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Superintegrable Systems on 3 Dimensional

Conformally Flat Spaces

Allan P. Fordy∗ and Qing Huang†
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Abstract

We consider Hamiltonians associated with 3 dimensional conformally flat spaces, possessing 2, 3

and 4 dimensional isometry algebras. We use the conformal algebra to build additional quadratic first

integrals, thus constructing a large class of superintegrable systems and the complete Poisson algebra

of first integrals. We then use the isometries to reduce our systems to 2 degrees of freedom. For

each isometry algebra we give a universal reduction of the corresponding general Hamiltonian. The

superintegrable specialisations reduce, in this way, to systems of Darboux-Koenigs type, whose integrals

are reductions of those of the 3 dimensional system.

Keywords: Darboux-Koenigs metric, Hamiltonian system, super-integrability, Poisson algebra, conformal
algebra.

MSC: 17B63, 37J15, 37J35,70G45, 70G65, 70H06

1 Introduction

On spaces of constant curvature, the geodesic equations automatically have higher order integrals, which
are just built out of first order integrals, corresponding to the abundance of Killing vectors. The construction
of these higher order integrals is the first step towards constructing first integrals for Hamiltonians in “natural
form” (the sum of kinetic and potential energies), with the kinetic energy being quadratic in momenta. The
simplest case is that involving quadratic integrals, which also happen to be important in the discussion of
separable systems. Thus for Hamiltonians associated with spaces of constant curvature, the task of building
quadratic or higher order integrals is relatively simple.

This is no longer true for general conformally flat spaces, but in this case there is a large algebra of
conformal symmetries, corresponding to the particular flat metric to which they are related. In 2 dimensions,
as is well known, the conformal algebra is infinite. For n ≥ 3 this algebra is finite and has maximal
dimension 1

2 (n + 1)(n + 2), which is achieved for conformally flat spaces (which includes flat and constant
curvature spaces). Any two conformally equivalent metrics have the same conformal algebra, so we can
describe this in terms of the corresponding flat metric. We can then use the method introduced in [8] to
build homogeneously quadratic integrals from conformal symmetries. This is for the geodesic case (purely
kinetic energy) and again the first step towards building integrals for Hamiltonians with potentials. We are
particularly interested in building enough first integrals, with appropriate Poisson relations, for complete
integrability or superintegrability (see [17] for a general review of superintegrability). In [8], the method
was illustrated by reproducing some well known, non-constant curvature systems in 2 degrees of freedom,
such as the Darboux-Koenigs systems [12–14], with one linear and two quadratic integrals, and a case from
the classification [16] of systems with one linear and a cubic integral. In [11], we applied this method to
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non-constant curvature systems in 3 degrees of freedom, seeking systems with one linear and three quadratic
integrals (since we were interested in maximally superintegrable systems). We found several 3 parameter
systems, corresponding to inequivalent choices of Killing vector (first order integral), but, without further
restriction, the full Poisson algebra is very difficult to determine.

In [11], we found that, by restricting parameters, we could increase the dimension of the isometry algebra
of our metric, which enabled us to derive the full Poisson algebra of first integrals. In the present paper we
also consider the case of 3 degrees of freedom, but now assume the existence of a larger isometry algebra,
whilst not having “too many” isometries, since we wish to avoid constant curvature. In 2 dimensions,
Darboux and Koenigs proved that we can only have 1 isometry (ie 2 implies 3). In 3 dimensions we can
have up to 4 isometries (since 5 implies 6). This “gap phenomenon” occurs in all dimensions and is the
subject of [15]. In the current paper, we consider 2, 3 and 4 dimensional isometry algebras and derive the
corresponding general Hamiltonian systems, with restrictions possessing further quadratic integrals.

In Section 2 we give our basis of the conformal algebra and describe some involutive automorphisms,
which play a very important role in our calculations. We enumerate all subalgebras of dimension 2,3 and 4,
and then the restrict to a smaller list, after taking equivalence with respect to the involutions. We then give
the general Hamiltonian (given by (1) below) which is invariant with respect to each of these algebras.

In Section 3, we describe our main approach to finding first integrals (the method introduced in [8]). It is
important to emphasise that for general conformally flat metrics we cannot use isometries to derive all higher
order integrals, so the usual method would fail. Here we build a conformal element from the given conformal
algebra (of first order elements) and require this to be a genuine first integral. The existence of larger (than
1D) isometry algebras makes it possible to make a systematic derivation. The existence of isometries also
enables us to reduce from 3 to 2 degrees of freedom. Our general approach to this was introduced in [7] and
described in Section 3.1, below.

Our main results are in Sections 4-8. In Section 4 we present all superintegrable systems in our class,
associated with the two inequivalent isometry algebras of dimension 2. For each of the resulting seven cases,
we present a 4 dimensional Poisson algebra of linear and quadratic integrals. Since these systems are not
maximally superintegrable, they don’t appear in the known classifications.

In Section 5 we consider the three inequivalent isometry algebras of dimensions 3 and present all super-
integrable systems in our class. There are six examples, but several of these already appeared in [11], so we
only give brief details, except where we have made significant simplifications or where the case is new. The
systems of this section are restrictions of those which appear in the known classifications of superintegrable
systems in 3 degrees of freedom [1, 2, 4]. The specific relations are given in Section 5.

In Sections 6 and 7, we consider the reductions of the systems described in Sections 4 and 5. We give
universal reduction schemes, which only depend on the specific isometry algebra. We give the general form
of reductions in each case, together with a commuting integral for the general case, thus rendering the
2 dimensional system Liouville integrable. When we adapt these reductions to our superintegrable cases,
they reduce to systems of Darboux-Koenigs type (whenever the additional integrals can be reduced). Our
labelling of Darboux-Koenigs systems is taken from [12, 13].

In Section 8 we consider the two 4D isometry algebras that appear in our classification. Having a 4D
isometry algebra is very restrictive, so leads to two specific Hamiltonians. These can be thought of as
specialisations of some of the general classes with smaller isometry algebras. These specific Hamiltonians
reduce to flat and constant curvature systems.

2 The 3D Euclidean Metric and its Conformal Algebra

Consider metrics which are conformally related to the standard Euclidean metric in 3 dimensions, with
Cartesian coordinates (q1, q2, q3). The corresponding kinetic energy takes the form

H = ϕ(q1, q2, q3)
(

p21 + p22 + p23
)

. (1)

A conformal invariant X, linear in momenta, will satisfy {X,H} = λ(X)H, for some function λ(X). The
conformal invariants form a Poisson algebra, which we call the conformal algebra. In flat spaces, of dimension
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n, the infinitesimal generators consist of n translations, 1
2n(n − 1) rotations, 1 scaling and n inversions,

totalling 1
2 (n+1)(n+2). This algebra is isomorphic to so(n+1, 1) (see Volume 1, p143, of [3]). For special

cases of ϕ(q1, q2, q3) there will be a subalgebra for which {X,H} = 0, thus forming true invariants of H.
These correspond to infinitesimal isometries (Killing vectors) of the metric. Constant curvature metrics
possess 1

2n(n+ 1) = 6 Killing vectors (when n = 3).
The conformal algebra of the metric (1) has dimension 1

2 (n+1)(n+2) = 10 (since n = 3). A convenient
basis is as follows

e1 = p1, h1 = −2(q1p1 + q2p2 + q3p3), f1 = (q22 + q23 − q21)p1 − 2q1q2p2 − 2q1q3p3, (2a)

e2 = p2, h2 = 2(q1p2 − q2p1), f2 = −4q1q2p1 − 2(q22 − q21 − q23)p2 − 4q2q3p3, (2b)

e3 = p3, h3 = 2(q1p3 − q3p1), f3 = −4q1q3p1 − 4q2q3p2 − 2(q23 − q21 − q22)p3, (2c)

h4 = 4q3p2 − 4q2p3. (2d)

The Poisson relations of the ten elements in the conformal algebra (2) are given in Table 1. Note that this is

Table 1: The 10-dimensional conformal algebra (2)

e1 h1 f1 e2 h2 f2 e3 h3 f3 h4

e1 0 2e1 −h1 0 −2e2 −2h2 0 −2e3 −2h3 0

h1 0 2f1 −2e2 0 2f2 −2e3 0 2f3 0

f1 0 −h2 −f2 0 −h3 −f3 0 0

e2 0 2e1 −2h1 0 0 h4 4e3

h2 0 −4f1 0 −h4 0 4h3

f2 0 h4 0 0 4f3

e3 0 2e1 −2h1 −4e2

h3 0 −4f1 −4h2

f3 0 −4f2

h4 0

an example of the conformal algebra given in [10] (Table 3), corresponding to the case a2 = a3 = 2, a4 = 0.
The subalgebra g1, with basis (2a) is just a copy of sl(2). We then make the vector space decomposition of
the full algebra g into invariant subspaces under the action of g1:

g = g1 + g2 + g3 + g4.

The basis elements for gi have the same subscript and are given in the rows of (2).

Table 2: The involutions of the conformal algebra (2)

e1 h1 f1 e2 h2 f2 e3 h3 f3 h4

ι12 e2 h1
1

2
f2 e1 −h2 2f1 e3 − 1

2
h4 f3 −2h3

ι13 e3 h1
1

2
f3 e2

1

2
h4 f2 e1 −h3 2f1 2h2

ι23 e1 h1 f1 e3 h3 f3 e2 h2 f2 −h4

ιef −f1 −h1 −e1 − 1

2
f2 h2 −2e2 − 1

2
f3 h3 −2e3 h4
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The algebra (2) possesses a number of involutive automorphisms:

ι12 : (q1, q2, q3) 7→ (q2, q1, q3), ι13 : (q1, q2, q3) 7→ (q3, q2, q1), ι23 : (q1, q2, q3) 7→ (q1, q3, q2),

ιef : (q1, q2, q3) 7→
(

− q1

q21 + q22 + q23
,− q2

q21 + q22 + q23
,− q3

q21 + q22 + q23

)

,

whose action is given in Table 2.

2.1 Low Dimensional Subalgebras of the Conformal Algebra g

We are interested in subalgebras of g, having dimensions 2, 3 and 4. Specifically, we enumerate all such
subalgebras, with bases of the form 〈K1, . . . ,Km〉 , m = 2, 3, 4, where Ki are chosen from the list (2).

Table 3: Subalgebras of g

Dimension Algebras Representative

2D 〈ei, h1〉, 〈fi, h1〉 for i = 1, 2, 3 〈e1, h1〉
〈ei, ej〉, 〈fi, fj〉 for 1 ≤ i < j ≤ 3 〈e1, e2〉
〈ei, h5−i〉, 〈fi, h5−i〉 for i = 1, 2, 3 〈e1, h4〉
〈hi, h1〉 for i = 2, 3, 4 〈h1, h2〉

3D 〈e1, e2, e3〉, 〈f1, f2, f3〉 〈e1, e2, e3〉
〈ei, h1, fi〉 for i = 1, 2, 3 〈e1, h1, f1〉
〈ei, ej , h1〉, 〈fi, fj , h1〉 for 1 ≤ i < j ≤ 3 〈e1, e2, h1〉
〈ei, h5−i, h1〉, 〈fi, h5−i, h1〉 for i = 1, 2, 3 〈e1, h1, h4〉
〈ei, ej , hi+j−1〉, 〈fi, fj , hi+j−1〉 for 1 ≤ i < j ≤ 3 〈e1, e2, h2〉
〈h2, h3, h4〉 〈h2, h3, h4〉

4D 〈e1, e2, e3, h1〉, 〈f1, f2, f3, h1〉 〈e1, e2, e3, h1〉
〈e1, e2, e3, hi〉, 〈f1, f2, f3, hi〉 for i = 2, 3, 4 〈e1, e2, e3, h2〉
〈ei, h1, fi〉 ⊕ 〈h5−i〉 for i = 1, 2, 3 〈e1, h1, f1〉 ⊕ 〈h4〉
〈ei, ej , hi+j−1, h1〉, 〈fi, fj , hi+j−1, h1〉 for 1 ≤ i < j ≤ 3 〈e1, e2, h1, h2〉
〈h2, h3, h4〉 ⊕ 〈h1〉 〈h2, h3, h4〉 ⊕ 〈h1〉

Table 3 shows the list of algebras. We only need to consider one representative algebra from each of these
classes, since other members are related via the involutions of Table 2. The chosen representative is shown
in the final column.

For each representative case of the subalgebras listed in Table 3, we solve the equations {Ki, H} = 0
for the function ϕ(q1, q2, q3) of (1). It often happens that the resulting Hamiltonian has a larger algebra of
isometries, as indicated in Table 4.

As can be seen, there are two cases with genuinely 2D algebras, with the solution depending upon an
arbitrary function, ψ, of a single variable. For the three genuinely 3 dimensional cases, the solution depends
upon an arbitrary function, ψ, of a single variable. With a 4D isometry algebra, the form of ϕ is explicitly
fixed. There are two genuine cases.

3 Geodesic Flows in 3D with Linear and Quadratic Integrals

In later sections we seek particular cases of the Hamiltonian functions of Table 4 which admit quadratic
integrals of the type described below. We use the method introduced in [8], and used in [11], to construct
quadratic invariants out of conformal invariants.
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Table 4: Invariant Hamiltonians for subalgebras of g

Dimension Representative ϕ of Invariant Hamiltonian Maximal Isometry Algebra

2D 〈e1, h1〉 ϕ = q22ψ
(

q3
q2

)

〈e1, h1, f1〉
〈e1, e2〉 ϕ = ψ(q3) 〈e1, e2, h2〉
〈e1, h4〉 ϕ = ψ

(

q22 + q23
)

〈e1, h4〉
〈h1, h2〉 ϕ = (q21 + q22)ψ

(

q2
3

q2
1
+q2

2

)

〈h1, h2〉
3D 〈e1, e2, e3〉 ϕ = 1 〈e1, e2, e3, h2, h3, h4〉

〈e1, h1, f1〉 ϕ = q22ψ
(

q3
q2

)

〈e1, h1, f1〉
〈e1, e2, h1〉 ϕ = q23 〈e1, e2, h1, f1, f2, h2〉
〈e1, h1, h4〉 ϕ = q22 + q23 〈e1, h1, f1〉 ⊕ 〈h4〉
〈e1, e2, h2〉 ϕ = ψ(q3) 〈e1, e2, h2〉
〈h2, h3, h4〉 ϕ = ψ(q21 + q22 + q23) 〈h2, h3, h4〉

4D 〈e1, e2, e3, h1〉 There are no solutions.
〈e1, e2, e3, h2〉 ϕ = 1 〈e1, e2, e3, h2, h3, h4〉
〈e1, h1, f1〉 ⊕ 〈h4〉 ϕ = q22 + q23 〈e1, h1, f1〉 ⊕ 〈h4〉
〈e1, e2, h1, h2〉 ϕ = q23 〈e1, e2, h1, f1, f2, h2〉
〈h2, h3, h4〉 ⊕ 〈h1〉 ϕ = q21 + q22 + q23 〈h2, h3, h4〉 ⊕ 〈h1〉

A quadratic conformal invariant is any expression of the form

F =
10
∑

i,j=1

βijXiXj + σ(q1, q2, q3)H, (3a)

where βij are the (constant) coefficients of a symmetric matrix, Xi are linear conformal invariants, and
σ(q1, q2, q3) is an arbitrary function, which satisfies

{F,H} =

(

3
∑

i=1

µi(q1, q2, q3)pi

)

H,

where µi(q1, q2, q3) are some functions.
We can ask whether there is a choice of coefficients βij and σ(q1, q2, q3) for which µi(q1, q2, q3) ≡ 0, in

which case F is a quadratic invariant.
In fact, we will restrict our first quadratic integral to have the simpler form

F1 = XiXj + σ(q1, q2, q3)H, with {F1, H} = 0, (3b)

for some choice 1 ≤ i, j ≤ 10. Since we have already restricted ϕ of (1) to satisfy one of the symmetry
constraints, the single equation (3b) is enough to determine the functions ψ (of the Table 4) and σ. From
F1 we can then generate a Poisson algebra of integrals by taking Poisson brackets with the isometries Ki,
along with the action of any involutions which preserve the isometry algebra and the form of ϕ. We must
also calculate the quantities {Fi, Fj}, which may necessitate additional integrals, after which we would need
to calculate further Poisson brackets, and so on. However, for each of the isometry algebras listed in Table
4, the resulting algebras are quite small, with simple Poisson relations. Only occasionally does an additional
integral appear when calculating {Fi, Fj}.

For a given isometry algebra we can systematically work through all choices of i, j in (3b) and determine
the list of compatible Hamiltonians (1). Again the action of {XiXj ,Kℓ}, and of the appropriate involution(s),
simplifies this calculation.

5



3.1 Reductions to Two Dimensions

In Sections 4 and 5 we present restrictions of Hamiltonians given in Table 4, for which an integral (3b)
exists, and derive the corresponding Poisson algebras.

In Sections 6 to 8 we use the isometries to reduce our systems from 3 to 2 degrees of freedom. We use
the particular method of reduction introduced in [7], referred to as the “Kaluza-Klein” reduction, since it
is essentially the reverse procedure to the Kaluza-Klein extension. By adapting coordinates to a linear first
integral, we can reduce from 3 to 2 degrees of freedom. In principle, the lower dimensional system would
possess vector potential terms, but in all our examples these can be removed by gauge transformation.

This approach was used in [11], where it was shown that several superintegrable systems in 3 degrees of
freedom can be reduced to Darboux-Koenigs systems in 2 degrees of freedom, but with the addition of a scalar
potential function. In the present paper we present universal reductions associated with each of the isometry
algebras. For each of the (nontrivial) general Hamiltonians given in Table 4 we give two reductions, which
are generally Liouville integrable. Any integral which commutes with the particular isometry, associated
with the reduction, can also be reduced. This gives rise to superintegrable reductions of Darboux-Koenigs
type (one linear and a quadratic integral).

Each reduction is associated with one particular isometry. It can be seen in Table 1 that each conformal
symmetry commutes with exactly 3 others. What is not so apparent is that we can also find 3 other quadratic
expressions which commute with this isometry, and that these 6 elements can be used to build 6 conformal
symmetries of the reduced space, which satisfy the relations of g1 + g2 in Table 1. Our reduced quadratic
integrals are then written in terms of this reduced conformal algebra.

4 Superintegrable Restrictions with 2D Isometry Algebras

In this section, we consider the kinetic energies H, with ϕ given in Table 4, corresponding to the two
nontrivial subalgebras 〈e1, h4〉 and 〈h1, h2〉, and list the cases consistent with quadratic integrals of the form
(3b). There are many choices of quadratic integrals for a given example, but in all our examples, the resulting
algebra has rank 4, meaning that we only obtain 4 functionally independent integrals, H,K1,K2, F1, so the
corresponding systems are superintegrable, but we have not managed to find the fifth integral needed for
maximal superintegrability. We can always choose F1 in such a way that we only need to introduce one
additional integral F2.

We find that, in each case, both functions Fi commute with one particular isometry (say K1). This follows
from one of two mechanisms:

{K1, F1} = 0, {K2, F1} = cF2, {K1,K2} = 0, ⇒ {K1, F2} = 0,

{K1, F1} = 0, ιabK1 = ±K1, ιabF1 = cF2 ⇒ {K1, F2} = 0,

where c is a constant and ιab denotes the relevant involution.
When we consider reductions to 2 dimensional systems in Section 6, we use one particular isometry for

the reduction and any commuting integral will reduce to the 2 dimensional space. We then find that one of
our reductions has one isometry and one or two quadratic integrals, so is of Darboux-Koenigs type, whilst
the other reduction is to a system with an isometry, but no independent quadratic integral.

4.1 Systems with Isometry Algebra 〈e1, h4〉
This algebra is commutative and invariant under the action of ι23, as is the general Hamiltonian with

conformal factor ϕ = ψ
(

q22 + q23
)

. We are led to three cases of the function ψ
(

q22 + q23
)

, which we list below.

Remark 4.1 (Choice of Fi) For each choice of (i, j) in (3b), we find a unique form of the function

ψ
(

q22 + q23
)

, but the same function may arise for different choices of (i, j). For example, the ψ of (5a)
arises if we choose XiXj to be one of {e22, e23, e2e3}. This set of quadratic elements is invariant under the
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action of ι23 and {h4, · }. We could, therefore, have used three integrals Fi, but our two functions were
chosen to have simpler relations under both the bracket and the involution.

For all our cases there are similar choices, but we don’t explicitly discuss these.

4.1.1 The Case ψ(z) = z
αz+β

The Hamiltonian

H =
q22 + q23

α(q22 + q23) + β

(

p21 + p22 + p23
)

, (4a)

is derived from quadratic integrals of the form

F1 = h21 − 4α
(

q21 + q22 + q23
)

H, F2 = e1h1 + 2αq1H. (4b)

The integrals H, e1, h4, F1, F2 form a Poisson algebra with non-zero Poisson brackets given by

{e1, F1} = 4F2, {e1, F2} = 2e21 − 2αH, {F1, F2} = −4e1F1. (4c)

We therefore have that h4 commutes with the entire Poisson algebra. Only four of these functions are
independent, since they obey the algebraic constraint:

F 2
2 =

(

e21 − αH
)

F1 +
1

4
αH

(

16βH − h24
)

. (4d)

These integrals are invariant under the action of ι23.

4.1.2 The Case ψ(z) = 1
αz+β

The Hamiltonian

H =
1

α(q22 + q23) + β

(

p21 + p22 + p23
)

, (5a)

is derived from quadratic integrals of the form

F1 = e2e3 − αq2q3H, F2 = e22 − e23 + α(q23 − q22)H. (5b)

The integrals H, e1, h4, F1, F2 form a Poisson algebra with non-zero Poisson brackets given by

{h4, F1} = 4F2, {h4, F2} = −16F1, {F1, F2} = −αh4H. (5c)

We therefore have that e1 commutes with the entire Poisson algebra. Only four of these functions are
independent, since they obey the algebraic constraints:

16F 2
1 + 4F 2

2 − 4(e21 − βH)2 − αh24H = 0. (5d)

The action of the involution is summarised in ι23 : (H, e1, h4, F1, F2) 7→ (H, e1,−h4, F1,−F2).

4.1.3 The Case ψ(z) =
√
z

α
√
z+β

The Hamiltonian

H =

√

q22 + q23

α
√

q22 + q23 + β

(

p21 + p22 + p23
)

, (6a)

is derived from quadratic integrals of the form

F1 = e2h4 −
2βq3

√

q22 + q23
H, F2 = e3h4 +

2βq2
√

q22 + q23
H. (6b)
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These integrals form the Poisson algebra with non-zero Poisson brackets given by

{h4, F1} = −4F2, {h4, F2} = 4F1, {F1, F2} = 4h4(αH − e21), (6c)

We therefore have that e1 commutes with the entire Poisson algebra. These functions satisfy the constraint

F 2
1 + F 2

2 + h24
(

e21 − αH
)

= 4β2H2. (6d)

The action of the involution is summarised in ι23 : (H, e1, h4, F1, F2) 7→ (H, e1,−h4,−F2,−F1).

4.2 Systems with Isometry Algebra 〈h1, h2〉
This algebra is commutative and invariant under the action of both ι12 and ιef , as is the general Hamil-

tonian with conformal factor ϕ = (q21 + q22)ψ
(

q2
3

q2
1
+q2

2

)

. We are led to four cases of the function ψ
(

q2
3

q2
1
+q2

2

)

,

which we list below.

4.2.1 The Case ψ(z) = (1+z)z
α+βz

The Hamiltonian

H =

(

q21 + q22 + q23
)

q23

α (q21 + q22) + βq23

(

p21 + p22 + p23
)

, (7a)

is derived from quadratic integrals of the form

F1 = h3h4 +
8αq1q2
q23

H, F2 = 4h23 − h24 − 16α
q21 − q22
q23

H. (7b)

The integrals H,h1, h2, F1, F2 form a Poisson algebra with non-zero Poisson brackets given by

{h2, F1} = F2, {h2, F2} = −16F1, {F1, F2} = −32h2(h
2
1 + h22 + 4(2α− β)H). (7c)

We therefore have that h1 commutes with the entire Poisson algebra. Only four of these functions are
independent, since they obey the algebraic constraint:

16F 2
1 + F 2

2 + 128
(

βh21 + (β − 2α)h22 − 2β2H
)

H − 16
(

h21 + h22
)2

= 0. (7d)

The actions of ι12 and ιef on integrals are summarised in

ι12 : (H,h1, h2, F1, F2) 7→ (H,h1,−h2, F1,−F2), ιef : (H,h1, h2, F1, F2) 7→ (H,−h1, h2, F1, F2).

4.2.2 The Case ψ(z) =
√
1+z

α
√
1+z+β

√
z

The Hamiltonian

H =

√

q21 + q22 + q23
(

q21 + q22
)

α
√

q21 + q22 + q23 + βq3

(

p21 + p22 + p23
)

, (8a)

is derived from quadratic integrals of the form

F1 = h1e3 −
β

√

q21 + q22 + q23
H, F2 = h1f3 + 2β

√

q21 + q22 + q23 H. (8b)

The integrals H,h1, h2, F1, F2 form a Poisson algebra with non-zero Poisson brackets given by

{h1, F1} = −2F1, {h1, F2} = 2F2, {F1, F2} = −2h1(2h
2
1 + h22 − 4αH). (8c)
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We therefore have that h2 commutes with the entire Poisson algebra. Only four of these functions are
independent, since they obey the algebraic constraint:

2F1F2 + 4H
(

β2H − αh21
)

+ h21(h
2
1 + h22) = 0. (8d)

The actions of ι12 and ιef on integrals are summarised in

ι12 : (H,h1, h2, F1, F2) 7→ (H,h1,−h2, F1, F2), ιef : (H,h1, h2, F1, F2) 7→
(

H,−h1, h2,
1

2
F2, 2F1

)

.

4.2.3 The Case ψ(z) = 1+z
α+β

√
z

The Hamiltonian

H =

√

q21 + q22
(

q21 + q22 + q23
)

α
√

q21 + q22 + βq3

(

p21 + p22 + p23
)

, (9a)

is derived from quadratic integrals of the form

F1 = h2h3 −
2βq2

√

q21 + q22
H, F2 = h2h4 −

4βq1
√

q21 + q22
H. (9b)

The integrals H,h1, h2, F1, F2 form a Poisson algebra with non-zero Poisson brackets given by

{h2, F1} = −F2, {h2, F2} = 4F1, {F1, F2} = 4h2(4αH − h21 − 2h22). (9c)

We therefore have that h1 commutes with the entire Poisson algebra. Only four of these functions are
independent, since they obey the algebraic constraint:

4F 2
1 + F 2

2 − 16H
(

β2H + αh22
)

+ 4h22(h
2
1 + h22) = 0. (9d)

The actions of ι12 and ιef on integrals are summarised in

ι12 : (H,h1, h2, F1, F2) 7→
(

H,h1,−h2,
1

2
F2, 2F1

)

, ιef : (H,h1, h2, F1, F2) 7→ (H,−h1, h2, F1, F2).

4.2.4 The Case ψ(z) = z
α+βz

The Hamiltonian

H =

(

q21 + q22
)

q23

α (q21 + q22) + βq23

(

p21 + p22 + p23
)

, (10a)

is derived from quadratic integrals of the form

F1 = e23 −
α

q23
H, F2 = f23 − 4α

(

q21 + q22 + q23
)2

q23
H. (10b)

The integrals H,h1, h2, F1, F2 form a Poisson algebra with non-zero Poisson brackets given by

{h1, F1} = −4F1, {h1, F2} = 4F2, {F1, F2} = 4h1(h
2
1 + h22 − 4(α+ β)H). (10c)

We therefore have that h2 commutes with the entire Poisson algebra. Only four of these functions are
independent, since they obey the algebraic constraint:

F1F2 + 2
(

(α+ β)h21 + (β − α)h22 − 2(α− β)2H
)

H − 1

4

(

h21 + h22
)2

= 0. (10d)

The actions of ι12 and ιef on integrals are summarised in

ι12 : (H,h1, h2, F1, F2) 7→ (H,h1,−h2, F1, F2), ιef : (H,h1, h2, F1, F2) 7→
(

H,−h1, h2,
1

4
F2, 4F1

)

.
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5 Superintegrable Restrictions with 3D Isometry Algebras

Here we consider the three nontrivial 3D cases listed in Table 4. Since these algebras are not commutative,
they generate larger, more complex Poisson algebras from the given quadratic function F1.

5.1 Systems with Isometry Algebra 〈e1, h1, f1〉
As given in Table 4, the general conformal factor in this case is ϕ = q22ψ

(

q3
q2

)

. This isometry algebra

is invariant under the action of both ι23 and ιef , as is the general form of Hamiltonian with this conformal
factor, although the specific form of ψ changes in the case of ι23. Depending upon our choice of quadratic
integrals, the full Poisson algebra of integrals may or may not be invariant with respect to the involutions.
Up to equivalence under point transformations, we obtain two cases, both of which are invariant under the
action of ιef , but not ι23. Since both of these were discussed in [11], only brief details are presented here.

5.1.1 The Case ψ(z) = z2

α+βz2

The Hamiltonian

H =
q22q

2
3

αq22 + βq23

(

p21 + p22 + p23
)

, (11a)

is derived from a quadratic integral of the form

F1 = e2f2 − σ(q1, q2, q3)H, where σ = 2β
q21 + q23
q22

. (11b)

The Poisson bracket of F1 with the isometries, leads to a further four quadratic integrals F2, . . . , F5, giving
us an 8 dimensional Poisson algebra of first integrals of H. The Poisson relations are given in Table 6
of [11]. Since H, e1, C (where C = e1f1 + 1

4 h
2
1 is the Casimir function) are in involution, the system is

Liouville integrable. Furthermore, since H, e1, h1, f1 and F1 are independent, the system is maximally
superintegrable.

Remark 5.1 (The Stäckel Transform) The Hamiltonian (11a) can be regarded as the Stäckel transform
of the Euclidean kinetic energy with potential V = β

q2
2

+ α
q2
3

. In the classification of [1], this example corre-

sponds to a reduction of VI , VIV and VS by equating (q1, q2, q3) = (x1, x2, x3) and (α, β) = (d, c).

5.1.2 The Case ψ(z) =
√
1+z2

α
√
1+z2+βz

The Hamiltonian

H =
q22
√

q22 + q23

α
√

q22 + q23 + βq3

(

p21 + p22 + p23
)

, (12a)

is derived from a quadratic integral of the form

F1 =
1

2
e2h4 − σ(q1, q2, q3)H, where σ =

β
(

q22 + 2q23
)

+ 2αq3
√

q22 + q23

q22
√

q22 + q23
. (12b)

The Poisson bracket of F1 with the isometries, together with the bracket {F1, F2}, lead to a further three
quadratic integrals F2, . . . , F4, giving us an 7 dimensional Poisson algebra of first integrals of H. The Poisson
relations are given in Table 8 of [11]. Since H, e1, C (where C = e1f1 +

1
4 h

2
1 is the Casimir function) are in

involution, the system is Liouville integrable. Furthermore, since H, e1, h1, f1 and F1 are independent, the
system is maximally superintegrable.

Remark 5.2 (Comparison with [11]) In [11] we discuss the equivalent system with algebra 〈e3, h1, f3〉,
so to compare formula we must transform all formulae in accordance with ι13.
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Remark 5.3 (The Stäckel Transform) The Hamiltonian (12a) can be thought of as the Stäckel transform
of the Euclidean kinetic energy with potential V = α

q2
2

+ βq3

q2
2

√
q2
2
+q2

3

, which corresponds to a reduction of system

iii given in [4] by equating (q1, q2, q3) = (x, y, z) and (α, β) = (a4, a5), and a reduction of system vii in [4]
as well, by letting (q1, q2, q3) = (x, z, y) and (α, β) = (a4, a5).

5.2 Systems with Isometry Algebra 〈e1, e2, h2〉
As given in Table 4, the general conformal factor in this case is ϕ = ψ(q3). This isometry algebra

and general Hamiltonian are invariant under the action of ι12, which helps us build the Poisson algebra of
integrals. Up to equivalence under point transformations, we obtain two cases.

5.2.1 The Case ψ(z) = 1
αz+β

The Hamiltonian

H =
1

αq3 + β

(

p21 + p22 + p23
)

, (13)

admits the quadratic integrals

F1 = e1h3 −
α

2
q21H, F2 = e1e3 −

α

2
q1H, F3 = −e1h4 + 2e2h3 − 2αq1q2H,

(14)
F4 = e2e3 −

α

2
q2H, F5 = e2h4 + αq22H.

They form a Poisson algebra of rank 5, satisfying the relations given in Table 5.

Table 5: The Poisson algebra of first integrals of (13)

e1 e2 h2 F1 F2 F3 F4 F5

e1 0 0 −2e2 −2F2
α
2H −4F4 0 0

e2 0 2e1 0 0 −4F2
α
2H 4F4

h2 0 F3 2F4 −4(2F1 + F5) −2F2 2F3

F1 0 −2e1(2e
2
1 + e22 − βH) 4h2(2e

2
1 + e22 − βH) −2e21e2 −4e1e2h2

F2 0 4e2(3e
2
1 + e22 − βH) 0 −4e1e

2
2

F3 0 −4e1(e
2
1 + 3e22 − βH) −8h2(e

2
1 + 2e22 − βH)

F4 0 −4e2(e
2
1 + 2e22 − βH)

F5 0

The actions of ι12 on the integrals are summarized in

ι12 : (H, e1, e2, h2, F1, F2, F3, F4, F5) 7→
(

H, e2, e1,−h2,−
1

2
F5, F4, F3, F2,−2F1

)

.

This algebra satisfies the following four constraints:

e1F4 − e2F2 −
α

4
h2H = 0, e1F3 − 4e2F1 + 2h2F2 = 0,

2e1F5 + e2F3 − 2h2F4 = 0, e1e2(e
2
1 + e22 − βH) + F2F4 +

α

8
F3H = 0.

11



Remark 5.4 This Hamiltonian is related to H = 1
αq2+βq3+γ

(

p21 + p22 + p23
)

of Sec. 4.2 in [11], through a

rotation in the (q2, q3) plane. The Poisson relations of Table 5 are simpler than those of Table 7 in [11].

Remark 5.5 (The Stäckel Transform) The Hamiltonian (13) can be regarded as the Stäckel transform of
the Euclidean kinetic energy with potential V = αq3+β. In the classification of [1], this example corresponds
to a reduction of VV by equating (q1, q2, q3) = (x1, x2, x3) and (α, β) = (b, e) or VIV by setting (q1, q2, q3) =
(x2, x3, x1) and (α, β) = (b, e).

5.2.2 The Case ψ(z) = z2

αz2+β

The Hamiltonian

H =
q23

αq23 + β

(

p21 + p22 + p23
)

, (15)

is compatible with the quadratic integral

F1 = e3f3 + 2

(

αq23 − β

(

q21 + q22
q23

))

H, (16)

which (taking Poisson brackets with the isometries) generates another three quadratic integrals. The resulting
Poisson algebra is equivalent (under ι23 and a small change of notation) to that shown in Table 3 of [11].
The algebra has rank 5 and defines a maximally superintegrable system.

Remark 5.6 (The Stäckel Transform) The Hamiltonian (15) can be regarded as the Stäckel transform
of the Euclidean kinetic energy with potential V = β

q2
3

+ α. This system corresponds to a reduction of VI ,

VII , VIV , VV I and VOO given by [1] by equating (q1, q2, q3) = (x1, x2, x3) and (α, β) = (e, d).

5.3 Systems with Isometry Algebra 〈h2, h3, h4〉
As given in Table 4, the general conformal factor in this case is ϕ = ψ

(

q21 + q22 + q23
)

. This isometry
algebra is invariant under the action of all the involutions of Table 2. The general Hamiltonian is invariant
under 3 of the involutions, but not ιef . Invariance under ιef implies that ϕ = q21 + q22 + q23 , which has an
additional isometry, h1, and is discussed in Section 8. The symmetry of the Poisson algebra of integrals, under
involutions, depends upon the choice of quadratic integrals. Up to equivalence under point transformations,
we obtain two cases.

5.3.1 The Case ψ(z) =
√
z

α
√
z+β

The Hamiltonian

H =

√

q21 + q22 + q23

α
√

q21 + q22 + q23 + β

(

p21 + p22 + p23
)

, (17)

has the three quadratic integrals

Fi = eih1 +
qi

(

2α
√

q21 + q22 + q23 + β
)

√

q21 + q22 + q23
H, i = 1, 2, 3. (18a)

These integrals form a Poisson algebra with the Poisson relations given in Table 6 and satisfy the constraints

h4F1 + 2h3F2 − 2h2F3 = 0, F 2
1 + F 2

2 + F 2
3 − β2H2 − α(h22 + h23 +

1

4
h24)H = 0. (18b)

The actions of the involutions on the integrals are summarized in Table 7.
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Table 6: The Poisson algebra of integrals of (17)

h2 h3 h4 F1 F2 F3

h2 0 −h4 4h3 2F2 −2F1 0
h3 0 −4h2 2F3 0 −2F1

h4 0 0 −4F3 4F2

F1 0 −2αh2H −2αh3H
F2 0 αh4H

F3 0

Table 7: The actions of the involutions on (17) and its integrals

H h2 h3 h4 F1 F2 F3

ι12 H −h2 − 1
2h4 −2h3 F2 F1 F3

ι13 H 1
2h4 −h3 2h2 F3 F2 F1

ι23 H h3 h2 −h4 F1 F3 F2

Remark 5.7 (The Stäckel Transform) The Hamiltonian (17) can be thought of as the Stäckel transform
of the Euclidean kinetic energy with potential V = β√

q2
1
+q2

2
+q2

3

+ α. Equating (q1, q2, q3) = (x, y, z), (α, β) =

(a4, a0) and (α, β) = (a4, a5), this system corresponds to a reduction of system ii and system viii in [4]
separately.

5.3.2 The Case ψ(z) = 1
αz+β

The Hamiltonian

H =
1

α(q21 + q22 + q23) + β

(

p21 + p22 + p23
)

, (19)

has the quadratic integral F1 = e21 − αq21H, which generates a further five quadratic integrals. These 10
integrals satisfy Poisson relations equivalent to those given in Table 10 of [11], which is invariant under the
action of ι23.

Remark 5.8 (The Stäckel Transform) The Hamiltonian (19) is the Stäckel transform of the Euclidean
kinetic energy with potential V = α(q21 + q22 + q23) + β, which corresponds to a reduction of VI , VII , VO in [1]
and VIII in [2] by setting (q1, q2, q3) = (x1, x2, x3) and (α, β) = (a, e).

6 Reduction to 2 Dimensional Systems: 2D Isometry Algebras

In this section we use the approach described in Section 3.1 to reduce our systems of Section 4 to
2 dimensional spaces. Since the two isometries commute, we can simultaneously adapt coordinates and
then adjust the canonical transformation so that the resulting Hamiltonian takes “conformal form” in the
remaining 2 dimensions. Any integrals which commute with this isometry will reduce to give an integral in
the two dimensional space, which can be expressed in terms of the reduced conformal algebra.

Since all our systems have integrals that commute with just one of the isometries, we obtain two types
of reduction: systems of Darboux-Koenigs type, when the quadratic integrals can reduce, or systems with
just one 2D isometry and no quadratic integrals.
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6.1 Systems with Isometry Algebra 〈e1, h4〉
We give a pair of universal reductions of the general Hamiltonian in this class:

H = ψ
(

q22 + q23
) (

p21 + p22 + p23
)

. (20)

We then give the reductions of the three cases presented in Section 4.1.
Since the isometries commute, we can simultaneously reduce them to (e1, h4) = (P1, P3), giving us the

form of Q1, Q3, up to arbitrary functions of q22 + q23 , which is the common invariant of e1 and h4. Since

{q1, e1} =

{

1

4
arctan

(

q2

q3

)

, h4

}

= 1,

the most general canonical transformation which achieves this is:

S = (q1 + w1(z))P1 + w2(z)P2 +

(

1

4
arctan

(

q2

q3

)

+ w3(z)

)

P3, where z = q22 + q23 . (21)

We first require that the coefficients of PiPj are zero, giving

w′
1(z)w

′
2(z) = w′

2(z)w
′
3(z) = w′

1(z)w
′
3(z) = 0 ⇒ w′

1(z) = w′
3(z) = 0,

since w′
2(z) cannot be zero. We can therefore take w1(z) = w3(z) = 0. The variable Q2 is then chosen

to equate coefficients of P 2
1 , P

2
2 or of P 2

2 , P
2
3 , giving an ODE for w2(z) in each case, leading to the two

transformations.

Reduction with respect to e1

Here we have the generating function

S = q1P1 +
1

8
log
(

q22 + q23
)

P2 +
1

4
arctan

(

q2

q3

)

P3, (22a)

giving the Hamiltonian

H =
1

16
e−8Q2 ψ

(

e8Q2

) (

P 2
2 + P 2

3 + 16e8Q2P 2
1

)

. (22b)

We can think of this as corresponding to a conformally flat metric in the 2−3 space, defined by P1 = const.,
with 16e8Q2P 2

1 (times the conformal factor) corresponding to a potential. Since the conformal factor is a
function of only Q2, the momentum P3 corresponds to a Killing vector (in 2D), and, in this case, is a first
integral of the entire Hamiltonian.

As remarked in Section 3.1, we can build the 6 dimensional conformal algebra for this 2D metric (kinetic
energy). First note that e2, e3, h4, e1f1 + 1

4h
2
1, e2f2 − 1

2h
2
2, e3f3 − 1

2h
2
3 commute with e1. Writing these

in terms of Qi, Pi and discarding the P 2
1 components in the quadratic ones, we can derive the following 6

conformal elements:

Te1 =
1

4
e4Q2(P2 sin 4Q3 − P3 cos 4Q3), Th1

=
1

2
P2, Tf1 = −1

4
e−4Q2(P2 sin 4Q3 + P3 cos 4Q3),

(22c)

Te2 =
1

4
e4Q2(P2 cos 4Q3 + P3 sin 4Q3), Th2

= −1

2
P3, Tf2 =

1

2
e−4Q2(P3 sin 4Q3 − P2 cos 4Q3),

which satisfy the relations of g1 + g2 in Table 1, together with the algebraic constraints:

Te1Tf1 +
1

4
T 2
h1

+
1

2

(

Te2Tf2 −
1

2
T 2
h2

)

= 0, Te1Tf2 − 2Te2Tf1 + Th1
Th2

= 0. (22d)
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Reduction with respect to h4

Here we have the generating function

S = q1P1 +
√

q22 + q23 P2 +
1

4
arctan

(

q2

q3

)

P3, (23a)

giving the Hamiltonian

H = ψ
(

Q2
2

)

(

P 2
1 + P 2

2 +
P 2
3

16Q2
2

)

. (23b)

This case corresponds to a conformally flat metric in the 1 − 2 space, defined by P3 = const., with
P 2

3

16Q2

2

(times the conformal factor) corresponding to a potential. Since the conformal factor is a function of only
Q2, the momentum P1 corresponds to a Killing vector (in 2D), and, again, is a first integral of the entire
Hamiltonian.

Again, we can build the 6 dimensional conformal algebra for this 2D metric (kinetic energy). First note
that e1, h1, f1, e

2
2 + e23, h

2
2 + h23, f

2
2 + f23 commute with h4. Writing these in terms of Qi, Pi and discarding

the P 2
3 components in the quadratic ones, we can derive the following 6 conformal elements:

Te1 = P1, Th1
= −2(Q1P1 +Q2P2), Tf1 = (Q2

2 −Q2
1)P1 − 2Q1Q2P2,

(23c)
Te2 = P2, Th2

= 2(Q1P2 −Q2P1), Tf2 = 2(Q2
1 −Q2

2)P2 − 4Q1Q2P1,

which satisfy the relations of g1 + g2 in Table 1, together with the algebraic constraints (22d).

6.1.1 The Case ψ(z) = z
αz+β

With

H =
q22 + q23

α(q22 + q23) + β

(

p21 + p22 + p23
)

, (24a)

we find that the Hamiltonians (22b) and (23b) give

H̃ =
1

16(αe8Q2 + β)

(

P 2
2 + P 2

3 + 16e8Q2P 2
1

)

, (24b)

H̃ =
Q2

2

αQ2
2 + β

(

P 2
1 + P 2

2 +
P 2
3

16Q2
2

)

. (24c)

The second of these is theD2 kinetic energy with the potential of “type A” (parameter a3), in the classification
of [12]. Since this corresponds to reduction with respect to h4, which commutes with all our integrals, the
latter can be reduced to the 2D space. We have that P1 is an integral (not just a Killing vector of the metric)
and the integrals F1 and F2 take the forms

F̃1 = T 2
h1

− 4α(Q2
1 +Q2

2)H̃, F̃2 = P1Th1
+ 2αQ1H̃, (24d)

where Th1
is a conformal symmetry from the list (23c). These integrals satisfy the Poisson relations (4c) and

constraint (4d), after the replacement (e1, h4, Fi) 7→ (P1, P3, F̃i).
The reduction (24b) possesses a Killing vector, corresponding to the Noether constant P3, but no other

quadratic integrals, so is certainly not of Darboux-Koenigs type.

6.1.2 The Case ψ(z) = 1
αz+β

With

H =
1

α(q22 + q23) + β
(p21 + p22 + p23), (25a)
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we find that the Hamiltonians (22b) and (23b) give

H̃ =
e−8Q2

16(αe8Q2 + β)

(

P 2
2 + P 2

3 + 16e8Q2P 2
1

)

, (25b)

H̃ =
1

αQ2
2 + β

(

P 2
1 + P 2

2 +
P 2
3

16Q2
2

)

. (25c)

Now the first of these is the D3 kinetic energy with the potential of “type B” (parameter b3), in the
classification of [12]. Since this corresponds to reduction with respect to e1, which commutes with all our
integrals, the latter can be reduced to the 2D space. The integrals F1 and F2 take the forms

F̃1 = − 1

2
Tf1Tf2 +

α

2
e8Q2 sin (8Q3)H̃, F̃2 =

1

4
T 2
f2

− T 2
f1

− αe8Q2 cos (8Q3)H̃, (25d)

where Tfi are conformal symmetries from the list (22c). These integrals satisfy the Poisson relations (5c)

and constraint (5d), after the replacement (e1, h4, Fi) 7→ (P1, P3, F̃i).
The reduction (25c) possesses a Killing vector, corresponding to the Noether constant P1, but no other

quadratic integrals, so is certainly not of Darboux-Koenigs type.

6.1.3 The Case ψ(z) =
√
z

α
√
z+β

With

H =

√

q22 + q23

α
√

q22 + q23 + β

(

p21 + p22 + p23
)

, (26a)

we find that the Hamiltonians (22b) and (23b) give

H̃ =
e−4Q2

16(αe4Q2 + β)

(

P 2
2 + P 2

3 + 16e8Q2P 2
1

)

, (26b)

H̃ =
Q2

αQ2 + β

(

P 2
1 + P 2

2 +
P 2
3

16Q2
2

)

. (26c)

The first of these is the D3 kinetic energy with a potential. Since this corresponds to reduction with respect
to e1, which commutes with all our integrals, the latter can be reduced to the 2D space. The integrals F1

and F2 take the forms

F̃1 = − 1

2
P3Tf2 + 2β sin (4Q3)H̃, F̃2 = P3Tf1 + 2β cos (4Q3)H̃, (26d)

where Tfi are conformal symmetries from the list (22c). These integrals satisfy the Poisson relations (6c)

and constraint (6d), after the replacement (e1, h4, Fi) 7→ (P1, P3, F̃i).
The reduction (26c) possesses a Killing vector, corresponding to the Noether constant P1, but no other

quadratic integrals, so is certainly not of Darboux-Koenigs type.

6.2 Systems with Isometry Algebra 〈h1, h2〉
We give a pair of universal reductions of the general Hamiltonian in this class:

H = (q21 + q22)ψ

(

q23
q21 + q22

)

(

p21 + p22 + p23
)

. (27a)

We then give the reductions of the four cases presented in Section 4.2.
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Since the isometries commute, we can simultaneously reduce them to (h1, h2) = (P1, P3), giving us the

form of Q1, Q3, up to arbitrary functions of the common invariant z =
q2
3

q2
1
+q2

2

. We solve the equations

{Q1, h1} = 1, {Q1, h2} = 0 ⇒ Q1 = −1

4
log
(

q21 + q22
)

+ w1(z),

{Q2, h1} = 0, {Q2, h2} = 0 ⇒ Q2 = w2(z),

{Q3, h1} = 0, {Q3, h2} = 1 ⇒ Q3 = −1

2
arctan

(

q1

q2

)

+ w3(z),

to obtain:

S =

(

−1

4
log
(

q21 + q22
)

+ w1(z)

)

P1 + w2(z)P2 +

(

−1

2
arctan

(

q1

q2

)

+ w3(z)

)

P3. (27b)

We first require that the coefficients of PiPj are zero, giving

(1 + 4(1 + z)w′
1(z))w

′
2(z) = w′

2(z)w
′
3(z) = (1 + 4(1 + z)w′

1(z))w
′
3(z) = 0,

with solution w1(z) = − 1
4 log(1+z), w3(z) = 0, since w′

2(z) cannot be zero. This leaves only w2(z) arbitrary
in

S = −1

4
log
(

q21 + q22 + q23
)

P1 + w2(z) P2 −
1

2
arctan

(

q1

q2

)

P3, (27c)

with the variable Q2 being chosen by equating coefficients of P 2
1 , P

2
2 or of P 2

2 , P
2
3 , giving an ODE for w2(z)

in each case, leading to the two transformations.

Reduction with respect to h1

Here we have the generating function

S = −1

4
log
(

q21 + q22 + q23
)

P1 +
1

2
log

(

q3 +
√

q21 + q22 + q23
√

q21 + q22

)

P2 −
1

2
arctan

(

q1

q2

)

P3, (28a)

giving the Hamiltonian

H =
1

4
ψ
(

sinh2 2Q2

) (

P 2
2 + P 2

3 + sech2 (2Q2)P
2
1

)

. (28b)

This case corresponds to a conformally flat metric in the 2 − 3 space, defined by P1 = const., with
sech2 (2Q2)P

2
1 being an additional potential term. Since the conformal factor is a function of only Q2,

momentum P3 corresponds to a Killing vector (in 2D), as well as a first integral of the entire Hamiltonian.
Again, we build the 6 dimensional conformal algebra for this 2D metric (kinetic energy). First note that

h2, h3, h4, e1f1 +
1
4h

2
1, e2f2, e3f3 commute with h1. Writing these in terms of Qi, Pi and discarding the P 2

1

components in the quadratic ones, we can derive the following 6 conformal elements:

Te1 =
1

2
e2Q2(P2 sin 2Q3 − P3 cos 2Q3), Th1

= P2, Tf1 = −1

2
e−2Q2(P2 sin 2Q3 + P3 cos 2Q3),

(28c)

Te2 =
1

2
e2Q2(P2 cos 2Q3 + P3 sin 2Q3), Th2

= −P3, Tf2 = e−2Q2(P3 sin 2Q3 − P2 cos 2Q3),

which satisfy the relations of g1 + g2 in Table 1, together with the algebraic constraints (22d).
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Reduction with respect to h2

Here we have the generating function

S = −1

4
log
(

q21 + q22 + q23
)

P1 +
1

2
arctan

(

q3
√

q21 + q22

)

P2 −
1

2
arctan

(

q1

q2

)

P3, (29a)

giving the Hamiltonian

H =
1

4
cos2(2Q2)ψ

(

tan2 2Q2

) (

P 2
1 + P 2

2 + sec2(2Q2)P
2
3

)

. (29b)

This case corresponds to a conformally flat metric in the 1−2 space, defined by P3 = const., with sec2(2Q2)P
2
3

being an additional potential term. Since the conformal factor is a function of only Q2, the momentum P1

corresponds to a Killing vector (in 2D), and, again, is a first integral of the entire Hamiltonian.
Again, we build the 6 dimensional conformal algebra for this 2D metric (kinetic energy). First note that

e3, h1, f3, e
2
1 + e22, h

2
3 +

1
4h

2
4, f

2
2 +4f21 commute with h2. Writing these in terms of Qi, Pi and discarding the

P 2
3 components in the quadratic ones, we can derive the following 6 conformal elements:

Te1 =
1

2
e2Q1(P2 cos 2Q2 − P1 sin 2Q2), Th1

= P1, Tf1 =
1

2
e−2Q1(P2 cos 2Q2 + P1 sin 2Q2),

(29c)

Te2 =
1

2
e2Q1(P2 sin 2Q2 + P1 cos 2Q1), Th2

= P2, Tf2 = e−2Q1(P2 sin 2Q2 − P1 cos 2Q2),

which satisfy the relations of g1 + g2 in Table 1, together with the algebraic constraints (22d).

6.2.1 The Case ψ(z) = (1+z)z
α+βz

With

H =

(

q21 + q22 + q23
)

q23

α (q21 + q22) + βq23

(

p21 + p22 + p23
)

, (30a)

we find that the Hamiltonians (28b) and (29b) give

H̃ =
sinh2 (4Q2)

8(β cosh (4Q2) + 2α− β)

(

P 2
2 + P 2

3 + sech2 2Q2 P
2
1

)

, (30b)

H̃ =
sin2 (2Q2)

4(α cos2 (2Q2) + β sin2 (2Q2))

(

P 2
1 + P 2

2 + sec2 (2Q2)P
2
3

)

. (30c)

The first of these is the D4 kinetic energy (but with hyperbolic functions in place of trigonometric ones) with
a potential. Since this corresponds to reduction with respect to h1, which commutes with all our integrals,
the latter can be reduced to the 2D space. The integrals F1 and F2 take the forms

F̃1 = h̃3h̃4 − 4α
sin (4Q3)

sinh2 (2Q2)
H̃, F̃2 = 4h̃23 − h̃24 + 16α

cos (4Q3)

sinh2 (2Q2)
H̃, (30d)

where h̃3 = Te1 − Tf1 , h̃4 = 2Te2 − Tf2 , with Tei , Tfi being conformal symmetries from the list (28c).
These integrals satisfy the Poisson relations (7c) and constraint (7d), after the replacement (h1, h2, Fi) 7→
(P1, P3, F̃i).

The reduction (30c) possesses a Killing vector, corresponding to the Noether constant P1, but no other
quadratic integrals, so is not of Darboux-Koenigs type.
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6.2.2 The Case ψ(z) =
√
1+z

α
√
1+z+β

√
z

With

H =

√

q21 + q22 + q23
(

q21 + q22
)

α
√

q21 + q22 + q23 + βq3

(

p21 + p22 + p23
)

, (31a)

we find that the Hamiltonians (28b) and (29b) give

H̃ =
cosh (2Q2)

4(α cosh (2Q2) + β sinh (2Q2))

(

P 2
2 + P 2

3 + sech2 2Q2 P
2
1

)

, (31b)

H̃ =
cos2 (2Q2)

4(α+ β sin (2Q2))

(

P 2
1 + P 2

2 + sec2 (2Q2)P
2
3

)

. (31c)

The second of these is the D4 kinetic energy
(

after a shift Q2 → Q2 − π
4

)

with a potential of “type A”
(parameter a2) in the classification of [12]. Since this corresponds to reduction with respect to h2, which
commutes with all our integrals, the latter can be reduced to the 2D space. The integrals F1 and F2 take
the forms

F̃1 = P1Te1 − βe2Q1H̃, F̃2 = 2P1Tf1 + 2βe−2Q1H̃, (31d)

where Te1 , Tf1 are conformal symmetries from the list (29c). These integrals satisfy the Poisson relations

(8c) and constraint (8d), after the replacement (h1, h2, Fi) 7→ (P1, P3, F̃i).
The reduction (31b) possesses a Killing vector, corresponding to the Noether constant P3, but no other

quadratic integrals, so is not of Darboux-Koenigs type.

6.2.3 The Case ψ(z) = 1+z
α+β

√
z

With

H =

√

q21 + q22
(

q21 + q22 + q23
)

α
√

q21 + q22 + βq3

(

p21 + p22 + p23
)

, (32a)

we find that the Hamiltonians (28b) and (29b) give

H̃ =
cosh2 (2Q2)

4(α+ β sinh (2Q2))

(

P 2
2 + P 2

3 + sech2 2Q2 P
2
1

)

, (32b)

H̃ =
cos (2Q2)

4(α cos (2Q2) + β sin (2Q2))

(

P 2
1 + P 2

2 + sec2 (2Q2)P
2
3

)

. (32c)

The first of these is the D4 kinetic energy (but with hyperbolic functions in place of trigonometric) with a
potential. Since this corresponds to reduction with respect to h1, which commutes with all our integrals, the
latter can be reduced to the 2D space. The integrals F1 and F2 take the forms

F̃1 = P3 (Tf1 − Te1)− 2β cos (2Q3)H̃, F̃2 = P3 (Tf2 − 2Te2) + 4β sin (2Q3)H̃, (32d)

where Tei , Tfi are conformal symmetries from the list (28c). These integrals satisfy the Poisson relations

(9c) and constraint (9d), after the replacement (h1, h2, Fi) 7→ (P1, P3, F̃i).
The reduction (32c) possesses a Killing vector, corresponding to the Noether constant P1, but no other

quadratic integrals, so is not of Darboux-Koenigs type.

6.2.4 The Case ψ(z) = z
α+βz

With

H =

(

q21 + q22
)

q23

α (q21 + q22) + βq23

(

p21 + p22 + p23
)

, (33a)
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we find that the Hamiltonians (28b) and (29b) give

H̃ =
sinh2 (2Q2)

4(α+ β sinh2 (2Q2))

(

P 2
2 + P 2

3 + sech2 2Q2 P
2
1

)

, (33b)

H̃ =
sin2 (4Q2)

8((α− β) cos (4Q2) + α+ β)

(

P 2
1 + P 2

2 + sec2 (2Q2)P
2
3

)

. (33c)

The second of these is the D4 kinetic energy with a potential. Since this corresponds to reduction with
respect to h2, which commutes with all our integrals, the latter can be reduced to the 2D space. The
integrals F1 and F2 take the forms

F̃1 = T 2
e1

− αe4Q1

sin2 (2Q2)
H̃, F̃2 = 4T 2

f1
− 4αe−4Q1

sin2 (2Q2)
H̃, (33d)

where Te1 , Tf1 are conformal symmetries from the list (29c). These integrals satisfy the Poisson relations

(10c) and constraint (10d), after the replacement (h1, h2, Fi) 7→ (P1, P3, F̃i).
The reduction (33b) possesses a Killing vector, corresponding to the Noether constant P3, but no other

quadratic integrals, so is not of Darboux-Koenigs type.

7 Reduction to 2 Dimensional Systems: 3D Isometry Algebras

In this section we use the approach described in Section 3.1 to reduce our systems of Section 5 to 2
dimensional spaces. This time the isometries do not form a commutative algebra, so we cannot simultaneously
adapt coordinates to more than one isometry. Nevertheless, we can still reduce the systems in a “universal”
way, transforming each Hamiltonian into a pair of “conformal forms” in the remaining 2 dimensions. In fact,
the conformal factor is the same for both reductions, but the added “potential” is different.

Any integrals which commute with this isometry will reduce to give an integral in the two dimensional
space. Hence, our superintegrable cases reduce to superintegrable systems in 2D, with one Killing vector
and two second order Killing tensors, so reduce to Darboux-Koenigs systems.

7.1 Systems with Isometry Algebra 〈e1, h1, f1〉
We give a pair of universal reductions of the general Hamiltonian in this class:

H = q22ψ

(

q3

q2

)

(

p21 + p22 + p23
)

. (34)

We then give the reductions of the two cases presented in Section 5.1.
We give two transformations, corresponding to e1 → P1 and h1 → P3, respectively. The transformation

using f1 can be obtained from that involving e1 by applying the involution ιef , which preserves the general
Hamiltonian.

In each case, we choose Q2 to be a function of z2 = q3
q2
, which is the common invariant of e1 and h1 and,

as a consequence, the variable which appears in the arbitrary function ψ, of the Hamiltonian. In fact, it
turns out that Q2 is exactly the same function of z2 in each case, so that the conformal factor of the reduced
metric is the same in each case.

7.1.1 Reduction using the Isometry e1 7→ P1

In view of {q1, e1} = 1 and {q2, e1} = {q3, e1} = 0, we consider the generating function

S = (q1 + w1(q2, q3)) P1 + w2(z2) P2 + w3(q2, q3) P3, where z2 =
q3

q2
. (35a)
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We first require that the coefficients of PiPj are zero, giving

w′
2(z2) (q2∂q3w1 − q3∂q2w1) = w′

2(z2) (q2∂q3w3 − q3∂q2w3) = ∂q2w1∂q2w3 + ∂q3w1∂q3w3 = 0.

The first two give wi = wi

(

q22 + q23
)

, i = 1, 3, since w′
2(z2) cannot be zero. The third then gives w′

1w
′
3 = 0.

Since w′
3 cannot be zero, we have w1 = 0, so the canonical transformation (35a) now takes the form

S = q1 P1 + w2(z2) P2 + w3(z1) P3, where z1 = q22 + q23 , z2 =
q3

q2
. (35b)

At this stage, the transformed Hamiltonian is diagonal:

H̃ = (1 + z22)ψ(z2)w
′2
2 (z2) P

2
2 +

4ψ(z2)

1 + z22
z21w

′2
3 (z1) P

2
3 +

z1ψ(z2)

1 + z22
P 2
1 . (35c)

We must choose w2 and w3 so that (35c) is “conformal” in the P2 − P3 components, which requires

4z21w
′2
3 (z1) = 1, (1 + z22)w

′2
2 (z2) =

1

1 + z22
,

giving

w2 = arctan z2 = arctan

(

q3

q2

)

, w3 =
1

2
log z1 =

1

2
log
(

q22 + q23
)

.

This gives us the final form of the canonical transformation

S = q1 P1 + arctan

(

q3

q2

)

P2 +
1

2
log
(

q22 + q23
)

P3, (35d)

and the Hamiltonian
H̃ = cos2Q2 ψ(tanQ2)

(

P 2
2 + P 2

3 + e2Q3P 2
1

)

. (35e)

This corresponds to a conformally flat metric in the 2 − 3 space, defined by P1 = const, with e2Q3P 2
1

corresponding to a potential term. Since the conformal factor is a function of only Q2, the momentum P3

corresponds to a Killing vector (in 2D), but not a first integral of the entire Hamiltonian. However, the
Casimir function of the original isometry algebra does reduce to a first integral of H̃:

C = e1f1 +
1

4
h21 = P 2

3 + e2Q3P 2
1 . (35f)

Thus, for arbitrary ψ, the Hamiltonian H̃ is Liouville integrable and, indeed, separable. The form of the
potential and of the Casimir are independent of the form of ψ, so are universal properties of this reduction.

Again, we build the 6 dimensional conformal algebra for this 2D metric (kinetic energy). First note
that e2, e3, h4, e1f1 +

1
4h

2
1, e2f2 − 1

2h
2
2, e3f3 − 1

2h
2
3 commute with e1. Writing these in terms of Qi, Pi and

discarding the P 2
1 components in the quadratic ones, we can derive the following 6 conformal elements:

Te1 = eQ3(P2 sinQ2 + P3 cosQ2), Th1
= 2P3, Tf1 = e−Q3(P2 sinQ2 − P3 cosQ2),

(35g)
Te2 = eQ3(P2 cosQ2 − P3 sinQ2), Th2

= −2P2, Tf2 = 2e−Q3(P2 cosQ2 + P3 sinQ2),

which satisfy the relations of g1 + g2 in Table 1, together with the algebraic constraints (22d).
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7.1.2 Reduction using the Isometry h1 7→ P3

In view of
{

− 1
2 log q1, h1

}

= 1 and
{

q2
q1
, h1

}

=
{

q3
q1
, h1

}

= 0, we consider the generating function

S = w1(z1, z3) P1 + w2(z2) P2 +

(

−1

2
log q1 + w3(z1, z3)

)

P3, (36a)

where z1 = q2
q1
, z2 = q3

q2
, z3 = q3

q1
. We first require that the coefficients of PiPj are zero, giving

w′
2(z2) (z1∂z3w1 − z3∂z1w1) = w′

2(z2) (z1∂z3w3 − z3∂z1w3) = 0,

(

(2(1 + z21)∂z1w3 + 2z1z3∂z3w3 + z1)∂z1w1 + (2(1 + z23)∂z3w3 + 2z1z3∂z1w3 + z3)∂z3w1

)

= 0.

The first two give

wi = wi(z
2
1 + z23) = wi

(

q22 + q23
q21

)

, i = 1, 3,

since w′
2(z2) cannot be zero. The third then gives

(4(1 + z4)w
′
3(z4) + 1)w′

1(z4) = 0, where z4 =
q22 + q23
q21

.

Since w′
1 cannot be zero, we have

w3 = −1

4
log (1 + z4) = −1

4
log

(

q21 + q22 + q23
q21

)

,

so the canonical transformation (36a) now takes the form

S = w1

(

q22 + q23
q21

)

P1 + w2

(

q3

q2

)

P2 −
1

4
log
(

q21 + q22 + q23
)

P3. (36b)

At this stage, the transformed Hamiltonian is diagonal:

H̃ =
4ψ(z2)

1 + z22
(1 + z4)z

2
4w

′2
1 (z4) P

2
1 + (1 + z22)ψ(z2)w

′2
2 (z2) P

2
2 +

z4ψ(z2)

4(1 + z22)(1 + z4)
P 2
3 . (36c)

We must choose w1 and w2 so that this Hamiltonian is “conformal” in the P1 − P2 components, which
requires

(1 + z4)z
2
4w

′2
1 (z4) =

1

4
, (1 + z22)w

′2
2 (z2) =

1

1 + z22
,

giving

w1 =
1

2
log

(√
1 + z4 + 1√
1 + z4 − 1

)

=
1

2
log

(

√

q21 + q22 + q23 + q1
√

q21 + q22 + q23 − q1

)

, w2 = arctan z2 = arctan

(

q3

q2

)

.

This gives us the final form of the canonical transformation

S =
1

2
log

(

√

q21 + q22 + q23 + q1
√

q21 + q22 + q23 − q1

)

P1 + arctan

(

q3

q2

)

P2 −
1

4
log
(

q21 + q22 + q23
)

P3, (36d)

and the Hamiltonian

H̃ = cos2Q2 ψ (tanQ2)

(

P 2
1 + P 2

2 +
1

4 cosh2Q1

P 2
3

)

. (36e)
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This corresponds to a conformally flat metric in the 1 − 2 space, defined by P3 = const, with 1
4 cosh2 Q1

P 2
3

corresponding to a potential term. Since the conformal factor is a function of only Q2, the momentum P1

corresponds to a Killing vector (in 2D), but not a first integral of the entire Hamiltonian. However, the
Casimir function of the original isometry algebra does reduce to a first integral of H̃:

e1f1 +
1

4
h21 = P 2

1 +
1

4 cosh2Q1

P 2
3 . (36f)

Thus, for arbitrary ψ, the Hamiltonian H̃ is Liouville integrable and, indeed, separable. The form of the
potential and of the Casimir are independent of the form of ψ, so are universal properties of this reduction.

Again, we build the 6 dimensional conformal algebra for this 2D metric (kinetic energy). First note that
h2, h3, h4, e1f1 +

1
4h

2
1, e2f2, e3f3 commute with h1. Writing these in terms of Qi, Pi and discarding the P 2

3

components in the quadratic ones, we can derive the following 6 conformal elements:

Te1 = eQ1(P2 sinQ2 + P1 cosQ2), Th1
= 2P1, Tf1 = e−Q1(P2 sinQ2 − P1 cosQ2),

(36g)
Te2 = eQ1(P2 cosQ2 − P1 sinQ2), Th2

= −2P2, Tf2 = 2e−Q1(P2 cosQ2 + P1 sinQ2),

which satisfy the relations of g1 + g2 in Table 1, together with the algebraic constraints (22d).

7.1.3 Specific Cases Listed in Section 5.1

In Section 5.1 we gave two specific choices of the function ψ, which allowed the addition of quadratic
integrals. A detailed analysis of the reduction of these was given in [11], so we just include a brief discussion
here to fit these into the above framework. To obtain a superintegrable system in the 2 dimensional context,
we need two first integrals which commute with the reducing isometry. One of these can be the Casimir of
the isometry algebra, the other coming from the algebra of functions Fi.

The Case ψ(z) = z2

α+βz2

When we reduce equation (11a), using e1, the Hamiltonian (35e) and Casimir (35f) take the form

H̃ =
sin2(2Q2)

2(α+ β) + 2(α− β) cos(2Q2)

(

P 2
2 + P 2

3 + e2Q3P 2
1

)

, (37a)

J1 = P 2
3 + e2Q3P 2

1 . (37b)

This is the D4 kinetic energy, with potential (equivalent to the “a1” part of Case A in [12]).
It is easily seen that F3 = e22 − β

q2
2

H is a first integral, satisfying {H,F3} = {e1, F3} = 0 (see Table 6 of

[11] for the full Poisson algebra). This gives another (independent) quadratic integral for the 2 dimensional
system:

J2 = T 2
f1

− βe−2Q3 sec2Q2 H̃, (37c)

where Tf1 is a conformal symmetry in the 2 dimensional space, listed in (35g). These integrals, together
with the cubic J3 = {J1, J2}, satisfy the relations

{J1, J3} = 16J1J2 + 8P 2
1

(

J1 + (β − α)H̃
)

, {J2, J3} = −8J2
(

J2 + P 2
1

)

,

J2
3 = 16

(

J1J2(J2 + P 2
1 ) + P 2

1 H̃
(

(β − α)J2 + βP 2
1

)

)

.

When we reduce equation (11a), using h1, the Hamiltonian (36e) and Casimir (36f) take the form

H̃ =
sin2(2Q2)

2(α+ β) + 2(α− β) cos(2Q2)

(

P 2
1 + P 2

2 +
1

4
sech2Q1P

2
3

)

, (38a)

J1 = P 2
1 +

1

4
sech2Q1P

2
3 . (38b)
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This is the D4 kinetic energy, with potential (equivalent to the “b3” part of Case B in [12]).
It is easily seen that the first integral F1 (see (11b)) satisfies {h1, F1} = 0 (see Table 6 of [11] for the full

Poisson algebra). This gives another (independent) quadratic integral for the 2 dimensional system:

J2 =
1

2
(Te1 + Tf1)2 + β(cos 2Q2 − cosh 2Q1) sec

2Q2 H̃ − 1

2
P 2
3 cos2Q2 sech

2Q1, (38c)

where Te1 and Tf1 are conformal symmetries in the 2 dimensional space, listed in (36g). These integrals,
together with the cubic J3 = {J1, J2}, satisfy the relations

{J1, J3} = 4
(

J1
(

4(J1 + J2) + P 2
3

)

− H̃
(

4(α+ β)J1 + (α− β)P 2
3

)

)

,

{J2, J3} = −4(4J1 + J2)(2J2 + P 2
3 ) + 8H̃

(

2(α+ β)J2 + (2α+ β)P 2
3

)

− 32αβH̃2,

J2
3 = 8J1(2J1 + J2)(2J2 + P 2

3 )− 4H̃
(

2α(4J1J2 + (J2 + 4J1)P
2
3 )

+β(4J1 − P 2
3 )(2J2 + P 2

3 )
)

+ 16αH̃2(4βJ1 + (α− β)P 2
3 ).

The Case ψ(z) =
√
1+z2

α
√
1+z2+βz

The details of this case can be found in [11] (Sections 5.1 and 9.1), but see Remark 5.2.

When we reduce equation (12a), using e1, the Hamiltonian (35e) and Casimir (35f) take the form

H̃ =
cos2(Q2)

α+ β sinQ2

(

P 2
2 + P 2

3 + e2Q3P 2
1

)

, (39a)

J1 = P 2
3 + e2Q3P 2

1 . (39b)

This is the D4 kinetic energy, with potential (equivalent to the “a1” part of Case A in [12]).
It is easily seen that F1 (see (12b)) satisfies {e1, F1} = 0 (see Table 8 of [11] for the full Poisson algebra).

This gives another (independent) quadratic integral for the 2 dimensional system:

J2 = 2P2Tf1 −
1

2
e−Q3 sec2Q2 (3β − β cos(2Q2) + 4α sinQ2)H̃, (39c)

where Tf1 is a conformal symmetry in the 2 dimensional space, listed in (35g). These integrals, together
with the cubic J3 = {J1, J2}, satisfy the relations

{J1, J3} = 4J1J2, {J2, J3} = −2J2
2 + 8P 2

1

(

2J1 − αH̃
)

,

J2
3 = 4J1J

2
2 + 4H̃

(

4αJ1 − β2H̃
)

− 16P 2
1 J

2
1 .

When we reduce equation (12a), using h1, the Hamiltonian (36e) and Casimir (36f) take the form

H̃ =
cos2(Q2)

α+ β sinQ2

(

P 2
1 + P 2

2 +
1

4
sech2Q1P

2
3

)

, (40a)

J1 = P 2
1 +

1

4
sech2Q1P

2
3 . (40b)

This is the D4 kinetic energy, with potential (equivalent to the “b3” part of Case B in [12]).
It is easily seen that F4 = h2h4 − 4q1σH (where σ is defined in (12b)) is a first integral, satisfying

{H,F4} = {h1, F4} = 0 (see Table 8 of [11] for the full Poisson algebra). This gives another (independent)
quadratic integral for the 2 dimensional system:

J2 = 4P2 (Te1 − Tf1) + 2 sec2Q2 (β cos 2Q2 − 3β − 4α sinQ2) sinhQ1 H̃, (40c)
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where Te1 and Tf1 are given in (36g). These integrals, together with the cubic J3 = {J1, J2}, satisfy

{J1, J3} = 4J1J2, {J2, J3} = 2
(

−J2
2 − 32J1(6J1 − P 2

3 ) + 16α(8J1 − P 2
3 )H̃ − 16β2H̃2

)

,

J2
3 = 4

(

J1
(

J2
2 + 16J1(4J1 − P 2

3 )
)

− 16J1H̃(α(4J1 + P 2
3 )− β2H̃)

)

+ 16P 2
3 H̃(8αJ1 − β2H̃).

7.2 Systems with Isometry Algebra 〈e1, e2, h2〉
We give a pair of universal reductions of the general Hamiltonian in this class:

H = ψ(q3)
(

p21 + p22 + p23
)

. (41)

We then give the reductions of the two cases presented in Section 5.2.
We give transformations corresponding to e1 → P1 and h2 → P3, respectively. Under the involution ι12

we have e1 ↔ e2, h2 → −h2. The first transformation is very simple, just relabelling coordinates so that
the conformal factor of the reduced metric is a function of Q2.

7.2.1 Reduction using the Isometry e1 7→ P1

This transformation is very simple, with

Q1 = q1, Q2 = q3, Q3 = q2 ⇒ H̃ = ψ(Q2)
(

P 2
2 + P 2

3 + P 2
1

)

, (42a)

so P3 is a first integral.
Again, we build the 6 dimensional conformal algebra for this 2D metric (kinetic energy). First note

that e2, e3, h4, e1f1 +
1
4h

2
1, e2f2 − 1

2h
2
2, e3f3 − 1

2h
2
3 commute with e1. Writing these in terms of Qi, Pi and

discarding the P 2
1 components in the quadratic ones, we can derive the following 6 conformal elements:

Te1 = P3, Th1
= −2(Q2P2 +Q3P3), Tf1 = (Q2

2 −Q2
3)P3 − 2Q2Q3P2,

(42b)
Te2 = P2, Th2

= 2(Q3P2 −Q2P3), Tf2 = 2(Q2
3 −Q2

2)P2 − 4Q2Q3P3,

which satisfy the relations of g1 + g2 in Table 1, together with the algebraic constraints (22d).

7.2.2 Reduction using the Isometry h2 7→ P3

In view of
{

− 1
2 arctan

q1
q2
, h2

}

= 1 and {q21 + q22 , h2} = {q3, h2} = 0, we consider the generating function

S = w1(z, q3) P1 + w2(q3) P2 +

(

−1

2
arctan

(

q1

q2

)

+ w3(z, q3)

)

P3, where z = q21 + q22 . (43a)

We first require that the coefficients of PiPj are zero, giving

w′
2(q3)∂q3w1 = w′

2(q3)∂q3w3 = 0, 4z∂zw1∂zw3 + ∂q3w1∂q3w3 = 0.

The first two give
wi = wi(z) = wi

(

q21 + q22
)

, i = 1, 3,

since w′
2(q3) cannot be zero. The third then gives

w′
1(z)w

′
3(z) = 0, ⇒ w3(z) = 0,

since w′
1 cannot be zero, so the canonical transformation (43a) now takes the form

S = w1(q
2
1 + q22) P1 + w2(q3) P2 −

1

2
arctan

(

q1

q2

)

P3. (43b)
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At this stage, the transformed Hamiltonian is diagonal:

H̃ = 4ψ(q3)zw
′2
1 (z) P

2
1 + ψ(q3)w

′2
2 (q3) P

2
2 +

ψ(q3)

4z
P 2
3 . (43c)

We must choose w1 and w2 so that this Hamiltonian is “conformal” in the P1 − P2 components, which
requires

4zw′2
1 (z) = 1, w′2

2 (q3) = 1 ⇒ w1 =
√
z =

√

q21 + q22 , w2 = q3.

This gives us the final form of the canonical transformation

S =
√

q21 + q22 P1 + q3 P2 −
1

2
arctan

(

q1

q2

)

P3, (43d)

and the Hamiltonian

H̃ = ψ(Q2)

(

P 2
1 + P 2

2 +
1

4Q2
1

P 2
3

)

. (43e)

This corresponds to a conformally flat metric in the 1 − 2 space, defined by P3 = const, with 1
4Q2

1

P 2
3

corresponding to a potential term. Since the conformal factor is a function of only Q2, the momentum P1

corresponds to a Killing vector (in 2D), but not a first integral of the entire Hamiltonian. However, the
Casimir function of the original isometry algebra does reduce to a first integral of H̃:

e21 + e22 = P 2
1 +

1

4Q2
1

P 2
3 . (43f)

Thus, for arbitrary ψ, the Hamiltonian H̃ is Liouville integrable and, indeed, separable. The form of the
potential and of the Casimir are independent of the form of ψ, so are universal properties of this reduction.

Again, we build the 6 dimensional conformal algebra for this 2D metric (kinetic energy). First note that
e3, h1, f3, e

2
1 + e22, h

2
3 +

1
4h

2
4, f

2
2 +4f21 commute with h2. Writing these in terms of Qi, Pi and discarding the

P 2
3 components in the quadratic ones, we can derive the following 6 conformal elements:

Te1 = P1, Th1
= −2(Q1P1 +Q2P2), Tf1 = (Q2

2 −Q2
1)P1 − 2Q1Q2P2,

(43g)
Te2 = P2, Th2

= 2(Q1P2 −Q2P1), Tf2 = 2(Q2
1 −Q2

2)P2 − 4Q1Q2P1,

which satisfy the relations of g1 + g2 in Table 1, together with the algebraic constraints (22d).

7.2.3 Specific Cases Listed in Section 5.2

In Section 5.2 we gave two specific choices of the function ψ, which allowed the addition of quadratic
integrals. To obtain a superintegrable system in the 2 dimensional context, we need two first integrals which
commute with the reducing isometry. One of these can be the Casimir of the isometry algebra, the other
coming from the algebra of functions Fi.

The Case ψ(z) = 1
αz+β

When we reduce equation (13), using e1, the Hamiltonian (42a) takes the form

H̃ =
1

αQ2 + β

(

P 2
2 + P 2

3 + P 2
1

)

, (44a)

and the commuting isometry e2 = P3 is a first integral. This is the D1 kinetic energy, with potential
(equivalent to the “b2” part of Case 1 in [13]).
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It can also be seen in Table 5, that F4 commutes with e1, so can be reduced to

J1 = P2P3 −
1

2
αQ3 H̃, (44b)

satisfying the relation {P3, J1} = α
2 H̃.

When we reduce equation (13), using h2, the Hamiltonian (43e) and Casimir (43f) take the form

H̃ =
1

αQ2 + β

(

P 2
1 + P 2

2 +
P 2
3

4Q2
1

)

, J1 = P 2
1 +

P 2
3

4Q2
1

. (45a)

This is the D1 kinetic energy, with potential (equivalent to the “b3” part of Case 1 in [13]).
It is easily seen in Table 5, that the first integral 2F1 − F5 commutes with h2. This gives another

(independent) quadratic integral for the 2 dimensional system:

J2 = −2P2Th1
−
(

4(β + αQ2)Q2 + αQ2
1

)

H̃, (45b)

where Th1
is a conformal symmetry in the 2 dimensional space, listed in (43g). These integrals, together

with the cubic J3 = {J1, J2}, satisfy the relations

{J1, J3} = −8αJ1H̃, {J2, J3} = 8
(

αJ2H̃ − 8βJ1H̃ + 12J2
1

)

,

J2
3 = 16J1

(

4βJ1H̃ − αJ2H̃ − 4J2
1

)

− 4α2H̃2P 2
3 .

The Case ψ(z) = z2

αz2+β

When we reduce equation (15), using e1, the Hamiltonian (42a) takes the form

H̃ =
Q2

2

αQ2
2 + β

(

P 2
2 + P 2

3 + P 2
1

)

, (46a)

and the commuting isometry e2 = P3 is a first integral. This is the D2 kinetic energy, with potential of
“Type D” in [12].

It can also be seen that F4 = e3h4 + 4βq2
q2
3

H is a first integral, which satisfies {e1, F4} = 0, so can be

reduced, giving

J1 = −2P2Th2
+

4βQ3

Q2
2

H̃, (46b)

where Th2
is given in (42b), satisfying the relation {P3, J1} = 4

(

α H̃ − P 2
3 − P 2

1

)

.

When we reduce equation (15), using h2, the Hamiltonian (43e) and Casimir (43f) take the form

H̃ =
Q2

2

αQ2
2 + β

(

P 2
1 + P 2

2 +
P 2
3

4Q2
1

)

, J1 = P 2
1 +

P 2
3

4Q2
1

. (47a)

This is the D2 kinetic energy, with potential (equivalent to the “b3” part of “Type B” in [12]).
It can also be seen that the first integral F1 (see (16)) commutes with h2, giving another (independent)

quadratic integral for the 2 dimensional system:

J2 = P2Tf2 + 2

(

αQ2
2 −

βQ2
1

Q2
2

)

H̃, (47b)

where Tf2 is a conformal symmetry in the 2 dimensional space, listed in (43g). These integrals, together
with the cubic J3 = {J1, J2}, satisfy the relations

{J1, J3} = 16J1

(

αH̃ − J1

)

, {J2, J3} = 16
(

2J1J2 − αH̃
(

2βH̃ + J2

)

+ P 2
3

(

J1 − αH̃
))

,

J2
3 = 32J1

(

αH̃
(

2βH̃ + J2

)

− J1J2

)

− 16P 2
3

(

J1 − αH̃
)2

.
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7.3 Systems with Isometry Algebra 〈h2, h3, h4〉
We give a universal reduction of the general Hamiltonian in this class:

H = ψ
(

q21 + q22 + q23
) (

p21 + p22 + p23
)

. (48)

We then give the reduction of the two cases presented in Section 5.3.
We give one transformation, corresponding to h4 → P3. The transformations using either h2 or h3 are

equivalent under the involutions ι13 and ι12, respectively.
We choose Q2 to be a function of z2 = q21 + q22 + q23 , which is the common invariant of h2, h3 and h4 and,

as a consequence, the variable which appears in the arbitrary function ψ, of the Hamiltonian.

7.3.1 Reduction using the Isometry h4 7→ P3

In view of
{

1
4 arctan

(

q2
q3

)

, h4

}

= 1 and {q22 + q23 , h4} = {q1, h4} = 0, we consider the generating function

S = w1(z1, q1) P1 + w2(z2) P2 +

(

1

4
arctan

(

q2

q3

)

+ w3(z1, q1)

)

P3, (49a)

where z1 = q22 + q23 and z2 = q21 + q22 + q23 .

We first require that the coefficients of PiPj are zero, giving

w′
2(z2) (2z1∂z1w1 + q1∂q1w1) = w′

2(z2) (2z1∂z1w3 + q1∂q1w3) = 4z1∂z1w1∂z1w3 + ∂q1w1∂q1w3 = 0.

The first two give wi = wi

(

z1
q2
1

)

, i = 1, 3, since w′
2(z2) cannot be zero. The third then gives w′

1w
′
3 = 0.

Since w′
1 cannot be zero, we have w3 = 0, so the canonical transformation (49a) now takes the form

S = w1(z3) P1 + s2(z2) P2 +
1

4
arctan

(

q2

q3

)

P3, where z3 =
q22 + q23
q21

. (49b)

At this stage, the transformed Hamiltonian is diagonal:

H̃ = 4z3(1 + z3)
2w′2

1 (z3)
ψ(z2)

z2
P 2
1 + 4z2ψ(z2)w

′2
2 (z2) P

2
2 +

ψ(z2)

16z1
P 2
3 . (49c)

We must choose w1 and w2 so that this Hamiltonian is “conformal” in the P1 − P2 components, which
requires

4z3(1 + z3)
2w′2

1 (z3) = 1, 4z2w
′2
2 (z2) =

1

z2
,

giving

w1 = arctan (
√
z3) = arctan

(

√

q22 + q23
q1

)

, w2 =
1

2
log z2 =

1

2
log (q21 + q22 + q23).

This gives us the final form of the canonical transformation

S = arctan

(

√

q22 + q23
q1

)

P1 +
1

2
log (q21 + q22 + q23) P2 +

1

4
arctan

(

q2

q3

)

P3, (49d)

and the Hamiltonian

H̃ = e−2Q2ψ
(

e2Q2

)

(

P 2
1 + P 2

2 +
1

16 sin2Q1

P 2
3

)

. (49e)

This corresponds to a conformally flat metric in the 1− 2 space, defined by P3 = const, with 1
16cosec

2Q1 P
2
3

corresponding to a potential term. Since the conformal factor is a function of only Q2, the momentum P1
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corresponds to a Killing vector (in 2D), but not a first integral of the entire Hamiltonian. However, the
Casimir function of the original isometry algebra does reduce to a first integral of H̃:

C =
1

16
(4(h22 + h23) + h24) = P 2

1 +
1

16 sin2Q1

P 2
3 . (49f)

Thus, for arbitrary ψ, the Hamiltonian H̃ is Liouville integrable and, indeed, separable. The form of the
potential and of the Casimir are independent of the form of ψ, so are universal properties of this reduction.

Again, we build the 6 dimensional conformal algebra for this 2D metric (kinetic energy). First note that
e1, h1, f1, e

2
2 + e23, h

2
2 + h23, f

2
2 + f23 commute with h4. Writing these in terms of Qi, Pi and discarding the

P 2
3 components in the quadratic ones, we can derive the following 6 conformal elements:

Te1 = eQ2(P1 sinQ1 + P2 cosQ1), Th1
= 2P2, Tf1 = e−Q2(P1 sinQ1 − P2 cosQ1),

(49g)
Te2 = eQ2(P1 cosQ1 − P2 sinQ1), Th2

= −2P1, Tf2 = 2e−Q2(P1 cosQ1 + P2 sinQ1),

which satisfy the relations of g1 + g2 in Table 1, together with the algebraic constraints (22d).

7.3.2 Specific Cases Listed in Section 5.3

In Section 5.3 we gave two specific choices of the function ψ, which allowed the addition of quadratic
integrals. To obtain a superintegrable system in the 2 dimensional context, we need two first integrals which
commute with the reducing isometry. One of these can be the Casimir of the isometry algebra, the other
coming from the algebra of functions Fi.

The Case ψ(z) =
√
z

α
√
z+β

When we reduce equation (17), using h4, the Hamiltonian (49e) takes the form

H̃ =
e−Q2

αeQ2 + β

(

P 2
1 + P 2

2 +
P 2
3

16 sin2Q1

)

, (50a)

which is the D3 kinetic energy, with a potential.
We already have the integral J1, derived from the Casimir of the isometry algebra (see (49f)). It can also

be seen in Table 6, that F1 commutes with h4, so can be reduced to

J2 = 2P2Tf1 +
(

β + 2αeQ2

)

cosQ1 H̃, (50b)

where Tf1 is a conformal symmetry in the 2 dimensional space, listed in (49g).
These integrals, together with the cubic J3 = {J1, J2}, satisfy the relations

{J1, J3} = −4J1J2, {J2, J3} = 2J2
2 − H̃

(

2β2H̃ + 16αJ1 −
a

2
P 2
3

)

,

J2
3 = −4J1J

2
2 +

1

4
H̃
(

16J1 − P 2
3

)

(

β2H̃ + 4αJ1

)

.

The Case ψ(z) = 1
αz+β

When we reduce equation (19), using h4, the Hamiltonian (49e) takes the form

H̃ =
e−2Q2

αe2Q2 + β

(

P 2
1 + P 2

2 +
P 2
3

16 sin2Q1

)

, (51a)

which is again the D3 kinetic energy, with potential (equivalent to the “b2” part of Case B in [12]).
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We already have the integral J1, derived from the Casimir of the isometry algebra (see (49f)). It can also
be seen that F1 commutes with h4 (see Table 10 of [11], for the full Poisson algebra), so can be reduced to

J2 = T 2
f1

− αe2Q2 cos2Q1 H̃, (51b)

where Tf1 is a conformal symmetry in the 2 dimensional space, listed in (49g).
These integrals, together with the cubic J3 = {J1, J2}, satisfy the relations

{J1, J3} = −16J1J2 +
1

2
βH̃

(

16J1 − P 2
3

)

, {J2, J3} = 8J2

(

J2 − βH̃
)

− αH̃
(

16J1 − P 2
3

)

,

J2
3 = −16J1J

2
2 +

1

16
H̃
(

16J1 − P 2
3

) (

16αJ1 + 16βJ2 − αP 2
3

)

.

8 Reduction to 2 Dimensional Systems: 4D Isometry Algebras

We can see in Table 4 that there are two genuinely 4D isometry algebras which, therefore, do not
correspond to flat or constant curvature metrics. Having 4 isometries completely determines the Hamiltonian,
so there are no arbitrary functions ψ.

8.1 The Algebra 〈e1, h1, f1〉 ⊕ 〈h4〉
It can be seen in Table 1 that 〈e1, h1, f1〉 is just the algebra g1 (a copy of sl(2)) and that h4 commutes

with g1. This means that we can simultaneously straighten the pairs (e1, h4) or (h1, h4) (with (f1, h4) being
related to (e1, h4) through ιef ).

The general Hamiltonian with this isometry algebra is given by a Casimir

H = (q22 + q23)(p
2
1 + p22 + p23) = e1f1 +

1

4
h21 +

1

16
h24. (52)

The more general Casimir, with γh24, has terms pipj .
This can be considered as a restriction of the cases of several smaller algebras listed in Table 4, with the

forms of the function ψ. Clearly 〈e1, h4〉 is a subalgebra and this restriction is achieved through ψ(z) = z.
Similarly 〈e1, h1, f1〉 is a subalgebra and this restriction corresponds to ψ(z) = 1 + z2. The subalgebra
〈h1, h2〉 is equivalent to 〈h1, h4〉 under the involution ι13 and this restriction corresponds to ψ(z) = 1.

8.1.1 Reductions with the Pair (e1, h4)

Here we can use the canonical transformations of Section 6.1 to set (e1, h4) 7→ (P1, P3).
The canonical transformation (22a) reduces (52) to

H̃ =
1

16

(

P 2
2 + P 2

3 + 16e8Q2P 2
1

)

, (53)

corresponding to a flat metric. This is a consequence of two commuting Killing vectors in the 2 dimensional
domain. Since e1 commutes with h4 and the sl(2) Casimir e1f1 +

1
4h

2
1, these can be reduced:

(

h4, e1f1 +
1

4
h21

)

7→
(

P3,
1

16

(

P 2
2 + 16e8Q2P 2

1

)

)

,

giving the Noether constants (P2, P3).
The canonical transformation (23a) reduces (52) to

H̃ = Q2
2

(

P 2
1 + P 2

2 +
1

16
P 2
3

)

, (54)
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corresponding to a constant curvature metric. This is a consequence of the existence of three Killing vectors
in the 2 dimensional domain, with sl(2) relations. Since h4 commutes with g1, each element can be reduced:

(e1, h1, f1) 7→
(

P1,−2(Q1P1 +Q2P2), (Q
2
2 −Q2

1)P
2
1 − 2Q1Q2P2

)

,

which satisfy the same Poisson relations as g1.

8.1.2 Reductions with the Pair (h1, h4)

Here we can use the canonical transformations of Section 6.2 to set (h1, h4) 7→ (P1, P3).
The canonical transformation (28a), under ι13, gives us

S = −1

4
log
(

q21 + q22 + q23
)

P1 +
1

4
log

(

q1 +
√

q21 + q22 + q23
√

q22 + q23

)

P2 −
1

4
arctan

(

q3

q2

)

P3, (55a)

and reduces (52) to

H̃ =
1

16

(

P 2
2 + P 2

3 + 4sech24Q2 P
2
1

)

, (55b)

corresponding to a flat metric. This is a consequence of two commuting Killing vectors in the 2 dimensional
domain. Since h1 commutes with h4 and the sl(2) Casimir e1f1 +

1
4h

2
1, these can be reduced:

(

h4, e1f1 +
1

4
h21

)

7→
(

P3,
1

16
(P 2

2 + 4sech24Q2 P
2
1 )

)

,

giving the Noether constants (P2, P3).
The canonical transformation (29a), under ι13, gives us

S = −1

4
log
(

q21 + q22 + q23
)

P1 +
1

2
arctan

(

q1
√

q22 + q23

)

P2 −
1

4
arctan

(

q3

q2

)

P3, (56a)

and reduces (52) to

H̃ =
1

4
cos2 2Q2

(

P 2
1 + P 2

2 +
1

4
sec2 2Q2 P

2
3

)

, (56b)

corresponding to a constant curvature metric. This is a consequence of the existence of three Killing vectors
in the 2 dimensional domain, with sl(2) relations. Since h4 commutes with g1, each element can be reduced:

(e1, h1, f1) 7→
(

1

2
e2Q1(P2 cos 2Q2 − P1 sin 2Q2), P1,

1

2
e−2Q1(P2 cos 2Q2 + P1 sin 2Q2)

)

,

which satisfy the same Poisson relations as g1.

Remark 8.1 (Direct Transformation) The system (54) can be directly related to (56b) within the 2 di-
mensional domain (by composing the above canonical transformations):

Q̄1 = e−2Q1 sin 2Q2, Q̄2 = e−2Q1 cos 2Q2, Q̄3 = Q3.

8.2 The Algebra 〈h2, h3, h4〉 ⊕ 〈h1〉
It can be seen in Table 1 that 〈h2, h3, h4〉 is just the algebra so(3) and that h1 commutes with this algebra.

This means that we can simultaneously straighten the pair (h1, h2) (with the pairs (h1, h3) and (h1, h4) being
related through ι23 and ι13 respectively).
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The general Hamiltonian with this isometry algebra is given by a Casimir

H = (q21 + q22 + q23)(p
2
1 + p22 + p23) =

1

4
h21 +

1

4

(

h22 + h23 +
1

4
h24

)

. (57)

The more general Casimir, with γh21, has terms pipj .
This can also be considered as a restriction of the cases of some smaller algebras listed in Table 4, with the

forms of the function ψ. Clearly 〈h1, h2〉 is a subalgebra and this restriction is achieved through ψ(z) = 1+z.
Similarly 〈h2, h3, h4〉 is a subalgebra and this restriction corresponds to ψ(z) = z.

8.2.1 Reductions with the Pair (h1, h2)

Here we can use the canonical transformations of Section 6.2 to set (h1, h2) 7→ (P1, P3).
The canonical transformation (28a) reduces (57) to

H̃ =
1

4
cosh2 2Q2

(

P 2
2 + P 2

3 + sech22Q2 P
2
1

)

, (58)

corresponding to a constant curvature metric. This is a consequence of the existence of three Killing vectors
in the 2 dimensional domain, with so(3) relations. Since h1 commutes with so(3), each element can be
reduced:

(h2, h3, h4) 7→ (P3, P2 cosh 2Q2 cos 2Q3 + P3 sinh 2Q2 sin 2Q3, 2P3 sinh 2Q2 cos 2Q3 − 2P2 cosh 2Q2 sin 2Q3) ,

which satisfy the same Poisson relations as (h2, h3, h4) in Table 2.
The canonical transformation (29a) reduces (57) to

H̃ =
1

4

(

P 2
1 + P 2

2 +
1

4
sec2 2Q2 P

2
3

)

, (59)

corresponding to a flat metric. This is a consequence of two commuting Killing vectors in the 2 dimensional
domain. Since h2 commutes with h1 and the so(3) Casimir h22 + h23 +

1
4h

2
4, these can be reduced:

(

h1, h
2
2 + h23 +

1

4
h24

)

7→
(

P1, P
2
2 +

1

4
sec2 2Q2 P

2
3

)

,

giving the Noether constants (P1, P2).

9 Conclusions

This paper has continued our work of [8, 10, 11] on building higher order integrals out of conformal
symmetries, and, more generally, building Poisson algebras related to superintegrable systems. We emphasise
that whilst all higher order integrals can be built out of Killing vectors in the constant curvature case, there
was no such algebraic method available for more general spaces. The method used here, described in
Section 3, is the only one available for general conformally flat spaces. Our approach is to start with the
basic definition of conformal flatness and a given conformal algebra and then to consider a simple algebraic
process to build first integrals.

In this paper we have constructed a class of superintegrable Hamiltonians, representing geodesic flows
on a conformally flat manifold. We specifically constructed systems with 2, 3 or 4 Killing vectors, but no
more (wishing to avoid constant curvature spaces) and then used the conformal algebra to build further
quadratic integrals, corresponding to rank 2 Killing tensors, and derived the full Poisson algebra of first
integrals. By adapting coordinates to different Killing vectors we derived universal reductions for Hamilto-
nians, corresponding to each specific isometry algebra. In particular, superintegrable geodesic systems in
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3 degrees of freedom were reduced to Hamiltonians with Darboux-Koenigs kinetic energy and a potential
function associated with the original isometry algebra.

The interplay between first order integrals (Killing vectors) and higher order ones greatly simplifies the
full Poisson algebra. Such explicit Poisson algebras can be very useful in the study of abstract Poisson
algebras (for example, see [5], which studies a Poisson algebra found in [6]).

In this paper we have not considered the addition of potential functions, which can lead to very compli-
cated Poisson algebras in the case of 3 degrees of freedom (see [10]). However, imposing invariance under one
or more of the isometries of the kinetic energy can simplify the calculations. For example, a fully rotationally
invariant potential can be added to the Hamiltonian (17) and this gives a curved space generalisation of the
Kepler problem, with the extended Fi just being generalisations of the Runge-Lenz integrals. This topic is
left for a future paper.

An important, but difficult, problem is to construct higher (than second) order integrals. Some third
order integrals were considered in [8], where one of the cases of [16] was constructed, but even in 2 degrees of
freedom this was complicated. This general problem is discussed in [18], for systems in 2 degrees of freedom,
with one Killing vector.

Another important extension is the study of systems with more degrees of freedom. This is generally a
difficult task, but our approach should be computationally simpler. Certainly, there are specific classes of
Hamiltonian which could be studied. In particular, this approach has been used to construct a new invariant
in the context of the Eisenhart lift in General Relativity [9].
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