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Jacolien van Rij, Nemanja Vaci, Lee H. Wurm and

Laurie Beth Feldman

Alternative quantitative methods in
psycholinguistics: Implications for theory
and design

Abstract: We describe three different methods that are appropriate to analyze

various types of psycholinguistic data. We discuss some of the strengths and

weaknesses of each and their suitability according to characteristics of the data.

Methods include analysis of variance (ANOVA), linear mixed-effects modeling

(LME) and generalized additive mixed models (GAMM).

Keywords: analysis of variance, ANOVA, linear mixed-effects modeling, LME,

generalized additive modeling, GAM, model criticism, collinearity, autocorrela-

tion, experimental design, time course data, mouse tracking

1 Introduction

Statistical analyses are an important tool for interpreting experimental results

and generalizing the findings. As many different techniques are being used to

investigate the structure and processing of language, there is a large variation

in the types of psycholinguistic data that are being generated: for example,

grammatical judgements, reaction times, ERP responses, eye gaze fixation du-

rations, and corpus counts. These different types of data impose different con-

straints on the statistical methods, and consequently one style of statistical

analysis is not appropriate for all types of experimental data. To facilitate

choosing the appropriate statistical method, this chapter provides an overview

of the regression methods that are currently used in psycholinguistics.
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1.1 Focus of the chapter

The “preferred” statistical method is largely determined by the nature of the

data, the structure of the data, and the design of the experiment. Relevant fac-

tors are whether they are continuous data, such as reaction times, ERP

responses, or fixation durations, or categorical data, such as accuracy data (i.e.

binary data), type of morphological construction, or eye gaze fixation area. In

this chapter we additionally make a broad distinction between behavioral data

and time course data: Behavioral data are characterized by a single measure

per trial, such as responses, accuracy, or reaction times. Time course data, on

the other hand, consist of multiple measures per trial, which are ordered in

time. Examples are EEG recordings measured while processing a word, eye

gaze position during listening to a sentence, pupil size during the trial, or

tongue position while producing a word. In practice, time course data are often

analyzed as behavioral data by summarizing the measurements in a trial or in a

certain time window to arrive at a mean value, but ideally one would like to

investigate the changes over time along multiple dimensions of information.

The statistical method is also determined by the design of the experiment: in a

typical design (factorial experiment investigating the main effects and interac-

tions between manipulations with only a few – often two or three – possible

values) all our predictors are categorical, whereas when analyzing natural lan-

guage we would like to include continuous predictors (henceforth covariates;

numeric predictors, with an infinite range of potential values). Additionally, we

may want to account for structure in the data that we are not interested in. For

example, in most experimental studies the participants produce multiple re-

sponses. In such data, we would like to account for the variability introduced

by the various participants, while our results should generalize over these par-

ticular participants and should provide information about the population.

This chapter focuses on the regression methods, and specifically presents

linear mixed-effects modeling (LME; e.g. Pinheiro and Bates 2000; Baayen,

Davidson, and Bates 2008) and generalized additive mixed modeling (GAMM;

Lin and Zhang 1999; Wood 2011, 2017) as two complementary methods for ana-

lyzing most types of psycholinguistic data. LME is particularly useful for ana-

lyzing data with categorical predictors and/or continuous predictors that are

linearly related with the dependent measure. GAMMs are suited for analyzing

data with continuous predictors that may show a non-linear relation with the

dependent measure, in addition to optional categorical or linear continuous

predictors. We will introduce LME and GAMMs using an example data set to

demonstrate how these new methods allow us to go beyond the typical factorial

design, so as to begin to explore language behavior more dynamically.
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The statistical software R version 3.4.0 (2017-04-21) was used for the analyses,

with the packages lme4 (Bates et al. 2015) for the LME analysis, the package mgcv

version 1.8-17 (Wood 2011, 2017) for the GAMM analysis, and the package itsadug

version 2.3 (van Rij et al. 2017) for interpretation and visualization of the GAMM

analysis. The data, analysis, and code for all the graphs are available in the online

Supplementary Materials at [https://www.jacolienvanrij.com/NetWordS-

SupplementaryMaterials.html], along with further reading suggestions. In this

chapter our aim is to provide an overview of the different methods, without pre-

senting the actual R code.

1.2 Experimental data used as example

The data were collected by Kit Cho, Rachel Brotman and Laurie Feldman. The ex-

periment was designed to test the effect of different accent combinations at study

and test on the spoken recognition of English words. The experiment was set up

as a factorial within-subjects 2x2x2 design. In a study phase, each participant was

presented with pre-recorded English words spoken with either American-English

or Chinese (Mandarin) as the native language. All participants were native speak-

ers of American English. In the test phase participants were presented with the

same English words, and they had to judge whether those words were produced

by the same speaker as in the study phase, or by the other speaker. Thus, two

manipulations were introduced in the experiment: Accent (accent at test phase:

English or Chinese), and Congruency (whether or not the accent in the study and

test phases matched or mismatched).1

Participants indicated whether the speaker was the same or different than in

the study phase by moving the mouse and clicking on one of the corresponding

words that was presented in the top-right or the top-left corner of the screen. The

positions of the words “SAME” and “DIFFERENT” were balanced across partici-

pants. The accuracy and the reaction time were recorded, along with the mouse

trajectory from the resting position (bottom-center of screen) to the appropriate

word. The auditorily presented words were balanced for length (between 3 and 8

characters), with the frequency ranging between 0.044 and 325 per million words

(based on the English OpenSubtitle corpus).

1 The experiment contained another manipulation: in the study phase participants had to ei-

ther listen to the words, or they had to listen and repeat the words. As the effect of study task

was very subtle, we ignore this manipulation for the current presentation purposes.

Alternative quantitative methods in psycholinguistics 85

https://www.jacolienvanrij.com/NetWordS-SupplementaryMaterials.html
https://www.jacolienvanrij.com/NetWordS-SupplementaryMaterials.html


These example data contain the typical psycholinguistic behavioral measures

accuracy and reaction time, but also the mouse trajectory (x and y coordinates

over time). This time course measure has properties in common with increasingly

popular online measures such as EEG, eye tracking, pupil dilation, pitch con-

tours, and articulography. Time course measures potentially provide more infor-

mation about the processing of the stimuli, but we demonstrate below that

without new analytical methods much of that information is lost.

1.3 Outline

In the following sections we will show how we could analyze the responses

from the mouse tracking task using traditional ANOVA (analysis of variance)

and provide an overview of the more recent methods LME and GAMM in

Sections 3 and 4, by using data from the same experiment. On the basis of

these analyses, we will provide guidelines on when and how to use these

methods. In the final sections of the chapter we will argue that one needs to

be extremely careful in the interpretation of statistical results, because each

of the currently available analytical methods has severe limitations. In the

discussion, we delineate the implications of the statistical methods that we

use, the limitations for interpretation and consequences for design.

As all methods discussed in this chapter are basically regression analyses,

we will first provide a short introduction to regression analysis and list the as-

sumptions that hold for all regression analyses.

1.4 Basics of regression modeling

Linear regression uses a linear functional relation to describe how a numerical

dependent variable varies with the values of predictors. As an example, we could

use a simple linear regression model to investigate the effect of Congruency

(match or mismatch item) on response time:

(1) y⁓β0 + β1x+ ε

The regression model describes the relation (indicated with the symbol ‘⁓’)

between reaction times (y, the dependent variable that is on the left-side of

the ‘⁓’) and the predictor Congruency (x, which is on the right-side of the ‘⁓’)

as a single regression line. The symbol ‘ε’ represents random noise, deviations

from the regression line that are not fitted by the model. The line is
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characterized by two parameters: β0, a constant value called the intercept,

and β1, the slope for the effect of Congruency. The intercept specifies the

height of the line, because it is the value of the dependent variable y when the

predictor x equals the value 0. The slope specifies the direction of the line: it

is the increase in y when x increases by 1 unit. If x is a categorical predictor

such as Congruency (“match” and “mismatch”), each of the levels is assigned

a value: “match” is represented by the value 0, and “mismatch” by 1. As a

result, the slope coefficient β1 actually models the difference between the ref-

erence level “match” and the level “mismatch”, as illustrated in Figure 1.

Three assumptions for regression analysis:

i. The observations should be independent.

ii. The residuals should follow a normal distribution.

iii. The variances should be equal (often called homoscedasticity), which implies

that the variances should be independent of the means.

The first assumption, i.e., independent observations, is violated if we do not take

into account in our analysis that the data are produced by sets of participants

and items. Particular participants or particular items may introduce consistent

variation in the data, for example consistently slower response times than aver-

age. The assumption is also violated when we do not take into account in our

analysis that the data within a time series trial are correlated. For example, in

mouse tracking data the position of the mouse at the next timestamp is largely

dependent on where the mouse is in the present moment. The second assump-

tion states that the residuals should be normally distributed. The residuals are

the difference between the observed data and the fitted values of the regression

model. In other words, the residuals are that part of the data that is not explained

by the statistical model. The third assumption specifies that the variance does

0
match

1
mismatch

R
T 

(l
o

g
 t

ra
n

s
fo

rm
e

d
)

6.75

6.80

6.85

6.90

6.95

854

898

944

992

→RT mismatch = 6.80 + 0.13 * 1 = 6.93

→RT match = 6.80 + 0.13 * 0 = 6.80

R
Tsl
o

p
e

= intercept

1043

Figure 1: Schematic overview of the interpretation of linear regression coefficients.
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not increase or decrease with an increasing mean. This is often tested by plotting

the residuals of the regression model against the fitted values. For example, the

assumption of homoscedasticity is violated when the residuals show a wider

spread for higher fitted values than for lower fitted values.

A typical property of experimental data collected to study language proc-

essing is that the data are structured by participants and items. Participants

and items are considered as random samples from the population of speakers

and from the population of words in the language. Stated differently, our focus

is less on the performance of specific participants, and more on the possibility

to make generalization to the whole population. Participants and items may in-

troduce greater variation to the data than do the experimental manipulations of

interest. For more precise statistical estimations, the statistical tests used in lan-

guage processing ideally take into account the variation due to participants

and items, so that the experimental effects are not masked by variation in par-

ticipants and items.

The methods discussed in this chapter, namely repeated-measures ANOVA,

linear mixed-effects modeling (LME) and generalized additive mixed modeling

(GAMM) are variants of the regression model, but take into account the vari-

ability in participants and items. We refer the reader to other textbooks (e.g.,

Baayen 2008; Gelman and Hill 2007) for a more extensive introduction to

linear regression.

2 Traditional methods in psycholinguistic

research: ANOVA

This section analyzes the mouse tracking responses and reaction times using

repeated-measures ANOVA, which is still one of the most frequently applied anal-

yses in psycholinguistic research. ANOVA (acronym for analysis of variance) is

particularly suited for analyzing factorial designs. The section ends with a discus-

sion of how the use of ANOVA has shaped our experimental designs.

2.1 Introduction to ANOVA

An ANOVA tests whether the means of different groups are the same by compar-

ing the variance between the groups with the variance within the groups using an

F-test. The F-test compares the ratio of variances to the F-distribution, while tak-

ing into account the number of observations and the number of groups, to test if
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the groups differ significantly from each other. One could view an ANOVA as a

special case of a linear regression analysis with only categorical predictors.

As ANOVA compares group data, it is better suited for analyzing behavioral

data than for analyzing on-line time course measures. For example, we could use

ANOVA to analyze the accuracy and reaction times of the responses on the

mouse tracking task, in order to determine whether the experimental manipula-

tions of study-test Congruency and Accent influence the accuracy and reaction

time of the response. Note that in this experiment item order is randomized and

location of the match and mismatch box is counterbalanced across participants.

To account for the fact that the responses are not independent and that

subsets of the data are produced by different participants and different stimuli,

we use a repeated-measures ANOVA, which partitions out the variability due to

individual differences. The input for a repeated-measures ANOVA is the means

for each condition per participant. This is generally referred to as an F1 analysis

(cf. Clark 1973). To account for the variation in items, an additional repeated-

measures ANOVA on the averages per item (collapsed over participants) is gen-

erally performed. This is referred to as the F2 analysis. The Supplementary

Materials provide more details and the code for running the analyses; here we

only present the results.

2.2 In practice: Analyzing responses using RM-ANOVA

We analyze the behavioral responses of the mouse tracking data, i.e. accuracy

and reaction times, using ANOVA as implemented in the R package ez

(Lawrence 2016). For visualizing the accuracy data (Figure 2, left) proportions

of correct responses were calculated. However, the underlying distribution for

accuracy data is binomial: the accuracy of a response is correct or incorrect, or

has the value 0 or 1. For analyzing binomial data, the logit transformation2 is pre-

ferred over proportions, because ANOVA assumes normally distributed data. The

proportion scale has a finite range between 0 and 1, whereas the logit scale is

continuous. We included the categorical predictors Accent, the accent of the

speaker during the test (English or Chinese), and Congruency, whether the word

was produced by the same speaker in the training phase. Accent and Congruency

are tested within participants.

2 The logit transformation is: logit = ln((ncorrect + c) /( nincorrect + c)), in which ncorrect and nincorrect

are the numbers of correct and incorrect responses and c is an arbitrary constant to avoid unde-

fined numbers when zero counts occur (set to 0.5 here).
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Accuracy. The F1 ANOVA of the accuracy data indicates a significant inter-

action of Accent x Congruency (F(1,32) = 4.71, p = .038), and significant main

effects of Congruency (F(1,32) = 16.02, p = .00035) and of Accent (F(1,32) = 4.34,

p = .045). We speak of an interaction when the relation between a predictor

and the dependent variable is changed by the value of another predictor. In

this example, the effect of Accent changes depending on Congruency of

speaker at training and at test. The F2 ANOVA suggests the same significant

interaction: Accent x Congruency (F(1,62) = 52.54, p < .001), along with a signif-

icant main effect of Congruency (F(1,62) = 55.12, p < .001), and a marginal effect

of Accent (F(1,62) = 3.61, p = .062). The effects that are significant in both the F1

and F2 analyses will be labeled as significant, which is the interaction between

Accent and Congruency and the main effect of Congruency.

Reaction times. We only included correct answers in the analysis, and the

reaction times were log-transformed. Reaction time data are generally not nor-

mally distributed, but rather skewed. Therefore, they are commonly transformed

by taking the log, inverse, or power transformation. In contrast with the accuracy

data, the F1 and F2 ANOVA analyses for the log-transformed reaction times only

revealed a significant main effect of Congruency (F1(1,30) = 8.38, p = .007; F2 (1,61)

= 9.81, p = 0.003); see Figure 2, right.

A disadvantage of ANOVA tables is that they only indicate which predictors

are influencing the model estimations significantly. To interpret the direction of

the interaction we could look at the accuracy plot (Figure 2, Left panel). The plot

reveals that the effect of Congruency is different for the two levels of Accent: The

Figure 2: Accuracy (Left) and reaction times (Right) of the correct responses in the mouse

tracking task. The solid bars represent the trials for which the accent in the test phase

matched the accent in the study phase, the dashed bars represent the trials for which the

accent in the test phase did not match the accent in the study phase. Error bars: ±1SE (i.e.

standard error of the participant means).
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Chinese accented speech at test seems to result in a significant difference between

match and mismatch items, but this difference seems to be absent for items pro-

nounced with an English accent. Thus, with an unfamiliar accent, participants re-

sort to a strategy of selecting “SAME”, but with a familiar accent they do not use

such a strategy.

2.3 Discussion

The repeated-measures ANOVA provides a relatively simple and quick test to

confirm which factorial predictors contribute significantly to the values of the re-

sponse variables. The results are easy to report, following the standard conven-

tions in the literature. However, a disadvantage of ANOVA tables is that they

only indicate which predictors are influencing the model estimations signifi-

cantly. Post-hoc tests are necessary to interpret the direction of the interaction,

because coefficients of the estimated effects are not automatically given. In the

accuracy plot (Figure 2, Left panel) the Accent x Congruency interaction is clearly

visible. The Chinese accented speech at test seems to result in a significant differ-

ence between match and mismatch items, but this difference seems to be absent

for items pronounced with an English accent.

As the ANOVA test is performed on averages, it does not provide a straight-

forward way to deal with missing data or unbalanced designs. This is particu-

larly an issue for our current reaction time data, from which we excluded the

incorrectly answered items. Another consequence is that participant and item

variation cannot be accounted for at the same time. Instead two analyses (F1

and F2) are generally performed to account for the variation in participants and

items (e.g. Clark 1973). The convention is to consider a predictor significant

only when the F1 and F2 both indicate that that predictor is significant. The F1

and F2 analyses are not an ideal solution to this problem (e.g. Raaijmakers

et al. 1999). Baayen (2008) has pointed out that for a design where items are

nested under a condition, such as words presented in an American or a Chinese

accent but not both, F1 and F2 may reveal conflicting results and may result in

the incorrect (too conservative) conclusion that a predictor is not significant.

One more comprehensive analysis, that can account for participants and item

variation at the same time, would provide a more coherent solution.

Another important disadvantage is that ANOVA only accepts categorical

predictors, which means that covariates have to be converted to be categori-

cal. In our analysis of the behavioral responses we have only included cate-

gorical predictors, but in other analyses we may want to include continuous

covariates. For example, if we would like to test whether the frequency of the
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word influences the behavioral response, we need to dichotomize the fre-

quency continuum: for example, words with a frequency lower than the me-

dian frequency are labeled as “low”, the other words are labeled as “high”.

Rather than an arbitrary division of the frequencies into two groups, it is gen-

erally preferable to treat frequency as continuous and include it as a

covariate.3

Although the ANOVA analysis still is the most commonly used analysis in

language processing research, linear mixed-effects modeling (LME) is quickly

gaining in popularity because it provides a solution for many of the disadvan-

tages of the repeated-measures ANOVA.

3 Linear mixed-effects modeling (LME)

Linear mixed-effects modeling (LME) is a linear regression analysis that does not

require group averages as input, and can handle the responses of individual trials.

LME is preferred over ANOVA (i) when the data result from an unbalanced design,

or contain missing observations, (ii) when the dependent variable is not normally

distributed, or (iii) when continuous predictors are available. With balanced facto-

rial designs LME has comparable power to repeated-measures ANOVA (e.g.

Baayen 2008; Baayen et al. 2008; Barr et al. 2013), but we still recommend LME as

it does not require separate analyses for participants and items.

3.1 Introduction to linear mixed-effects modeling

In contrast to the repeated-measures ANOVA, LME accounts for the variability

among participants and for the variability among items at the same time rather

than in separate analyses. In LME, a distinction is made between random ef-

fects and fixed effects. Fixed effects are those that are expected to hold for the

entire population or expected to apply to other experimental stimuli, whereas

random effects capture variation introduced by the particular participants and

stimuli that were randomly sampled from larger populations (e.g. Pinheiro and

Bates 2000; Gelman and Hill 2007; Baayen et al. 2008).

In mixed-models, i.e., models including both fixed and random effects, ran-

dom effects predictors are each represented by one parameter, namely the

3 We use frequency as our example, but language skill is a measure that often gets treated

dichotomously and is subject to similar limitations in the ANOVA.
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standard deviation associated with the random effect. The random adjustments

for each individual participant (or item) are selected such that when added to

the fixed effects they provide an estimate of that participant’s (or item’s) perfor-

mance. However, the estimates are not necessarily the same as the participants’

means: they are a compromise between the mean over all participants and the

participant’s mean, weighted for the participant’s number of observations and

under the constraints that the random adjustments follow a normal distribution

with a mean of zero and the estimated standard deviation for the random effect

(Gelman and Hill 2007). If the participant contributed only a few observations

and much of the data were missing, the estimated mean for that participant

will be closer to the mean of all participants than to his or her observed mean,

i.e. the random adjustment for that participant will be smaller than expected.

The assumption that random effects follow a normal distribution allows for mak-

ing generalizations: an extremely fast reaction time, much faster than average, is

atypical and is not very likely to be observed in a follow-up experiment with dif-

ferent participants. So, the estimated mean for such a fast participant also tends

to be closer to the mean of all participants than to the observed mean for that

participant. The effect that the estimations for extreme participants are closer to

the overall mean than to their observed means is called shrinkage.

Two types of random effects can be specified in LME: random adjustments

of the intercept, and random adjustments of slopes. Random intercepts adjust

the height of regression lines for each participant or item. Random slopes ad-

just the slope of a regression line for each participant or item. Figure 3

illustrates the regression line in our earlier example, in which we used linear

regression to analyze the effect of Congruency on the log transformed reaction

times. In the left panel random intercepts are illustrated: the intercept adjust-

ments raise or lower the regression line (black solid line), but do not change

the relation between the congruency conditions. In the center panel random

slopes are illustrated: the slope adjustments tilt the regression line, in order

to change the difference between the two Congruency conditions, but does

not change the height of the regression line. The right panel illustrates a com-

bination of random intercepts and random slopes. For one of the participants

an increase in intercept but a decrease in slope is estimated (higher gray

dashed line). This participant is slower in responding, but does not show

much difference in response times between the match and mismatch trials.

The lower dashed line represents a faster participant, but with a stronger ef-

fect of Congruency: the intercept is much lower than the average intercept,

but the slope is increased. In short, random intercepts capture general differ-

ences in performance between participants (or items) and random slopes cap-

ture variation between conditions for those participants (or items).
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Different from an ANOVA analysis, LME does not return which predictors or

random effects are significantly contributing to the model. Rather, given that

these predictors are included, the outcome indicates whether or not the contrasts

are different from the intercept and whether or not the slopes are significantly dif-

ferent from zero. A model comparison procedure is necessary to determine which

predictors significantly contribute to the model. The collective wisdom is to start

by determining the appropriate random effects structure, and then to test which

fixed effects are significant. Backward-fitting model comparison procedures,

which start with the most complex fixed-effect model and gradually reduce non-

significant interactions and predictors, generally reduce the risk of overlooking in-

teractions and main effects (e.g. Barr et al. 2013). R packages are available that

facilitate model comparison procedures by automatic model selection.

3.2 In practice: Analyzing responses using LME

Here, we re-analyze the behavioral responses of the mouse tracking data, i.e.

accuracy and reaction times, using LME as implemented in the R package lme4

(Bate et al. 2015), and the R package multcomp (Hothorn, Bretz and Westfall

2008) for inspection of the model estimates.

Accuracy. When the raw data rather than averages are being analyzed,

LME does not require transformation of binomial data. LME implements gener-

alized algorithms to analyze binomial data, or data from several other non-

Gaussian distributions. In our example, backward-fitting model comparison

procedures were used to determine the maximum random effects structure that

was allowed by the data, and to determine which fixed effects to include. The
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random effect structure for the accuracy data included random by-participant

slopes for Accent and Congruency and the interaction Accent x Congruency. The

best-fitting model included a significant interaction between Accent and

Congruency (χ2(1) = 4.77, p = 0.029). The model coefficients explain this interac-

tion: Participants do not differ from chance performance on items pronounced

with an English accent (βintercept = 0.118, SE = 0.214, z-value = 0.550, p > 0.1),

and do not show a difference between congruent and incongruent items with

an English accent (βMismatch = ‒ 0.081, SE = 0.394, z-value = ‒ 0.204, p > 0.1).

However, they do show a significant difference between congruent and incon-

gruent items with an Chinese accent (βMismatch:Chinese = ‒ 1.397, SE = 0.621, z-

value = ‒ 2.250, p = 0.024): Participant’s performance on congruent items with

a Chinese accent is significantly more accurate than English congruent items

(βChinese = 0.920, SE = 0.353, z-value = 2.608, p = 0.009), but the performance

on incongruent items with an Chinese accent is not significantly different

from the performance on incongruent items with English accent (βMismatchCH

-MismatchEN = ‒ 0.477, SE = 0.301, z-value = ‒ 1.586, p > .1).

However, the models with this random effects structure were showing diffi-

culties to converge. Therefore, we replaced the random effects by a random in-

tercept adjustment for each combination of Congruency, Accent, and Participant

to reduce the number of variance and correlation parameters. This alternative

random effects structure yielded the same conclusions.

Reaction times. We analyzed the reaction times of the correct responses.

The reaction times are log transformed to improve normality. A backward-fitting

model comparison procedure suggested inclusion of a random intercept for par-

ticipant, and by-participant random slopes for Congruency and Trial (centered

and scaled, to facilitate the interpretation of the regression coefficients). The

slope for Trial was included to account for correlations between subsequent reac-

tion times (e.g. Baayen and Milin 2010). Only the main effect of Congruency was

found to be significant (χ2(1) = 7.850, p = 0.005): the correctly answered incongru-

ent items are responded slower than the correctly answered congruent items

(βMismatch = 0.087, SE = 0.030, t-value = 2.90).

3.3 Discussion

Basically, the LME analyses of behavioral responses lead to the same results as

the repeated-measures ANOVA. A large advantage of LME over repeated-measures

ANOVA, however, is that it combines the participants and item analysis into a sin-

gle statistical model. Further advantages are that LME does not require separate
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post-hoc tests, as the coefficients of the estimated values are provided in the sum-

mary, and that covariates can be included in the analysis.

A disadvantage of LME is that one needs to determine the appropriate ran-

dom effects structure. Only including random intercepts for participants and

items without an adjustment for the experimental conditions may result in

over-confident estimates of the fixed effects, finding effects that are not really

there (e.g. Pinheiro and Bates 2000; Baayen, Davidson and Bates 2008; Barr

et al., 2013). For example, it is not uncommon to add measures of vocabulary

and spelling knowledge. However, these should be contrasted with simple ran-

dom slopes and intercepts to make sure that the estimated effects are not

caused by random variation between participants and items. To avoid over-

confident estimates that are not generalizable, Barr et al. (2013) argue to maxi-

mize the random effect structure based on the experimental design. This means

including the slopes for all experimental predictors by participants and items

in addition to the random intercepts. Recently, Bates et al. (2015) showed that

this is in practice not possible for many data sets. Missing data and limited data

samples strongly limit the number of random effects that lead to a reliable and

converging estimation of the parameters of the model (see also Baayen et al.

2017 and Matuschek et al. 2017). Determining the appropriate random effects

structure is one of the challenges when using LME.

As LME can also include covariates, it seems at first glance to be the obvi-

ous choice for analyzing the mouse tracking data. LME even allows polynomial

functions (or other non-linear functions) for modeling a non-linear relationship

between the dependent variable and a covariate (see Supplementary Materials).

However, we prefer to use GAMM over LME, as will be explained in Sections 4

and 5. In the next section, we will introduce GAMMs and illustrate how they

could be applied to analyze time course data, such as mouse tracking data.

4 Generalized Additive Modeling (GAM)

Language processing research increasingly makes use of time course measures

to investigate online language processing, i.e. the actual processing of the word

or utterance from the moment it is being read or heard. Time course measures

provide multiple data samples during a trial, often with a fixed sampling rate.

Traditionally, time course measures are simplified to one value per trial, for ex-

ample the mean value in a specific time window or the average deviation of the

mouse trajectory, to be able to perform an ANOVA. However, as noted above,

this considerably reduces the information these measures provide.
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Instead, we prefer to analyze the time course directly. For example, we could

analyze how participants in the mouse tracking experiment move their mouse to

the response location on the screen. The mouse position is a continuous measure

developing over time that may reflect uncertainty and hesitation in the form of

pauses and deviations from the ideal trajectory (straight path to answer location).

The example data contains 101 samples per trajectory, each of which records the

x-position and y-position of the mouse, and the time relative to the offset of the

word. For the current data, we normalized the time between the onset of the move-

ment and click/answer, as rate of mouse movement varies along the trajectory.

The mouse movement duration is the time from the onset of the movement until

the participant clicked to respond. Below we present an analysis of the mouse tra-

jectory on correctly answered trials only, to facilitate interpretation. As we do not

know the cause of errors, trials that are incorrectly answered were excluded from

analysis. Of the 2081 trials 958 were incorrectly answered and excluded (54% of

the trials were included in the analysis).

The raw data of the mouse position (x and y coordinates) are presented

in the Left panel of Figure 4. Location of match and mismatch responses is

counterbalanced across participants. The black dots show one sample mouse

trajectory. The Right panel of Figure 4 shows a measure derived from the x

and y coordinates, namely the distance to the clicked target, with the same

sample trajectory in black. For each data point the Euclidean distance to the

target, i.e. the answer that participants eventually clicked, was calculated.4

The idea behind using the Euclidean distance is that when participants are

uncertain or change their mind during response selection they take a less di-

rect route to the target than the optimal straight path. For example, partici-

pants may initially go toward one of the responses, but, during the mouse

movement, change their mind and abruptly shift to the other response,

called x-flips (see example trial in Left panel of Figure 4; Freeman, Dale and

Farmer 2011; Freeman and Johnson 2016). These hesitations show up in vari-

ous measure as pauses or increased distance to the target (see Right panel of

Figure 4).

4 The choice of distance to target as the dependent variable instead of the X and Y coordinates

was made for illustration purposes, to make the analysis more comparable to other psycholin-

guistic time course measures such as EEG or pupillometry data.
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4.1 Introduction to generalized additive (mixed) modeling

Generalized Additive Mixed Modeling (GAMMs; Lin and Zhang 1999; Wood 2017)

is a recently introduced analysis method that is specially designed to model non-

linear covariates: it is a non-linear mixed-effects regression method, which can

fit non-linear regression lines to the data. GAMMs are implemented in the R pack-

age mgcv (Wood 2017, 2011). In contrast with LME, the user does not need to

specify the shape of the non-linear regression line (e.g., which order polynomial

to use), because the model determines the non-linear pattern based on the data.

The use and interpretation of GAMMs is slightly different from linear regression

models. Where linear regression models aim to explain the data by fitting the co-

efficients in the regression formula, GAMMs try to optimize the smooth function

that describes the potentially non-linear relation between the predictor and the

dependent variable; see the formulas in Example (2).

(2) Difference between linear regression and non-linear regression (with y the

dependent variable, x a predictor, β0 the intercept, β>0 the slope(s), and ε

the residuals):

– Linear regression formula: y⁓ β0 + β1x+ ε

Figure 4: Mouse tracking data exclusively including correctly answered trials included. Left panel:

Recorded X and Y position of the mouse. The black dots highlight one example trial. Right panel:

Distance to the clicked target over time. The black dots highlight the same trial as in the left plot.
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– Linear regression with nth order polynomial curve: y⁓ β0 +
Pn

i= 1 βix
i
+ ε

– GAMMs: y⁓ β0 + f xð Þ+ ε

The output of a GAMM only presents the coefficients for the linear predictors,

including the intercept, i.e. the height adjustment of regression lines, intercept

adjustments, and linear slopes. The output does not present a description of

the non-linear regression lines, because the smooth functions (f xð Þ) often cannot

be captured by a few coefficients. Instead the summary provides information on

the wiggliness of the regression line, and whether the line is (somewhere) signifi-

cantly different from zero. Visualization is necessary for interpreting the non-

linear terms.

Similar to LME, in GAMMs fixed effects and random effects can be specified.

However, the structure of the random effects in GAMMs is different from the ran-

dom effects in LME: In addition to random intercepts and random slopes, GAMMs

also provides the option to include random smooths, non-linear random adjust-

ments of a regression line. These random smooths capture also random intercepts

and slopes, so they are generally not combined with random intercepts and slopes

for the same predictors. Figure 5 illustrates how the random effects of two different

participants (Left panel) alter the non-linear fixed effect regression line to generate

estimates for these two participants. It is important to realize that the random ef-

fects in the Left panel are adjustments of the fixed effects, with a negative value

indicating a shorter distance than the general trend (represented by the fixed ef-

fect), and a positive value indicating a longer distance than the general trend.

Figure 5: Non-linear random effects in GAMMs. Left panel: random smooths for two arbitrary

participants in the mouse tracking data. Negative values indicate movement away from target.

Right panel: summed effects for the same two participants. The random effects (Left panel plot)

are added to the fixed effects smooth (dashed line in the Right panel plot) and the intercept.
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Another difference with LME is the possibility of GAMMs to add non-linear inter-

action surfaces. For example, in the mouse tracking data we could include a

non-linear interaction between Time, the normalized time along the trajectory

(ranging between 0 and 100), and Duration, the actual duration of the trajec-

tory in milliseconds (log transformed, ranging between 47 and 6365 ms) start-

ing with the first mouse movement until the response. A linear interaction

would imply that the slope of the regression line for Time is increased or de-

creased with Duration in a constant way. A non-linear interaction allows the

shape of the non-linear regression line for Time to change depending on the

value of Duration in a non-linear way. An example of a non-linear interaction is

provided in the next section.

GAMM provides the same advantages as LME with respect to missing data

and unbalanced designs. The method also includes an extensive list of link

functions for handling data that is not normally distributed. Similar to LME,

model comparison procedures are used to determine the best-fitting model.

However, the output tables do not provide precise information on the shape of

nonlinear regression lines or interaction surfaces, but visualization is necessary

for interpreting the results.

In sum, advantages of GAMMs over LME are the possibilities to fit non-linear

regression lines and surfaces without a priori assumptions on the shape of the

regression lines. In addition, the visualization methods facilitate interpretation,

whereas the polynomial terms in linear regression are rather difficult to interpret

(see Supplementary Materials). Moreover, GAMMs also allow for non-linear ran-

dom variations in time course patterns for individual participants and items,

which result in more generalizable time course estimations (Baayen et al. 2018;

van Rij et al. 2019).

4.2 In practice: Analyzing mouse tracking data using GAMMs

To investigate whether and how Accent and Congruency influenced the mouse

trajectory during response selection, we analyzed the Euclidean distance to the

target (see Figure 4, Right) as a dependent variable with a GAMM analysis. To

account for differences in strategy by participants and conditions, which are re-

flected in the paths to the target, we included the time course along the trajec-

tory per participant per condition (predictor Time) as a non-linear random

smooth. Similarly, the time course per word per condition was included as a

non-linear random effect to account for differences in processing of different

words. In addition, we included a random intercept adjustment per event, i.e., a

unique participant-trial combination. Individual trials are likely to show
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variation in time series data, as each trial consists of multiple measurements.

Including an intercept for each event accounts for the variation between trials.

After determining the random effects structure, a backward-fitting model com-

parison procedure was used to determine the effect of Accent and Congruency.

Model comparison procedures for GAMMs are less easy to interpret than for

LME, as the models that differ minimally are not necessarily strictly nested.

When doing model comparisons with linear regression, we try to compare two

models that differ in only one term: one of the two models contains an addi-

tional term, which the other model lacks. These models are called nested.

However, with GAMMs the difference of one model term does not necessarily

mean that the two models are nested, because the shape of the smooth terms

may change non-linearly (for example by changing the number of base func-

tions being used) in the presence or absence of other model terms. In other

words, the model with fewer model terms does not necessarily end up being

the simplest model. Therefore, visualization and checking the summary out-

put provide useful information in addition to the model comparison results

themselves.

Visual inspection. We start with a model that includes a three-way inter-

action between Accent, Congruency, and Time along the trajectory (order of

mouse positions, with values between 0, indicating the start of the movement,

and 1, the response click). As Time is the only continuous predictor of these

three, the interaction was implemented as a non-linear regression line for Time

split by a four-level grouping predictor representing the two-way interaction

between Accent and Congruency. Beside this non-linear interaction, we in-

cluded the Duration (log transformed; the total time duration of the mouse

movement until the response click) of the trajectory as a non-linear main effect

and the (additive) non-linear interaction between Time and Duration. By nor-

malizing the mouse trajectories, the differences between fast and slow trials are

lost. The interaction between Time and Duration captures potential spatial dif-

ferences in trajectory that are related to the duration of the trajectory (paths

tend to be straighter when velocity is high).

Figure 6 plots the estimated effects for Chinese accented words (Left panel)

and English accented words (Center panel). The straight solid line indicates a

straight ideal path to the target. From timestamp 40 (around 40% of the trajec-

tory) the average mouse trajectories in all conditions deviate significantly from

a straight line. The Right panel of Figure 6 plots the estimated differences be-

tween the accents for match items (solid line) and mismatch items (dashed

line) with 95% confidence interval. A positive difference indicates that the mis-

match items deviate more from the ideal trajectory than the match items. A neg-

ative difference indicates that the match items deviate more from the ideal
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trajectory than the mismatch items. Although the difference lines deviate from

zero in the second half of the trajectory, the difference between the accents

does not become significant as the zero line is always included within the confi-

dence bands. The differences between the Congruency conditions within

Accent (not visualized here) are also not significant based on the visualization

of the model’s estimates.

Model comparison. Visualization is an important tool for significance testing

with GAMMs. Another important tool is a model comparison procedure. Here, we

compared the model with the effects of Congruency and Accent (four-level cate-

gorical predictor5) with a model that does not include these effects using a Chi

square test on the fREML scores, i.e. the minimized smoothing parameter selection

score, while taking into account the difference in degrees of freedom specified in

the model. The model without the effects of Congruency and Accent is preferred,

because it has a lower fREML score (difference of 36.863) and lower degrees of

freedom (6 df), supporting the earlier conclusion that there is no difference in tra-

jectory for the Congruency and Accent conditions. Note, however, that fREML

scores (default selection score in GAMMs) are actually not ideal for comparing dif-

ferent fixed effects structures (see Supplementary Materials). A model comparison

based on AIC (Akaike’s Information Criterion) prefers the model with Congruency

and Accent included (AIC difference of 3.10). Sections 4 and 5 explain why

Figure 6: Estimated effects for Chinese accented words (Left panel) and English accented

words (Center panel). The straight diagonal solid line indicates an ideal ( straight) path to the

target. The red horizontal interval markers indicate at which parts of the trajectory

participants significantly deviate from this straight trajectory. The Right panel shows the

differences between Chinese and English items for the match (solid line) and mismatch items

(dashed line) with 95% confidence interval visualized by shading.

5 We also tested breaking apart the four-level predictor into separate two-level predictors

Congruency and Accent, which resulted in the same conclusions. See Supplementary Materials.

102 Jacolien van Rij et al.



different significance tests can point to opposite conclusions and we provide sug-

gestions on how to deal with a situation of inconsistent information.

Non-linear interactions. Besides the effects of Congruency and Accent

over Time, we also included a non-linear interaction between Duration and

Time, for which the estimated effects are illustrated in Figure 7. The contour

plot (Left panel) can be read like a hiking map with the contour lines and the

colors indicating the height: blue areas are valleys and the yellow areas hills.

The right panel shows the estimated regression lines for mouse trajectories with

durations of 5 and 7 (log scale). The two plots suggest that participants use differ-

ent strategies in short (e.g., Duration of 5) and long trajectories (e.g., Duration of

7.5). The long trajectories move with a direct path (indicated by straight diagonal

line) towards the target until half-way, and only then seem to reconsider their

choice, i.e. the position does not decrease for quite a while. Short trajectories fol-

low a less straight path initially, but do not seem to hesitate half-way through.

Contour plots are a useful instrument to interpret non-linear interactions.

Although higher order non-linear interactions (3-way or higher) are possible

in GAMMs, they get increasingly more difficult to visualize and interpret.

4.3 Discussion

To summarize, GAMMs are particularly suited to analyze non-linear patterns

and time course data, because they allow us to fit non-linear regression lines,

non-linear interactions, and non-linear random effects. As the non-linear

Figure 7: Left panel: Contour plot visualizing a non-linear interaction between two continuous

predictors (Time and Duration). The colors and contour lines indicate the distance to the

target. Right panel: estimated distance to target for Durations of 5 (148 MS) and 7.5 (1808 MS)

over Time. The straight line indicates the ideal path to the target.
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effects are not represented with coefficients, the statistical method necessarily

relies on visual inspection of the model estimates, which facilitates interpreta-

tion and increases understanding of patterns in the data in comparison with

linear regression analyses.

An important contribution of GAMMs for the analysis of time course data is

the possibility to investigate different questions, such as investigating at which

moment the trajectories of different conditions start to differ, or when trajectories

start to deviate from the ideal path to the target. For mouse tracking data, these

questions are currently investigated with the calculation of a separate t-test for

every time bin or area under the curve between ideal trajectory and observed one

(e.g. Freeman and Ambady 2010). Disadvantages of GAMMs are that different

sources of information, such as visualization and model comparisons, need to be

assessed to determine whether a predictor contributes significantly to the model;

that models may take a long time to run; and that the estimated effects often can-

not simply be described with a single coefficient.

5 All statistical models are wrong

In the previous sections we have provided an overview of different regression

methods for language processing research. The traditional repeated-measures

ANOVA is a powerful analysis for behavioral data of factorial experiments with

balanced designs and no missing data. However, with unbalanced or nested

designs, missing data, continuous covariates, or not normally distributed de-

pendent variables, a mixed-modeling approach is a better choice. Linear mixed-

modeling has the advantage of returning interpretable coefficients with their

statistics which make it easier to quickly quantify linear effects. For time series

data and data with non-linear trends, generalized additive mixed modeling pro-

vides more explanatory power and the most precise data fit.

However, no statistical model is perfect. Problems with statistical models

are generally detected when evaluating the model. Therefore, model criticism is

the most important part of statistical analyses. This involves inspection of the

residuals and testing the generalizability of the model. The first thing to check

is the assumptions of regression models: (i) are the residuals normally distrib-

uted? (ii) and are the observations independent? We have already listed disad-

vantages for all the discussed regression methods, but in the next sections we

explain some more fundamental problems with regression models and how

they influence the reliability of the analyses.
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5.1 Power of the model

In this chapter we have presented the GAMM analysis of the mouse tracking

data, on the basis of which we concluded that the mouse tracking trajectories

(or rather the Euclidean distance to the target) do not differ significantly

between the words with English and Chinese (Accent), nor between the items

that were congruent and incongruent in accent in comparison with the study

phase (Congruency). However, the absence of a significant effect for Accent

and Congruency could have various causes, such as participants’ mouse trajec-

tories are really not influenced by Accent or Congruency, or there is not suffi-

cient power to detect the effect, or the model is not a good fit of the data and

fails to include important structure in the data. In some cases, some statistical

methods may come to another conclusion.

For example, we could run a LME model with Time modeled as a non-linear

polynomial effect (cf. Growth Curve Analysis; e.g. Mirman, Dixon and Magnuson

2008; Mirman 2014) as an alternative to the GAMM analysis. To fit the non-linear

trend of Time, we include a fourth order polynomial. This means that the

Euclidian distances over Time are fitted with a quadratic function. This LME

model includes the Time variable raised to the power of 1, 2, 3 and 4, and in addi-

tion Congruency (match or mismatch), Accent at test (English or Mandarin), and

Duration (log transformed duration of the mouse movement) as fixed effects pre-

dictors. The complete analysis is part of the Supplementary Materials. In con-

trast with the GAMM analysis, the LME model with a polynomial effect for

Time indicates that the mouse trajectories of the different conditions do vary

significantly. The polynomial LME model suggests that the words with an

English accent elicit more uncertainty with respect to whether or not the accents

in the study and test phase match, and also produce a less direct path to the an-

swer compared with Chinese accent, whereas in the GAMM the interaction be-

tween Congruency, Accent, and Time does not reach significance. How do we

know whether this effect is just an artifact of the analysis or it exists in reality?

Stated bluntly, this effect could be a false positive finding where we are wrongly

concluding that there is an effect, when there is none (Type I error).

In this case it may be more constructive to ask first the opposite question:

assuming that the effect exists in the population, how likely is it for us to detect

the effect in the sample and to observe a statistical difference between the trajec-

tories? The statistical procedures that we introduced throughout the chapter dif-

fer in how powerful they are to deal with particular types of data. To investigate

this question further, we simulated hypothetical trajectories that are similar to

the collected data (see Supplementary Materials).
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Simulations. The basic shape of the distance function across time was simu-

lated with a logistic curve for every participant, thus, the simulated data observe a

sigmoidal shape. More importantly, the intercept of the function differs between

subjects. In the next step, we added more noise to the data, but also a categorical

predictor that has a small interaction with time course of the experiment, shifting

the trajectory of one condition up (0.05 for simulated Euclidean distance over

time). Our simulated population comprised 300 subjects, with a two level factor

(match or mismatch) and 121 time points for each condition. Five different models

were estimated on every subset of the population, starting with a subsample of

only two subjects in the analyses and increasing up to the moment when the

whole population was sampled. We used the following models:

i. LM Linear: a linear regression model with a linear effect for Time.

ii. LM Polynomial: a linear regression model with polynomial effects for Time.

iii. LME Linear: a LME with a linear effect for Time and a by-subject intercept

adjustments.

iv. LME Polynomial: a LME with polynomial effects for Time and by-subject in-

tercept adjustments.

v. GAMM: a GAMM model with a non-linear effect of time and by-subject in-

tercept adjustments.

Finally, for every iteration, that is a subset of the population, we monitored out-

comes of the models for 100 separate simulations. These outcomes were used to

calculate the proportion of the obtained significant effects, thus, its power.

The results are illustrated in Figure 8. The simulations indicate that the

regression models with a linear effect for Time (LM Linear and LME Linear) re-

quire vastly more subjects to be powerful enough, that is, to detect the effect in

80% of the simulations (over 300 subjects). The polynomial models in the case of

simple regression (LM Polynomial) need to sample relatively fewer subjects, ap-

proximately 60 of them. Thus, specifying polynomial effects in the model ex-

plains additional variance, making the model more powerful. The most powerful

in estimating the simulated interaction are the linear mixed-effects modeling

with polynomial effects (LME Polynomial) and GAMMs. They need approximately

55 subjects to have 80% power for the effect estimation. To summarize, these

simulations show that for detecting this simulated interaction a non-linear re-

gression line is crucial.

Model criticism. Inspection of the residuals may also reveal that a non-

linear predictor should be included instead of a linear predictor. For illustration

purposes we modeled one participant’s mouse tracking data (Euclidean dis-

tance to target) with a GAMM and with a comparable LME model with Time

(centered and scaled) included as a linear predictor (LME Linear). Figure 9 (Left
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and Center panels) plots the residuals against the values of the predictor Time

for the GAMM analysis for the LME Linear analysis. Note that the residuals of

the GAMM model do not show a trend over the Time values, but the residuals

for the LME Linear model do. This indicates that there is unexplained structure

in the residuals. The Right panel of Figure 9 shows the same plot for the GAMM

model of all mouse trajectories.

Figure 8: The power estimation for each of the illustrated analysis. X-axis represents number

of subjects sampled from the population, while Y-axis represents the percentage of significant

tests out of 100 simulations. The dotted horizontal line at the 0.8 value of the Y-axis indicates

the moment when the statistical procedure catches the effect in 80% of the simulated times.

LM – linear effect: linear regression with specified linear relation between Time course of the

experiment and simulated Euclidean distances. LM – polynomial effect: linear regression with

specified fourth polynomial relation. LMER – linear effect: linear mixed-effect modeling with

linear effect. LMER – polynomial effect: linear mixed-effect modeling with polynomial relation.

GAMM: generalized additive modeling with non-linear effect of Time.

Figure 9: The residuals plotted against the predictor Time. Left: GAMM model of 1 participant.

Center: LME model with linear predictors modeling the same participant. The residuals show that

the linear predictors did not capture the non-linear trend of Time. Right: GAMM model of all data,

as presented in Section 4. The residuals from one specific trial are marked with white dots.
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5.2 Autocorrelation of residuals

One of the most important checks, especially for time series analysis, involves in-

spection of the structure in the residuals. Structure in the residuals indicates that

the model fails to account adequately for the structure that exists in the data. In

other words, the model does not provide a very good fit of the data. A quick way

of checking for structure is plotting the residuals against the fitted values, or a

continuous predictor such as Time, as in Figure 9. Ideally, the residuals form a

random cloud without any trends. As discussed in the previous section, the black

solid line in the Right panel of the plot suggest that there is no trend left in the

residuals of the GAMM model for Time values. However, the residual plot clearly

shows trial structure in the residuals – sequences of residuals that seem con-

nected. To highlight this, we have colored the residuals for one specific trial white

in the right panel of Figure 9 (the same example as in Figure 4). Such structure is

called autocorrelation in the residuals. The autocorrelation means that the value

of a residual is correlated with the residual of the previous data point.

An ACF (autoregressive function) plot is used to diagnose the autocorrelation (left

panel of Figure 10). On the X-axis of the plot the lag is represented, the number of

trials back with which the correlation is calculated. The autocorrelation at lag 0 is

necessarily 1, because this is the autocorrelation between all residuals and them-

selves. The autocorrelation at lag 1 (indicated with the red circle) is 0.94. So, the

value of the residuals is 94% determined by the residual of the previous sample.

The lag 2 value represents the autocorrelation between the residual and the resid-

ual of two samples backward. Ideally, the autocorrelation at the lags larger than 1

is as low as the blue dashed lines indicate. Autocorrelation can be described by an

autoregressive model of order n, AR(n): Xt = c+
Pn

i= 1 ρiXt − i + εt, in which c is a

Figure 10: Residuals of the GAMM model for mouse tracking data. Left panel: Autocorrelation

of residuals. The red circle marks the lag 1-value. Right panel: QQ-norm plot.
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constant, ρi is the amount of autocorrelation between the residuals and the resid-

uals at lag i, and ϵ is noise.

Autocorrelation is generally associated with time course data, in which the

samples are clearly related (e.g. van Rij et al. 2019), but also can show up in be-

havioral data, such as reaction times (e.g. Baayen and Milin 2010). Reaction

times may show learning effects (gradually getting faster as the task becomes

more familiar), fatigue, and concentration fluctuations. One of the causes of au-

tocorrelation is correlation in the sampled data. The consequence of autocorrela-

tion is that the model reports too much confidence in the estimates, because the

model works with the assumption that all data points are independent. Thus, the

model reports too small confidence bands and too low p-values, and the gener-

alizability of the model is reduced. Note that autocorrelation is not a problem

specific to GAMMs, but arises with every regression method that tries to fit time

series data. When fitting linear regression models on time series data the autocor-

relation may be more severe as the linear regression lines cannot capture non-

linear trends over time (see Figure 9, Center panel). (The stronger autocorrelation

in the residuals might be the reason why the LME polynomial model in this chap-

ter reports significant differences for Accent and Congruency, even though these

effects are not found to be significant with GAMMs.) A first step in analyzing time

course data is reducing the sample size as far as possible so that the correlation

between consecutive samples is reduced.

To inspect what causes the autocorrelation in the residuals of our mouse

tracking data analysis, we visualize the fit of three randomly selected trials

(Figure 11, Left panel). The gray lines are the raw data, the red lines the model

fit (summed effects), and the gray shaded areas the residuals (difference be-

tween the data and the regression model). As time-series data by definition con-

sist of sequences of strongly correlated measurements, the difference between

the estimated regression lines and the data are strongly autocorrelated resid-

uals. The model fits a unique line for each event, i.e., participant-trial combina-

tion, based on the by-participant-condition non-linear random smooth over

Time and the by-item-condition non-linear random smooth over Time. The esti-

mated effect is also adjusted with a random intercept for each unique event.

Although the model captures the general trends of the three trials, it is not

completely able to fit each individual mouse trajectory precisely. For a more

precise model fit a by-event (unique participant-trial combination) non-linear

random smooth needs to replace the current random effect structure. The

Center panel of Figure 11 shows the much more precise model fit when by-event

smooths are included: the residuals (gray shaded areas) are much smaller.

However, autocorrelation is measured independently of the residual size: The

Right panel of Figure 11 shows that the autocorrelation is reduced, but did not
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disappear completely. Nevertheless, smaller residuals will reduce the conse-

quences of the autocorrelation in the residuals. Thus, it is very important to im-

prove the model fit.

Besides down sampling and improving the model fit, GAMMs as implemented in

the R package mgcv (Wood 2011, 2017) provide another solution to account for

the autocorrelation in the residuals. It is possible to include an AR(1) model (au-

toregressive model of order 1, as introduced above) for the residuals so that the

GAMM model can take into account that the residuals are correlated while fitting

the data. To include an AR(1) model, first the autocorrelation of lag 1 is estimated

from a GAMM model that did not include an AR(1) model, and this value is pro-

vided to the new model as an autocorrelation measure. The model will adjust its

confidence estimation accordingly. A model comparison procedure can be used

to optimize the estimation of the autocorrelation parameter. Including an AR(1)

model is a practical solution when the random effects structure that can be in-

cluded is limited. However, the method is not perfect: an AR(1) model with the

same autocorrelation parameter for all participants is often too simplistic and

does not always sufficiently reduce the autocorrelation (Baayen et al. 2018; van

Rij et al. 2019). Options to account for correlation in the residuals are also avail-

able in LME (package nlme, Pinheiro et al. 2017).

To summarize, for GAMMs analyses there are currently three solutions avail-

able to reduce the autocorrelation: (i) reducing the sample size, (ii) improving

model fit by including by-event random smooths to capture individual time series,

Figure 11: Data of three randomly sampled trials (black lines) compared with the model’s

estimates for the same trials (red lines) and the residuals (gray shaded areas). Left panel: fit

of GAMM model discussed in Section 3c, Center panel: GAMM model with by-Event random

non-linear smooths. The Right panel combines the ACF of the two models, the thin lines

represent the original GAMM model, the thick lines represent the GAMM with by-Event random

smooths.
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and (iii) including an AR(1) model so that the model takes into account the auto-

correlation in the model fit by reducing its confidence in the observations.

5.3 Distribution of the residuals

The distribution of the residuals is generally investigated with a QQ-norm plot

which plots the distribution of the model’s residuals against a theoretical nor-

mal distribution with a similar standard deviation and mean (Right panel of

Figure 10). Ideally, the residuals follow a straight line, which represents the

normal distribution. However, for the GAMM model of mouse tracking data we

see that the residuals deviate from a normal distribution, with the lowest resid-

uals lower than expected for a normal distribution and with the highest resid-

uals higher than expected. This pattern suggests that the data are following a t-

distribution rather than a normal distribution, because the t-distribution has

heavier tails than the normal distribution, i.e. higher probability for extreme

high and low values than with normal distribution. This symmetrical deviation

from normality is difficult to correct with transformations.

Residuals following a t-distribution are also regularly found in other bio-

physiological data, such as pupillometry measures or EEG data. GAMMs (the

package mgcv version 1.8 or higher), but not LMEs, offer the possibility to fit a

scaled t-distribution to the data. A disadvantage is that running the model

under the assumption of a scaled t-distribution is still relatively slow (in mgcv

version 1.8–17), so it is not possible to include non-linear random smooths for

predictors with many levels when using this distribution. We advise comparing

the model’s estimates based on a Gaussian model and based on a scaled t-

distribution to see whether and how the estimates change. As the autocorrela-

tion in the residuals seem to affect the model estimates more severely, we gen-

erally focus on reducing the autocorrelation first.

5.4 Collinearity

In an ideal world, explanatory variables would be related to our dependent var-

iables, while being unrelated to one another. Indeed, traditional experimental

design can be thought of as an attempt to bring about just this situation. This

would allow theorists to maximize explained variance in the dependent vari-

able while simultaneously working toward the most comprehensive and accu-

rate theoretical model.
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We do not live in an ideal world, though. Many potential explanatory varia-

bles are related not only to our dependent variables but to one another, and

sometimes strongly so. This is true both of stimulus characteristics such as fre-

quency, length, and concreteness, and of participants characteristics such as

age, education, and reading proficiency. This situation is referred to as collin-

earity (or sometimes multicollinearity). Essential collinearity refers to the under-

lying structure of a dataset, while non-essential collinearity simply depends on

the particular scales on which the variables have been measured. Essential col-

linearity is the type that researchers care about most. We will return to this dis-

tinction below, when discussing the common suggestion that mean-centering

improves collinearity. For now, we simply note that mean-centering does not

improve essential collinearity in any way.

Collinearity can bring with it a set of problems for researchers. One is that,

if a person is using significance testing, it is possible for a statistical model to

explain a significant proportion of the variance in the dependent variable with-

out a single one of the individual predictor variables being significant. This can

occur because variance that can be explained by multiple explanatory variables

is not assigned to any single one of them, although it is counted as explained

variance in the evaluation of the overall model.

Perhaps more unsettling for researchers is the issue of suppression. Many

different definitions of suppression have been used, but following Wurm and

Fisicaro (2014), we use the term to refer to any case in which the sign of a pre-

dictor variable’s zero-order correlation with the dependent variable (i.e. the bi-

variate correlation, controlling for no other variables) differs from its sign in a

larger analysis with multiple explanatory variables.

Friedman and Wall (2005) showed that when there are only two predictor

variables, it is easy to understand and predict what will happen to the signs of

the regression coefficients as a function of the strength of the correlations. On

the one hand, it is comforting to know that it will always be the weaker of the

two predictors that will show the sign change. On the other hand, if the zero-

order correlations between each predictor and the dependent variable are simi-

lar in size to one another, then in another data set (even using the same stimuli

and task) their relative sizes might reverse. This would cause the sign of the

previously-larger effect to be the one that now changes. In addition, such ef-

fects become harder to understand and predict with each explanatory variable

added to the model.

The troubling effects of even slight changes in these “initial conditions” are

what make some researchers mistakenly assert that there is computational in-

stability in the models. Friedman and Wall (2005) say “multicollinearity does

not affect standard errors of regression coefficients in ways previously taught”
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(p. 127), and provide a very nice demonstration that any “instability” is not

computational. It has to do with the underlying correlational structure of the

dataset.

In the next section we will highlight some of the strengths and weaknesses

of some of the potential solutions that have been offered.

Residualizing. Residualizing is a technique in which one predictor vari-

able is regressed on one or more other predictor variables. The residuals (i.e.

the unexplained portion of the variance) are retained and used in place of the

original predictor variable. By definition this residualized variable will be un-

correlated with any variable on which it was residualized, so this method ap-

pears to offer a useful solution to collinearity. However, Wurm and Fisicaro

(2014) present evidence from the literature that the risk of misinterpretation far

outweighs anything that might be learned from such analyses, particularly be-

cause any information available from such analyses is also available from

methods far less likely to be mischaracterized or misunderstood. In addition,

for complex situations like those found in actual psycholinguistic studies, the

likelihood increases that an analysis including residualized predictors cannot

be meaningfully interpreted at all.

There is also a general interpretational problem that comes with residuali-

zation. This is illustrated nicely by Breaugh’s (2006) example based on the

strong correlation between the heights and weights of professional basketball

players. He found that players’ heights predicted their rebounding totals only if

their weights were not controlled for. He questions, though, how one might in-

terpret a height variable from which weight has been residualized. He says that

“ . . . making subjunctive statements based upon a residual variable is inappro-

priate. Simply stated, there is no basis to assume that, if in reality height and

weight were uncorrelated, height would not be related to rebounds. Given they

are correlated, and highly so, we simply have no way of knowing” (p. 439). In

the long run we are better off trying to understand why the predictors are corre-

lated, which of course is easy for the present example.

Principal components. An alternative approach is to perform a principal

components analysis on the set of predictor variables one wishes to use.

Several methods exist, but in general the idea is that the number of predictors

will be reduced to a small number of principal components that are orthogonal

(i.e. uncorrelated with one another). The drawback is that the original predictor

variables are now gone, and all we have left are mixtures of the predictors that

cannot be analyzed back into their constituent parts. One can sometimes make

statements such as “Principal Component #1 seems to be related to word fre-

quency” by examining how individual predictors correlate with it, but in gen-

eral that will not be sufficient for development or testing of a theoretical model.
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Baayen, Wurm and Aycock (2007) used principal components analysis to cap-

ture sequential dependencies in a trial-by-trial analysis of lexical decision

times. It was probably harmless to use in this situation, because they did not

care about recovering the structure of the original predictors, but as Wurm and

Fisicaro (2014) showed, if the only concern was in removing that extraneous

variance (or “controlling for” it), then the approach bought them nothing.

Mean-centering. A number of researchers have suggested mean-centering

(i.e. subtracting from each score the mean on that variable) as a way to reduce

collinearity. Mean-centering addresses non-essential collinearity for the simple

reason that it changes the scaling of the variables, but unfortunately it does

nothing whatsoever to address the underlying structural relationships between

the variables. Thus, essential collinearity is left unchanged by mean-centering.

Worse still, mean-centering can mask some of the diagnostics used to assess

collinearity (Belsley 1984; Pedhazur 1997), leading researchers to the mistaken

belief that they have solved the problem. A number of authors, including Dalal

and Zickar (2012), nevertheless recommend mean-centering because it can

make the interpretation of regression coefficients easier and more immediately

meaningful, but it does not in any way improve essential collinearity.

Other approaches include some that compute solutions over many different

permutations and/or combinations of predictor variables. One example of this

is random forests (Breiman 2001; Strobl, Malley and Tutz 2009), which assign a

higher importance to a predictor variable if its original version predicts the de-

pendent variable much better than a permuted version does. One practical con-

cern is that even with current computing power, the analyses can take several

hours to run (Tagliamonte and Baayen 2012). An additional question that has

not been the topic of research so far as we are aware is the sensitivity of random

forest computations to the “initial conditions” we spoke of above. That is, if

predictor X1 has a slightly stronger relationship to the dependent variable than

predictor X2 does, will it necessarily emerge as the more important predictor

across the summary of the permuted analyses? If so, researchers are in the

same worrisome situation of having to decide whether that initial ordering of

the variables reflects reality, or whether it is perhaps something idiosyncratic

about the particular dataset being analyzed.

Ridge regression. A final approach we will mention is called ridge regression

(Hoerl 1962). It prevents error variance from increasing under conditions of high

collinearity, and produces slightly conservative parameter estimates. The biggest

drawback in our view is that it cannot be used with the kinds of designs most fre-

quently employed by psycholinguists (repeated-measures designs, which are usu-

ally being analyzed with multilevel or mixed-effects models). It can, however, be

used to analyze item sets.

114 Jacolien van Rij et al.



We believe it worth emphasizing that all of these approaches will fail in one

respect or another. Darlington (1990) wrote that it is a “misconception about

collinearity . . . that more advanced statistical methods might someday eliminate

the problem. The problem is essentially that when two variables are highly corre-

lated, it is harder to disentangle their effects than when the variables are inde-

pendent. This is simply an unalterable fact of life” (Darlington 1990: 131; see also

Darlington 1968; Pedhazur 1997).

Suggestions. Most textbooks on regression (e.g. Tabachnick and Fidell 2007)

contain recommendations for what one might do to deal with high collinearity.

Such suggestions include things like creating composite variables, omitting some

predictors, and doing nothing. Indeed, if our goal for a particular set of predictor

variables is simply to explain variance, then the best approach is to include any

and all predictors that might have a relationship with the dependent variable.

The same holds true if our goal is simply to be in a position to say that we have

“controlled for” the effects of one or more variables. We can safely put them into

our models and go about our business without any concern for what might have

happened to their signs, or their p-values. In many cases, though, this won’t do.

No researcher is willing to maximize explained variance at the expense of parsi-

mony and coherence in their theoretical model. If the goal is to have a good theo-

retical model, then we’re back to having to decide what to do.

We would like to offer the suggestion that whatever approach is taken

skirts the real issue. Statistical “control” (and everything that means: residu-

alizing, principal components analysis, random forests, even the whole idea

of multiple regression itself) is an attempt to “equate” or balance stimuli,

which we talked about above in the context of traditional factorial designs.

Meehl (1970: 385) spoke eloquently about the difficulties this poses: “When a

social scientist of methodological bent tries to get clear about the meaning,

proof, and truth of those counterfactuals that interpret statistical formalisms

purporting to ‘control the influence’ of nuisance variables, he is disappointed

to discover that the logicians are still in disagreement about just how to

analyze counterfactuals” (see also Campbell, Converse and Rodgers 1976).

Anderson (1963: 170) was more to the point a few years earlier: “ . . . one may

well wonder exactly what it means to ask what the data would be like if they

weren’t what they are.”

Darlington (1990: 155) says that “suppression rarely occurs in real data”.

Cohen et al. (2003) assert that it is more common in fields like economics than

in the social sciences, because in those fields variables can sometimes have

“equilibrium-promoting effects.” We think it likely, though, that Darlington

and Cohen et al. did not foresee the kind of statistical models being run in
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modern psycholinguistics, which can sometimes contain literally dozens of in-

terrelated predictors.

Such models are probably indefensible anyway, and thus force us to con-

front the possibility that regression-based techniques are not up to the task we

are asking of them. At some point a researcher must confront more directly

what all of these intercorrelations mean, instead of hoping for a new, more cre-

ative analytic strategy to emerge. Why do these things co-vary? Which one

might have temporal or theoretical priority? Which model is the most useful,

not only in terms of explaining this dataset but in terms of making predictions

about other datasets? Whatever approach or combination of approaches is

used, we would urge researchers to use clear, precise, and proper language,

and to include as much information as possible for those interested in replicat-

ing the analyses.

6 Discussion

In this chapter we have outlined three different analysis methods that could be

used for analyzing psycholinguistic data. All three methods aim to account for the

variability between participants and stimuli, which characterizes psycholinguistic

data. However, the methods each have their own strengths and weaknesses.

6.1 Choosing a statistical method

Repeated-measures ANOVA is the oldest method and still most commonly

used. The method provides robust results for balanced factorial designs without

missing data, and with a dependent variable that is normally distributed and

with the variance being homogeneous across conditions. Advantages of this

method are that it is well-documented and that the results are easy to report.

Disadvantages are that several analyses are required, i.e. F1 test, F2 test, and

post-hoc tests for interpreting the results, and that the method is fairly limited

in use. In practice, psycholinguistic data often contains covariates, such as fre-

quency, time, or age, and missing data is a common problem with human par-

ticipants or corpus data. The method is not suited for analyzing time series

data, because it does not allow inspection of the time course directly, but rather

requires collapsing over time windows.

Linear mixed-effects modeling (LME) is a well-established alternative anal-

ysis for repeated-measures ANOVA. The method is more robust than ANOVA with
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missing data and can handle unbalanced data and those that are not normally

distributed, such as binomial data or count data. An advantage of the method is

that the method allows direct analysis of sample data without the need to average.

This reduces the number of analyses to perform. Other advantages are the possi-

bility to include covariates, the flexibility of the method with missing data and

unbalanced designs, and the interpretation of the results. The interpretation of

the results is relatively easy in comparison with the other discussed methods, be-

cause the method provides the estimated coefficients. No additional post-hoc tests

are required and the estimated variability between participants and items can be

easily inspected. Disadvantages of the method are that it requires more time to

run the analysis, and that the method is more vulnerable to anti-conservative esti-

mates, i.e. over-fitting the data, when the random effect structure is too limited

(Barr et al. 2013). It requires more effort to determine the structure of the random

effects, because the maximal random effect structure (i.e. subjects and items vary

in their sensitivity to all experimental manipulations), is not always possible

(Baayen et al. 2017). Another disadvantage is that it cannot handle non-linear co-

variates very easily, as the shape of the non-linear pattern needs to be specified

by the user. Finally, there are not many possibilities to account for the autocorre-

lation problem.

Generalized additive mixed modeling (GAMM) is a relatively new non-

linear mixed-effects regression method that is particularly suited for analyzing

non-linear data, such as time series data or data with non-linear covariates. It

shares with LME that the method can handle unbalanced data and not normally

distributed data, such as binomial data or count data, and allows direct analy-

sis of sample data without the need to average. One of the main advantages of

GAMMs is a better understanding of the data, because the method relies much

more than the other methods on visualization of the estimates and results.

Other advantages are the possibility to include non-linear effects and interac-

tion surfaces, and non-linear random effects, and the possibility to account for

autocorrelation in the residuals with an AR1 model. Disadvantages of GAMMs

are that they can require a long time to run, and that the interpretation of the

model takes more time, because the non-linear effects need to be visualized as

coefficients are not provided. Another disadvantage of GAMMs is that finding

the best-fitting model is less straightforward than with LME, as models are not

strictly nested. A final disadvantage is that the results are less generalizable

when autocorrelation plays a role, or when the model does not fit the data very

well, for example when only limited random effects can be included. In these

cases, one needs to be cautious with the interpretation of the results.

Thus, these three methods could be considered complementary: to analyze

the data from a simple factorial balanced design, it may be valid to use a
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repeated-measures ANOVA although mixed-effects models are equally powerful

alternatives (Baayen 2008: Chapter 7); but for unbalanced designs or data sets

with linear covariates LME is a better choice, and when non-linear effects play

a role GAMM is the preferred option. So instead of focusing on one single analy-

sis method and letting that particular analysis method determine the design of

our experiments, as often seem to be the underlying reason for factorial de-

signs, the mixed-effects methods provide us a powerful tool to investigate dif-

ferent questions using more flexible designs. For example, when we only have

ANOVA available as statistical method we need to carefully control the fre-

quency of our stimuli in equally high and low frequency words for our different

manipulations, dichotomizing frequency. However, GAMMs allow us to sample

words with a range of frequencies and include frequency as continuous mea-

sure in our analysis. When we would like to use a GAMM analysis it is actually

better to sample words with different frequencies from a range instead of selec-

tively choosing the words with low and high frequency. In other words, the sta-

tistical methods that we have available for use will influence the choice of

design. Moreover, the statistical method will also shape the questions we ask:

for example, non-linear regression methods allow us to ask at which moment in

the time course two conditions start to differ, instead of whether we detect early

and/or late differences.

6.2 Implications for design

ANOVA compatible designs in reaction time studies have long dominated the

analytic landscape in psycholinguistics as well as in other domains of inquiry

(for a review, see Van Zandt 2002). Many did and still do believe that the only

competent methodology is an experiment with a factorial design that allows for

hypothesis testing and causal inference. By implication a study with a correla-

tional design is necessarily inferior because it describes only an association.

Assumptions like these motivate a common research practice in the domain of

psycholinguistics that is to treat continuous measures dichotomously, by sam-

pling at two points (ranges) along a continuum, and then matching the means

of those groups on other relevant factors. Data generated in this framework are

subject to several shortcomings, which include the consequences of (i) control

by matching (ii) control by counterbalancing (iii) limitations of analyzing

means and (iv) diminishing the richness of big data.

i) Control by matching. In the traditional design, it is typical to “manipu-

late” an independent variable or two of interest and then “match” words across

the various levels of other potentially relevant measures. For example, it is
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typical to manipulate target frequency in a factorial manner (e.g. a range for

high and a non-overlapping range for low treatment conditions) and control

word length and number of words that differ from the target by one letter or

phoneme (neighbors). Here, “control” entails dichotomizing a continuous vari-

able and then matching means for each group along those other possible meas-

ures. One obvious problem with matching a measure of central tendency is that

it does not make the distributions that they describe comparable. Parametric

statistical analyses work best when distributions do not have long tails and out-

liers. Matching only on a measure of central tendency can violate this assump-

tion. In part, the consequences of imposing a dichotomous structure on a

continuous measure depend on the non-linearities in its behavior (see Baayen

2010).

When two independent variables are manipulated factorially, matching

means across combinations of levels or treatment conditions gets even more te-

dious. The problem gets more complex when the measures to be matched are

correlated, for example word length and frequency. Shorter words tend to be

higher in frequency (the, and, his, her) and, because these covary, the set of

words that are short but low in frequency (e.g., awl, cob, ewe) will, by definition

tend to be statistically atypical. More realistically, clusters rather than pairs of

measures tend to be related. For example, the many measures of frequency tend

to be related not only to measures of length but also to measures of form similar-

ity captured by neighbors. Therefore, manipulating frequency while matching on

number of neighbors and length requires breaking a natural co-variation. One

obvious implication is that words are not randomly selected to fill out a factorial

design that includes measures that covary. The practical consequence is that

matching in this way is likely to lead to selecting low frequency words that are

atypically non-homogenous on related measures like number of neighbors or

perhaps bigram structure. For example, whereas short words tend to have many

neighbors, orthographic neighbors for awl, cob, ewe are 4, 28 and 5, respectively.

The severity of the matching problem depends on the degree of correlation

among measures. It is a general problem and applies not only to correlations of

word frequency with form described above or of word frequency with semantic

measures such as wordliness or semantic density (Keuleers and Marelli, this vol-

ume). The theoretical implication of reliable interactions such as these is that the

conventional interpretation of frequency, tying it to activation of lexical entries

without regard to their constituents may be flawed (Kuperman et al. 2009). This

cannot be evaluated with factorial designs, however.

In this example, frequency, which is by its nature a continuous predictor,

is treated dichotomously. Analyses of covariance provide a modest remedy

when the focus is only a select number of measures and the correlation among
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them is not strong. Nonetheless, these analyses assume a linear relation be-

tween predictors. At least for frequency, linearity cannot be assumed without

careful inspection of the dataset.

ii) Control by counterbalancing. In factorial designs, control is typically

based on random assignment of participants and sometimes items to conditions

along with changing the order in which items are presented or the location at

which they appear on the screen. The underlying assumption is that counter-

balancing assignment and order or location is sufficient to alleviate random dif-

ferences between participants and between items. While in practice order

effects such as training or fatigue are not always removed by aggregation, it is

generally assumed that any effect worth studying should be robust to the noise

associated with trial number or sequential order. Counterbalancing in this man-

ner makes it basically impossible to track behavior that changes during the

course of the experimental session as well as interactions that involve differen-

ces between participants or items. For example, with relevant controls, skilled

readers tend to perform more consistently during the course of an experimental

session than do less skilled readers. This cannot be detected easily when skill is

treated dichotomously. Similarly, evidence that participants catch on or other-

wise adjust to a property that differs among words (e.g. native or non-native

accent) as they progress through the experimental session or trial would be

missed. Finally, analyses include only correct trials therefore performance on

prior trials is likewise treated as noise.

iii) The implications of aggregating over participants or items. Along

with counterbalancing in this way is the convention of using means by partici-

pant by condition or of word by condition as the unit of analysis. For a period,

it was conventional to report sets of analyses, one with subjects as the random

effect and a second with items (Clark 1973). The rationale was to demonstrate

that the findings generalize beyond the sample of participants and language

materials that were tested. The fact that participants were nested within a par-

ticular combination of items and conditions was ignored (e.g. Raaijmakers

et al. 1999). The fact that some participants perform more poorly than others

and contribute fewer correct data points to their mean for a condition was also

ignored when means are the unit of analysis. This practice becomes particularly

problematic when missing data are meaningful as with clinical populations or

studies that track acquisition (Keuleers and Marelli 2020, this volume).

iv) Diminishing the richness of big data. Large-scale datasets compiled

from human behavioral measures (eye tracking, EEG), linguistic corpora (Nelson

association norms, CELEX) or collected from digital social media provide data

about individuals and about groups. New technologies have made salient many

of the inadequacies of the factorial approach, especially with respect to changes
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in behavior over time and have inspired the adaptation of new quantitative anal-

yses and measures in non-linguistic as well as linguistic domains. One now clas-

sical way to reduce the dimensionality of these data is by focusing on peaks and

where they arise relative to the onset of an event. At its simplest, this technique

assumes that one can identify a peak and distinguish it from a prolonged eleva-

tion and, that it is possible to define a peak globally rather than relative to a

local baseline. With these constraints, it becomes more complex to detect a peak

in conjunction with a general drift toward lower values or other types of artifacts.

Of crucial importance with many of the technologies is appreciation of how be-

havior changes over time. There are multiple techniques of varying complexity to

incorporate variability over time.

The simplest is to define bins or other fixed intervals and revert to computing

means over smaller intervals. Decisions as to how many bins are often made on an

ad hoc basis with little consideration of what makes one smoothing procedure

preferable to another (e.g. detecting possible non-linear patterns). At the same

time, choice of procedure can have dramatic consequences for the outcomes that

emerge and the interpretation they warrant. For example, analyses of reaction

time studies based on movement of a mouse to one of two designated locations on

the computer screen depending on the decision on individual trials (audio and vi-

sual match, audio and visual mismatch) could restrict the dependent measure to

time to execute the mouse trajectory from beginning to end. Alternatively, the

analysis could divide the average trajectory into a number of smaller trajecto-

ries and then focus either on those means (x and y coordinates) or on how

those means change over steps. Of course, one could also look at time to initi-

ate the movement. Conditions could yield comparable total reaction times with

different onsets to movement in which case we would know that, on average,

participants who started later moved the mouse faster. Similarly, we could ask

whether those who moved the mouse faster tended to have a more curved tra-

jectory than those who moved it more slowly. Obviously, incorporating time

steps into an analysis increases the number of dependent measures one can

examine but restricting the analysis to means per time step dramatically di-

minishes the richness of the data.

6.3 Assessing significance

On the other hand, the analysis of more naturalistic but less balanced data will

also reveal the limitations of the statistical techniques available. Problems such

as limited sample sizes, non-normally distributed residuals, autocorrelation,

and collinearity result in less reliable p-values, and less coherent model
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comparison procedures. Therefore, we strongly advise using different methods

to test whether the experimental manipulations really explain variance in the

data. Different methods that apply to all mixed-effects models are (i) a careful

model comparison procedure to select the best-fitting model (this can be done

manually, but there are also packages available that implement automatic com-

parison procedures), (ii) inspection of the model summaries and random ef-

fects, and (iii) visualization of the model’s estimation of effects. Visualization of

the model’s estimates is traditionally not used so much in statistical analysis.

However, the more complex the model the more important visualization is. The

visualization of model estimates will quickly reveal problems with the model

fit, for example by not capturing subject variability or by outliers that drive the

significance of effects, and will aid the interpretation of the results.

If these three sources of information do not converge to the same conclusion,

it is useful to investigate why this might be the case. The lack of convergence

basically signals that the model’s results are not stable, which could be due to

one of the earlier described problems. In addition to these model selection meth-

ods, we strongly encourage investing time in model evaluation. Inspection of the

residuals and testing the assumptions of regression models reveals critical infor-

mation with respect to the generalizability and interpretation of the results.

In this chapter we have emphasized that the purpose of statistical analysis is

not generating p-values, but to model the data to distinguish accidental patterns

from replicable effects. We argue that when we want to take advantage of the

recent experimental techniques to investigate online language processing such

as eye tracking, EEG, articulography, or mouse tracking, we need to understand

the patterns in the data instead of reducing and simplifying these patterns in

order to derive a p-value. In this perspective, the limitations of the statistical

model provide useful information that help us to understand the data.

6.4 Summary of results

In a repeated-measures ANOVA based on participant and item means for each con-

dition, participants performed at chance level in recognizing the accent at study

for words tested in an English accent. For the words in a Chinese accent, however,

the participants’ responses show a clear effect of study-test congruency. In all anal-

yses target location (right versus left) was counterbalanced and differences due to

location were treated as noise because they were not linguistically meaningful.

LME analyses permitted the introduction of random slopes and intercepts and

revealed that participants differed in overall performance (RT, accuracy) and

in whether they treated match and mismatched study-test congruency trials in
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the same manner. GAMMs, a non-linear regression analysis allowed us to ask

whether participants differed as they moved the mouse right or left during an ex-

perimental trial. It can account for hesitations and abrupt shifts in the mouse tra-

jectory with the target distance measure and results can be interpreted as indices

of uncertainty and changed decisions (Freeman, Dale and Farmer 2011; Freeman

and Johnson 2016). Longer duration responses by mouse movements followed

initially a more direct path than the short duration responses, but deviated in the

mid portion of the trajectory – indicating uncertainty or revision of the response.

More interestingly, some but not all participants used the additional time to pro-

duce a relatively straighter path. GAMMs are preferable to LME with polynomial

curves because they specify the requisite polynomial and permit the inclusion of

non-linear interaction surfaces. It is possible to determine at which moment the

trajectories of different conditions start to differ. With respect to effects of test-

study congruency, the GAMM model found no differences between an American

and a Chinese accents.
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