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Exact nonadiabatic part of the Kohn-Sham potential and its fluidic approximation
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We present a simple geometrical “fluidic” approximation to the nonadiabatic part of the Kohn-Sham potential,

vKS, of time-dependent density-functional theory (DFT). This part of vKS is often crucial, but most practical

functionals utilize an adiabatic approach based on ground-state DFT, limiting their accuracy in many situations.

For a variety of model systems, we calculate the exact time-dependent electron density and find that the fluidic

approximation corrects a large part of the error arising from the “exact adiabatic” approach, even when the

system is evolving far from adiabatically.

DOI: 10.1103/PhysRevMaterials.4.035002

I. INTRODUCTION

Time-dependent Kohn-Sham (KS) density-functional the-

ory [1–3] (TDDFT) is in principle an exact and efficient

theory of the dynamics of systems of interacting electrons. In

practical applications, while performing well in some cases,

its validity is often restricted by the limitations of available

approximate functionals for electron exchange and correlation

(xc). Typically, an adiabatic approximation to the xc potential

is used, in which the instantaneous electron density is implic-

itly assumed to be in its ground state, thereby neglecting all

“memory effects.” While these ground-state approximations

have steadily improved [3–14], by definition they cannot ap-

proach the exact TDDFT potential: It is necessary to address

the nonadiabatic contributions for TDDFT to be capable of

predictive accuracy in relation to a multitude of applications

to diverse fields such as the determination of electronic ex-

citation energies, including those of a charge-transfer nature

[15], electron dynamics [16] including nonperturbative charge

transfer dynamics [17], time-resolved spectroscopy [18], and

electron scattering [19].

In this paper, to clearly distinguish between adiabatic and

nonadiabatic contributions, we consider the purest application

of the concept of the adiabatic functional to the complete KS

potential, vKS: at each instant, the DFT KS potential whose

ground-state density is equal to the exact time-dependent

density. The remainder of the exact vKS constitutes the un-

ambiguously nonadiabatic part, to which we also propose an

approximation.

We work in the Runge-Gross formalism [1] of TDDFT, in

which the exact xc potential, vxc, at time t [20] depends on the

density at all points in space and all nonfuture times. It has

been argued [21–24] that the exact nonadiabatic functional

often requires strong nonlocal temporal and spatial depen-

dence on the density. A number of properties of the exact

functional, such as the harmonic potential theorem (HPT) [21]

and zero-force theorem (ZFT) [22], have been used to identify

limitations of previous approximate TDDFT functionals. Adi-

abatic functionals trivially satisfy many of these exact condi-

tions through their complete lack of memory dependence, yet

prove inadequate in many applications [15–19,25–35]. The

development of nonadiabatic functionals that continue to sat-

isfy these exact properties is nontrivial. For example, it was

shown that modifying the adiabatic local density approxima-

tion by introducing time nonlocality, such as in the Gross-

Kohn [36] approximation, is inappropriate [21,22].

The best-known approximate nonadiabatic functional is

that developed by Vignale and Kohn [24,37,38] (VK). This

was constructed by studying the responses to slowly varying

perturbations of the homogeneous electron gas, and they

found a time-dependent xc vector potential as a functional of

the local current and charge densities j and n, thereby implic-

itly obtaining a scalar potential which depends nonlocally on

the density. While the VK formalism has proved promising

[39–49], not least through it obeying the HPT and ZFT, its

validity is limited [50–54], owing to the constraints under

which it was derived.

II. CALCULATIONS

Our calculations employ the iDEA code [55] which solves

the many-electron Schrödinger equation exactly for small,

one-dimensional prototype systems of spinless electrons

[56,57]. This gives us access to the exact electron density

n(x, t ). We then determine the exact vKS(x, t ) through reverse

engineering [58]. We also obtain the exact adiabatic KS

potential [26,34,59] v
A
KS by applying ground-state reverse

engineering to the instantaneous density at each time [60]. The

exact nonadiabatic component �vKS is then vKS − v
A
KS.

A. Fluidic approximation

In developing an approximation to �vKS, it is helpful

to consider the situation in different inertial frames, related

through a Galilean transformation, as noted by Tokatly et al.

[31,61–64]. While v
A
KS requires zero correction in any inertial

frame when the density is fully static in one of these frames, in

the more general case the nonadiabatic corrections to v
A
KS may

be expected to be at their smallest in the local, instantaneous

rest frame of the density, defined by a transformation velocity

of the local velocity field u(x, t ) = j(x, t )/n(x, t ). In particu-

lar, the effects of acceleration (u̇ �= 0) and dispersion (∂xu �=
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0) have the least effect in a frame where u itself is zero [65].

Conveniently, introducing a vector potential A = −u(x, t ) in

the original frame of reference is (apart from an unimportant

temporal phase factor) equivalent to a Galilean transformation

to the local instantaneous rest frame [61,62,66]. As described

above, the nonadiabatic correction should be minimal in the

latter frame, and here we adopt the simple assumption that it

is zero. We term this the fluidic approximation. The resulting

nonadiabatic correction in the original frame is therefore

�vKS(x, t > 0) = −

∫ x

−∞

∂

∂t
u(x′, t > 0) dx′, (1)

where we have gauge transformed A into a scalar potential. It

is evident that the density dependence of this �vKS is nonlocal

in both space and time [24].

B. System 1

As a first test of the fluidic approximation, we consider two

interacting electrons in a potential well, which takes the form

of an inverted Gaussian function. Initially, in the ground state,

a uniform electric field, −εx, is applied at t = 0, driving the

electrons to the right and inducing a current [Fig. 1(a)]. The

sudden application of the perturbation means that we are well

outside of the adiabatic limit, and this can be seen by solving

the time-dependent KS equations with the exact adiabatic

KS potential, vKS(t ) = v
A
KS(t ). By plotting the change in the

electron density from the ground state, δn, we find v
A
KS(t ) on

its own to be wholly inadequate (≈13% error in n [67] at t = 8

a.u.), while adding the fluidic approximation substantially

reduces this error to less than 1% [Fig. 1(b)].

To understand these results, we analyze the nonadiabatic

correction to the KS potential in both its scalar and its vector

forms. We find very good agreement between the exact �AKS

and that obtained using the fluidic approximation −u(x, t )

[Fig. 2(a)]. The velocity field u [the negative of the fluidic

curve in Fig. 2(a)] quickly becomes strongly nonuniform in

both space and time as the electrons explore excited states—

far removed from a universal rest frame. Similarly close

agreement between the exact and fluidic �vKS [Fig. 2(b)] is

evident when the nonadiabatic correction is cast into its scalar

form through Eq. (1).

C. Systems 2A, 2B, 2C

We now consider a set of systems of interacting electrons in

atomiclike external potentials which decay much more slowly

at large x, vext = −a/(|x| + a) with a = 20, thereby increas-

ing correlation. At time t = 0, a static sinusoidal perturbation

of the form ε cos(0.75x) is applied, where ε is 0.02 for system

2A (two electrons), 0.02 for system 2B (three electrons), and

0.1 for system 2C (three electrons).

In system 2A, the sudden perturbation at t = 0 acts to

push the two electrons apart. This results in a velocity field

that is varying in both space and time, as in system 1; in

this case, even the sign of u is not the same for all x,

which takes us even further away from a universal rest frame.

Correspondingly, we find the exact adiabatic potential to be

insufficient (≈5% error in n at t = 5 a.u.), while adding the

fluidic approximation reduces this error to ≈1%. System 2B

FIG. 1. System 1: Two interacting electrons in a Gaussian poten-

tial well, with a uniform electric field applied at t = 0, driving the

electrons to the right and inducing a current. (a) The ground-state

external potential (dashed purple) and exact ground-state electron

density (dashed blue), along with the perturbed external potential

(solid purple) and exact time-dependent electron density at t = 8 a.u.

(solid blue). (b) The change in the exact electron density [δn(x, t ) =

n(x, t ) − n(x, 0)] at t = 8 a.u. (short-dashed green), along with that

obtained when using the exact v
A
KS (solid blue), and when adding the

exact v
A
KS with the fluidic approximation �AKS = −u (dashed red).

The exact adiabatic potential is clearly inadequate, but its error is

substantially reduced by the fluidic approximation.

contains three interacting electrons in the same vext as system

2A. The additional electron results in a ground-state density

that is much less spatially uniform. We run the simulation for

5 a.u. of time and find similar results: v
A
KS produces an error in

n of ≈5%, and the fluidic approximation reduces this to ≈1%.

As mentioned above, the fluidic approximation assumes

that a system remains close to its ground state in the local in-

stantaneous rest frame. To stretch this approximation severely,

in system 2C the perturbing potential is much stronger, result-

ing in a much larger response of the density [Fig. 3(a)]. The

fluidic approximation still succeeds in reducing the error in the

density, from ≈25% where only the exact adiabatic potential

is used, to ≈6% at t = 5 a.u. [Fig. 3(b)]. At later times, the

dynamic (time-dependent) xc effects become very significant.

To confirm this, we replace the xc component of the exact

time-dependent vKS with the fixed ground-state vxc, thereby

suppressing the dynamic part, and find this potential to be

wholly inadequate (≈62% error in n at t = 18 a.u.). Here,

the exact adiabatic KS potential is better (≈17% error), while

adding the fluidic approximation improves it further (≈15%

error) [Fig. 3(c)].
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FIG. 2. The nonadiabatic correction to the KS potentials for

system 1. (a) The exact �AKS (short-dashed green) and that obtained

using the fluidic approximation �AKS = −u (dashed red), at t =

8 a.u. (b) The corresponding exact (short-dashed green) and fluidic

(dashed red) �vKS in its scalar form. The fluidic approximation

performs very well, even though the velocity field is non-uniform in

both space and time. (The exact adiabatic approximation, of course,

amounts to setting �AKS = �vKS = 0.)

D. Exact conditions

A number of properties of the exact xc functional are

known, and these are often used to identify the limitations of

approximate functionals. We now explore whether the fluidic

approximation satisfies these exact conditions.

We begin with the one-electron limit, where the exact xc

functional, when applied to a one-electron system, reduces

to the negative of the Hartree potential vH, thereby canceling

the spurious self-interaction. This means that vKS is described

exactly by a known functional [16,26,34], which has been

termed [68] the single orbital approximation—itself capa-

ble of capturing features such as steps in the KS potential

[16,69]—whose nonadiabatic part is

�vKS(x, t ) = −

∫ x

−∞

∂

∂t
u(x′, t ) dx′ −

1

2
u2(x, t ). (2)

We note that the first term is the fluidic approximation

[Eq. (1)]. We have studied systems of one electron in the

external potentials from systems 1, 2A, and 2C, and confirm

that the full Eq. (2) yields the exact vKS; here, the effect on

the density of including the −u2/2 term ranges from <0.1%

(potential 2A) to 14% (potential 2C), so the fluidic approxi-

mation alone is already satisfactory. Indeed, in our two- and

three-electron systems, the effect of adding the additional term

to the fluidic approximation is small and typically slightly

deleterious.

FIG. 3. System 2C: Three interacting electrons in an atomiclike

potential, with a static sinusoidal perturbation applied at t = 0,

pushing the electrons apart. (a) The ground-state external potential

(dashed purple) and exact ground-state electron density (dashed

blue), along with the perturbed external potential (solid purple) and

exact time-dependent electron density at t = 5 a.u. (short-dashed

blue) and t = 18 a.u. (solid blue). (b) The change in the exact

electron density at t = 5 a.u. (short-dashed green), along with that

obtained when using the exact v
A
KS (solid blue), and when adding the

exact v
A
KS with the fluidic approximation (dashed red). Even though

the density is strongly disrupted, the fluidic approximation remains

successful. (c) The same as (b) but at t = 18 a.u., where the dy-

namic xc contribution is very significant, evident by the completely

inadequate result obtained with the fixed vxc (short-dashed gray)

(see main text). Here, the exact v
A
KS is better, but adding the fluidic

approximation improves it further.

The ZFT [22] follows from Newton’s third law and

requires the net force exerted on the system by vH

and vxc to vanish. At the level of the KS potential,∫
n(x, t )∂x�vKS(x, t ) dx =

∫
n(x, t )∂xvext(x, t ) dx, since the

exact v
A
KS satisfies the theorem in its own right. In the fluidic

approximation for system 1 [70], the left- and right-hand sides

of this equation are within 11% of one another so the theorem

appears to be approximately obeyed.

035002-3



M. T. ENTWISTLE AND R. W. GODBY PHYSICAL REVIEW MATERIALS 4, 035002 (2020)

−10 −5 0 5 10

x (a.u.)

−0.3

0.0

0.3

0.6
n
,
v

e
x
t
(a

.u
.)

×0.5

n (t = 0)

n (t = 15 a.u.)

vext (t = 0)

vext (t > 0)
0 5 10 15

t (a.u.)

0.96

0.98

1.00

n
L

(a
.u

.)

FIG. 4. System 3: Two interacting electrons in a tunneling sys-

tem. Inset: The exact total electron number on the left-hand side

(x < 0) (short-dashed green); also the exact adiabatic (solid blue) and

fluidic approximation (dashed red).

The HPT [21] shows that in a system of interacting elec-

trons in a harmonic potential, subject to a uniform electric

field at t = 0, the density rigidly moves in the manner of

the underlying classical harmonic oscillator. We have shown

that the fluidic approximation adds exactly the nonadiabatic

correction required [71] by the HPT. We have also confirmed

this numerically for two interacting electrons in a harmonic

potential.

A constraint that can be challenging for nonadiabatic func-

tionals is the memory condition [72], which notes that vxc(t )

and hence vKS(t ) must be independent of which previous

instant in the evolution of the system is to be used to designate

the “initial state.” This is violated by the VK functional

[34]. Equation (1) demonstrates that the fluidic approximation

satisfies this memory condition by virtue of its dependence

only on the instantaneous rate of change of u, and not its full

history.

E. System 3

As a challenging test of the fluidic approximation, we fi-

nally consider two interacting electrons in a tunneling system.

Initially, vext is a symmetric double-well potential, with one

electron localized in each well. At t = 0, the left-hand well

is raised and the right-hand well lowered, initiating tunneling

through the barrier [Fig. 4]. A tunneling electron has an

imaginary momentum, meaning that the (real) velocity field

is of less physical significance. Correspondingly, the fluidic

approximation recovers less of the adiabatic density error, but

nevertheless reduces it from ≈8% to ≈4%, at t = 15 a.u.

Accordingly, the tunneling rate from the left-hand side to the

right-hand side is initially improved, but this is not the case at

later times [inset of Fig. 4].

III. CONCLUSIONS

In summary, we have calculated the exact adiabatic and

nonadiabatic parts of the KS potential, v
A
KS and �vKS, for a

variety of model systems. �vKS is precisely defined by our

procedure, and represents the part of the time-dependent KS

potential that is intrinsically unobtainable from a ground-

state functional. Our key finding is that a simple geometrical

approximation to this nonadiabatic KS potential—making

use of a Galilean transformation to the local instantaneous

rest frame—recovers most of the density error attributable

to the exact adiabatic approach: typically 80−95% in the

ballistic systems studied. Studies of additional systems should

further illuminate this decomposition of the KS potential of

TDDFT in highly nonadiabatic situations, with the fluidic

approximation providing a solid foundation for a hierarchy of

approximations to �vKS.

Data created during this research is available from the York

Research Database [73].
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