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Abstract. The modeling of very low-frequency (VLF) elec-

tromagnetic (EM) beam propagation in the Earth–ionosphere

waveguide (WGEI) is considered. A new tensor impedance

method for modeling the propagation of electromagnetic

beams in a multi-layered and inhomogeneous waveguide is

presented. The waveguide is assumed to possess the gy-

rotropy and inhomogeneity with a thick cover layer placed

above the waveguide. The influence of geomagnetic field in-

clination and carrier beam frequency on the characteristics

of the polarization transformation in the Earth–ionosphere

waveguide is determined. The new method for modeling the

propagation of electromagnetic beams allows us to study

the (i) propagation of the very low-frequency modes in the

Earth–ionosphere waveguide and, in perspective, their exci-

tation by the typical Earth–ionosphere waveguide sources,

such as radio wave transmitters and lightning discharges,

and (ii) leakage of Earth–ionosphere waveguide waves into

the upper ionosphere and magnetosphere. The proposed ap-

proach can be applied to the variety of problems related to

the analysis of the propagation of electromagnetic waves in

layered gyrotropic and anisotropic active media in a wide fre-

quency range, e.g., from the Earth–ionosphere waveguide to

the optical waveband, for artificial signal propagation such

as metamaterial microwave or optical waveguides.

1 Introduction

The results of the analytical and numerical study of very

low-frequency (VLF) electromagnetic (EM) wave/beam

propagation in the lithosphere–atmosphere–ionosphere–

magnetosphere system (LAIM), in particular in the Earth–

ionosphere waveguide (WGEI), are presented. The ampli-

tude and phase of the VLF wave propagates in the Earth–

ionosphere waveguide can change, and these changes may

be observable using ground-based and/or satellite detectors.

This reflects the variations in ionospheric electrodynamic

characteristics (complex dielectric permittivity) and the in-

fluences on the ionosphere, for example, “from above” by

the Sun–solar-wind–magnetosphere–ionosphere chain (Pa-

tra et al., 2011; Koskinen, 2011; Boudjada et al., 2012;

Wu et al., 2016; Yiğit et al., 2016). Then the influence on

the ionosphere “from below” comes from the most pow-

erful meteorological, seismogenic and other sources in the

lower atmosphere and lithosphere and Earth, such as cy-

clones and hurricanes (Nina et al., 2017; Rozhnoi et al., 2014;

Chou et al., 2017) as well as from earthquakes (Hayakawa,

2015; Surkov and Hayakawa, 2014; Sanchez-Dulcet et al.,

2015) and tsunamis. From inside the ionosphere, strong thun-

derstorms, lightning discharges, and terrestrial gamma-ray

flashes or sprite streamers (Cummer et al., 1998; Qin et al.,
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2012; Dwyer, 2012; Dwyer and Uman, 2014; Cummer et al.,

2014; Mezentsev et al., 2018) influence the ionospheric elec-

trodynamic characteristics as well. Note that the VLF signals

are very important for the merging of atmospheric physics

and space plasma physics with astrophysics and high-energy

physics. The corresponding “intersection area” for these four

disciplines includes cosmic rays and currently very popular

objects of investigation – high-altitude discharges (sprites),

anomalous X-ray bursts and powerful gamma-ray bursts. The

key phenomena for the occurrence of all of these objects

is the appearance of the runaway avalanche in the presence

of high-energy seed electrons. In the atmosphere, there are

cosmic-ray secondary electrons (Gurevich and Zybin, 2001).

Consequently, these phenomena are intensified during the air

shower generating by cosmic particles (Gurevich and Zy-

bin, 2001; Gurevich et al., 2009). The runaway breakdown

and lightning discharges including high-altitude ones can

cause radio emission both in the high-frequency (HF) range,

which could be observed using the Low-Frequency Array

(LOFAR) radio telescope network facility and other radio

telescopes (Buitink et al., 2014; Scholten et al., 2017; Hare

et al., 2018), and in the VLF range (Gurevich and Zybin,

2001). The corresponding experimental research includes the

measurements of the VLF characteristics by the international

measurement system of the “transmitted-receiver” pairs sep-

arated by a distance of a couple thousand kilometers (Biagi

et al., 2011, 2015). The World Wide Lightning Location Net-

work is one of the international facilities for VLF measure-

ments during thunderstorms with lightning discharges (Lu et

al., 2019). Intensification of magnetospheric research, wave

processes, particle distribution and wave–particle interaction

in the magnetosphere including radiation belts leads to the

great interest in VLF plasma waves, in particular whistlers

(Artemyev et al., 2013, 2015; Agapitov et al., 2014, 2018).

The differences of the proposed model for the simulation

of VLF waves in the WGEI from others can be summa-

rized in three main points. (i) In distinction to the impedance

invariant imbedding model (Shalashov and Gospodchikov,

2011; Kim and Kim, 2016), our model provides an optimal

balance between the analytical and numerical approaches.

It combines analytical and numerical approaches based on

the matrix sweep method (Samarskii, 2001). As a result, this

model allows for analytically obtaining the tensor impedance

and, at the same time, provides high effectiveness and stabil-

ity for modeling. (ii) In distinction to the full-wave finite-

difference time domain models (Chevalier and Inan, 2006;

Marshall and Wallace, 2017; Yu et al., 2012; Azadifar et

al., 2017), our method provides the physically clear lower

and upper boundary conditions, in particular physically jus-

tified upper boundary conditions corresponding to the radi-

ation of the waves propagation in the WGEI to the upper

ionosphere and magnetosphere. This allows for the determi-

nation of the leakage modes and the interpretation not only

of ground-based but also satellite measurements of the VLF

beam characteristics. (iii) In distinction to the models consid-

ered in Kuzichev and Shklyar (2010), Kuzichev et al. (2018),

Lehtinen and Inan (2009, 2008) based on the mode presen-

tations and made in the frequency domain, we use the com-

bined approach. This approach includes the radiation con-

dition at the altitudes of the F region, equivalent impedance

conditions in the lower E region and at the lower boundary of

the WGEI, the mode approach, and finally, the beam method.

This combined approach, finally, creates the possibility to ad-

equately interpret data of both ground-based and satellite de-

tection of the VLF EM wave/beam propagating in the WGEI

and those, which experienced a leakage from the WGEI into

the upper ionosphere and magnetosphere. Some other details

on the distinctions from the previously published models are

given below in Sect. 3.

The methods of effective boundary conditions such as

effective impedance conditions (Tretyakov, 2003; Senior

and Volakis, 1995; Kurushin and Nefedov, 1983) are well

known and can be used, in particular, for the layered metal-

dielectric, metamaterial and gyrotropic active layered and

waveguiding media of different types (Tretyakov, 2003; Se-

nior and Volakis, 1995; Kurushin and Nefedov, 1983; Collin,

2001; Wait, 1996) including plasma-like solid state (Ruibys

and Tolutis, 1983) and space plasma (Wait, 1996) media.

The plasma wave processes in the metal–semiconductor–

dielectric waveguide structures, placed into the external mag-

netic field, were widely investigated (Ruibys and Tolutis,

1983; Maier, 2007; Tarkhanyan and Uzunoglu, 2006) from

radio to optical-frequency ranges. Corresponding waves are

applied in modern plasmonics and in the non-destructive

testing of semiconductor interfaces. It is interesting to re-

alize the resonant interactions of volume and surface elec-

tromagnetic waves in these structures, so the simulations of

the wave spectrum are important. To describe such com-

plex layered structures, it is very convenient and effective

to use the impedance approach (Tretyakov, 2003; Senior

and Volakis, 1995; Kurushin and Nefedov, 1983). As a rule,

impedance boundary conditions are used when the layer cov-

ering waveguide is thin (Senior and Volakis, 1995; Kurushin

and Nefedov, 1983). One of the known exclusions is the

impedance invariant imbedding model. The difference be-

tween our new method and that model is already mentioned

above and is explained in more detail in Sect. 3.3. Our new

approach, i.e., a new tensor impedance method for model-

ing the propagation of electromagnetic beams (TIMEB), in-

cludes a set of very attractive features for practical purposes.

These features are (i) that the surface impedance character-

izes cover layer of a finite thickness, and this impedance

is expressed analytically; (ii) that the method allows for

an effective modeling of 3-D beam propagating in the gy-

rotropic waveguiding structure; (iii) finally that if the con-

sidered waveguide can be modified by any external influence

such as bias magnetic or electric fields, or by any extra wave

or energy beams (such as acoustic or quasistatic fields, etc.),

the corresponding modification of the characteristics (phase

Ann. Geophys., 38, 207–230, 2020 www.ann-geophys.net/38/207/2020/
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and amplitude) of the VLF beam propagating in the waveg-

uide structure can be modeled.

Our approach was properly employed and is suitable for

the further development which will allow to solve also the

following problems: (i) the problem of the excitation of the

waveguide by the waves incident on the considered structure

from above could be solved as well with the slight modifica-

tion of the presented model, with the inclusion also ingoing

waves; (ii) the consideration of a plasma-like system placed

into the external magnetic field, such as the LAIM system

(Grimalsky et al., 1999a, b) or dielectric-magnetized semi-

conductor structure. The electromagnetic waves radiated out-

side the waveguiding structure, such as helicons (Ruibys and

Tolutis, 1983) or whistlers (Wait, 1996), and the waveguide

modes could be considered altogether. An adequate bound-

ary radiation condition on the upper boundary of the cover-

ing layer is derived. Based on this and an absence of ingo-

ing waves, the leakage modes above the upper boundary of

the structure (in other words, the upper boundary of cover-

ing layer) will be searched with the further development of

the model delivered in the present paper. Namely, it will be

possible to investigate the process of the leakage of electro-

magnetic waves from the open waveguide. Then their trans-

formation into magnetized plasma waves and propagating

along magnetic field lines, and the following excitation of

the waveguiding modes by the waves incident on the sys-

tem from external space (Walker, 1976) can be modeled as

a whole. Combining with the proper measurements of the

phases and amplitudes of the electromagnetic waves, propa-

gating in the waveguiding structures and leakage waves, the

model can be used for searching and even monitoring the ex-

ternal influences on the layered gyrotropic active artificial or

natural media, for example, microwave or optical waveguides

or the system LAIM and the Earth–ionosphere waveguide,

respectively.

An important effect of the gyrotropy and anisotropy is the

corresponding transformation of the field polarization during

the propagation in the WGEI, which is absent in the ideal

metal planar waveguide without gyrotropy and anisotropy.

We will determine how such an effect depends on the car-

rier frequency of the beam, propagating in the WGEI, and

the inclination of the geomagnetic field and perturbations

in the electron concentration, which could vary under the

influences of the sources powerful enough placed “below”,

“above” and/or “inside” the ionosphere.

In Sect. 2 the formulation of the problem is presented.

In Sect. 3 the algorithm is discussed including the determi-

nation of the VLF wave/beam radiation conditions into the

upper ionosphere and magnetosphere at the upper boundary,

placed in the F region at 250–400 km altitude. The effective

tensor impedance boundary conditions at the upper boundary

(∼ 85 km) of the effective Earth–ionosphere waveguide and

the 3-D model TIMEB of the propagation of the VLF beam

in the WGEI are discussed as well. The issues regarding the

VLF beam leakage regimes are considered only very briefly,

since the relevant details will be presented in the following

articles. In Sect. 4 the results of the numerical modeling are

presented. In Sect. 5 the discussion is presented, including

an example of the qualitative comparison between the re-

sults of our theory and an experiment including the future

rocket experiment on the measurements of the characteris-

tics of VLF signal radiated from the artificial VLF transmit-

ter, which is propagating in the WGEI and penetrating into

the upper ionosphere.

2 Formulation of the problem

The VLF electromagnetic waves with frequencies of f =
(10–100) kHz can propagate along the Earth’s surface for

long distances > 1000 km. The Earth’s surface of a high con-

ductivity of z = 0 (z is vertical coordinate) and the iono-

sphere F layer of z = 300 km form the VLF waveguide (see

Fig. 1). The propagation of the VLF electromagnetic ra-

diation excited by a near-Earth antenna within the WGEI

should be described by the full set of Maxwell’s equations

in the isotropic atmosphere at 0 < z < 60 km, the approxi-

mate altitude of the nearly isotropic ionosphere D layer at

60km < z < 75km, and the anisotropic E and F layers of the

ionosphere, due to the geomagnetic field H 0, added by the

boundary conditions at the Earth’s surface and at the F layer.

In Fig. 1, θ is the angle between the directions of the verti-

cal axis z and geomagnetic field H 0. Note that the angle of

θ is complementary to the angle of inclination of the geo-

magnetic field. The geomagnetic field H 0 is directed along

z′ axis and lies in the plane xz, while the planes x′z′ and xz

coincide with each other.

3 Algorithm

The boundary conditions and calculations of impedance and

beam propagation in the WGEI are considered in this sec-

tion. The other parts of the algorithm, e.g., the reflection of

the EM waves from the WGEI effective upper boundary and

the leakage of EM waves from the WGEI into the upper iono-

sphere and magnetosphere, will be presented very briefly as

they are the subjects of the next papers.

3.1 Direct and inverse tensors characterizing the

ionosphere

In the next subsections we derived the formulas describing

the transfer of the boundary conditions at the upper boundary

(z = Lmax) (Fig. 1), resulting in the tensor impedance condi-

tions at the upper boundary of the effective WGEI (z = Li).

Firstly let us describe the tensors characterizing the iono-

sphere.

The algorithm’s main goal is to transfer the EM boundary

conditions from the upper ionosphere at the height of Lz at ∼
250–400 km to the lower ionosphere at Lz ∼ 70–90 km. All

www.ann-geophys.net/38/207/2020/ Ann. Geophys., 38, 207–230, 2020
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Figure 1. The geometry of the anisotropic and gyrotropic waveg-

uide. EM waves propagate in the OX direction. H 0 is the exter-

nal magnetic field. The effective WGEI for EM waves occupies

the region 0 < z < Lz. The isotropic medium occupies the region

0 < z < LISO, LISO < Lz. The anisotropic and gyrotropic medium

occupies the region LISO < z < Lmax. The covering layer occu-

pies the region Lz < z < Lmax. WGEI includes the isotropic region

0 < z < LISO and a part of the anisotropic region Lz < z < Lmax.

It is supposed that the anisotropic region is relatively small part

of the WG, (Lz − LISO)/Lz ∼ (0.1–0.2). At the upper boundary of

the covering layer (z = Lmax) EM radiation to the external region

(z > Lmax) is accounted for with the proper boundary conditions.

The integration of the equations describing the EM field propaga-

tion allows for obtaining effective impedance boundary conditions

at the upper boundary of the effective WG (z = Lz). These bound-

ary conditions effectively include all the effects on the wave prop-

agation of the covering layer and the radiation (at z = Lmax) to the

external region (z > Lmax).

components of the monochromatic EM field are considered

to be proportional to exp(iωt). The anisotropic medium is

inhomogeneous along OZ axis only and characterized by the

permittivity tensor ε̂(ω,z) or by the inverse tensor β̂(ω,z) =
ε̂−1(ω,z): E = β̂(ω,z)·D, where D is the electric induction.

Below the absolute units are used. The expressions for the

components of the effective permittivity of the ionosphere

are in the coordinate frame X′YZ′, where the OZ′ axis is

aligned along the geomagnetic field H 0.

ε̂′ =





ε1 εh 0

−εh ε1 0

0 0 ε3



 ,

ε1 = 1 −
ω2

pe · (ω − iνe)

((ω − iνe)2 − ω2
He) · ω

−
ω2

pi · (ω − iνi)

((ω − iνi)2 − ω2
H i) · ω

,

εh ≡ ig;

g = −
ω2

pe · ωHe

((ω − iνe)2 − ω2
He) · ω

+
ω2

pi · ωH i

((ω − iνi)2 − ω2
H i) · ω

,

ε3 = 1 −
ω2

pe

(ω − iνe) · ω −
ω2

pi

(ω − iνi) · ω ;

ω2
pe = 4πe2n

me
,

ω2
pi = 4πe2n

mi
,

ωHe = eH0

mec
,

ωH i = eH0

mic
, (1)

where ωpe, ωpi, ωHe and ωH i are the plasma and cyclotron

frequencies for electrons and ions, respectively, me, mi, νe

and νi are the masses and collision frequencies for elec-

trons and ions, respectively, and n is the electron concen-

tration. The approximations of the three-component plasma-

like ionosphere (including one electron component, one ef-

fective ion and one effective neutral component) and quasi-

neutrality are accepted. The expressions for the components

of the permittivity tensor ε̂(ω, z) are obtained from Eq. (1)

by means of multiplication with the standard rotation matri-

ces (Spiegel, 1959) dependent on angle θ . For the medium

with a scalar conductivity σ , e.g., lower ionosphere or at-

mosphere, the effective permittivity in Eq. (1) reduces to

ε = 1 − 4πiσ/ω.

3.2 The equations for the EM field and upper

boundary conditions

In the case of the VLF waveguide modes, the longitudinal

wave number kx is slightly complex and should be calculated

accounting for boundary conditions at the Earth’s surface and

the upper surface of the effective WGEI. The EM field de-

pends on the horizontal coordinate x as exp(−ikxx). Taking

into account kx ≈ k0 (k0 = ω/c), in simulations of the VLF

beam propagation, it is possible to put kx = k0. Therefore,

Ann. Geophys., 38, 207–230, 2020 www.ann-geophys.net/38/207/2020/
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Maxwell’s equations are

− ∂Hy

∂z
= ik0Dx,

∂Hx

∂z
+ ikxHz = ik0Dy,

− ikxHy = ik0Dz

− ∂Ey

∂z
= −ik0Hx,

∂Ex

∂z
+ ikxEz = −ik0Hy,

− ikxEy = −ik0Hz, (2)

where Ex = β11Dx + β12Dy + β13Dz, etc. All components

of the EM field can be represented through the horizontal

components of the magnetic field Hx and Hy . The equations

for these components are given below.

∂

∂z







β22

1 − β22
k2
x

k2
0

∂Hx

∂z






− ∂

∂z







β21

1 − β22
k2
x

k2
0

∂Hy

∂z







− ikx

∂

∂z







β23

1 − β22
k2
x

k2
0

Hy






+ k2

0Hx = 0 (3a)

∂

∂z












β11 + k2

x

k2
0

β12 · β21

1 − β22
k2
x

k2
0







∂Hy

∂z






− ∂

∂z







β12

1 − β22
k2
x

k2
0

∂Hx

∂z







+ ikx

∂

∂z












β13 + k2

x

k2
0

β12 · β23

1 − β22
k2
x

k2
0






Hy







+ ikx






β31 + k2

x

k2
0

β32 · β21

1 − β22
k2
x

k2
0







∂Hy

∂z
−

− ikx

β32

1 − β22
k2
x

k2
0

∂Hx

∂z

+ k2
0






1 − β33

k2
x

k2
0

− k4
x

k4
0

β23 · β32

1 − β22
k2
x

k2
0






Hy = 0

(3b)

The expressions for the horizontal components of the electric

field Ex , Ey are given below.

Ex = i

k0












β11 + k2

x

k2
0

β12 · β21

1 − β22
k2
x

k2
0







∂Hy

∂z
− β12

1 − β22
k2
x

k2
0

∂Hy

∂z







− kx

k0






β13 + k2

x

k2
0

β12 · β23

1 − β22
k2
x

k2
0






Hy

Ey = i

k0






− β22

1 − β22
k2
x

k2
0

∂Hx

∂z
+ β21

1 − β22
k2
x

k2
0

∂Hy

∂z







− kx

k0

β23

1 − β22
k2
x

k2
0

Hy

(4)

In the region z ≥ Lmax the upper ionosphere is assumed to

be weakly inhomogeneous, and the geometric optics approx-

imation is valid in the VLF range there. We should note that

due to high inhomogeneity of the ionosphere in the vertical

direction within the E layer (i.e., at the upper boundary of

the effective VLF WGEI) such an approximation is not ap-

plicable. These conditions determine the choice of the upper

boundary of z = Lmax at ∼ 250–400 km, where the condi-

tions of the radiation are formulated. The dispersion equa-

tion which connected the wave numbers and the frequency

of the outgoing waves is obtained from Eq. (3a, 3b), where

Hx,y ∼ exp(−ikzz), while the derivatives like ∂β11/∂z and

the inhomogeneity of the media are neglected.

(

β22k
2
z − k2

0

(

1 − β22
k2
x

k2
0

))

·
((

β11

(

1 − β22
k2
x

k2
0

)

+k2
x

k2
0

β12 · β21

)

k2
z

+ (β13 + β31)

(

1 − β22
k2
x

k2
0

)

+

k2
x

k2
0

(β12 · β23 + β32 · β21)kxkz

−k2
0

((

1 − β33
k2
x

k2
0

)(

1 − β22
k2
x

k2
0

)

− k4
x

k4
0

β23 · β32

))

−

− (β21k
2
z + β23kxkz) · (β12k

2
z − β32kxkz) = 0 (5)

Thus, generally Eq. (5) determined the wave numbers for the

outgoing waves to be of the fourth order (Wait, 1996). The

boundary conditions at the upper boundary z = Lmax within

the ionosphere F layer are the absence of the ingoing waves,

i.e., the outgoing radiated (leakage) waves are present only.

Two roots should be selected that possess the negative imag-

inary parts Im(kz1,z2) < 0; i.e., the outgoing waves dissipate

www.ann-geophys.net/38/207/2020/ Ann. Geophys., 38, 207–230, 2020
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upwards. However, in the case of VLF waves, some simpli-

fication can be used. Namely, the expressions for the wave

numbers k1,2 are obtained from Eq. (3a, 3b), where the de-

pendence on x is neglected: |k1,2| ≫ k0. This approximation

is valid within the F layer where the first outgoing wave cor-

responds to the whistlers with a small dissipation; the sec-

ond one is the highly dissipating slow wave. To formulate

the boundary conditions for Eq. (3a, 3b) at z ≥ Lmax, the EM

field components can be presented as

Hx = A1e
−ikz1z̃ + α2A2e

−ikz2z̃,

Hy = α1A1e
−ikz1z̃ + A2e

−ikz2z̃. (6)

In Eq. (6), z̃ = z−Lz . Equation (3a, 3b) are simplified in the

approximation described above.

β22
∂2Hx

∂z2
− β21

∂2Hy

∂z2
+ k2

0Hx = 0,

β11

∂2Hy

∂z2
− β12

∂2Hx

∂z2
+ k2

0Hy = 0 (7)

The solution of Eq. (7) is searched for as Hx,y ∼ exp(−ikzz̃).

The following equation has been obtained to get the wave

numbers kz1,z2 from Eq. (7):

κ4 − (β22 + β11)κ
2 + β11β22 − β12β21 = 0,

κ2 =
k2

0

k2
z

. (8)

Therefore, from Eq. (8) follows,

κ2
1,2 = β11 + β22

2
±
(

(

β11 + β22

2

)2

+ β12β21

)1/2

;

α1 =
β22 − κ2

1

β21
= β12

β11 − κ2
1

;

α2 =
β11 − κ2

2

β12
= β21

β22 − κ2
2

;

k2
z1,z2 =

k2
0

κ2
1,2

. (9)

The signs of kz1,z2 have been chosen from the condition

Im(kz1,z2) < 0. From Eq. (5) at the upper boundary of z =
Lmax, the following relations are valid:

Hx = A1 + α2A2, Hy = α1A1 + A2. (10)

From Eq. (10) one can get

A1 = 1−1(Hx − α2Hy); A2 = 1−1(Hy − α1Hx);
1 = 1 − α1α2. (11)

Thus, it is possible to exclude the amplitudes of the outgoing

waves A1,2 from Eqs. (9). As a result, at z = Lmax the bound-

ary conditions are rewritten in terms of Hx and Hy only.

∂Hx

∂z
= −i(kz1A1 + kz2α2A2)

= − i

1
((kz1 − α1α2kz2)Hx + α2(kz2 − kz1)Hy)

∂Hy

∂z
= −i(kz1α1A1 + kz2A2)

= − i

1
((kz2 − α1α2kz1)Hy + α1(kz1 − kz2)Hx) (12)

The relations in Eq. (12) are the upper boundary conditions

of the radiation for the boundary z = Lmax at ∼ 250–400 km.

These conditions will be transformed and recalculated using

the analytical numerical recurrent procedure into equivalent

impedance boundary conditions at z = Lz at ∼ 70–90 km.

Note that in the “whistler–VLF approximation” is valid

at frequencies ∼ 10 kHz for the F region of the ionosphere.

In this approximation and kx ≈ 0, we receive the dispersion

equation using Eqs. (5), (8), (9), in the form

k′
z

2
k2 = k2

0g2, (13)

where k2 = k2
x + k2

z = k′
x

2 + k′
z

2
and k′

x and k′
z are the trans-

verse and longitudinal components of the wave number rel-

ative to geomagnetic field. For the F region of the iono-

sphere, where νe ≪ ω ≪ ωHe, Eq. (13) reduces to the stan-

dard form of the whistler dispersion equation |k′
z|k = k0|g|,

g ≈ −ω2
pe/(ωωHe) and ω = c2k|k′

z|(ωHe/ω
2
pe). In a special

case of the waves propagating along geomagnetic field, k′
x =

0, for the propagating whistler waves, the well-known disper-

sion dependence is ω = c2k′
z

2
(ωHe/ω

2
pe) (Artsimovich and

Sagdeev, 1979). For the formulated problem we can rea-

sonably assume kx ≈ 0. Therefore Eq. (13) is reduced to

k4
z cos2θ = k4

0g2. As a result, we get kz1 = √
g/cosθk0 and

kz2 = −i
√

g/cosθk0, and then, similar to the relations in

Eq. (12), the boundary conditions can be presented in terms

of the tangential components of the electric field as

∂U

∂z
+ B̂U = 0;

U =
(

Ex

Ey

)

;

B̂ = 1

2

√

g

cosθ
k0

(

1 + i −1 − i

1 + i 1 + i

)

. (14)

Conditions in Eq. (12) or Eq. (14) are the conditions of ra-

diation (absence of ingoing waves) formulated at the upper

boundary at z = Lmax and suitable for the determination of

the energy of the wave leaking from the WGEI into the upper

ionosphere and magnetosphere. Note that Eqs. (12) and (14)

expressed the boundary conditions of the radiation (more ac-

curately speaking, an absence of incoming waves, which is

the consequence to the causality principle) are obtained as a

result of the passage to limit |kx/kz| → 0 in Eq. (5). In spite
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of the disappearance of the dependence of these boundary

conditions explicitly on kx , the dependence of the character-

istics of the wave propagation process on kx , as a whole, is

accounted for, and all results are still valid for the descrip-

tion of the wave beam propagation in the WGEI along the

horizontal axis x with a finite kx ∼ k0.

3.3 Equivalent tensor impedance boundary conditions

The tensor impedance at the upper boundary of the effective

WGEI of z = Lz (see Fig. 1) is obtained by the conditions of

radiation in Eqs. (12) or (14), recalculated from the level of

z = Lmax ∼ 250–400 km, placed in the F region of the iono-

sphere, to the level of z = Lz ∼ 80–90 km, placed in the E re-

gion.

The main idea of the effective tensor impedance method

is the unification of analytical and numerical approaches

and the derivation of the proper impedance boundary con-

ditions without “thin-cover-layer” approximation. This ap-

proximation is usually used in the effective impedance ap-

proaches, applied either for artificial or natural layered gy-

rotropic structures (see e.g., Tretyakov, 2003; Senior and

Volakis, 1995; Kurushin and Nefedov, 1983; Alperovich

and Fedorov, 2007). There is one known exception, namely

the invariant imbedding impedance method (Shalashov and

Gospodchikov, 2011; Kim and Kim, 2016). The compari-

son of our method with the invariant imbedding impedance

method will be presented at the end of this subsection. Equa-

tion (3a, 3b) jointly with the boundary conditions of Eq. (12)

have been solved by finite differences. The derivatives in

Eq. (3a, 3b) are approximated as

∂

∂z

(

C(z)
∂Hx

∂z

)

≈ 1

h

(

C(zj+1/2)
(Hx)j+1 − (Hx)j

h

−C(zj−1/2)
(Hx)j − (Hx)j−1

h

)

∂

∂z
(F (z)Hx) ≈ 1

2h
(F (zj+1)(Hx)j+1

− F(zj−1)(Hx)j−1). (15)

In Eq. (15) zj+1/2 = h · (j +0.5). In Eq. (10) the approxima-

tion is ∂Hx/∂z ≈ [(Hx)N − (Hx)N−1]/h. Here h is the dis-

cretization step along the OZ axis, and N is the total number

of nodes. At each step j the difference approximations of

Eq. (3a, 3b) take the form

α̂
(−)
j · H j−1 + α̂

(0)
j · H j + α̂

(+)
j · H j+1 = 0, (16)

where H j =
(

Hx

hy

)

, j = N − 1,N − 2, . . .,1, zj = h · j and

Lz = h ·N . Due to the complexity of expressions for the ma-

trix coefficients in Eq. (16), we have shown them in Ap-

pendix A. The set of the matrix Eq. (16) has been solved by

the factorization method also known as an elimination and

matrix sweep method (see Samarskii, 2001). It can be writ-

ten as

H j = b̂j · H j+1, j = N,. . .1 (17a)

Hxj+1 = b11j+1H1 + b12j+1H2;
Hyj+1 = b21j+1H1 + b22j+1H2;
H1 ≡ Hxj ;
H2 ≡ Hyj . (17b)

This method is a variant of the Gauss elimination method for

the matrix three-diagonal set of Eq. (16). The value of b̂N is

obtained from the boundary conditions (12) as

α̂
(−)
N · HN−1 + α̂

(0)
N · HN = 0. (18)

Therefore b̂N = −(α̂
(0)
N )−1 · α̂(−)

N . Then the matrices b̂j have

been computed sequentially down to the desired value of z =
Lz = h · Nz, where the impedance boundary conditions are

assumed to be applied. At each step the expression for b̂j

follows from Eqs. (16), (17a) and (17b) as

(α̂
(0)
j + α̂

(+)
j · b̂j+1) · H j = −α̂

(−)
j · H j−1 = 0. (19)

Therefore, for Eq. (17a, 17b), we obtain b̂j = −(α̂
(0)
j + α̂

(+)
j ·

b̂j+1)
−1 · α̂(−)

j . The derivatives in Eq. (4) have been approxi-

mated as

(

∂Hx

∂z

)

Nz

≈ (Hx)Nz+1 − (Hx)Nz

h

= (bNz+1 11 − 1) · (Hx)Nz + bNz+1 12 · (Hy)Nz

h
,

(20)

and a similar equation can be obtained for
(

∂Hy

∂z

)

Nz

. Note

that as a result of this discretization, only the values at the

grid level Nz are included in the numerical approximation

of the derivatives ∂Hx,y/∂z at z = Lz. We determine tensor

impedance Ẑ at z = Lz at ∼ 85 km. The tensor values are

included in the following relations, all of which are corre-

sponded to altitude (in other words, to the grid with the num-

ber Nz and corresponding to this altitude).

n × E = Ẑ0 · H , n = (0,0,1) or

Ex = Z021Hx + Z022Hy; Ey = −Z011Hx − Z012Hy (21)

The equivalent tensor impedance is obtained using a two-step

procedure. (1) We obtain the matrix b̂j using Eq. (3a, 3b)

with the boundary conditions of Eq. (12) and the procedure

of Eqs. (17)–(19) described above. (2) Placing the expres-

sions of Eq. (21) with tensor impedance into the left parts

and the derivatives ∂Hx,y/∂z in Eq. (20) into the right parts

of Eq. (4), the analytical expressions for the components of
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the tensor impedance are

Z011 = − i

k0h







β21

1 − β22
k2
x

k2
0

· b21 − β22

1 − β22
k2
x

k2
0

· (b11 − 1)






,

Z012 = − i

k0h







β21

1 − β22
k2
x

k2
0

∂Hy

∂z
· (b22 − 1)

− β22

1 − β22
k2
x

k2
0

· b12 − kxh · β23

1 − β22
k2
x

k2
0






,

Z021 = i

k0h






β11 + k2

x

k2
0

β12 · β21

1 − β22
k2
x

k2
0

· b21

− β12

1 − β22
k2
x

k2
0

· (b11 − 1)






,

Z022 = i

k0h












β11 + k2

x

k2
0

β12 · β21

1 − β22
k2
x

k2
0






· (b22 − 1)

−kxh ·






β13 + k2

x

k2
0

β12 · β23

1 − β22
k2
x

k2
0






− β12

1 − β22
k2
x

k2
0

· b12






.

(22)

The proposed method of the transfer of the boundary con-

ditions from the ionosphere F layer at Lmax = 250–400 km

into the lower part of the E layer at Lz = 80–90 km is sta-

ble and easily realizable in comparison with some alternative

approaches based on the invariant imbedding methods (Sha-

lashov and Gospodchikov, 2011; Kim and Kim, 2016). The

stability of our method is due to the stability of the Gauss

elimination method when the coefficients at the matrix cen-

tral diagonal are dominating. The last is valid for the iono-

sphere with electromagnetic losses where the absolute val-

ues of the permittivity tensor are large. The application of the

proposed matrix sweep method in the media without losses

may require the use of the Gauss method with the choice of

the maximum element to ensure stability. However, as our

simulations (not presented here) demonstrated, for the elec-

tromagnetic problems in the frequency domain, the simple

Gauss elimination and the choice of the maximal element

give the same results. The accumulation of errors may oc-

cur in evolutionary problems in the time domain when the

Gauss method should be applied sequentially many times.

The use of the independent functions Hx and Hy in Eq. (3a,

3b) seems natural, as well as the transfer of Eq. (17a), be-

cause the impedance conditions are the expressions of the

electric Ex and Ey through the magnetic components Hx

and Hy at the upper boundary of the VLF waveguide at 80–

90 km. The naturally chosen direction of the recalculation

of the upper boundary conditions from z = Lmax to z = Lz,

i.e., from the upper layer with a large impedance value to the

lower-altitude layer with a relatively small impedance value,

provides, at the same time, the stability of the simulation pro-

cedure. The obtained components of the tensor impedance

are small, |Z0αβ | ≤ 0.1. This determines the choice of the

upper boundary at z = Lz for the effective WGEI. Due to

the small impedance, EM waves incident from below on

this boundary are reflected effectively back. Therefore, the

region 0 ≤ z ≤ Lz indeed can be presented as an effective

WGEI. This waveguide includes not only lower boundary at

LISO at ∼ 65–75 km with a rather small losses, but it also in-

cludes thin dissipative and anisotropic and gyrotropic layers

between 75 and 85–90 km.

Finally, the main differences and advantages of the pro-

posed tensor impedance method from other methods for

impedance recalculating, and in particular invariant imbed-

ding methods (Shalashov and Gospodchikov, 2011; Kim and

Kim, 2016), can be summarized as follows:

1. In contrast to the invariant imbedding method, the cur-

rently proposed method can be used for the direct recal-

culation of tensor impedance, as is determined analyti-

cally (see Eq. 22).

2. For the media without non-locality, the proposed

method does not require the solving of one or more in-

tegral equations.

3. The proposed method does not require forward and re-

flected waves. The conditions for the radiation at the up-

per boundary of z = Lmax (see Eq. 12) are determined

through the total field components of Hx,y , which sim-

plify the overall calculations.

4. The overall calculation procedure is very effective and

computationally stable. Note that even for the very

low-loss systems, the required level of stability can be

achieved with modification based on the choice of the

maximal element for matrix inversion.

3.4 Propagation of electromagnetic waves in the

gyrotropic waveguide and the TIMEB method

Let us use the transverse components of the electric Ey and

magnetic Hy fields to derive equations for the slow vary-

ing amplitudes A(x,y,z) and B(x,y,z) of the VLF beams.

These components can be represented as

Ey = 1

2
A(x,y,z) · eiωt−ik0x + c.c.,

Hy = 1

2
B(x,y,z) · eiωt−ik0x + c.c. (23)

Here we assumed kx = k0 to reflect beam propagation in the

WGEI with the main part in the atmosphere and lower iono-
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sphere (D region), which are similar to free space by its elec-

tromagnetic parameters. The presence of a thin anisotropic

and dissipative layer belonging to the E region (Guglielmi

and Pokhotelov, 1996) of the ionosphere causes, altogether

with the impedance boundary condition, the proper z depen-

dence of B(x,y,z). Using Eqs. (21) and (22), the bound-

ary conditions are determined at the height of z = Lz for

the slowly varying amplitudes A(x,y,z) and B(x,y,z) of

the transverse components Ey and Hy . As it follows from

Maxwell’s equations, the components Ex and Hx through Ey

and Hy in the method of beams have the form

Hx ≈ − i

k0

∂Ey

∂z
, Ex ≈ γ12Ey + i

β̃33

k0

∂Hy

∂z
+ β̃13Hy, (24)

where γ12 = 1−1
0 (ε13ε32 −ε12ε33), β̃13 = 1−1

0 ε13 and β̃33 =
1−1

0 ε33; 10 = ε11ε33 − ε13ε31. From Eqs. (21) and (24), the

boundary conditions for A and B can be defined as

A − i

k0
Z011 · ∂A

∂z
+ Z012 · B ≈ 0,

γ12 · A + i

k0
Z021 · ∂A

∂z
+ (β̃13 − Z022)

· B + i

k0
β̃33 · ∂B

∂z
≈ 0. (25)

The evolution equations for the slowly varying amplitudes

A(x,y,z) and B(x,y,z) of the VLF beams are derived. The

monochromatic beams are considered when the frequency ω

is fixed and the amplitudes do not depend on time t . Looking

for the solutions for the EM field as E,H ∼ exp(iωt−ikxx−
ikyy), Maxwell’s equations are

− ikyHz − ∂Hy

∂z
= ik0Dx,

∂Hx

∂z
+ ikxHz = ik0Dy,

− ikxHy + ikyHx = ik0Dz

− ikyEz − ∂Ey

∂z
= −ik0Hx,

∂Ex

∂z
+ ikxEz = −ik0Hy,

− ikxEy + ikyEx = −ik0Hz. (26)

Here Dx = ε11Ex +ε12Ey +ε13Ez. From Eq. (21), the equa-

tions for Ex and Ez through EyandHy are

Ex = 1

1y

{[

ε13ε32 −
(

ε12 + kxky

k2
0

)

·
(

ε33 −
k2
y

k2
0

)]

Ey

+ i

k0

(

ε33 −
k2
y

k2
0

)

∂Hy

∂z
+ kx

k0
ε13 · Hy + i

ky

k2
0

ε13

∂Ey

∂z

}

Ez = 1

1y

{[

ε31

(

ε12 + kxky

k2
0

)

− ε32

(

ε11 −
k2
y

k2
0

)]

Ey

− i

k0
ε31

∂Hy

∂z
− kx

k0

(

ε11 −
k2
y

k2
0

)

Hy

−i
ky

k2
0

(

ε11 −
k2
y

k2
0

)

∂Ey

∂z

}

.

(27)

In Eq. (27), 1y ≡
(

ε11 − k2
y

k2
0

)

·
(

ε33 − k2
y

k2
0

)

− ε31 · ε13. The

equations for Ey and Hy obtained from the Maxwell equa-

tions are

(

∂2

∂z2
−k2

x − k2
y

)

Ey + iky

(

∂Ez

∂z
− ikxEx − ikyEy

)

+ k2
0Dy = 0; −ik0

∂Ex

∂z
+ kxk0Ez + k2

0Hy = 0. (28)

After the substitution of Eq. (27) for Ex and Ez into

Eqs. (28), the coupled equations for Ey and Hy can be de-

rived. The following expansion should be used: kx = k0 +
δkx , |δkx | ≪ k0; also |ky | ≪ k0. Then, according to Weiland

and Wilhelmsson (1977),

−i · δkx → ∂

∂x
,−i · ky → ∂

∂y
. (29)

The expansions should be used until the quadratic terms in ky

and the linear terms in δkx . As a result, parabolic equations

(Levy, 2000) for the slowly varying amplitudes A and B are

derived. In the lower ionosphere and atmosphere, where the

effective permittivity reduces to a scalar ε(ω,z), they are in-

dependent.

∂A

∂x
+ i

2k0

(

∂2A

∂y2
+ ∂2A

∂z2

)

+ ik0

2
· (ε − 1)A = 0

∂B

∂x
+ i

2k0

(

1

β

∂

∂z

(

β
∂B

∂z

)

+ ∂2B

∂y2

)

+ ik0

2
· (ε − 1)B = 0,

(30a)

where β ≡ ε−1. Accounting for the presence of the gy-

rotropic layer and the tensor impedance boundary conditions

at the upper boundary of z = Lz of the VLF waveguide, the

equations for the slowly varying amplitudes in the general
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case are

∂A

∂x
+ i

2k0

(

∂2A

∂y2
+ ∂2A

∂z2

)

+ ik0

2
· (ε̃22 − 1) · A

+ γ21

2

∂B

∂z
+ ik0

2
· γ23B = 0

∂B

∂x
+ i

2k0

(

1

β̃11

∂

∂z

(

β̃33
∂B

∂z

)

+ ∂2B

∂y2

)

+ i

2β̃11

∂

∂z
(γ12A) + 1

2β̃11

∂

∂z
(β̃13B) + ik0

2β̃11

γ32A+

+ β̃31

2β̃11

∂B

∂z
+ ik0

2
·
(

1

β̃11

− 1

)

· B = 0. (30b)

In Eq. (30b),

γ12 ≡ ε13 · ε32 − ε12 · ε33

1
,

γ21 ≡ ε23 · ε31 − ε21 · ε33

1
,

γ23 ≡ ε21 · ε13 − ε23 · ε11

1
,

γ32 ≡ ε31 · ε12 − ε32 · ε11

1
,

β̃11 ≡ ε11

1
,

β̃13 ≡ ε13

1
,

β̃31 ≡ ε31

1
,

β̃33 ≡ ε33

1
,

1 ≡ ε11 · ε33 − ε13 · ε31;

ε̃22 ≡ ε22 + ε21(ε13ε32 − ε12ε33) + ε23(ε31ε12 − ε32ε11)

1
.

Equation (30b) is reduced to Eq. (30a) when the effec-

tive permittivity is scalar. At the Earth’s surface of z = 0,

the impedance conditions are reduced, accounting for the

medium being isotropic and the conductivity of the Earth be-

ing finite, to the form

Ey = Z0EHx, Ex = −Z0EHy, Z0E ≡
(

iω

4πσE

)1/2

, (31a)

where σE ∼ 108 s−1 is the Earth’s conductivity. The bound-

ary conditions (31a) at the Earth’s surface, where Z022 =
Z021 ≡ Z0E , Z012 = Z021 = 0, β33 = ε−1(z = 0), γ12 = 0

and β̃13 = 0 can be rewritten as

Ey + i

k0
Z0E

∂Ey

∂z
= 0,

i

ε(z = 0)k0

∂Hy

∂z
+ Z0EHy = 0. (31b)

Equation (30a, 30b), combined with the boundary conditions

of Eq. (25) at the upper boundary of the VLF waveguide of

z = Lz, and with the boundary conditions at the Earth’s sur-

face (Eq. 31b), are used to simulate the VLF wave propaga-

tion. The surface impedance of the Earth has been calculated

from the Earth’s conductivity (see Eq. 31a). The initial con-

ditions to the solution of Eqs. (30a, 30b), (25) and (31b) are

chosen in the form

A(x = 0,y,z) = 0,

B(x = 0,y,z) = B0 exp(−((y − 0.5Ly)/y0)
2n)

· exp(−((z − z1)/z0)
2n),

n = 2. (32)

In the relations of Eq. (32), z1, z0, y0 and B0 are the verti-

cal position of maximum value, the vertical and transverse

characteristic dimensions of the spatial distribution and the

maximum value of Hy , respectively, at the input of the sys-

tem, x = 0. The size of the computing region along the OY

axis is, by the order of value, Ly ∼ 2000 km. Because the

gyrotropic layer is relatively thin and is placed at the upper

part of the VLF waveguide, the beams are excited near the

Earth’s surface. The wave diffraction in this gyrotropic layer

along the OY axis is quite small; i.e., the terms ∂2A/∂y2 and

∂2B/∂y2 are small there as well. Contrary to this, the wave

diffraction is very important in the atmosphere in the lower

part of the VLF waveguide near the Earth’s surface. To solve

the problem of the beam propagation, the method of splitting

with respect to physical factors has been applied (Samarskii,

2001). Namely, the problem has been approximated by the

finite differences

C ≡
(

A

B

)

,
∂C

∂x
+ L̂yC + L̂zC = 0. (33)

In the terms of L̂yC, the derivatives with respect to y are

included, whereas all other terms are included in L̂zC. Then

the following fractional steps have been applied; the first one

is along y, and the second one is along z.

C
p+1/2 − C

p

hx

+ L̂yC
p+1/2 = 0,

C
p+1 − C

p+1/2

hx

+ L̂zC
p+1 = 0 (34)

The region of simulation is 0 < x < Lx = 1000–2000 km,

0 < y < Ly = 2000–3000 km and 0 < z < Lz = 80–90 km.

The numerical scheme of Eq. (34) is absolutely stable. Here

hx is the step along the OX axis, and xp = phx and p =
0,1,2, . . .. This step has been chosen from the conditions of

the simulation result independence of the diminishing hx .

On the simulation at each step along the OX axis, the

correction on the Earth’s curvature has been inserted in an

adiabatic manner applying the rotation of the local coordi-

nate frame XOZ. Because the step along x is small hx and

∼ 1km ≪ Lz, this correction of the C results in the multi-

plier exp(−ik0 · δx), where δx = z · (hx/RE) and RE ≫ Lz
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Figure 2. The rotation of the local Cartesian coordinate frame

at each step along the Earth’s surface hx on a small angle δϕ ≈
1x/RE in radians, while 1x = hx . The following strong inequali-

ties are valid for hx ≪ Lz ≪ RE. At the Earth’s surface z = 0.

is the Earth’s radius (see Fig. 2 and the caption to this fig-

ure). At the distances of x ≤ 1000 km, the simulation results

do not depend on the insertion of this correction, whereas

at higher distances a quantitative difference occurs: the VLF

beam propagates more closely to the upper boundary of the

waveguide.

3.5 VLF waveguide modes and reflection from the VLF

waveguide upper effective boundary

In general, our model needs the consideration of the waveg-

uide mode excitations by a current source such as a dipole-

like VLF radio source and lightning discharge. Then, the re-

flection of the waves incident on the upper boundary (z = Lz)

of the effective WGEI can be considered. There it will be

possible to demonstrate that this structure indeed has waveg-

uiding properties that are good enough. Then, in the model

described in the present paper, the VLF beam is postulated

already on the input of the system. To understand how such

a beam is excited by the, say, dipole antenna near the lower

boundary of z = 0 of the WGEI, the formation of the beam

structure based on the mode presentation should be searched.

Then the conditions of the radiation (absence of ingoing

waves; Eq. 12) can be used as the boundary conditions for

the VLF beam radiated to the upper ionosphere and magne-

tosphere. Due to a relatively large scale of the inhomogeneity

in this region, the complex geometrical optics (Rapoport et

al., 2014) would be quite suitable for modeling beam prop-

agation, even accounting for the wave dispersion in magne-

tized plasma. The proper effective boundary condition, sim-

ilar to Rapoport et al. (2014), would allow for making a rel-

atively accurate match between the regions, described by the

full-wave electromagnetic approach with Maxwell’s equa-

tions and the complex geometrical optics (FWEM-CGO ap-

proach). All of these materials are not included in this paper,

but they will be delivered in the two future papers. The first

paper will be dedicated to the modeling of VLF waves prop-

agating in the WGEI based on the field expansion as a set

of eigenmodes of the waveguide (the mode presentation ap-

proach). The second paper will deal with the leakage of the

VLF beam from the WGEI into the upper ionosphere and

magnetosphere and the VLF beam propagation in these me-

dia. Here we describe only one result, which concerns the

mode excitation in the WGEI, because this result is princi-

pally important for the justification of the TIMEB method. It

was shown that more than the five lowest modes of the WGEI

are strongly localized in the atmosphere or lower ionosphere.

Their longitudinal wave numbers are close to the correspond-

ing wave numbers of EM waves in the atmosphere. This fact

demonstrates that the TIMEB method can be applied to the

propagation of the VLF electromagnetic waves in the WGEI.

4 Modeling results

The dependencies of the permittivity components ε1, ε3 and

εh in the coordinate frame associated with the geomagnetic

field H 0 are given in Fig. 3. The parameters of the iono-

sphere used for modeling are taken from Al’pert (1972),

Alperovich and Fedorov (2007), Kelley (2009), Schunk and

Nagy (2010), and Jursa (1985). The typical results of simu-

lations are presented in Fig. 4. The parameters of the iono-

sphere correspond to Fig. 3. The angle θ (Fig. 1) is 45◦. The

VLF frequency is ω = 105 s−1 and f = ω/2π ≈ 15.9 kHz.

The Earth’s surface is assumed to as ideally conductive at the

level of z = 0. The values of the EM field are given in abso-

lute units. The magnetic field is measured in oersted (Oe) or

gauss (Gs) (1Gs = 10−4 T), whereas the electric field is also

in Gs, 1Gs = 300 Vcm−1. Note that in the absolute (Gaus-

sian) units of the magnitudes of the magnetic field compo-

nent |Hy | are the same as ones of the electric field component

|Ez| in the atmosphere region where the permittivity is ε ≈ 1.

The correspondence between the absolute units and practical

SI units is given in the Fig. 4 caption.

It is seen that the absolute values of the permittivity com-

ponents increase sharply above z = 75 km. The behavior

of the permittivity components is step-like, as seen from

Fig. 3a. Therefore, the results of simulations are tolerant to

the choice of the upper wall position of the Earth’s surface–

ionosphere waveguide. The computed components of the

tensor impedance at z = 85 km are Z011 = 0.087 + i0.097,

Z021 = 0.085+ i0.063, Z012 = −0.083− i0.094 and Z022 =
0.093 + i0.098. So, a condition of |Z0αβ | ≤ 0.15 is satis-

fied there, which is necessary for the applicability of the

boundary conditions in Eq. (25). The maximum value of

the Hy component is 0.1Oe = 10−5 T in Fig. 4a for the ini-
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tial VLF beam at x = 0. This corresponds to the value of

the Ez component of 0.1Gs = 30Vcm−1. At the distance of

x = 1000 km the magnitudes of the magnetic field Hy are of

about 3 × 10−5 Oe = 3nT, whereas the electric field Ey is

3 × 10−6 Gs ≈ 1mVcm−1.

The wave beams are localized within the WGEI at 0 < z <

75km, mainly in the regions with the isotropic permittivity

(see Fig. 4b–e). The mutual transformations of the beams

of different polarizations occur near the waveguide upper

boundary due to the anisotropy of the ionosphere within the

thin layer at 75km < z < 85km (Fig. 4b, d). These trans-

formations depend on the permittivity component values of

the ionosphere at the altitude of z > 80km and on the com-

ponents of the tensor impedance. Therefore, the measure-

ments of the phase and amplitude modulations of different

EM components near the Earth’s surface can provide infor-

mation on the properties of the lower and middle ionosphere.

In accordance with boundary condition in Eq. (32), we

suppose that when entering the system at X = 0, only one of

the two polarization modes is excited, namely, the transverse

magnetic (TM) mode, i.e., at x = 0, Hy 6= 0 and Ey = 0

(Fig. 4a). Upon further propagation of the beam with such

boundary conditions at the entrance to the system in a ho-

mogeneous isotropic waveguide, the property of the electro-

magnetic field described by the relation Hy 6= 0 and Ey = 0

will remain valid. The qualitative effect due to the presence

of gyrotropy (a) in a thin bulk layer near the upper bound-

ary of WGEI and (b) in the upper boundary condition with

complex gyrotropic and anisotropic impedance is as follows:

during beam propagation in the WGEI, the transverse electric

(TE) polarization mode with the corresponding field compo-

nents, including Ey , is also excited. This effect is illustrated

in Fig. 4b and d.

The magnitude of the Ey component depends on the val-

ues of the electron concentration at the altitudes z = 75–

100 km. In Fig. 5a and b the different dependencies of the

electron concentration n(z) are shown (see the solid, dashed

and dotted lines 1, 2 and 3, respectively). The corresponding

dependencies of the component absolute values of the per-

mittivity are shown in Fig. 4c and d.

The distributions of |Ey | and |Hy | at x = 1000 km are

given in Fig. 6. Results in Fig. 6a and b correspond to the

solid (1) curve n(z) in Fig. 5; Fig. 6c and d correspond to

the dashed (2) curve; Fig. 6e and f correspond to the dot-

ted (3) curve in Fig. 5. The initial Hy beam is the same and

is given in Fig. 4a. The values of the tensor impedance for

these three cases are presented in Table 1.

The distributions of |Ey | and |Hy | on z at x = 1000 km in

the center of the waveguide, y = 1500 km, are given in Fig. 7.

These simulations show that the change in the complex ten-

sors of both volume dielectric permittivity and impedance at

the lower and upper boundaries of the effective WGEI in-

fluence the VLF losses remarkably. The modulation of the

electron concentration at the altitudes above z = 120 km af-

fects the excitation of the Ey component within the waveg-

uide rather weakly.

5 Influence of the parameters of the WGEI on the

polarization transformation and losses of the

propagating VLF waves

An important effect of the gyrotropy and anisotropy is the

corresponding transformation of the field polarization during

the propagation in the WGEI, which is absent in the ideal

metal planar waveguide without gyrotropy and anisotropy.

We will show that this effect is quite sensitive to the carrier

frequency of the beam, propagating in the WGEI, and the

inclination of the geomagnetic field and perturbations in the

electron concentration, which can vary under the influences

of the powerful sources placed below, above and inside the

ionosphere. In the real WGEI, the anisotropy and gyrotropy

are connected with the volume effect and effective surface

tensor impedances at the lower and upper surfaces of the ef-

fective WGEI, where z = 0 and z = Lz (Fig. 1). For the cor-

responding transformation of the field polarization determi-

nation, we introduce the characteristic polarization relation

|Ey/Hy |(z;y = Ly/2;x = x0), taken at the central plane of

the beam (y = Ly) at the characteristic distance (x = x0)

from the beam input and VLF transmitter. The choice of the

characteristic polarization parameter (|Ey/Hy |) and its de-

pendence on the vertical coordinate (z) is justified by con-

ditions (1)–(3). (1) The WGEI is similar to the ideal pla-

nar metalized waveguide because, first, the tensor ǫ̂ is dif-

ferent from the isotropic Î only in the relatively small up-

per part of the WGEI in the altitude range from 75–80 to

85 km (see Fig. 1). Second, both the Earth and ionosphere

conductivity are quite high, and corresponding impedances

are quite low. In particular, the elements of the effective

tensor impedance at the upper boundary of the WGEI are

small, |Z0αβ | ≤ 0.1 (see, for example, Table 1). (2) Respec-

tively, the carrier modes of the VLF beam are close to the

modes of the ideal metalized planar waveguide. These un-

coupled modes are subdivided into sets of (Ex,Hy,Ez) and

(Hx,Ey,Hz). The detailed search of the propagation of the

separate eigenmodes of the WGEI is not a goal of this paper

and will be the subject of the separate paper. (3) Because we

have adopted the input boundary conditions in Eq. (32) (with

Hy 6= 0, Ey = 0) for the initial beam(s), the above-mentioned

value |Ey/Hy |(z;y = Ly/2;x = x0) characterizes the mode

coupling and corresponding transformation of the polariza-

tion at the distance of x0 from the beam input due to the

presence of the volume and surface gyrotropy and anisotropy

in the real WGEI. The results presented below are obtained

for x0 = 1000 km, that is, by the order of value, a typical

distance, for example, between the VLF transmitter and re-

ceiver of the European VLF/LF radio network (Biagi et al.,

2015). Another parameter characterizing the propagation of

the beam in the WGEI is the effective total loss parameter
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Figure 3. (a) The vertical dependencies of the modules of components of the permittivity in the frame associated with the geomagnetic field

|ε1|, |ε3| and |εh| with curves 1, 2 and 3, correspondingly. (b)–(g) The real (corresponding lines with the values denoted by one prime) and

imaginary parts (corresponding lines with the values denoted by two primes) of the components ε1, ε3 and εh in general and detailed views.

Figure 4. Panel (a) is the initial distribution of |Hy | at x = 0. Panels (b) and (c) are |Ey | and |Hy | at x = 600km. Panels (d) and (e) are |Ey |
and |Hy | at x = 1000km. For the electric field, the maximum value (d) is 3 × 10−6 Gs ≈ 1mVcm−1; for the magnetic field, the maximum

value (e) is 3 × 10−5 Gs ≈ 3nT. At the altitudes z < 75km, |Ez| ≈ |Hy |. ω = 1.0 × 105 s−1 and θ = 45◦.

of |Hymax(x = x0)/Hymax(x = 0)|. Note that this parameter

characterizes both dissipative and diffraction losses. The last

are connected with beam spreading in the transverse (y) di-

rection during the propagation in the WGEI.

In Fig. 8 the polarization and loss characteristic dependen-

cies on both the carrier beam frequency and the angle θ be-

tween the geomagnetic field and the vertical directions (see

Fig. 1) are shown.

In Fig. 8a–c the altitude dependence of the polarization

parameter |Ey/Hy | exhibits two main maxima in the WGEI.

The first one lies in the gyrotropic region above 70 km, while

the second one in the isotropic region of the WGEI. As seen

from Fig. 8a and b, the value of the (larger) second maximum

increases, while the value of the first maximum decreases,

and its position shifts to the lower altitudes with increasing

frequency. At the higher frequency (ω = 1.14×105 s−1), the

larger maximum of the polarization parameter corresponds

to the intermediate value of the angle θ = 45◦ (Fig. 8b); for

the lower frequency (ω = 0.86×105 s−1), the largest value of

the first (higher) maximum corresponds to the almost vertical

direction of the geomagnetic field (θ = 5◦; Fig. 8a). For the

intermediate value of the angle (θ = 45◦), the largest value of

the main maximum corresponds to the higher frequency (ω =
1.14 × 105 s−1) in the considered frequency range (Fig. 8c).

The total losses increase monotonically with increasing fre-

quency and depend weakly on the value of θ (Fig. 8d).

To model the effect of increasing and decreasing the elec-

tron concentration ne in the lower ionosphere on the polar-
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Table 1. The values of tensor impedance components corresponding to the data shown in Fig. 5.

Component of the tensor impedance Z011 Z021 Z012 Z022

Undisturbed concentration (curve 1 in Fig. 5) 0.088 + i0.098 0.085 + i0.063 −0.083 − i0.094 0.093 + i0.098

Decreased concentration (curve 2 in Fig. 5) 0.114 + i0.127 0.107 + i0.079 −0.105 − i0.127 0.125 + i0.125

Increased concentration (curve 3 in Fig. 5) 0.067 + i0.0715 0.061 + i0.051 −0.060 − i0.070 0.069 + i0.072

Figure 5. Different profiles of the electron concentration n(z)

used in simulations: solid, dashed and dotted lines correspond to

undisturbed, decreased and increased concentrations, respectively.

Shown are the (a) detailed view and (b) general view. Panels (c)

and (d) show the permittivity |ε3| and εh modules.

ization parameter, we have used the following parameteriza-

tion for the ne change 1ne = ne(z) − n0e(z) of the electron

concentration, where n0e(z) is the unperturbed altitude dis-

tribution of the electron concentration.

1ne(z) = n0e(z)8(z);

8(z) = [F(z)] − (z − z2)
2

1z2
12

[F(z1)] − (z − z1)
2

1z2
12

[F(z2)];

F(z) = f00 · cosh−2

{[

z −
(

z1 + z2

2

)]

/1z

}

(35)

In Eq. (35), 1z12 ≡ z2 − z1; 1z is the effective width of

the electron concentration perturbation altitude distribution.

The perturbation 1ne is concentrated in the range of alti-

tudes z1 ≤ z ≤ z2 and is equal to zero outside this region,

1ne(z1) = 1ne(z2) = 0, while 8(z1) = 8(z2) = 0.

The change in the concentration in the lower ionosphere

causes a rather nontrivial effect on the parameter of the polar-

ization transformation |Ey/Hy | (Fig. 9a–c). Note that either

an increase or a decrease in the ionosphere plasma concentra-

tion have been reported as a result of seismogenic phenom-

ena, tsunamis, particle precipitation in the ionosphere due

to wave–particle interaction in the radiation belts (Pulinets

and Boyarchuk, 2005; Shinagawa et al., 2013; Arnoldy and

Kintner, 1989; Glukhov et al., 1992; Tolstoy et al., 1986),

etc. The changes in the |Ey/Hy | due to an increase or de-

crease in electron concentration vary by absolute values from

dozens to thousands of a percent. This can be seen from

the comparison between Fig. 9b and c (lines 3) and Fig. 8c

(line 3), which corresponds to the unperturbed distribution

of the ionospheric electron concentration (see also lines 1

in Figs. 5b and 9a). It is even more interesting that in the

case of decreasing (Fig. 9a, curve 2) electron concentration,

the main maximum of |Ey/Hy | appears in the lower atmo-

sphere (at the altitude around 20 km, Fig. 9b, curve 3, which

corresponds to ω = 1.14 × 105 s−1). In the case of increas-

ing electron concentration (Fig. 9a, curve 3), the main maxi-

mum of |Ey/Hy | appears near the E region of the ionosphere

(at the altitude around 77 km, Fig. 9c). The secondary maxi-

mum, which is placed, in the absence of the perturbation of

the electron concentration, in the lower atmosphere (Fig. 8c,

curves 2 and 3) or mesosphere and ionosphere D region

((Fig. 8c, curve 1) practically disappears or just is not seen

in the present scale in the case under consideration (Fig. 9c,

curves 1–3).

In Fig. 10, the real (a) and imaginary (b) parts of the sur-

face impedance at the upper boundary of the WGEI have a

quasi-periodical character with the amplitude of oscillations

occurring around the effective average values (not shown ex-

plicitly in Fig. 10a and b), which decreases with an increas-

ing angle of θ . The average Re(Z011) and Im(Z011) val-

ues in general decrease with an increasing angle of θ (see

Fig. 10a and b). The average values of Re(Z011) at θ = 5,

30, 45 and 60◦ (lines 1–4 in Fig. 10a) and Im(Z011) at

θ = 45◦ and θ = 60◦ (curves 3 and 4 in Fig. 10b) increase

with an increasing frequency in the frequency range (0.86–

1.14) ×105 s−1. The average Im(Z011) value at θ = 5 and

30◦ changes in the frequency range (0.86–1.14) ×105 s−1

non-monotonically with the maximum at (1–1.1) ×105 s−1.

The value of finite impedance at the lower Earth–atmosphere

boundary of the WGEI influences the polarization transfor-

mation parameter minimum near the E region of the iono-

sphere (lines 1 and 2 in Fig. 10c). The decrease of sur-

face impedance Z0 at the lower Earth–atmosphere bound-

ary of the WGEI by two orders of magnitude produces the
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Figure 6. Panels (a), (c) and (e) are dependencies of |Ey |. Panels (b), (d) and (f) are dependencies of |Hy | at x = 1000 km, with ω =
1.0 × 105 s−1 and θ = 45◦. The initial beams are the same as in Fig. 4a. Panels (a) and (b) correspond to the solid (1) curves in Fig. 5.

Panels (c) and (d) are for the dashed (2) curves. Panels (e) and (f) correspond to the dotted (3) curves there.

Figure 7. The dependencies of EM components at altitude z in the center of the waveguide at y = 1500 km for the different profiles of the

electron concentration. The solid (1), dashed (2) and dotted (3) curves correspond to the different profiles of the electron concentration in

Fig. 5. Panels (a) and (b) are the same kinds of curves, with ω = 1.0 × 105 s−1 and θ = 45◦.

100 % increase of the corresponding |Ey/Hy | minimum at

z ∼ 75 km (Fig. 10c).

6 Discussion

The observations presented in Rozhnoi et al. (2015) show a

possibility for seismogenic increasing losses of VLF waves

in the WGEI (Fig. 11; see details in Rozhnoi et al., 2015). We

discuss the qualitative correspondence of our results to these

experimental data.

The modification of the ionosphere due to electric field ex-

cited by the near-ground seismogenic current source has been

taken into account. In the model (Rapoport et al., 2006), the

presence of the mesospheric current source, which followed

from the observations (Martynenko et al., 2001; Meek et al.,

2004; Bragin et al., 1974) is also taken into account. It is

assumed that the mesospheric current only has the z com-

ponent and is positive, which means that it is directed ver-

tically downward, as in the fair-weather current (curve 1,

Fig. 12b). Then suppose that the surface seismogenic current

is directed in the same way as the mesospheric current. We

first consider the case when the mesospheric current is zero

and only the corresponding seismogenic current is present

near the Earth. The corresponding mesospheric electric field

under the condition of a given potential difference between

the Earth and the ionosphere (curve 2, Fig. 12b) is directed

opposite to those excited by the corresponding mesospheric

current (curve 1, Fig. 12b). As a result, in the presence of

both mesospheric and a seismogenic surface current, the total

mesospheric electric field (curve 3, Fig. 12b) is smaller in ab-

solute value than in the presence of only a mesospheric cur-

rent (curve 1, Fig. 12b). It has been shown by Rapoport et al.

(2006) that the decrement of losses |k′′| for VLF waves in the

WGEI is proportional to |k′′| ∼ |ε′′| ∼ Ne/νe. Ne and νe de-

crease and increase, respectively, due to the appearance of a
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Figure 8. Characteristics of the polarization transformation parameter |Ey/Hy | (a–c) and the effective coefficient of the total losses at the

distance of x0 = 1000 km from the beam input (d). Corresponding altitude dependence of the electron concentration is shown in line 1 of

Fig. 5b. Panels (a), (b) and (d) show dependences of the polarization parameter (a, b) and total losses (d) on the vertical coordinate and

frequency for different θ angles, respectively. Black (1), red (2), green (3) and blue (4) curves in panels (a), (b) and (d) correspond to 5,

30, 45 and 60◦, respectively. Panels (a) and (b) correspond to the frequencies ω = 0.86 × 105 s−1 and ω = 1.14 × 105 s−1, respectively.

Panel (c) shows the dependence of the polarization parameter on the vertical coordinate for the different frequencies. Black (1), red (2) and

green (3) lines correspond to the frequencies 0.86 × 105, 1 × 105 and 1.14 × 105 s−1, respectively, and θ = 45◦.

Figure 9. (a) Decreased and increased electron concentration (line 2, red) and (line 3, blue) correspond to f00 = −1.25 and f00 = 250,

respectively, relative to the reference concentration (line 1, black) with parametrization conditions (see Eq. 35) z1 = 50 km, z2 = 90 km and

1 = 20 km. Panels (b) and (c) are the polarization parameter |Ey/Hy | altitude distribution for decreased and increased electron concentra-

tion, respectively. In (b) and (c) lines 1, 2 and 3 correspond to ω values 0.86×105 s−1, 1.0×105 s−1 and 1.14×105 s−1, respectively. Angle

θ is equal to 45◦.

seismogenic surface electric current, in addition to the meso-

spheric current (curve 3, Fig. 12b). As a result, the losses

increase compared with the case when the seismogenic cur-

rent is absent and the electric field has a larger absolute value

(curve 1, Fig. 12). The increase in losses in the VLF beam,

shown in Fig. 13 (compare curves 2 and 1 in Fig. 13a and

b), corresponds to an increase in losses with an increase in

the absolute value of the imaginary part of the dielectric con-

stant when a near-surface seismogenic current source appears

(curve 3 in Fig. 12b) in addition to the existing mesospheric

current source (curve 2 in Fig. 12b). This seismogenic in-
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Figure 10. (a, b) Frequency dependencies of the real (a) and imaginary (b) parts of the effective tensor impedance Z011 component at the

upper boundary (z = Lz, see Fig. 1) of the WGEI. Lines 1 (black), 2 (red), 3 (blue) and 4 (green) correspond to θ = 5, 30, 45 and 60◦,

respectively. Panel (c) shows the polarization parameter |Ey/Hy | altitude dependency at the frequency 0.86×105 s−1 and angle θ = 45◦ for

the isotropic surface impedance Z0 at the lower surface of the WGEI equal to 10−4. Earth conductivity σ is equal to 109 s−1 for line 1 and

Z0 = 10−2 (σ = 107 s−1) for line 2.

Figure 11. Averaged residual VLF and LF signals from ground-based observations at the wave paths of JJY-Moshiri, JJI-Kamchatka, JJY-

Kamchatka, Australia-Kamchatka and Hawaii-Kamchatka. Horizontal dotted lines show the 2σ level. The color-filled zones highlight values

exceeding the −2σ level. In panel b Dst (disturbance storm time index) variations and earthquakes magnitude values are shown (from

Rozhnoi et al., 2015, see their Fig. 1 but not including the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions

(DEMETER) data; the work of Rozhnoi et al., 2015, is licensed under a Creative Commons Attribution 4.0 International License (CC BY

4.0)). See other details in Rozhnoi et al. (2015).

crease in losses corresponds qualitatively to the results pre-

sented in Rozhnoi et al. (2015).

The TIMEB is a new method of modeling characteristics

of the WGEI. The results of beam propagation in WGEI

modeling presented above include the range of altitudes in-

side the WGEI (see Figs. 4–7). Nevertheless, the TIMEB

method described by Eqs. (15)–(19), (22)–(24), (27), (30a)

and (30b) and allows for the determination of all field com-

ponents in the range of altitudes of 0 ≤ z ≤ Lmax, where

Lmax = 300 km. The structure and behavior of these eigen-
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Figure 12. Modification of the ionosphere by the electric field of seismogenic origin based on the theoretical model (Rapoport et al., 2006).

(a) Geometry of the model (Rapoport et al., 2006) for the determination of the electric field excited by the seismogenic current source Jz(x,y)

and penetrated into the ionosphere with isotropic (I) and anisotropic (II) regions of the “atmosphere–ionosphere” system. (b) Electric field

in the mesosphere in the presence of the seismogenic current sources only in the mesosphere (1), in the lower atmosphere (2), and both

in the mesosphere and in the lower atmosphere (3). (c) Relative perturbations caused by the seismogenic electric field, normalized on the

corresponding steady-state values in the absence of the perturbing electric field, denoted by the index “0”, electron temperature (Te/Te0),

electron concentration (Ne/Ne0) and electron collision frequency (νe/νe0).

Figure 13. Altitude distributions of the normalized tangential (y) electric (a) and magnetic (b) VLF beam field components in the central

plane of the transverse beam distribution (y = 0) at the distance of x = 1000 km from the input of the system. Line 1 in (a, b) corresponds

to the presence of the mesospheric electric current source only with a relatively small value of Ne and a large νe. Line 2 corresponds to the

presence of both mesospheric and near-ground seismogenic electric current sources with a relatively large value of Ne and small νe. Lines 1

and 2 in (a) and (b) correspond qualitatively to the lines 1 and 3, respectively, in Fig. 12b, with ω = 1.5 × 105 s−1 and θ = 45◦.

modes in the WGEI and leakage waves will be a subject of

separate papers. We present here only the final qualitative re-

sult of the simulations. In the range Lz ≤ z ≤ Lmax, where

Lz = 85 km is the upper boundary of the effective WGEI, all

field components (1) are at least one order of altitude less

than the corresponding maximal field value in the WGEI and

(2) have the oscillating character along the z coordinate and

describe the modes leaking from the WGEI.

Let us make a note also on the dependences of the field

components in the WGEI on the vertical coordinate (z).

The initial distribution of the electromagnetic field with al-

titude z (Fig. 4a) is determined by the boundary conditions

of the beam (see Eq. 32). The field component includes

higher eigenmodes of the WGEI. The higher-order modes

experienced quite large losses and practically disappear after

beam propagation on a 1000 km distance. This determines

the change in altitude (z) and transverse (y) distributions of

the beam field during propagation along the WGEI. In par-

ticular, at the distance of x = 600 km from the beam input

(Figs. 4b, c), the few lowest modes of the WGEI along the

z and y coordinates still persist. At distance x = 1000 km

(Figs. 4d, c; 6e, f; and 7a, b), only the main mode persists

in the z direction. Note that the described field structure cor-

respond to the real WGEI with losses. The gyrotropy and

anisotropy causes the volume effects and surface impedance,

in distinction to the ideal planar metalized waveguide with

isotropic filling (Collin, 2001).

The closest approach of the direct investigation of the

VLF electromagnetic field profile in the Earth–ionosphere

waveguide was a series of sounding rocket campaigns at

mid and high latitudes at Wallops Island, Virginia, USA, and

Siple Station in Antarctica (Kintner et al., 1983; Brittain et

al., 1983; Siefring and Kelley, 1991; Arnoldy and Kintner,

1989). Here single-axis E field and three-axis B field anten-

nas, supplemented in some cases with in situ plasma den-

sity measurements, were used to detect the far-field fixed-

frequency VLF signals radiated by US Navy and Stanford

ground transmitters.
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Figure 14. Proposed VIPER trajectory.

The most comprehensive study of the WGEI will be pro-

vided by the ongoing NASA VIPER (VLF Trans-Ionospheric

Propagation Experiment Rocket) project (PI John Bon-

nell, University of California, Berkeley; NASA grant no.

80NSSC18K0782). The VIPER sounding rocket campaign

consists of a summer nighttime launch during quiet magne-

tosphere conditions from Wallops Flight Facility, Virginia,

USA, collecting data through the D, E and F regions of the

ionosphere with a payload carrying the following instrumen-

tation: 2-D E and 3-D H field waveforms (DC-1 kHz); 3-D

waveforms ranging from an ELF (extremely low frequency)

to VLF (100 Hz to 50 kHz); 1-D wideband E field measure-

ments of plasma and upper hybrid lines (100 kHz to 4 MHz);

and Langmuir probe plasma density and ion gauge neutral-

density measurements at a sampling rate of at least tens of

Hz. The VIPER project will fly a fully 3-D EM field measure-

ment, direct current (DC) through VLF, and relevant plasma

and neutral particle measurements at mid latitudes through

the radiation fields of (1) an existing VLF transmitter (the

very low-frequency shore radio station with the call sign

NAA at Cutler, Maine, USA, which transmits at a frequency

of 24 kHz and an input power of up to 1.8 MW; see Fig. 11)

and (2) naturally occurring lightning transients through and

above the leaky upper boundary of the WGEI. This is sup-

ported by a vigorous theory and modeling effort in order to

explore the vertical and horizontal profile of the observed 3-

D electric and magnetic radiated fields of the VLF transmit-

ter and the profile related to the observed plasma and neutral

densities. The VLF wave’s reflection, absorption and trans-

mission processes as a function of altitude will be searched

making use of the data on the vertical VLF E and H field

profile.

The aim of this experiment will be the investigation of

the VLF beams launched by the near-ground source and

VLF transmitter with the known parameters and propagat-

ing both in the WGEI and leaking from WGEI into the upper

ionosphere. Characteristics of these beams will be compared

with the theory proposed in the present paper and the theory

on leakage of the VLF beams from WGEI, which we will

present in the next papers.

7 Conclusions

1. We have developed the new and highly effective ro-

bust method of tensor impedance for the VLF elec-

tromagnetic beam propagation in the inhomogeneous

waveguiding media: the “tensor impedance method for

modeling propagation of electromagnetic beams” in

a multi-layered and inhomogeneous waveguide. The

main differences and advantages of the proposed ten-

sor impedance method in comparison with the known

method of impedance recalculating, in particular invari-

ant imbedding methods (Shalashov and Gospodchikov,

2011; Kim and Kim, 2016), are the following: (i) our

method is a direct method of the recalculation of ten-

sor impedance, and the corresponding tensor impedance

is determined analytically (see Eq. 22); (ii) our method

applied for the media without non-locality does not

need a solution for integral equation(s), as in the in-

variant imbedding method; and (iii) the proposed ten-

sor impedance method does not need to reveal the for-

ward and reflected waves. Moreover, even the condi-

tions of the radiation in Eq. (12) at the upper boundary

z = Lmax are determined through the total field compo-

nents Hx,y that makes the proposed procedure techni-

cally less cumbersome and practically more convenient.

2. The waveguide includes the region for the altitudes

0 < z < 80–90 km. The boundary conditions are the ra-

diation conditions at z = 300 km, which can be recal-

culated to the lower altitudes as the tensor relations be-

tween the tangential components of the EM field. In an-

other words, the tensor impedance conditions have been

used at z = 80–90 km.

3. The application of this method jointly with the previous

results of the modification of the ionosphere by seismo-

genic electric field gives results which qualitatively are

in agreement with the experimental data on the seismo-

genic increasing losses of VLF wave/beam propagation

in the WGEI.

4. The observable qualitative effect is the mutual transfor-

mation of different polarizations of the electromagnetic

field occur during the propagation. This transformation

of the polarization depends on the electron concentra-

tion, i.e., the conductivity, of the D and E layers of the

ionosphere at altitudes of 75–120 km.
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5. Changes in complex tensors of both volume dielec-

tric permittivity and impedances at the lower and up-

per boundaries of effective the WGEI influence the VLF

losses in the WGEI remarkably.

6. An influence is demonstrated on the parameters charac-

terizing the propagation of the VLF beam in the WGEI,

in particular, the parameter of the transformation po-

larization |Ey/Hy | and tensor impedance at the upper

boundary of the effective WGEI, the carrier beam fre-

quency, and the inclination of the geomagnetic field and

the perturbations in the altitude distribution of the elec-

tron concentration in the lower ionosphere.

(i) The altitude dependence of the polarization param-

eter |Ey/Hy | has two main maxima in the WGEI:

the higher maximum is in the gyrotropic region

above 70 km, while the other is in the isotropic re-

gion of the WGEI. The value of the (larger) sec-

ond maximum increases, while the value of the

first maximum decreases, and its position shifts to

the lower altitudes with increasing frequency. In

the frequency range of ω = (0.86–1.14) ×105 s−1,

at the higher frequency, the larger maximum polar-

ization parameter corresponds to the intermediate

value of the angle θ = 45◦; for the lower frequency,

the largest value of the first (higher) maximum cor-

responds to the nearly vertical direction of the geo-

magnetic field. The total losses increase monotoni-

cally with increasing frequency and depend weakly

on the value of θ (Fig. 1).

(ii) The change in the concentration in the lower

ionosphere causes a rather nontrivial effect on

the parameter of the polarization transformation

|Ey/Hy |. This effect does include the increase and

decrease of the maximum value of the polariza-

tion transformation parameter |Ey/Hy |. The corre-

sponding change of this parameter has large values

from dozens to thousands of a percent. In the case

of a decreasing electron concentration, the main

maximum of |Ey/Hy | appears in the lower atmo-

sphere at an altitude of around 20 km. In the case of

an increasing electron concentration, the main max-

imum of |Ey/Hy | appears near the E region of the

ionosphere (at the altitude around 77 km), while the

secondary maximum practically disappears.

(iii) The real and imaginary parts of the surface

impedance at the upper boundary of the WGEI

have a quasi-periodical character with the ampli-

tude of “oscillations” occurring around some ef-

fective average value decreases with an increas-

ing angle of θ . Corresponding average values of

Re(Z11) and Im(Z11), in general, decrease with an

increasing angle of θ . Average values of Re(Z11)

for θ equal to 5, 30, 45 and 60◦ and Im(Z11) cor-

respond to θ equal to 45 and 60◦, and these in-

crease with an increasing frequency in the consid-

ered frequency range of 0.86–1.14 ×105 s−1. The

average value of Im(Z11) corresponds to θ equal to

5 and 30◦ and changes in the frequency range of

0.86–1.14 ×105 s−1 non-monotonically while hav-

ing maximum values around the frequency of 1–

1.1 ×105 s−1.

(iv) The value of finite impedance at the lower Earth–

atmosphere boundary of the WGEI quite observ-

ably influences the polarization transformation pa-

rameter minimum near the E region of the iono-

sphere. The decrease of surface impedance Z at the

lower Earth–atmosphere boundary of the WGEI in

two orders causes the increase of the corresponding

minimum value of |Ey/Hy | in ∼ 100 %.

7. In the range Lz ≤ z ≤ Lmax, where Lz = 85km is the

upper boundary of the effective WGEI, all field com-

ponents (a) are at least one order of altitude less than

the corresponding maximal value in the WGEI and

(b) have the oscillating character (along the z coor-

dinate), which describes the modes leaking from the

WGEI. The detail consideration of the electromagnetic

waves leaking from the WGEI will be presented in a

separate paper. The initial distribution of the electro-

magnetic field with z (vertical direction) is determined

by the initial conditions on the beam. This field in-

cludes higher eigenmodes of the WGEI. The higher-

order modes, in distinction to the lower ones, have quite

large losses and practically disappear after a beam prop-

agation for 1000 km distance. This circumstance deter-

mines the change in altitude (z) distribution of the field

of the beam during its propagation along the WGEI. In

particular, at the distance of x = 600 km from the beam

input, the few lowest modes of the WGEI along z co-

ordinates still survived. Further, at x = 1000 km, prac-

tically, only the main mode in the z direction remains.

This fact is reflected in a minimum number of oscilla-

tions of the beam field components along z at a given

value of x.

8. The proposed propagation of VLF electromagnetic

beams in the WGEI model and results will be use-

ful to explore the characteristics of these waves as

an effective instrument for diagnostics of the influ-

ences on the ionosphere from above in the Sun–solar-

wind–magnetosphere–ionosphere system; from below

from the most powerful meteorological, seismogenic

and other sources in the lower atmosphere and litho-

sphere and Earth, such as hurricanes, earthquakes and

tsunamis; from inside the ionosphere by strong thun-

derstorms with lightning discharges; and even from far

space by gamma flashes and cosmic rays events.
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Appendix A: The matrix coefficients included in

Eq. (16)

Here the expressions of the matrix coefficients are presented

that are used in the matrix factorization to compute the tensor

impedance (see Eq. 16).
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Data availability. The VLF–LF data (Fig. 11) are property of the

Shmidt Institute of Physics of the Earth and the University of

Sheffield groups, and they are not publicly accessible. Accord-

ing to an agreement between all participants, we cannot make

the data openly accessible. Data can be provided under commer-

cial conditions via direct request to rozhnoi@ifz.ru. The iono-

spheric data used for modeling the electrodynamics characteristics

of the VLF waves in the ionosphere are shown in part in Fig. 5

(namely, the altitude distribution of the electron concentration). The

other data necessary for the determination of the components of

tensor of dielectric permittivity and the electrodynamics model-

ing in the accepted simple approximation of the three-component

plasma-like ionosphere (including electron, one-effective-ion and

one-effective-neutral components) and quasi-neutrality are men-

tioned in Sect. 3.1. The corresponding ionospheric data have been

taken from well-known published handbooks referred in the pa-

per (Al’pert, 1972; Alperovich and Fedorov, 2007; Kelley, 2009;

Schunk and Nagy, 2010; Jursa, 1985).
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