered geometrical features of the weld. Some of the welds were found to have severe

misalignment between the base sheets, as shown in Figure 2. Any weld with a misalignment of over

0.35 mm (which complies with the ISO 5817 Level B standard) were not assessed, since it can significantly

alter the bead geometry and skew the obtained data. It was also ensured that the metallographic

samples were taken from locations at least 20 mm away from the start and stop position of the weld.

This was because the slow S at these locations is known to influence the bead geometry.
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(a) (b) 
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Figure 1. Bead geometry features measured for obtaining the data: (a) crown height, crown width,

penetration, back width; (b) crown angle, back angle; (c) weld cross-sectional area. Welding parameters

used for this weld: Ip = 90 A; TS = 2 mm/s; f = 1.5 Hz; R = 300 mm/min; D = 1 mm; N = 0%.

 

 

Figure 2. A case of severe misalignment; such welds were not assessed in this study. Welding parameters

used for this weld: Ip = 110 A; TS = 3 mm/s; f = 1.5 Hz; R = 400 mm/min; D = 1 mm; N = 0%.

3. Development of Computational Models

As mentioned previously, ANNs could not be directly trained using the experimental data for very

low Erms due to the sharp changes observed in the trends of the outputs and the limited data available.

This can be illustrated using Figure 3, in which R is plotted on the x-axis against the obtained CH on

the y-axis for various Ip values, keeping all other parameters constant. When an Ip of 90 A was used,

the obtained CH was practically zero until R reached a value of 100 mm/min. Similarly, when the Ip

was increased to 100 A, CH was zero up to an R value of 190 mm/min, and for an Ip of 120 A, it was
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zero up to an R value of 340 mm/min. After these values of R, the obtained CH sharply increased,

causing such a change that was difficult to capture using a single hidden layer ANN. In such cases,

the prediction accuracy can be significantly improved by classifying a set of input parameters into

those that will lead to a zero or a positive CH. Although the above example is based on only the Ip,

all the other variable inputs can similarly influence the bead profile. This makes it impractical to use

a simple “if-else” statement for the classification. SVMs in such cases can be effectively used.

 

Figure 3. Obtained crown height for different filler wire feed rates for multiple current levels.

 

Figure 4. Flowchart of the two-stage SVM–ANN algorithm to predict bead geometry.

Developing computational models using machine learning techniques requires the division of

the total data into a training set and a test set. While dividing the data, it was ensured that the test set
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lay within the training set extremes, since most of the machine learning techniques underperform in

extrapolation, unless the input–output correlation is nearly linear.

Before diving into training and test sets, all the data was normalised between 0 and 1. This helped

in giving equal weightage to all the inputs, irrespective of their absolute values. Normalisation

also helped in keeping the ANN weights small and avoiding overfitting. The two-stage SVM–ANN

algorithm initially classified the input parameters in their respective classes using an SVM and then

used the ANN associated with those classes to predict only the necessary geometrical features of

the weld bead. The flowchart of this two-stage SVM–ANN algorithm is shown in Figure 4.

The flowchart shows that the CW, PEN, and WA are calculated even before the application of

an SVM to classify the input parameters. This is because, irrespective of the class to which the inputs

belong, the fusion profile will always have positive values for these three outputs. The other four

parameters, CH, CA, BW, and BA, may or may not have positive values, depending on the inputs.

3.1. Development of SVM Models

SVMs are supervised machine learning algorithms that can be used for the classification of

data into multiple classes. The principle behind the functioning of an SVM is to establish a hyper

plane in an n-dimensional space that can maximize the distance between the two nearest points of

different classes. A number of libraries, such as LIBSVM, Weka, and Spider, have been developed by

researchers with SVM classification capabilities. Any of these libraries can be effectively used to obtain

the hyperplanes. In this research, LIBSVM, developed by [21], was used to build the classification

model, since it provided the java interface for SVM development. All the models in this study,

including the SVM and ANNs, were developed using java programming language.

SVM classification makes use of kernel functions to determine the similarity between pairs of

data points. One of these is the point under consideration, while the other is a specific landmark

corresponding to a particular class in an n-dimensional space. These landmarks are obtained

from the training data while developing the SVM. Various kernel functions can be used to check

the similarity between the point under consideration and the landmark, which include linear, radial

basis function (RBF), polynomial, and sigmoid. The most commonly used kernel is the RBF kernel,

which makes use of Equation (1), as stated in [21], to estimate the similarity between two data points—x

and x′—in an n-dimensional space:

k(x, x′) = exp
(

−γ
∣

∣

∣

∣

∣

∣x− x′
∣

∣

∣

∣

∣

∣

2
)

, (1)

where k(x, x′) is the kernel similarity function, x is the point under consideration, x′ is the landmark,

||x− x′||2 is the Euclidean distance between x and x′, and γ is the free parameter.

The free parameter γ plays an important role in determining the similarity between two points,

as demonstrated in Figure 5. Assume that similarity between a point (x) and a landmark (zero in

this case) is required to be estimated. On the x-axis of this figure is the value of the parameter x,

and on the y-axis is the value of the similarity function. A value of 1 for the similarity function

indicates complete similarity, since this is obtained only when the Euclidean distance between the two

points ||x− x′||2 is zero. Any other value lower than 1 indicates less similarity. In the case when γ

is small (0.2), the similarity function depreciates gradually, increasing the ‘reach’ of the landmark.

This means that values which are slightly away from the landmark may also be considered similar.

Conversely, if the value of γ is large, the similarity function depreciates too sharply, which may cause

data nearly similar to the landmark be classified as dissimilar. Consequently, an optimum value of γ

needs to be identified while training the SVM model.
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Figure 5. Effect of the free parameter γ on the estimation of similarity.

Another important parameter that must be considered while developing the SVM model is the cost

parameter (C), which penalises any misclassification by the SVM. The effect of this cost parameter is

illustrated in Figure 6. In this figure, a boundary obtained through training the SVM separates Class 1

and Class 2 parameters. If the value of C is small, some of the outliers are ignored, such as the one

shown in Figure 6a. However, when the value of C is large, the model will try to classify every data

point in its respective class, which may lead to overfitting. Consequently, the value of C also needs to

be optimised in the training phase.

 

·

  
(a) (b) 

ߛ
ƺ

Figure 6. Effect of cost parameter C on classification of data. (a) Small C value (b) Large C value.

This study considered three different classes based on the fusion profile of the bead: Class 0 for

parameters leading to zero CH but full penetration, Class 1 for parameters leading to positive CH as well

as complete penetration, and Class 2 for parameters leading to positive CH but incomplete penetration.

Out of all the data points obtained through the experiments, 30 data points (roughly 15%)

were retained for testing the model, while the others were used for training the SVM. The parameters γ
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and C were estimated using the trial and error method, by varying C between 10−4 and 104 at intervals

of 500 and varying γ between 0.1 and 1 at intervals of 0.1. The accuracy of classification of training

and test data was considered to select the best SVM model.

 

ߛ

 

ߛ

ࢽ

Figure 7. Dependence of the accuracy of classification on the cost parameter C.

The effect of C on the accuracy of classification is illustrated in Figure 7 on a logarithmic scale.

The accuracy goes on increasing for the training and test data until the value of the parameter C is 500

(2.7 on logarithmic scale), beyond which the accuracy on the test data decreases, indicating over-fitting.

Consequently, the value of the parameter C was chosen to be 500. A similar method was used to

estimate the value of γ, as shown in Figure 8.

 

ߛ

ߛ

Figureࢽ  8. Optimisation of the parameter γ at C = 500.



J. Manuf. Mater. Process. 2019, 3, 39 11 of 18

It can be seen from Figure 8 that when the value of γ is roughly 0.75, the best accuracy for both

the training and test data is obtained. With this combination of C = 500 and γ = 0.75, the accuracy

on the training data was 98.8% and on the test data was 96.67%. On the test data, the SVM correctly

classified 29 out of the 30 data inputs. The small amount of error in this model was from classifying

Class 0 parameters as Class 1 parameters on the training as well as the test data, which makes

the prediction conservative. This accuracy of classification was acceptable, as attempts to further

improve would lead to overfitting.

3.2. Development of ANN Models

ANNs applied to engineering studies effectively consist of neurons in different layers that

are connected through connection weights. They typically consist of an input layer, one or more

hidden layers, and an output layer. The aim of training a neural network is to establish appropriate

connection weights such that the error obtained in predicting the outputs is minimised. Of those

many algorithms available to train neural networks, the most commonly used is back-propagation

(BP). The details of this algorithm are well documented in several research papers and hence are

not discussed in this paper. The readers are requested to refer to other papers, including [7–15],

for the details of this.

As for the development of SVM, all the acquired data were divided into a training set and test

set; the test dataset comprising roughly 15% of the total available data. In this case too, it was

ensured that the test set was contained within the training set to avoid extrapolation. The data

was normalised between 0 and 1 in order to give equal weightage to all the parameters. In this

study, three different networks were required to be developed, one (ANN_A) to predict CW, PEN,

and WA common for all the three SVM classes, the second (ANN_0) to predict the BW and BA required

for Class 0 parameters, and the third (ANN_2) to predict the CH and CA for Class 2 parameters.

The geometrical features of the welds belonging to Class 1 can be estimated using all three networks

(ANN_A, ANN_0, and ANN_2). For developing ANN_A, all the acquired data were used, irrespective

of the class to which the inputs belonged, since it predicted features that were common to all the classes.

However, for developing ANN_0, only the welds that were fully penetrated, i.e., belonging to Class 0

and Class 1, were used. Likewise, for developing ANN_2, only the data belonging only to Class 1

and Class 2 was considered. A convergence study was carried out to estimate the number of neurons

required in the hidden layer of the network for each of the network.

The total Erms for the network was calculated using Equation (2), as used by several researchers [22]:

Erms =
1

p
∗

√

√

√

√ p
∑

j = 0

n
∑

i = 0

(

T ji −O ji

)2
/2, (2)

where Tji is the target value of ith output of the jth pattern, Oji is the output value of the ith output of

the jth pattern, n is the number of outputs, and p is the number of patterns (trials).

3.2.1. Development of ANN_A

This network consisted of six input (Ip, S, f, R, D, and N) and three output neurons (CW, PEN,

and WA). From the convergence study, it was estimated that seven neurons in the hidden layer were

sufficient to obtain the targeted Erms (<0.005 targeted for this network). The network consisted of a bias

neuron in the input and hidden layers. A learning rate of 0.5 along with a sigmoid transfer function

was used for obtaining the outputs. The training was terminated when either the Erms on the output

reached below 0.005, or the number of epochs reached a maximum of 2000. In the development of

this network, the total Erms for all the outputs dropped to 0.00497 after 988 epochs. On the test data,

the Erms was 0.00373 confirming that the network is neither undertrained nor overfitted.
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3.2.2. Development of ANN_0

This network also consisted of the same six input neurons, but predicted only two outputs

(BW, BA). It required 10 neurons in the hidden layer. The same learning rate, transfer function,

and termination criteria as for ANN_A were used for the development of ANN_0. The total Erms

dropped to 0.00481 after 1584 epochs while training this network. On the test data, the Erms obtained

was 0.00426.

3.2.3. Development of ANN_2

ANN_2 was similar to ANN_0 in terms of the number of neurons in the input, hidden, and output

layers, but predicted CH and CA instead of BW and BA. All the other parameters, including the learning

rate and termination criteria, were the same as those used for developing ANN_0. The Erms dropped

to 0.00492 after 1195 epochs on the training data. Erms on the test data was found to be 0.00433.

4. Results

Analysis of variance (ANOVA) was carried out using Minitab 2018 software in order to

check the existence of any influence of the input variables on the outputs of the process.

The p-value—which indicates the probability that the null hypothesis (no influence on the outputs)

is true, if lower than 0.05 (95% confidence)—indicates an influence of the input parameter on the output

of the weld. The results from ANOVA are summarised in Table 4. It can be concluded from the results

that f has minimum influence on the outputs of the welds. This is also reflected quantitatively in

the connection weight approach, which is illustrated later in this section to study the relative influence

of the variable inputs on the outputs.

Table 5 summarises the results from when the two-stage SVM–ANN algorithm was applied

to those 14 welds made for the validation of the model. It also mentions the ANNs that were

triggered to predict the bead geometry features (A for ANN_A, 0 for ANN_0, 2 for ANN_2). Table 6

shows the experimentally obtained values for the same welds as in Table 5 and the absolute error

in the measurement of the geometrical features. The small absolute errors in Table 6 show that

the predictions by the computational models were consistently accurate, except for a few parameters

that may be the outliers during the welding process.

Table 4. ANOVA results (p-value) in order to understand the existing influence of the inputs on

the outputs of the welds. The results indicate that f has minimum influence on the outputs of the welds.

Ip S f R D N

CH 0.000 0.000 0.414 0.007 0.000 0.000
CW 0.000 0.000 0.685 0.000 0.8 0.000
CA 0.000 0.000 0.834 0.000 0.000 0.409
PEN 0.000 0.000 0.35 0.000 0.014 0.000
BW 0.000 0.000 0.288 0.000 0.26 0.000
BA 0.000 0.006 0.928 0.000 0.004 0.009
WA 0.000 0.000 0.733 0.165 0.002 0.000

If an SVM was not used for the classification of the parameters before applying the ANN, the CH

and CA for welds W1 to W4 would have some non-zero value, thus depreciating the prediction

accuracy of the model. Similarly, for welds W12 to W14, the values of BW and BA would be non-zero.

Thus, using an SVM–ANN hybrid system gives the model the ability to filter certain geometrical

features that are not required to be predicted, making the predictions more accurate over a wider range

on inputs.
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Table 5. Bead geometry predictions using the hybrid SVM–ANN algorithm.

Weld ID Ip S f R D N2 SVM Class ANNs Used CH CW CA PEN BW BA WA

W1 90 2 1 300 0.8 10 0 A, 0 – 6.78 – 1.98 6.66 10.69 11.51
W2 120 4 1 200 1 0 0 A, 0 – 5.88 – 1.91 3.86 9.20 8.56
W3 100 3 3 200 1 0 0 A, 0 – 5.79 – 1.83 4.08 14.86 8.98
W4 90 2 1.5 400 1 5 0 A, 0 – 6.16 – 2.09 5.40 22.08 12.44
W5 100 3 6 400 0.8 10 0 A, 0 – 6.03 – 1.86 5.09 13.10 9.76
W6 70 2 1.5 200 1 2.5 1 A, 0, 2 0.46 4.45 21.22 1.73 2.65 12.80 6.90
W7 80 2 1.5 300 1 0 1 A, 0, 2 0.54 5.12 18.64 1.76 3.40 14.94 8.98
W8 110 3 1.5 400 1 0 1 A, 0, 2 0.42 5.78 13.13 1.87 4.23 16.63 10.21
W9 90 1 1 300 1 0 1 A, 0, 2 0.39 7.30 9.61 2.17 6.66 19.54 15.06
W10 90 2 5.5 400 1 0 1 A, 0, 2 0.59 5.62 26.00 1.80 3.88 17.75 10.40
W11 80 2 1 300 1 0 1 A, 0, 2 0.54 5.13 17.75 1.77 3.50 14.61 9.03
W12 70 2 1.5 300 1 0 2 A, 2 0.82 4.17 33.53 0.73 – – 3.54
W13 90 4 1.5 40 1 0 2 A, 2 0.76 3.93 30.23 0.91 – – 4.97
W14 70 2 4 50 1 0 2 A, 2 1.25 3.90 66.35 1.12 – – 6.02

Table 6. Experimentally obtained results for welds done using the same parameters as in Table 5

and the corresponding errors in predicting the geometrical outputs.

Experimentally Obtained Results Error in Estimation Using the Hybrid Algorithm

Weld ID CH CW CA PEN BW BA WA CH CW CA PEN BW BA WA

W1 – 6.64 – 1.94 6.19 12.23 11.62 – 0.13 – 0.03 0.46 1.54 0.11
W2 – 6.06 – 1.95 3.84 10.07 8.831 – 0.18 – 0.04 0.01 0.87 0.27
W3 – 6.08 – 1.79 4.31 11.38 9.3 – 0.29 – 0.04 0.23 3.47 0.32
W4 – 6.40 – 2.03 5.20 17.88 10.78 – 0.24 – 0.05 0.19 4.2 1.65
W5 – 5.85 – 1.86 4.80 13.77 9.12 – 0.17 – 0.00 0.28 0.67 0.63
W6 0.46 4.33 17.16 1.72 2.44 15.95 7.12 0.00 0.12 4.058 0.00 0.20 3.15 0.22
W7 0.60 5.26 22.29 1.66 3.38 15.84 9.10 0.06 0.14 3.657 0.09 0.01 0.90 0.12
W8 0.35 5.81 13.09 1.82 3.59 21.25 9.66 0.06 0.03 0.032 0.04 0.63 4.62 0.54
W9 0.32 7.10 11.13 2.23 6.46 21.29 15.2 0.07 0.19 1.528 0.06 0.2 1.75 0.17

W10 0.54 5.81 23.67 1.81 4.29 16.97 11.63 0.04 0.19 2.329 0.01 0.41 0.77 1.23
W11 0.50 5.34 15.83 1.88 3.92 11.18 9.417 0.03 0.21 1.918 0.11 0.42 3.42 0.38
W12 0.82 4.30 31.38 1.41 – – 6.691 0.00 0.13 2.142 0.02 – – 0.15
W13 0.64 3.69 27.23 0.71 – – 3.257 0.11 0.23 2.994 0.19 – – 1.71
W14 1.30 3.71 68.86 1.07 – – 5.824 0.05 0.18 2.51 0.04 – – 0.19

For comparison purposes, an ANN-only model was developed to predict the bead geometry

of the welds. The ANN structure was optimised using the similar procedure that was used for

the optimisation of the previously mentioned ANNs. This network consisted of six neurons in the input

layer, 10 in the hidden layer, and seven in the output layer. The same termination criteria as for

the previous ANNs was also used for this ANN. It was found that after 2000 iterations, the training

terminated with an Erms of 0.00755 on the training data and led to an Erms of 0.00814 on the test data.

Further training the ANN would lead to overfitting. Figure 9 compares the experimentally obtained

CHs with those predicted by the SVM–ANN model and ANN-only model for the welds W1 through

W11 from Table 5. It can be seen that for welds W1 to W5, the SVM–ANN model predicted a zero

value for the CH, as experimentally obtained. However, the ANN-only model predicted small positive

values for the CH. Similarly, Figure 10 shows a comparison of the experimentally obtained BWs with

those predicted by the ANN-only and the SVM–ANN model. For welds W12 to W14, the ANN-only

model predicted small positive values even when the welds were not fully penetrated.

As seen from Figures 9 and 10, the error in prediction is significantly reduced on using the two-stage

SVM–ANN algorithm as compared to the ANN-only algorithm. The small differences in the values

obtained experimentally and those predicted using the computational model could be attributed

to several factors, including the generally low repeatability of welding processes, certain inevitable

variations in the experimental setup, and the accuracy of parameter control. Additionally, the trained

computational model had a small error in prediction which, if attempted to eliminate, would lead to

overfitting. This error can reflect in the predictions in Figures 9 and 10.
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Figure 9. Comparison of the experimentally obtained and predicted CH using the ANN-only

and SVM–ANN models for welds W1 to W11 in Table 4.

 

Figure 10. Comparison of the experimentally obtained and predicted BW using the ANN-only

and SVM–ANN models for welds W6 to W14 in Table 4.

Although these CH and BW values predicted by ANN-only model are small, this error in prediction

can have significant consequences on the estimation of other mechanical properties of the weldment

based on the bead geometry. For example, it can be seen from Figure 11 that the ε largely depends on

the CH of the welds. The sub size specimens mentioned in ASTM E8 were used for tensile testing

the welded joints. A mechanical extensometer was used to measure the elongation of the weld

zone. The position of the samples relative to the welded sheet is shown in Figure 12. As seen from

Figure 11, if the CH is zero, the ε is at least 10% lower than that obtained when it has a positive value.

Similarly, the TS for such welds is also lower than for those having a positive CH. These small positive

values of CH predicted by the ANN-only model would lead to an overestimation of the mechanical

properties. Additionally, it can lead to an incorrect estimation of the Kt, and consequently the fatigue

life of the welds. This analysis can emphasise the importance of using a two-stage SVM–ANN model

for prediction of the bead geometry of the welds.
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Ή

Ή

Ή ΉFigure 11. Elongation before failure (ε) plotted against the CH. ε is significantly lower when the CH

has a zero value.

 

Ή

Ή

Ή Ή

 

Figure 12. Location of the tensile samples relative to the welded sheets. Four samples were extracted

from every weld and tested in tension. Values in Figure 11 are an average of the four tests.

Using the individual ANNs developed for every class of the input parameters, the relative

influence of every variable input on the geometrical features can be obtained. This can be done using

the connection weight approach, as discussed in [23]. They have reported that the connection weight

approach is a better indicator of the relative influence than other approaches such as the Garson’s

algorithm. Figure 13 shows the relative influence of six input variables on the seven outputs,

calculated using the weight of individual ANNs developed for predicting those outputs.
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Figure 13. Relative influence of the input parameters in the outputs of the computational model

obtained using connection weight approach. (a) Influence on CH and CA (ANN_0); (b) Influence on

BW and BA (ANN_2); (c) Influence on CW, PEN and WA (ANN_A).

From Figure 13, it is evident that Ip and S are the most influential inputs for any geometrical

feature. Within the range considered in this study, f is the least influential. N is more influential

than the filler wire related parameters, suggesting that the geometry can be better controlled by

changing the shielding gas composition rather than changing the R or the D.
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5. Conclusions

From this research and the results produced in this paper, it can be concluded that,

1. Artificial neural networks (ANNs) are extremely efficient in predicting the geometrical features

of the weldments and have good capability to approximate non-linear processes. A large number

of outputs can be predicted from a set of inputs, however, some pre-processors may be required

for the ANNs to function effectively.

2. The performance of a single hidden layer ANN may deteriorate if the trends in the output change

sharply. Such situations may occur in the welding process and make the training difficult.

3. Support vector machines (SVMs) can be effectively used as pre-processors to the ANN in cases

where the changes in outputs are sharp in order to firstly classify the data into various classes,

following which, different ANNs can be applied to predict the geometrical features of the welds

belonging to those individual classes.

4. SVMs not only help in significantly improving the accuracy of prediction, but also help in covering

a wider range of input parameters.

5. The tensile strength and elongation before failure of the weld depend largely on the bead geometry.

Using a two-stage SVM–ANN algorithm can avoid overestimation of the mechanical properties,

which is critical for any application.

Author Contributions: Conceptualization, S.J. and R.K.; Methodology, R.K., S.J.; Validation, J.L., J.T.;
Formal analysis, R.K. and J.T.; Investigation; Writing—original draft preparation, R.K.; Writing—review and editing,
S.J., J.T. and J.L.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. WEE/-/1. BS EN ISO 5817:2014; British Standards Institution (BSI): London, UK, 2019.

2. Gunaraj, V.; Murugn, N. Application of response surface methodology for predicting weld bead quality in

submerged arc welding of pipes. J. Mater. Process. Technol. 1999, 88, 266–275. [CrossRef]

3. Schneider, C.; Lisboa, C.; Silva, R.; Lermen, R. Optimizing the Parameters of TIG-MIG/MAG Hybrid Welding

on the Geometry of Bead Welding Using the Taguchi Method. J. Manuf. Mater. Process. 2017, 1, 14. [CrossRef]

4. Yang, L.J.; Bibby, M.J.; Chandel, R. Linear regression equations for modeling the submerged-arc welding

process. J. Mater. Process. Technol. 1993, 39, 33–42. [CrossRef]

5. Vedrtnam, A.; Singh, G.; Kumar, A. Optimizing submerged arc welding using response surface methodology,

regression analysis, and genetic algorithm. Def. Technol. 2018, 14, 204–212. [CrossRef]

6. Imam Fauzi, E.R.; Samad, Z.; Jamil, C.; Nor, N.M.; Boon, G.P. Parametric Modeling of Metal Inert Gas (MIG)

Welding Process using Second-Order Regression Model Analysis. J. Adv. Manuf. Technol. 2018, 12, 367–382.

7. Dutta, P.; Pratihar, D.K. Modeling of TIG welding process using conventional regression analysis and neural

network-based approaches. J. Mater. Process. Technol. 2007, 184, 56–68. [CrossRef]

8. Xiong, J.; Zhang, G.; Hu, J.; Wu, L. Bead geometry prediction for robotic GMAW-based rapid manufacturing

through a neural network and a second-order regression analysis. J. Intell. Manuf. 2014, 25, 157–163.

[CrossRef]

9. Okuyuku, H.; Kurt, A.; Arcaklioglu, E. Artificial neural network application to the friction stir welding of

aluminum plates. Mater. Des. 2007, 28, 78–84. [CrossRef]

10. Vitek, J.M.; David, S.A.; Hinman, C.R. Improved Ferrite Number Prediction Model that Accounts for Cooling

Rate Effect. Weld. J. 2003, 82, 10-S.

11. Mirapeix, J.; García-Allende, P.B.; Cobo, A.; Conde, O.M.; López-Higuera, J.M. Real-time arc-welding defect

detection and classification with principal component analysis and artificial neural networks. NDT E Int.

2007, 40, 315–323. [CrossRef]

http://dx.doi.org/10.1016/S0924-0136(98)00405-1
http://dx.doi.org/10.3390/jmmp1020014
http://dx.doi.org/10.1016/0924-0136(93)90006-R
http://dx.doi.org/10.1016/j.dt.2018.01.008
http://dx.doi.org/10.1016/j.jmatprotec.2006.11.004
http://dx.doi.org/10.1007/s10845-012-0682-1
http://dx.doi.org/10.1016/j.matdes.2005.06.003
http://dx.doi.org/10.1016/j.ndteint.2006.12.001


J. Manuf. Mater. Process. 2019, 3, 39 18 of 18

12. Sathiya, P.; Panneerselvam, K.; Abdul Jaleel, M.K. Optimization of laser welding process parameters for

super austenitic stainless steel using artificial neural networks and genetic algorithm. Mater. Des. 2012,

36, 490–498. [CrossRef]

13. Pal, S.; Pal, S.K.; Samantaray, A.K. Artificial neural network modeling of weld joint strength prediction of

a pulsed metal inert gas welding process using arc signals. J. Mater. Process. Technol. 2008, 202, 464–474.

[CrossRef]

14. Taffaroj, M.M.; Kolahan, F. A comparative study on the performance of artificial neural networks

and regression models in modeling the heat source model parameters in GTA welding. Fus. Eng. Des. 2018,

131, 111–118. [CrossRef]

15. Ren, W.J.; Wen, G.R.; Liu, S.J.; Yang, Z.; Xu, B.; Zhang, Z.F. Seam Penetration Recognition for GTAW Using

Convolutional Neural Network Based on Time-Frequency Image of Arc Sound. In Proceedings of the 2018

IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Turin, Italy,

4–7 September 2018; pp. 853–860.

16. Dong, H.; Huff, H.A.; Cong, M.; Zhang, Y.M. Backside Weld Bead Shape Modeling Using Support Vector

Machine. In Proceedings of the 2017 IEEE 7th Annual International Conference on CYBER Technology

in Automation, Control, and Intelligent Systems (CYBER), Honolulu, HI, USA, 31 July–4 August 2017;

pp. 277–282.

17. Liang, Y.; Yu, R.; Luo, Y.; Zhang, Y.M. Machine learning of weld joint penetration from weld pool surface

using support vector regression. J. Manuf. Process. 2019, 41, 23–28. [CrossRef]

18. Chollet, F. Deep Learning with Python and Keras; Manning Publications Co.: Shelter Island, NY, USA, 2018.

19. Zorc, B. Automatic TIG welding of austenitic stainless steels in nitrogen and nitrogen-based gas mixtures.

Rev. Metal. 2011, 47, 29–37. [CrossRef]

20. Muthupandi, V.; Bala Srinivasan, P.; Shankar, V.; Seshadri, S.K.; Sundaresan, S. Effect of nickel and nitrogen

addition on the microstructure and mechanical properties of power beam processed duplex stainless steel

(UNS 31803) weld metals. Mater. Lett. 2005, 59, 2305–2309. [CrossRef]

21. Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol.

2011, 2, 27:1–27:27. [CrossRef]

22. Van Ooyen, A.; Nienhuis, B. Improving the convergence of the back-propagation algorithm. Neural Netw.

1992, 5, 465–471. [CrossRef]

23. Olden, J.D.; Joy, M.K.; Death, R.G. An accurate comparison of methods for quantifying variable. Ecol. Model.

2004, 178, 389–397. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.matdes.2011.11.028
http://dx.doi.org/10.1016/j.jmatprotec.2007.09.039
http://dx.doi.org/10.1016/j.fusengdes.2018.04.083
http://dx.doi.org/10.1016/j.jmapro.2019.01.039
http://dx.doi.org/10.3989/revmetalmadrid.0962
http://dx.doi.org/10.1016/j.matlet.2005.03.010
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1016/0893-6080(92)90008-7
http://dx.doi.org/10.1016/j.ecolmodel.2004.03.013
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Development of Computational Models 
	Development of SVM Models 
	Development of ANN Models 
	Development of ANN_A 
	Development of ANN_0 
	Development of ANN_2 


	Results 
	Conclusions 
	References

