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Abstract 13 

Insect-bacterial symbioses are ubiquitous, but there is still much to uncover about how 14 

these relationships establish, persist and evolve. The tsetse endosymbiont Sodalis 15 

glossinidius displays intriguing metabolic adaptations to its microenvironment, but the 16 

process by which this relationship evolved remains to be elucidated. The recent chance 17 

discovery of the free-living species of the Sodalis genus, S. praecaptivus, provides a 18 

serendipitous starting point from which to investigate the evolution of this symbiosis. 19 

Here, we present a flux balance model for S. praecaptivus and empirically verify its 20 

predictions. Metabolic modelling is used in combination with a multi-objective 21 

evolutionary algorithm to explore the trajectories that S. glossinidius may have 22 

undertaken from this starting point after becoming internalised. The order in which key 23 

genes are lost is shown to influence the evolved populations, providing possible targets 24 

for future in vitro genetic manipulation. This method provides a detailed perspective on 25 



 

possible evolutionary trajectories for S. glossinidius in this fundamental process of 26 

evolutionary and ecological change. 27 

Keywords 28 
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Data Summary 30 

The Python code for running the algorithm with an example data set is available on 31 

GitHub at https://github.com/St659/SodalisFBAEvolution. The data generated by the 32 

simulations are available on the York Research Database. 33 

Data Statement 34 

All supporting data, code and protocols have been provided within the article or through 35 

supplementary data files. Supplementary material is available with the online version of 36 

this article. 37 

Impact Statement 38 

Insect-microbe symbioses are challenging to study as the symbionts may not be 39 

amenable to in vitro culture or traditional genetic manipulation techniques. The 40 

establishment and tracking of symbiosis from initiation to infection also presents 41 

technical challenges. A metabolic model of a free-living plausible starting organism is 42 

presented and verified against empirical data. This work provides a computational 43 

method to examine the potential evolutionary trajectories that symbionts may have 44 

taken once becoming internalised by a host. It enables new questions to be asked about 45 

genome reduction and niche adaptation by symbiotic bacteria. This technique has wider 46 

implications beyond symbiosis, with potential applications in directed evolution for 47 

industrial biotechnology. 48 



 

Introduction 49 

Symbioses are both fundamental and ubiquitous in nature. Understanding their 50 

evolution poses an ongoing challenge, as well as an expanse of unresolved research 51 

questions. Bacterial symbionts of insects provide a range of benefits including stress 52 

tolerance [1, 2], protection from predation [1, 3, 4] and the provision of metabolites [5–53 

10]. The latter forms arguably the strongest link within the symbioses. Host and 54 

symbiont frequently share metabolic substrates, as well as the products and 55 

components of individual biosynthetic pathways [7,11–15]. These relationships typically 56 

enable the host to survive on a nutritionally restricted diet, such as blood [8,16,17] or 57 

plant sap [18–20]. 58 

Deciphering the evolutionary pressures that affect the organisms within a symbiosis is 59 

an essential part of understanding the relationship. This includes establishing how the 60 

symbioses develop over time and the way in which the metabolism of the individuals is 61 

intertwined. It is, however, often hindered by biological difficulties. Symbiotic bacteria 62 

undergo genomic streamlining, may not be cultivatable in vitro, may no longer express 63 

stress response genes and might lack a sound outer membrane [4,5,21–25]. It is 64 

therefore impossible in many cases to test hypotheses about host-symbiont interactions 65 

in controlled experimental conditions. In these circumstances, computational 66 

techniques offer a viable, and currently the only, alternative to investigating metabolic 67 

potential and pseudogenisation in symbiotic bacteria. 68 

Computational biology is now well established as a key tool of scientific discovery, now 69 

that vast amounts of data are generated quickly and cheaply from advancements in 70 

sequencing technology [26,27]. Genome scale metabolic modelling of microorganisms 71 

enables predictions to be made about metabolite preferences, transporter use and the 72 

functionality of biosynthetic pathways [26,28]. Microbial metabolism can be simulated 73 

using flux balance analysis (FBA), a constraint-based quantitative approach that 74 

reconstructs a metabolic network from a genome annotation [27,29]. FBA is a powerful 75 

tool when based on a well annotated genome and with the provision of in vitro 76 

experimental validation [29]. 77 

FBA is widely used for biotechnology applications, and this can be re-purposed to 78 

examine symbiosis. There are several published examples of using FBA to analyse the 79 

metabolism of symbiotic bacteria, including for Buchnera aphidicola [7,30,31], Sodalis 80 

glossinidius [32,33], Portiera aleyrodidarum [34], Hamiltonella defensa [34] and strains 81 

of Blattabacterium [35]. There are also models published for the Synechocystis species 82 



 

used in the study of artificially induced symbiosis [36–40]. FBA is useful in this instance, 83 

as experiments that would not be possible empirically, due to culturability issues, can 84 

be performed in silico. Furthermore, the genomes of symbiotic bacteria are often 85 

unusual, with large pathway deletions or widespread pseudogenisation [6,25,41,42]. 86 

Analysis of the resulting metabolic network via FBA can suggest which pathways are 87 

being used when supplied with different media, and predict which external metabolites 88 

might be required to support growth in vitro. 89 

FBA has been applied to several microbiological problems. Boolean logical operators 90 

have been incorporated into Escherichia coli metabolic models to investigate the impact 91 

of gene regulation on a system [43–46]. Dynamic FBA (dFBA), where a rate of change in 92 

flux constraints is included, has successfully modelled diauxic growth in E. coli [47]. FBA 93 

has been used to compare strains of Blattabacterium from separate cockroach lineages 94 

to assess their divergence [35], and to predict the evolution of metabolism from E. coli 95 

experimental data sets [48]. The evolution of metabolic networks in isolation has also 96 

been simulated with the aim of identifying key metabolites [49], and to investigate 97 

pseudogenisations in specific metabolic pathways [50]. FBA has not yet been harnessed 98 

to its full potential with regards to the investigation of symbiont evolution. This is 99 

perhaps surprising given that several models of E. coli metabolism are available as an 100 

evolutionary starting point [51–56]. The evolution of B. aphidicola and Wigglesworthia 101 

glossinidia from an E. coli ancestor has been simulated using FBA [56,57]. This work, 102 

whilst elegant, has a key limitation. Reactions that are lost at the start have no chance 103 

of being reintroduced. This limits the evolutionary space that can be explored, as the 104 

loss of a key reaction at the start will fundamentally affect which reactions can be lost 105 

subsequently. A similar approach to that used by Pal et al. [56] was used with dFBA to 106 

study the evolution of cooperation and cross-feeding in E. coli [58]. Using FBA in isolation 107 

to remove reactions successively may not therefore be the optimal way to simulate the 108 

evolution of symbiosis. 109 

In silico evolution has been used increasingly in recent years to complement in vivo 110 

experimental evolution [59]. In silico evolution benefits from being able to test widely 111 

different ecological conditions whilst controlling key variables [60]. For example, it 112 

allows the investigation of groups of mutations that lead to a specific phenotype, or 113 

mutations that are difficult to induce in vitro [61]. This has enabled the study of many 114 

aspects of evolution, including simulating the reduction of genome size in an individual 115 

[60]. Multi-objective evolutionary algorithms (MOEA) have been used in many 116 

disciplines for solving problems that have two or more conflicting objectives [62]. The 117 

use of MOEA in combination with metabolic models has been implemented for the 118 



 

design of minimal genomes [63] and for the production of industrially relevant 119 

molecules [64,65]. It has however seen only limited use for in silico evolution [66]. When 120 

viewed computationally, the evolution of symbiosis can be considered as a multi-121 

objective optimisation; symbiotic bacteria undergo genome reduction whilst trying to 122 

maximise their individual growth. 123 

A free-living organism within the Sodalis genus has been characterised and sequenced 124 

only recently [67,68]. Sodalis praecaptivus was isolated from a human wound, caused 125 

by an impalement on a crab apple tree branch, and it is assumed that the tree was the 126 

likely source of the S. praecaptivus infection. S. praecaptivus is a prototroph, capable of 127 

growth in minimal media and at 37◦C [68]. The annotated genome sequence for S. 128 

praecaptivus is also available [67]. It is of particular interest given its close relation S. 129 

glossinidius, secondary symbiont of the tsetse [25]. The tsetse, genus Glossina is 130 

medically important as the vector for Trypanosoma brucei, causative agent of human 131 

African trypanosomiasis [69]. S. praecaptivus therefore provides a rich set of data from 132 

which to begin investigations into the origin of, and adaptations within, the tsetse-S. 133 

glossinidius symbiosis. 134 

Here, we present a flux balance model for S. praecaptivus, iRH830. This model, and a 135 

previously presented model of S. glossinidius metabolism, iLF517 [33], both represent 136 

adaptations of the organisms to their contrasting environments. The Sodalis system is 137 

therefore an excellent candidate for assessing the ability of FBA to describe the 138 

evolution of symbioses. A MOEA has been used to evolve iRH830 under various 139 

biological conditions. The aim was to investigate computationally the route that S. 140 

glossinidius may have taken in its transition to symbiosis. It is not known whether the 141 

solutions found by S. glossinidius, described in iLF517, are the only possible outcomes 142 

given the metabolic constraints of the microenvironment, or whether the symbiont’s 143 

unusual metabolic network evolved by chance. The application of the MOEA to iRH830 144 

enabled us to ask in which order of the evolutionary sequence key pseudogenisations 145 

may have occurred. The effect of exposing the ancestral Sodalis to contrasting diets was 146 

modelled to mirror the different trajectories that this genus has taken within blood- and 147 

sap-feeding insects. The techniques used here could be applied to other symbiotic 148 

systems to drive forward the discovery of novel relationship criteria. 149 



 

Results 150 

A model of S. praecaptivus metabolism, iRH830 151 

In order to investigate computationally the path that S. glossinidius has taken to 152 

symbiosis, a metabolic model describing its close, free-living relative S. praecaptivus was 153 

constructed (Fig. 1). Full details are given in Supplementary Data 1. iRH830 contains 830 154 

genes, 891 metabolites and 1246 reactions (excluding pseudoreactions), and is a 155 

prototroph for all essential amino acids. An iterative process of gap filling was 156 

undertaken by comparing the draft S. praecaptivus model to iLF517 (S. glossinidius) and 157 

iJO1366, a model of E. coli metabolism [54]. iRH830 is supplied with an oxygen uptake 158 

value of 20 mmol gr DW-1 hr-1, reflecting the highly aerated conditions the organism is 159 

grown in and to retain consistency with models of E. coli metabolism [53,54]. 160 

 161 

Fig. 1. The construction process for iRH830. The S. praecaptivus genome was mined for 162 

orthologues to metabolic genes in E. coli and S. glossinidius, before compiling into a draft 163 

model. An iterative process of testing and gap filling was then performed, using 164 

information provided in various databases (see key). 165 

A series of biochemical screens were conducted using Biolog phenotypic microplates to 166 

strengthen the model. In total, 190 metabolites were tested for their ability to act as the 167 

sole carbon source for S. praecaptivus. Experiments were conducted in triplicate with 168 

full results detailed in Supplementary Data 2. Through this phenotypic screen, it was 169 

found that S. praecaptivus was able to use 19 of the metabolites tested as a sole source 170 

of carbon (Table S1). When these metabolites were tested in silico by the exogenous 171 

addition to iRH830, it was found that all but two mirrored the in vitro data; N-acetyl D-172 

galactosamine (GalNAc) and xylitol. This was then confirmed quantitatively in a 96-well 173 

microplate with xylitol or GalNac supplemented into M9 minimal medium (Fig. S1a, Fig. 174 

S1b). Neither models of S. glossinidius (iLF517, [33]) or E. coli (iJO1366, [54]) were able 175 

to produce a positive biomass output with xylitol or GalNAc as sole sources of carbon 176 

(Table S1). 177 

Comparison of the S. praecaptivus genome to other known D-xylitol consumers such as 178 

Morganella morganii subsp. morganii revealed a highly conserved catabolic operon 179 

containing the distinguishing D-xylitol dehydrogenase (79.7% identity between the S. 180 

praecaptivus orthologue, AFW03778/Sant_3108, and the Morganella morganii subsp. 181 



 

morganii protein, Uniprot ID: Q59545). The cluster contains a xylulose reductase as the 182 

second enzyme required to convert D-xylitol to the central metabolite D-xylulose-5-183 

phosphate (Fig. S1c) and a complete ABC transporter that is likely specific for D-xylitol. 184 

Interestingly, the pathway is also complete in the reduced S. glossinidius genome (Table 185 

S2), suggesting that this is a conserved metabolic trait of the Sodalis genus. The cluster 186 

is not present in E. coli with only weakly matching homologues are found fragmented 187 

over the genome (Table S2). The proposed pathway for GalNAc metabolism was also 188 

constructed using known pathways (Fig. S1d). 189 

Robustness analysis of the S. praecaptivus metabolic network 190 

Robustness analysis was used to examine reaction essentiality and therefore 191 

redundancy in the iRH830 network. iRH830 was run on a simple, tsetse-specific nutrient 192 

limited medium ("famine") and a blood medium simulating the internal tsetse 193 

environment and informed by S. glossinidius requirements [33] ("blood", Table S3). All 194 

media are detailed in Supplementary Data 1. Reactions were removed individually and 195 

the resulting effect on biomass output noted. The same analysis was also run on iLF517 196 

in blood as a comparison. 197 

There are 282 essential reactions in iRH830 when the medium (famine) is nutritionally 198 

limited, and 228 in the tsetse-specific blood medium (Fig. 2a). The overall pattern for 199 

the two conditions is very similar. The subsystem most represented in either condition 200 

is for cofactor and prosthetic group biosynthesis, with 88 and 87 essential reactions for 201 

the famine and blood media, respectively. The main difference at the subsystem level 202 

can be attributed to amino acid metabolism; 15.8% of the total number of essential 203 

reactions in blood and 29.8% in the famine medium that does not contain amino acids 204 

are involved in these pathways. Of these, the essential reactions involved in L-arginine, 205 

L-proline, L-threonine and L-lysine metabolism are highly prevalent in both media types 206 

(Fig. 2b). 207 

  208 

Fig. 2. Robustness analysis of iRH830. (a) Essential reactions in famine (top) and blood 209 

(bottom) media. Essential reactions are categorised by subsystem. (b) Essential 210 

reactions involved in amino acid metabolism in iRH830 in famine (top) and blood 211 

(bottom) media. 212 



 

Media provisioning affects evolutionary trajectories 213 

NSGA-II is a heuristic multi-objective optimisation algorithm used to evaluate multi-214 

objective problems without giving weight to any specific outcome. Evolution within a 215 

constrained environment, such as the tsetse microenvironment, can be considered a 216 

multi-objective optimisation problem of trying to reduce the genome size to increase 217 

replication speed, while still retaining sufficient capacity to grow [70]. The MOEA was 218 

used to explore the potential evolutionary trajectories of S. praecaptivus when exposed 219 

to similar environmental conditions to S. glossinidius. A graphical description of the 220 

MOEA is provided in Fig. 7. A key feature of this is the option of reactions that have been 221 

removed being re-introduced later in the simulation. This helps to prevent the model 222 

from consistently finding the same solutions and instead allows a greater evolutionary 223 

space to be explored. The conditions under which iRH830 and iLF517 were evolved are 224 

detailed in Table 1. In Scenario i, iRH830 was evolved in blood and famine growth media, 225 

as well as a medium that mimics plant sap (Supplementary Data 1), to examine the effect 226 

of metabolite availability. In Scenario ii, three key reactions, ASPTA, PDH and PPC, were 227 

removed from iRH830 prior to evolution to compare the trajectories that arise as a result 228 

of pseudogenisations, and to investigate if these were possible adaptations prior to 229 

symbiont establishment. The gene encoding PPC is thought to be pseudogenised in S. 230 

glossinidius, whereas the PDH and ASPTA reactions are predicted to be functional [33]. 231 

In Scenario iii, the MOEA is applied to iLF517 to investigate the possible future of S. 232 

glossinidius as a symbiont. 233 

Table 1. In silico evolution conditions. Conditions under which iRH830 and iLF517 were 234 

evolved, including wild-type (WT) or reaction knockouts and media type. 235 

Scenario Test Model Media 

i Effect of growth media iRH830 (WT) Blood, sap, famine 
ii Effect of gene loss iRH830 (∆ASPTA, ∆PDH, ∆PPC) Blood 
iii Future of S. glossinidius iRH830 (WT), iLF517 (WT) Blood 

Species of the Sodalis genus have been found in insects that feed on a variety of 236 

contrasting diets, including blood (e.g. tsetse [25] and ticks [71–73]) and plant tissue 237 

(e.g. weevils [74]). To replicate Sodalis evolution in different environments, the MOEA 238 

was applied to iRH830 that was supplied with the tsetse-specific blood medium, the 239 

famine medium, and a medium that mimics plant sap (Table 1, Scenario i). Sap was 240 

chosen as a comparison medium as Sodalis-allied symbionts have been identified in a 241 

range of phytophagic insects [75–80]. The algorithm underwent ten runs of 3000 242 

generations and the resulting solutions were collated. 243 

In all conditions, the models evolved to completion, demonstrated by the convergence 244 

of solutions to the left of the plots (Fig. 3a). The number of reactions decreases over 245 



 

evolutionary time, with the majority of solutions clustering at the maximum biomass 246 

output. This is an indication that sub-optimal solutions are being removed successfully. 247 

After 3000 generations, there are a range of solution sizes at the maximum biomass 248 

output found in sap, whereas in blood and famine all solutions at this time point cluster 249 

at the minimum number of reactions. The two complex media, blood and sap (Fig. 3a), 250 

produce a lot of metabolic flexibility, with a complete range of possible biomass outputs 251 

produced by the smallest models. When grown in the simple famine medium, there is 252 

significantly less flexibility in terms of possible solutions found (Fig. 3a). Here, the 253 

majority of the solutions cluster at the minimum reactions/maximum biomass output. 254 

This is as expected, given the fitness function of the MOEA. In blood and sap, the biomass 255 

outputs reach near zero, made possible by the variety of available substrates. In famine, 256 

the options for streamlining are limited, resulting in few solutions that are able to 257 

deviate away from what is selected by the fitness function.  258 

 259 

Fig. 3. iRH830 evolved under different starting conditions. (a) Evolution of iRH830 in a 260 

tsetse-specific blood medium (left), a nutritionally-limited famine medium (centre), and 261 

a medium mimicking plant sap (right). (b) iRH830 evolution in a blood medium with the 262 

reactions ASPTA (left), PDH (centre) and PPC (right) removed at the start. The MOEA was 263 

run for 3000 generations, with the plot depicting new populations every 50 generations 264 

(blue to green). Black boxes indicate individual solutions selected for further analysis. 265 

A number of individual solutions that were representative of the biomass output of 266 

iLF517 [33] were then selected from each of these simulations (Fig. 3, black boxes). The 267 

raw, binary data were translated back into reaction names and this was subsequently 268 

processed to produce a list of "core non-essential reactions". These reactions are found 269 

in all individuals selected, and do not produce a lethal phenotype when removed. A full 270 

list of all core non-essential reactions described here can be found in Table S4. There are 271 

14 core non-essentials reactions found in all 1194 of the individuals examined when 272 

iRH830 was supplied with blood; AGDC, ARGabc, ASNt2r, G6PDA, H2Ot, HISt2r, ILEt2r, 273 

NH4t, RPE, TKT1, TKT2, TMK, TRPt2r and TYRt2r. In sap, only one non-essential reaction 274 

is found in all 1888 individuals; the L-arginine ABC transporter reaction ARGabc. As 275 

anticipated, when grown in the limited famine medium there are a higher number of 276 

core nonessential reactions (22 found in each of the 2989 individuals tested); ATPS4r, 277 

CO2t, 278 

ENO, FORt, GAPD, GHMT2r, GLUDy, ORNDC, PAPSR, PGCD, PGK, PGM, PPPGO3, PSERT, 279 

PSP_L, RPE, TALA, THRAi, TKT1, TPI, TRDR and TRPS1. 280 



 

The rare core non-essential reactions were then calculated. In famine, there are 73 281 

unique reactions that occur in less than 0.1% of the 2989 evolved models. This is 282 

significantly more than for sap (13 in less than 0.1% of 1888 models) and blood (five in 283 

less than 0.1% of 1194 models). 284 

These core non-essential reactions were then analysed by subsystem to assess themes 285 

across the different conditions. In blood, over half (eight of 14) of these are secondary 286 

transporter reactions (Fig. 4a). This reflects what is observed in S. glossinidius, which has 287 

retained, for example, secondary amino acid transporters, as well as losing metabolic 288 

pathways whilst maintaining functional transporters in order to scavenge free 289 

metabolites [33, 81]. As mentioned previously, the only core nonessential reaction in 290 

sap is a transport reaction. In contrast, the set of core nonessentials are more varied 291 

when metabolites are limited (famine), with a particular emphasis towards central 292 

metabolism and amino acid metabolism. 293 

Fig. 4. Core non-essential reactions in evolved iRH830 populations. (a) The proportion of 294 

core non-essential reactions per conditions by subsystem when the ancestral iRH830 is 295 

exposed to blood (left), famine (centre), or sap (right) media. (b) Core non-essential 296 

reactions in ∆ASPTA (left), ∆PDH (centre), and ∆PPC (right) iRH830 models in a blood 297 

medium, grouped by subsystem. 298 

The order of gene loss can be estimated 299 

A characteristic of S. glossinidius and other symbiotic bacteria is their propensity to 300 

accumulate pseudogenes [41]. It is not known whether certain genes are lost early in 301 

the tsetse-Sodalis symbiosis in order to facilitate the establishment of the relationship, 302 

or whether their loss is an inevitable consequence of genomic streamlining. To 303 

investigate the effect that pseudogenising key genes early in evolutionary time has on 304 

the trajectory of a symbiont, the MOEA was run on iRH830 with one of three reactions 305 

involved in the TCA cycle removed at the start, with the resulting solutions compared to 306 

wild-type (WT) (Table 1, Scenario ii). An assumption is made in these simulations that 307 

pseudogenes are non-functional. The first reaction selected was PPC 308 

(phosphoenolpyruvate carboxylase) (Fig. 5). The gene encoding this reaction, ppc, is 309 

pseudogenised in S. glossinidius [33] and it was thought that the loss of this gene would 310 

have had a significant impact on the resulting evolution of the symbiont. The two other 311 

reactions selected were PDH (pyruvate dehydrogenase) and ASPTA (aspartate 312 

transaminase). These reactions are both encoded by genes predicted to be functional in 313 

S. glossinidius (Fig. 5). It was hypothesised that the loss of PPC may result in a different 314 



 

evolutionary trajectory compared to the loss of PDH or ASPTA, with the former 315 

potentially producing solutions that were more similar to S. glossinidius metabolism. 316 

 317 

Fig. 5. TCA cycle reactions examined by the MOEA. Three reactions were removed from 318 

iRH830 to investigate the resulting trajectories following application of the MOEA; 319 

ASPTA, PDH and PPC. Blue arrows show reactions functional in S. praecaptivus and S. 320 

glossinidius, white arrows show reaction not functional in S. glossinidius. Gene 321 

associations in S. praecaptivus and S. glossinidius are given in blue and black text, 322 

respectively. Adapted from Hall et al. [33]. 323 

When considering the population plots, there is minimal qualitative difference between 324 

∆PDH and ∆PPC (Fig. 3b). ∆ASPTA, in contrast, produces solutions with a much lower 325 

biomass output and with fewer individuals that deviate away from the optimum as 326 

defined by the fitness function. A selection of individuals were then examined and the 327 

number of core non-essential reactions in the evolved models analysed as described 328 

previously (Fig. 3b, black boxes). There are one, eleven and nine core non-essential 329 

reactions in the WT, ∆PDH and ∆PPC solutions, respectively, whereas there are 61 in 330 

∆ASPTA. These 61 reactions function in a variety of subsystems, particularly transport, 331 

central metabolism, amino acid metabolism and nucleotide salvage pathways. There are 332 

minimal differences between the core non-essential reactions at the subsystem level 333 

between ∆PDH and ∆PPC (Fig. 4b). The main difference of note is the presence of 334 

reactions involved in amino acid metabolism in the ∆ASPTA, but not the ∆PDH or ∆PPC, 335 

solutions. This could be of relevance given the amino acid-rich hematophagic tsetse diet. 336 

The order in which key pseudogenisations occurred can therefore be estimated, using 337 

the resulting evolutionary trajectories as a guide. The gene encoding PPC could have 338 

been lost early by S. glossinidius in the sequence of pseudogenisations with minimal 339 

impact on its fitness. 340 

A prediction of the evolutionary future of S. glossinidius as a symbiont 341 

S. glossinidius is a secondary symbiont. Both bacterium and insect can survive 342 

independently of one another, and the former is likely a more recent acquisition [25]. It 343 

is however unclear how recently S. glossinidius was captured, or, given the 344 

pseudogenisations already present, how much more streamlined its genome can 345 

become. The algorithm was therefore applied to iLF517 in a blood medium with the aim 346 



 

of evaluating potential future evolutionary trajectories within the bounds of its 347 

relationship with host and primary symbiont (Table 1, Scenario iii). There are a spread 348 

of biomass outputs found at the end of the simulation (Fig. 6a), as observed when 349 

iRH830 was evolved in blood. The smallest solutions contain approximately 300 350 

reactions. After 3000 generations the iLF517 model retained 51 ±	1.1% of the starting 351 

606 reactions compared to iRH830 which was reduced to 27 ±	1.8% of the 1247 starting 352 

reactions. The S. glossinidius genome can therefore reduce its potential coding capacity 353 

for metabolic genes to approximately half the size that it is currently. 354 

The evolved solutions were then compared to the evolved iRH830 models to assess their 355 

similarity. iLF517 converges on a minimum after approximately 1000 generations, 356 

compared to the 2500 generations taken by the evolved iRH830 model to find the 357 

minimum number of reactions (Fig. S2). The greater standard deviation of the iRH830 358 

solutions compared to iLF517 is likely due to the larger starting point of the free-living 359 

model. The evolved iRH830 and iLF517 solutions ultimately converge at a similar point. 360 

To investigate this further, ten evolved models for both iRH830 and iLF517 were 361 

analysed. All exchange reactions and those that carried zero flux were removed from 362 

further analysis. Full evolved models with fluxes can be found in Supplementary Data 3. 363 

Of the 383 unique reactions that carry flux in the evolved iRH830 models, 289 (75.5%) 364 

are found in all ten. For the iLF517 solutions, 301 of the 316 (95.3%) unique reactions 365 

that carry flux are found in all ten. This suggests that the smaller S. glossinidius model 366 

has fewer viable trajectories compared to the larger S. praecaptivus model. Of the 441 367 

unique reactions across the 20 evolved models, 225 (51%) were found in all of the 368 

iRH830 and iLF517 evolved solutions; they are core across the two species. The biomass 369 

outputs for the evolved iRH830 and iLF517 solutions range from 0.064 to 0.281 (gr DW 370 

(mmol glucose)-1 hr-1), and 0.075 to 0.331 (gr DW (mmol glucose)-1 hr-1), respectively (Fig. 371 

6b). Given the differences between the solutions from the two simulations, and the 372 

lower proportion of core conserved reactions, it is possible that S. praecaptivus may not 373 

be the free-living species of Sodalis most closely related to S. glossinidius, and that there 374 

may be others yet to be discovered, or may now be extinct or unrecognisable from the 375 

S. glossinidius progenitor. 376 

 377 

 378 

Fig. 6. Evolution of iLF517. (a) Evolution of iLF517 in a blood medium. MOEA was run for 379 

3000 generations (blue to green). (b) Biomass output (gr DW (mmol glucose)-1 hr-1) and 380 

the number of reactions carrying flux in evolved iRH830 (blue triangle) and evolved 381 

iRH830 (yellow circle) models. The evolved solutions produce comparable biomass 382 

outputs. Ten evolved solutions are given for each, some duplicates are present. 383 



 

Discussion 384 

Classical studies of microbial evolution, whilst useful, are ultimately limited by their 385 

inherent inability to replicate adaptations over large evolutionary time scales. Here, we 386 

present a computational approach by combining a MOEA with FBA, with the Sodalis 387 

system as a model for this. The Sodalis genus is ideal for the study of the evolution of 388 

symbiosis in this way, as within the genus are a free-living and a host restricted species, 389 

both well defined with complete genome sequences and existing protocols for culture. 390 

Here, we present a model for S. praecaptivus metabolism, iRH830, accompanied by 391 

experimental verification, that has been used in subsequent in silico evolution 392 

experiments. Supplying the ancestral iRH830 with contrasting growth media 393 

demonstrates the effect that nutrient provisioning may have on evolutionary 394 

trajectories of symbiotic bacteria. Exposure to the famine medium reflects what might 395 

be expected in a nutrient-limited environment in vivo, in which evolutionary pressures 396 

result in the retention of pathways to synthesise key, essential metabolites. Here, this 397 

has shown to be particularly evident in the pathways retained for 398 

glycolysis/gluconeogenesis, the pentose phosphate pathway, and amino acid 399 

metabolism. This indicates that key pathways in central metabolism are being retained 400 

when the external environment is nutrient-limited. The evolved solutions therefore 401 

reflect what is observed in symbiotic bacteria; the retention or loss of pathways can be 402 

used to inform about the microenvironment it resides within. Some reactions in these 403 

pathways are also likely to be retained as they produce essential components of the 404 

biomass reaction. It is expected that the biomass reaction for symbiotic bacteria will 405 

change over evolutionary time, and therefore this work is limited by maintaining a 406 

consistent biomass reaction throughout the simulation. Incorporating a biologically 407 

accurate, variable biomass reaction, for example one which will at certain time points 408 

lose components that the host can synthesise, would be an interesting progression to 409 

this work. 410 

It has been shown in the simulations presented here that the evolved famine solutions 411 

contain a much greater number of core non-essential reactions that are present in a 412 

small percentage of the solutions. This suggests a lack of flexibility in the evolved 413 

network; either the reaction is found repeatedly, or not at all. This is not observed in the 414 

solutions provided with complex media (blood or sap), where a greater degree of 415 

flexibility is demonstrated by more reactions being included repeatedly across the 416 

evolutionary space. This implies that, in vivo, there are many possible trajectories for an 417 

early symbiont if there are sufficient nutrients in the microenvironment. 418 



 

The work here demonstrates the power of evolutionary algorithms in the study of 419 

symbiont evolution. A strength of this system is that removal of a reaction from the 420 

model is not irreversible; it is possible for a reaction to be added back into an individual 421 

at any point. This reduces the likelihood of repeatedly encountering the same 422 

evolutionary solutions as a result of losing the same key reaction, or reactions, early in 423 

the simulation. Although according to Muller’s ratchet [82] the reduction of symbiont 424 

genomes should be irreversible [70], S. praecaptivus is as yet not obligately intracellular. 425 

A simple model to allow the (re-)acquisition of reactions is therefore appropriate for this 426 

system. Whilst there is no evidence currently for horizontal gene transfer (HGT) within 427 

species of the Sodalis genus, the NSGA-II algorithm is only intended to be used as a tool 428 

to explore the possible evolutionary space rather than as a biologically accurate model 429 

of genome reduction. Previous examples of evolving minimal metabolic networks do not 430 

allow for full exploration of the possible evolutionary space [50,56,57]. Decisions that 431 

are made at the start of process persist, which, whilst biologically relevant, does not 432 

allow the full complement of evolutionary routes to be examined. Expanding this 433 

algorithm to include the possibility of the model acquiring reactions that are not 434 

currently encoded by S. praecaptivus, therefore more closely reflecting HGT, may be an 435 

interesting avenue of future research. 436 

This tool can produce biologically relevant simulations that accurately reflect the 437 

metabolic pressures that symbionts are exposed to. An example of this was 438 

demonstrated by the investigation of key knockouts in S. glossinidius. The symbiont has 439 

a pseudogenisation in ppc, a key gene in central metabolism [33]. It is not possible to 440 

deduce when this loss occurred from the genome annotation alone. Reactions are 441 

related to genes in multiple ways through the gene-protein-reaction relations which 442 

may or may not be 1:1; here we evolve reactions to focus on the phenotypic effects. As 443 

the MOEA enables a flexible search methodology this will cause minimal difference in 444 

outcomes to a gene-centred approach. By removing the PPC reaction from S. 445 

praecaptivus at the start of the simulation, the resulting trajectories can be analysed and 446 

compared to WT. The loss of PPC appeared to have minimal effect on the evolved 447 

populations compared to WT, in contrast to what was observed when the ASPTA 448 

reaction was removed at the start (Fig. 3). This would indicate that, in vivo, the loss of 449 

the gene encoding the ASPTA reaction would have a greater impact on a bacterial 450 

symbiont if it was lost early in the relationship in comparison to the lower burden that 451 

the loss of the genes encoding PDH or PPC would have. This result can then be used to 452 

infer the possible sequence of gene loss in the tsetse-S. glossinidius symbiosis. S. 453 

glossinidius has lost the ppc gene, whereas it has retained the genes encoding the PDH 454 



 

(SG0467-9) and ASPTA (SG1006) reactions [25,33]. As the profile of ∆PPC evolution is 455 

similar to that of WT, it could be suggested that the ppc gene could have been lost early 456 

in evolutionary time without heavily bottlenecking S. glossinidius evolution 457 

subsequently. The gene encoding the ASPTA reaction may have been retained by S. 458 

glossinidius because of the detrimental impact that its loss may have caused. This is 459 

therefore a useful tool for making general predictions about when key 460 

pseudogenisations in insect-bacterial symbioses may have occurred. 461 

It has been shown here that is it possible for S. glossinidius to reduce its metabolic 462 

network to approximately half of the size that it is currently. This provides support for 463 

the published hypothesis that S. glossinidius is a recent acquisition by the tsetse [25]. 464 

The number of reactions remains slightly higher in evolved iRH830 models compared to 465 

evolved iLF517 solutions, possibly due to difficulties in finding the minima from a larger 466 

starting point. iRH830 can however be reduced down to look phenotypically similar to 467 

iLF517 at the level of biomass output, but with differences at the individual reaction level 468 

(Supplementary Data 3). These results suggest therefore that the route that S. 469 

glossinidius has taken within the tsetse is perhaps just one of several possible routes. 470 

The differences also indicate that S. praecaptivus may not be the ancestor that initiated 471 

the tsetse-S. glossinidius symbiosis. The unusual ability of S. praecaptivus to metabolise 472 

xylitol may be related to the frequent presence of the Sodalis genus as a symbiont 473 

amongst sap-feeding insects, by hinting that it may naturally subsist on this important 474 

plant-derived sugar. 475 

A possible, if challenging, extension to this work could be to incorporate the influence 476 

of the host and other members of the microbiome on the evolution of Sodalis. We 477 

acknowledge that this modelling method does not account for changes in host fitness 478 

that may arise from the evolution of the symbiont. The host could, for example, 479 

constrain the population of symbiont when it increases beyond a certain density, as 480 

demonstrated by the weevil Sitophilus oryzae that produce antimicrobial peptides to 481 

constrict the symbiont population size [83]. Alternatively, the host may benefit from 482 

reduced costs of symbiont maintenance [84], or an increased fitness or efficiency of the 483 

symbiont via the provision of metabolites. It may also suffer if the bacterial population 484 

becomes less fit. The latter is less likely to be an issue here, given that it is not yet known 485 

for certain whether S. glossinidius provides a benefit to the tsetse. This level of nuance 486 

is not captured by FBA as it focuses entirely on the fitness of an individual, with the only 487 

reference here to a population being the selection of the next generation. This tool is 488 

therefore most useful as a technique to examine broad changes that may occur during 489 

microbial evolution. 490 



 

Previous uses of metabolic models to simulate evolution have focused on E. coli and B. 491 

aphidicola as a proof of concept [56,57]. The availability of both a genome sequence and 492 

a culturable organism for a free-living and symbiont of the same genus makes the Sodalis 493 

system a candidate model system to investigate the evolution of symbiosis. The work 494 

described here has augmented knowledge about the loss of key genes in S. glossinidius 495 

central metabolism. Combining FBA with a MOEA in this way could be used for any 496 

organism for which a well-annotated genome is available. It could be applied not only 497 

to the evolution of symbiosis but to the directed evolution of, for example, industrially 498 

relevant microorganisms or to the study of rapid genome evolution in pathogenic 499 

bacteria. 500 

Materials and Methods 501 

Bacterial strains, growth conditions and reagents 502 

S. praecaptivus was obtained from DMSZ (Brunswick, Germany). Working stocks were 503 

established by incubating starter cultures on LB (Merck, Darmstadt, Germany) agar 504 

plates overnight at 37◦C. A single colony was then sub-cultured on to a fresh LB plate 505 

and incubated overnight at 37◦C. A single colony was selected with a sterile pipette tip 506 

and used for downstream experimentation as per Biolog, Inc (Hayward, CA, USA) 507 

manufacturer protocol. Briefly, the colony was vortexed in IF-0 media before a redox 508 

dye was added (Biolog). Phenotypic microplates were used to screen for the ability of S. 509 

praecaptivus to grow on a range of carbon sources, using PM1 and PM2A microplates 510 

(Biolog). A 100 µL bacterial suspension in the relevant media was added per well. Optical 511 

density was measured at 590 nm and 730 nm in a microplate reader (Epoch, BioTek, 512 

Winooski, VT, USA), and incubated with double orbital shaking at 37◦C for 24 hours. 513 

Discrepancies between in silico and in vitro Biolog results were re-examined by 514 

establishing individual cultures of S. praecaptivus in M9 salts in 96-well microplates, and 515 

supplemented with the metabolite of interest at a range of concentrations from 25 mM 516 

to 50 µM. Cultures were incubated in a microplate reader with double orbital shaking at 517 

37◦C for 36 hours. 518 



 

Construction of the S. praecaptivus metabolic network 519 

The annotated S. praecaptivus genome sequence, CP006569.1, was downloaded from 520 

NCBI in GenBank format. Genes in S. praecaptivus with the same annotation as genes in 521 

the E. coli str. K-12 substr. MG1655 genome (ASM584v2) were highlighted, and the 522 

reactions encoded by these genes extracted from the BiGG Models database [85]. These 523 

processes were automated using custom scripts written in Python. 524 

FBA models of S. glossinidius (iLF517 [33]) and E. coli (iJO1366 [54,55], iJR904 [53], 525 

iAF1260 [52]) were then used to aid the identification of missing reactions. The reactions 526 

and corresponding gene assignments in these published models were compared to the 527 

draft S. praecaptivus model. These gene assignments were then used to guide translated 528 

nucleotide and protein BLAST searches of the S. praecaptivus genome. KEGG [86,87] and 529 

EcoCyc [88] databases were used to confirm the identity of the E. coli genes encoding 530 

each reaction. S. glossinidius gene assignments were taken from iLF517 [33]. These 531 

orthologues in E. coli and S. glossinidius, with sequences taken from UniProt [89], were 532 

used as BLAST search queries. 533 

KEGG, BiGG Models, and MetaCyc [90] were used to assign reaction stoichiometry. 534 

Candidate pseudogenes were aligned with known functional orthologues using ClustalX 535 

2.1 [91]. Those with sequences missing or mutations in key residues were not included 536 

in the model. FBA and literature searches were used to identify and fill gaps in metabolic 537 

pathways appropriately [92]. The xylitol pathway components in Morganella morganii 538 

subsp. morganii were identified using KEGG, with candidate protein sequences 539 

extracted from UniProt and used in a protein BLAST search against S. praecaptivus. KEGG 540 

was also used to identify known GalNAc degradation pathways. 541 

Flux balance analysis 542 

FBA solutions were generated using the GNU linear programming kit (GLPK) integrated 543 

with custom software in Java. Oxygen uptake was constrained to 20 mmol gr DW-1 hr-1, 544 

comparable to other models of free-living Gram negative bacteria. The uptake of 545 

ammonia, water, phosphate, sulphate, potassium, sodium, calcium, carbon dioxide, 546 

protons and essential transition metals was unconstrained for all media conditions. 547 

Cofactor constraints were implemented by introducing these metabolites to the 548 

biomass functions at small fluxes (1 x 10-5 mmol gr DW-1 hr-1) [7]. iRH830 was supplied 549 

with either 6 mmol gr DW-1 hr-1 GlcNAc and 1 mmol gr DW-1 hr-1 thiamine ("famine"), a 550 



 

tsetse-specific medium ("blood", Table S3), or a sap-inspired medium (from [92], "sap"). 551 

Full recipes are provided in Supplementary Data 1. The phenotype was considered viable 552 

if the biomass production rate was greater than 1 x 10-4 gr DW (mmol glucose)-1 hr-1. 553 

Futile cycles, closed loops of a number of reactions, were detected by the presence of 554 

unsustainably large fluxes. Futile cycles often occur when several reversible reactions 555 

are present in which the product of one becomes the substrate of another. These 556 

reactions were examined individually, and solved by adjusting the reversability with 557 

guidance from EcoCyc and BiGG Models. 558 

To investigate the concordance between the in vitro screen and the in silico outputs, 559 

iRH830 was, where possible, supplemented with the carbon sources analysed at an 560 

exogenous concentration of 6 mmol gr DW-1 hr-1. A qualitative presence/absence of a 561 

positive biomass output was noted. Full description of the model is provided in 562 

Supplementary Data 1. 563 

Robustness analysis 564 

Robustness analysis of the iRH830 network was executed using COBRApy [94] to conduct 565 

single reaction deletions. iRH830 was supplied with either famine or blood media under 566 

aerated conditions. The flux through reactions was set to zero individually and the 567 

resulting effect on biomass output measured. Reactions were categorised as essential if 568 

the resulting biomass output was less than 1 x 10-3 gr DW (mmol glucose)-1 hr-1. 569 

Implementation of multi-objective evolutionary algorithm 570 

A MOEA was used to explore possible evolutionary trajectories in the Sodalis genus. An 571 

overview of the process is provided in Fig. 7. The non-dominated sorted genetic 572 

algorithm (NSGA-II) [95] from the Distributed Evolutionary Algorithms in Python (DEAP) 573 

[96] package was used in combination with the COBRApy package [94] for FBA 574 

evaluation. Equal weight was placed on reducing the number of reactions used in the 575 

model whilst maximising the biomass output. The Python code for running the algorithm 576 

with an example data set is available on GitHub 577 

(https://github.com/St659/SodalisFBAEvolution). The full datasets generated by the 578 

simulations are available on the York Research Database. 579 

 580 



 

Fig. 7. Process of the MOEA. A starting population of individuals is initialised, and the 581 

fitness calculated by solving the FBA model to calculate biomass output and the number 582 

of active reactions. For each generation the population is allowed to mutate and then 583 

the fitness of each individual is evaluated from the biomass output and the sum of the 584 

active reactions. A new population is then selected using nondominated sorting, 585 

generating a Pareto front of biomass output to active reactions. The process of mutation 586 

and selection is repeated for 3000 generations resulting in a final population. Green 587 

boxes represent the start and final populations, pink boxes represent the iterative 588 

process of mutation and selection. 589 

Population initiation 590 

Prior to starting an evolutionary run, reactions essential to growth were identified using 591 

a single reaction knockout. Essential reactions were defined as those producing a 592 

biomass output of less than 1 x 10-3 gr DW (mmol glucose)-1 hr-1. Reactions that were 593 

identified as essential were not included in the subsequent mutation strategy, therefore 594 

reducing the solution space and computational time taken to run the MOEA. The 595 

essential reactions were added back to the evolved populations for downstream 596 

analysis. 597 

At the start of the algorithm an initial population of 100 genotype copies was created, 598 

with all non-essential reactions being active (Fig. 7). Each genotype consisted of a binary 599 

number, where a 1 or 0 corresponded to the reaction being active or inactive, 600 

respectively. This is a proxy for gene loss, where a one-to-one gene-protein reaction 601 

mapping is assumed. Reactions, rather than genes, were used to reduce the potential 602 

search space whilst maintaining the key phenotypic effect. All post-evolution analysis 603 

focused on the reactions lost or retained. 604 

Mutation 605 

Mutation was performed on each genotype by flipping the value of each reaction with a 606 

probability of 0.005 (Fig. 7). The fitness of each individual is evaluated by solving the FBA 607 

model to calculate both its biomass output and the sum of number of active reactions. 608 

Fitness evaluation and selection 609 

The population was first evaluated for non-dominated individuals. This gave a 610 

population of individuals that has the highest biomass output for their current number 611 



 

of active reactions (Fig. 7). From the non-dominated population, the Euclidean distance 612 

between each individual was calculated. A greater priority was given to selecting 613 

individuals with a larger Euclidean distance. This prevented the clustering of similar 614 

potential solutions, thereby reducing the likelihood of becoming trapped in sub-optimal 615 

local minima within the search space. The resulting population maximised the 616 

convergence on the highest biomass output, lowest number of reactions, and the 617 

distribution of those solutions. There will be a set of solutions whereby the number of 618 

reactions cannot be minimised further without also reducing the corresponding biomass 619 

output. This set of solutions is known as a Pareto front. The algorithm was repeated for 620 

3000 generations to produce genotypes that converged. This indicated that minimal 621 

new solutions were being found. The biomass output from the slim optimisation 622 

COBRApy function and the summation of the number of active reactions was used to 623 

evaluate the fitness. 624 

MOEA variations 625 

The MOEA was run under several conditions in order to investigate aspects of symbiont 626 

evolution. Full details are provided in Table 1. Scenario i investigated the trajectories 627 

taken when the S. praecaptivus model was provided with blood, sap, and famine growth 628 

media. In Scenario ii, gene knockouts were simulated by removing individual reactions 629 

from the S. praecaptivus model prior to commencing the evolution. The reactions 630 

chosen were ASPTA, PDH, and PPC. In Scenario iii, the MOEA was applied to a model of 631 

S. glossinidius metabolism, iLF517 [33]. Here, iLF517 was supplied with the blood 632 

medium for 3000 generations. 633 

Analysis of evolved populations 634 

For all conditions the algorithm was independently run ten times, giving a total of 1000 635 

final solutions. All of the solutions were pooled together for analysis. To identify key 636 

reactions in the evolved populations, individuals were selected from each condition and 637 

the remaining non-essential reactions extracted. The subset of reactions that were 638 

present in every individual selected were designated as "core nonessentials", and are 639 

referred to hereafter as such. When examining the similarity between evolved models, 640 

exchange reactions and reactions carrying zero flux were discounted. 641 
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