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Radiative forcing is a fundamental quantity for understanding anthropogenic and natural drivers 8 

of past and future climate change
1
.  Yet significant uncertainty remains in our quantification of 9 

radiative forcing and model representation of it
2-4

.  Here, we use instrumental measurements of 10 

historical global-mean surface temperature change and Earth�s total heat uptake, alongside 11 

estimates of the Earth�s radiative response, to provide a top-down energy budget constraint on 12 

historical (1861-1880 to near-present) effective radiative forcing of 2.3 (1.7 to 3.0) [5-95%] Wm
-2

.  13 

This represents a near 40% reduction in the 5-95% uncertainty range assessed by the IPCC Fifth 14 

Assessment Report
2
.  Although precise estimates of effective radiative forcing in models do not 15 

widely exist, our results suggest that the effective radiative forcing may be too small in as many as 16 

one third of CMIP5 climate models.  Improving model representation of radiative forcing should 17 

be a priority for modelling centres.  This will reduce uncertainties in climate projections that have 18 

stubbornly remained for decades
4,5

. 19 

Radiative forcing is a measure of the extent to which anthropogenic activities (such as emissions of 20 

carbon dioxide or other greenhouses gases) or natural events (such as volcanic eruptions) alter the 21 

flows of energy entering and leaving the Earth�s climate system
6
.  It is the driver of most other 22 

climate changes that follow - whether these be changes in temperature, rainfall or extreme events.  23 

It is useful for predicting changes in global-mean surface-air-temperature, ȴT (K), due to its 24 

representation in the Earth�s energy budget
7
, where in response to an effective radiative forcing, F 25 

(Wm
-2

), the change in planetary energy imbalance, ȴN (Wm
-2

), is given by, 26 

ȴN = F � ʄȴT (1) 27 

where ʄ (Wm
-2

 K
-1

) is the climate feedback parameter and measures the extent to which the climate 28 

system radiates heat back out to space in response to ȴT.  Note that here we regard F as an 29 

�effective radiative forcing� that is consistent with recent developments in the forcing-feedback 30 

paradigm
2,7 

(Methods). 31 

Typically Eqn (1) has been used to constrain ʄ and the Earth�s effective climate sensitivity from 32 

observed changes in ȴT and ȴN over the historical record
8,9

, assuming some estimate of historical F.  33 

Here we turn this around
3,10

, utilizing new estimates of ʄ in conjunction with observed estimates of 34 

ȴT and ȴN to constrain F.  Importantly the generality of Eqn (1) has recently been questioned, since 35 

ȴN and ʄ have been shown to depend on the spatial structure of surface temperature change
11-16

, 36 

but our approach uniquely accounts for this by using ʄ estimates that are consistent with the 37 

observed geographical patterns of historical climate change, which we call ʄhist.  ʄhist is also estimated 38 

independently of F. This is important because previous studies that employed Eqn (1) to estimate 39 

radiative forcing have necessarily needed to fit F and ʄhist together, leading to difficulty constraining 40 

either term accurately from the historical record
17

. 41 
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Table 1: Comparison of historical (1861-1880 to 2011) effective radiative forcing (ERF) values 42 

assessed by IPCC AR5
2
 and inferred from CMIP5 climate models

3,29
 against our energy budget 43 

constraint (1861-1880 to 2005-2015).  Uncertainties are 5 to 95%.  Also shown are sensitivity tests 44 

to assumptions in our methodology (Methods). 45 

 Total forcing Aerosol forcing 

IPCC AR5 assessed range of ERF 2.2 (1.0 to 3.2) -0.7 (-1.7 to +0.1)

CMIP5 climate model range of inferred ERF 1.9 (1.0 to 2.8) -1.2 (-1.7 to -0.7) 

This study�s historical energy budget constraint on ERF 2.3 (1.7 to 3.0) -0.8 (-1.6 to +0.1)

This study with 1850-1900 baseline 2.3 (1.7 to 3.1) -0.7 (-1.5 to +0.1) 

This study with 2005-2017 present-day 2.4 (1.7 to 3.1) -0.7 (-1.5 to +0.2)

This study with blended SST and SAT anomalies 2.2 (1.5 to 2.9) -0.9 (-1.7 to -0.1)

This study with +0.1 Wm
-2

 larger pre-industrial heat uptake 2.2 (1.6 to 2.9) -0.9 (-1.7 to 0.0) 

This study with 50% inflation in ʄhist uncertainty 2.3 (1.5 to 3.2) -0.8 (-1.7 to +0.3) 
 46 

We define our pre-industrial baseline as 1861-1880 (inclusive)
18

 and present-day to be 2005-2015 47 

(inclusive) in order to agree with the time period of recently observed energy flows
19

 and readily 48 

allow comparisons to Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC 49 

AR5) �present-day� (year 2011) assessed radiative forcings and their uncertainties
2
.  For ȴT we use 50 

global-annual-mean temperature anomalies derived from blended sea-surface-temperatures (SST) 51 

(over oceans) and surface-air-temperatures (SAT) (over land) with complete global coverage
20

 scaled 52 

to a SAT anomalies (see Methods).  For 2005-2015 minus 1861-1880, this gives ȴT = 0.98 ± 0.20 [5-53 

95%] K, where the uncertainty accounts for both instrumental errors and internal variability
9,18

.  For 54 

the Earth�s energy imbalance we take the present-day (2005 to 2015) observed value of 0.71 ± 0.10 55 

[5-95%] Wm
-2

 from Johnson et al.
19

, derived from in-situ ocean observations with near-global 56 

coverage. For the change in imbalance, ȴN, we allow for a pre-industrial value of 0.10 Wm
-2

 57 

following Forster
21

, giving ȴN = 0.61 ± 0.35 [5-95%] Wm
-2

, where the uncertainty is based on model 58 

ensemble spread (see Methods). 59 

For ʄhist we use a suite
22

 of Atmospheric General Circulation Models (AGCMs) forced with observed 60 

(AMIP II boundary conditions
23

) changes in monthly SST and sea-ice variations from 1871 to 2010.  61 

AGCMs forced in this way � while keeping all forcing agents such as greenhouse gases and aerosols 62 

constant � allows a straightforward way of calculating the radiative response to changes in observed 63 

SST and sea-ice that occurred over the historical period from a single linear fit between ȴN and ȴT 64 

over the entire historical period
13,14,22

 (Methods).  When constrained by real world SST and sea-ice, 65 

AGCM radiative feedbacks represent the flux anomalies that occur in response to real world 66 

historical SST and sea-ice variations, and compare extremely well against observations over a range 67 

of surface temperature patterns on interannual (e.g. in response to ENSO) to decadal timescales
14,24-

68 
26

.  While no single model can be assumed to reproduce ʄhist precisely, Andrews et al.
22

 give ʄhist = 69 

1.74 ± 0.48 [5-95%] Wm
-2

 K
-1

 across a model ensemble of eight AGCMs, which we use here for our 70 

ʄhist and its uncertainty.  While this uncertainty is derived from model spread from a limited set of 71 

models, it is expected to cover a similar uncertainty to that which would arise from a larger model 72 

ensemble, but it does not include structural uncertainties related to model error (Methods). 73 

The principle value of using ʄhist derived from AGCMs forced with the observed patterns of SST and 74 

sea-ice variations is that it ensures that the resulting ʄhist is consistent with the geographical patterns 75 

of historical temperature change that gave rise to the non-radiative forcing component of the 76 

observed ȴN values (i.e. ʄȴT).  This is crucial since ȴN and ʄ have been shown to depend on the 77 

spatial structure of surface temperature change
11-16

. Our approach ensures ʄhist and ȴN are 78 
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consistent with the same observed SST pattern, regardless of how the pattern of historical 79 

temperature change arose � whether it be affected by internal variability, different timescale 80 

responses in the climate system or due to specific impacts of spatiotemporal variations in 81 

anthropogenic or natural forcings (Methods). Our approach assumes that applying our method to 82 

different realisations of internal variability in historical climate change would result in the same F 83 

(Methods). In contrast, assuming a ʄ derived from any non-observed pattern of climate change, such 84 

as from CO2 forced climate sensitivity experiments, may be inaccurate for use over the historical 85 

record due to differences in temperature patterns � and so feedbacks � between the observed 86 

historical record and those simulated under long-term CO2 forced climate change
13,14,16

.  87 

To generate our constraint on F we randomly sample (with replacement) 1 million times from the 88 

Gaussian distributions of ȴT, ȴN and ʄhist to calculate F = ȴN + ʄhistȴT.  The resulting values are binned 89 

into intervals of 0.02 Wm
-2 

and normalised to produce a probability density function (PDF), excluding 90 

values outside ±10 Wm
-2

 (this choice has no impact on our results).  The resulting PDF (Figure 1, 91 

black line) gives a total forcing (median) of 2.3 (1.7 to 3.0) [5-95%] Wm
-2

 (Table 1) and is very nearly - 92 

though not quite - Gaussian.  IPCC AR5 assessed various lines of evidence on radiative forcing, 93 

including (but not exclusively) (i) line-by-line radiative transfer calculations and laboratory 94 

measurements of spectral absorption; (ii) bottom-up process understanding of radiative forcing and 95 

rapid �adjustment� mechanisms; (iii) satellite observations of radiative fluxes and aerosol-cloud 96 

properties; and (iv) a range of climate modelling from high resolution cloud-resolving simulations to 97 

complex global AGCMs.  They assessed the anthropogenic radiative forcing (corrected to an 1861-98 

1880 baseline, see Methods) to be 2.2 (1.0 to 3.2) [5-95%] Wm
-2

.  We have independently arrived at 99 

a similar best estimate, derived simply from a top-down energy budget constraint, but with a near 100 

40% reduction in the 5-95% uncertainty range and a substantial reduction in the probability of 101 

radiative forcings at the lower end of the IPCC AR5 range (the 5
th

 percentile increases from 1.0 to 1.7 102 

Wm
-2

) (Table 1 and Figure 1). 103 

How well do climate models represent effective radiative forcing?  Radiative forcings are not 104 

currently directly calculated in models and so must be inferred indirectly.  Forster et al.
3
 estimated 105 

the historical F of 23 Atmosphere Ocean General Circulation Models (AOGCMs) that participated in 106 

CMIP5 using a similar energy budget approach to that used here, but with the limitation of 107 

necessarily having to assume a ʄ diagnosed from long-term CO2 quadrupling climate sensitivity 108 

experiments (ʄ4x) rather than a more accurate model specific ʄhist.  This has the potential to bias 109 

model estimates of F low if ʄ4x < ʄhist in AOGCMs (see Methods).  They inferred a modelled F of 1.9 110 

(1.0 to 2.8) [5-95%] Wm
-2

. This falls within the IPCC AR5 5 to 95% uncertainty (Table 1; Figure 1), but 111 

compared to our tighter constraint the effective radiative forcing may be too small in as many as one 112 

third (8 out of 23) CMIP5 AOGCMs (Table 1; Figure 1), i.e. below our 5
th

 percentile (1.7 Wm
-2

). 113 

However no model has an F above our 95
th

 percentile (3.0 Wm
-2

). 114 

The radiative effect of changes in anthropogenic aerosol forcing � in particular from aerosol-cloud 115 

interactions � has long been identified as the largest source of uncertainty in anthropogenic 116 

radiative forcing
2
 and some argue

27,28
 it is overly negative in models.  Our top-down energy budget 117 

constraint does not distinguish between individual drivers of climate change.  However by assuming 118 

a distribution on the non-aerosol forcings (3.06 ± 0.45 [5-95%] Wm
-2

, Methods) we arrive at a 119 

residual aerosol forcing of -0.8 (-1.6 to +0.1) [5-95%] Wm
-2

.  This is in good agreement with the IPCC 120 

AR5 assessment (Table 1; Figure 1), providing further confidence in this range.  In comparison to 121 

nine CMIP5 models assessed by Zelinka et al.
29

 (see Methods) nearly all (8 out of 9) models have an 122 

aerosol forcing in the lower (strongly negative) half of this distribution (Figure 1; Table 1). 123 
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We check the robustness of our energy budget constraint on F to various assumptions and structural 124 

uncertainties with sensitivity tests (Methods and Table 1).  For example using different time-periods 125 

for the pre-industrial or present-day increases F by no more than 0.1 Wm
-2

 (Methods and Table 1).  126 

Allowing for a larger pre-industrial energy imbalance, for example up to the maximum estimate of 127 

0.2 Wm
-2

 suggested by Gregory et al.
8
, simply shifts our forcing distributions by a corresponding 128 

amount (i.e. -0.1 Wm
-2

 in this case, Methods and Table 1).  Inflating our uncertainty in ʄhist by 50% (to 129 

test the sensitivity of our results to unknown structural model errors) changes our constraint by no 130 

more than ±0.2 Wm
-2

 (Methods and Table 1) and even against this increased 5-95% confidence 131 

interval nearly one third (7 out of 23) of CMIP5 models still have estimated forcings below this range. 132 

Here we have provided a top-down energy budget constraint on effective radiative forcing since pre-133 

industrial times. The novel step is to recognise that instrumental measurements of historical global-134 

mean surface temperature change and Earth�s total heat uptake can be combined with 135 

reconstructions of the Earth�s radiative response � derived from AGCMs forced with observed spatial 136 

patterns of historical SST and sea-ice change � to constrain historical effective radiative forcing. 137 

AGCMs constrained in this way provide a useful constraint on the Earth�s radiative feedback over the 138 

historical period and compare extremely well against observations over a range of surface 139 

temperature patterns on interannual to decadal timescales
14,24-26

.  However the use of models 140 

inevitably leaves the potential for structural errors in our constraint, such as unknown model bias in 141 

ʄhist.  Still, our energy budget constraint suggests that as many as one third of CMIP5 climate models 142 

may have historical radiative forcings that are too small, and nearly all have an aerosol forcing in the 143 

lower (strongly negative) half of our aerosol forcing constraint. It has been suggested
27

 that aerosol 144 

forcing is overly negative in models, perhaps due to missing liquid water path �buffering� processes 145 

seen in comparisons to observations
28,30

.  Alternatively a potentially weak total forcing could 146 

additionally arise from positive greenhouse gas forcings that are too weak in models
31

 or other 147 

uncertainties such as a strong negative land-use forcing seen in some Earth system models
32

. 148 

If historical forcing is too weak in models then they may struggle to accurately simulate historical 149 

temperature trends
3,33

 or have compensating inaccuracies in their historical heat uptake or effective 150 

climate sensitivities
34

.  Inaccuracies in coupled atmosphere-ocean simulations of ʄhist might be 151 

expected given AOGCMs struggle to simulate recent decadal temperature trends in the Pacific
14,16

, 152 

but does not necessarily imply their long-term sensitivity to CO2 is inaccurate
22

.  Improved simulation 153 

of historical effective radiative forcing benchmarked against our energy budget constraint would 154 

help reduce one aspect of uncertainty in simulated historical temperature trends; improving the 155 

detection and attribution of climate change
35

 and better illuminating model diversity in transient 156 

heat uptake and climate sensitivity processes that could be more readily evaluated against observed 157 

temperature trends.  Since effective radiative forcings are not routinely diagnosed directly in models 158 

various methods have been developed to infer them, and some assumptions � such as assuming 159 

invariance in feedbacks
3
 � may lead to inaccuracies or even biases in the inferred model forcings, 160 

such as those reported for CMIP5 models.  In the future, participation by modelling centres in the 161 

Radiative Forcing Model Intercomparison Project
5
 (RFMIP) will relieve this issue, since historical 162 

effective radiative forcing will be directly diagnosed from models.  This will reveal model uncertainty 163 

in radiative forcing in a more accurate and comprehensive way, enabling a rigorous comparison to 164 

process understanding, observations and top-down energy budget constraints as presented here. 165 

Significant uncertainty in the model representation of radiative forcing remains
3-5

 and our energy 166 

budget constraint will enable model improvements aimed at reducing this spread, thus reducing 167 

uncertainty in projections of 21
st

 century radiative forcing and climate change
4
. 168 

 169 
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Figure Captions 259 

Figure 1: Historical effective radiative forcing (1861-1880 to near-present) derived from an energy 260 

budget constraint compared to that assessed by IPCC AR5 and inferred from CMIP5 climate 261 

models.  (black) Historical effective radiative forcing (1861-1880 to near-present) probability 262 

distribution function derived from historical energy budget constraints (Eqn 1). (Blue) the aerosol 263 

component.  (Red) IPCC AR5 assessed range
2
 of historical effective radiative forcing and (gray) 264 

inferred CMIP5 climate model effective radiative forcings
3,29

.  Gray dots represent individual CMIP5 265 

models.  Lines and bars represent the best estimate and 5-95% confidence interval. 266 

  267 
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Methods 268 

Effective radiative forcing (ERF): Radiative forcing can be measured in different ways and ERF is now 269 

a widely adopted definition
2,5,7

.  ERF not only includes the instantaneous radiative effect of a change 270 

in forcing agent (such as the immediate reduction in outgoing radiation to space in response to 271 

increased greenhouse gases) but also any other responses to forcing that are not mediated by the 272 

global-mean surface-air-temperature change, ȴT.  Examples of such �adjustments� include aerosol-273 

cloud interactions and stratospheric temperature adjustment.  Sherwood et al.
7
 provide a 274 

pedagogical review of these recent developments.  We regard our constraint on F to be appropriate 275 

to ERF since we use a feedback parameter (ʄ) consistent with the ERF framework, so that ʄȴT in Eqn 276 

(1) accounts for ȴT-mediated component of ȴN. 277 

Global surface-air-temperature data: We use the Cowtan and Way
20

 global-annual-mean 278 

temperature anomaly dataset derived from blended sea-surface-temperatures (SST) (over oceans) 279 

and surface-air-temperatures (SAT) (over land) with complete global coverage (https://www-280 

users.york.ac.uk/~kdc3/papers/coverage2013/had4_krig_annual_v2_0_0.txt; accessed 16
th

 May 281 

2019).  Blended SST and SAT datasets will understate the magnitude of historical warming relative to 282 

a SAT only definition
18,36

 of ȴT as demanded by Eqn (1).  We allow for this following Richardson et 283 

al.
16

, who found that climate models closely agreed on a scaling of ~1.09 from blended historical SST 284 

and SAT anomalies to SAT anomalies.  For 2005-2015 minus 1861-1880 (inclusive), the Cowtan and 285 

Way
20

 dataset gives a historical temperature anomaly of 0.90 K, which - after scaling to SAT - gives 286 

ȴT = 0.98 ± 0.20 [5-95%] K, where the uncertainty is taken from Richardson et al.
16 

and Otto et al.
9
 287 

and accounts for both instrumental errors and internal variability. 288 

Planetary energy imbalance data: For the present-day Earth�s energy imbalance we use the 2005 to 289 

2015 observed value of 0.71 ± 0.10 [5-95%] Wm
-2

 from Johnson et al.
19

, derived from in-situ ocean 290 

observations with near-global coverage. Since heat uptake was not observed in the 19
th

 century, 291 

climate and energy balance models must be used to infer the pre-industrial energy imbalance
8,9,37,38

.  292 

Forster
21

 summarise this be around 0.10 Wm
-2

, which we use in our best estimate, but allow for a 293 

large uncertainty which we also take from Forster
21

.  They used 25 AOGCM simulations of historical 294 

ȴN to arrive at a 5 to 95% uncertainty range of 0.33 to 1.04 Wm
-2

, which we approximate as a 295 

Gaussian of ± 0.35 Wm
-2

.  Hence we use ȴN = 0.61 ± 0.35 [5-95%] Wm
-2

.  The total uncertainty is 296 

difficult to quantify formally, but we have allowed for more than most previous studies
9,38

.  The use 297 

of models unavoidably leaves the potential for structural errors and uncertainties, for example from 298 

in the implementation and spin-up of volcanic forcing across models
39

.  Though the impact of 299 

volcanism is partly minimised here, since Forster
21 

used a reference (1860-1880) and final (2000-300 

2012) period that were both volcanically quiet periods. Note also that if the pre-industrial value was 301 

to shift, for example from our assumed 0.1 Wm
-2

 to the maximum estimate of 0.2 Wm
-2

 given by 302 

Gregory et al.
8
, then this simply shifts our forcing distributions by a corresponding amount (0.1 Wm

-2
 303 

in this case, Table 1 and see Sensitivity tests in Methods). 304 

Climate feedback parameter data: For the historical climate feedback parameter, ʄhist, we use the 305 

mean and 5 to 95% uncertainty (ʄhist = 1.74 ± 0.48 [5-95%] Wm
-2

 K
-1

) reported in Andrews et al.
22

 306 

(their ʄamip in Table 1), derived from eight AGCMs forced with observed (AMIP II boundary 307 

conditions
23

) changes in monthly SST and sea-ice variations from 1871 to 2010.  ʄhist represents the 308 

linear fit of ȴN and ȴT from these experiments, calculated from an ordinary least square regression 309 

over the entire time-period
22

 (i.e. 1871 to 2010).  The uncertainty � arising from differences in 310 

atmospheric parameterisations across models � is derived from the model ensemble spread but 311 

does not account for structural uncertainties related to model error and any dependence on the 312 
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underlying SST and sea-ice historical datasets forcing the AGCMs (see Sensitivity tests in the 313 

Methods).  However the uncertainty range is of similar magnitude to that seen in traditional CO2 314 

forced climate sensitivity experiments but shifted towards larger ʄ (smaller climate sensitivity)
22

 (the 315 

standard deviation in ʄ is 0.29 Wm
-2

 across 8 models in Andrews et al.
22

, compared to 0.31 Wm
-2

 316 

across 23 CMIP5 AOGCMs forced by abrupt-4xCO2 in Forster et al.
3
)  Hence we have little reason to 317 

doubt that the small ensemble of models covers a similar uncertainty in feedback that would exist in 318 

a larger ensemble of models. 319 

Insensitivity of F to the pattern of change and variability:  Since ʄhist is derived using observed 320 

patterns of surface temperature change our constraint on F will not depend on what that pattern is 321 

or how it arose, by construction, assuming that the AGCMs can faithfully capture the radiative 322 

response to it. For example, imagine another �realisation� of the real world where global-mean ȴT 323 

was the same but the spatial pattern of internal variability was different over recent decades, so that 324 

the eastern Pacific was warming rather than cooling (with compensating changes elsewhere).  Such a 325 

scenario would plausibly lead to reduced cloudiness in the eastern Pacific due to the local warming 326 

of the marine stratocumulus decks and thus a greater observed ȴN
12,14

.  However this hypothetical 327 

eastern Pacific warming would not bias our estimate of F, since the eastern Pacific warming would 328 

also be included in the boundary conditions to the AGCMs from which ʄhist was derived.  Thus under 329 

this scenario the inferred ʄhist would also be smaller (since the inferred cloud feedback to the 330 

observed pattern of climate change would be different), compensating for the greater ȴN.  By 331 

forcing AGCMs with the observed patterns of historical climate change this ensures ʄhist is 332 

appropriate for the observed ȴN. 333 

Put another way, different historical realisations will generate different values of ȴN and ʄhist for the 334 

same historical F, as seen in the MPI-ESM1.1 100-member �grande ensemble� of historical 335 

simulations analysed by Dessler et al.
40

.  Our approach is analogous to an inverse of this, retrieving 336 

the same F for potentially different combinations of ȴN and ʄhist.  A corollary of this interpretation is 337 

that variability in surface temperature patterns affect heat uptake and feedbacks in a way that is 338 

anti-correlated.  This could be tested by applying our methodology to a grande ensemble of 339 

historical simulations, provided a corresponding ensemble of analogous amip-piForcing
22

 simulations 340 

(but using the model ensemble generated SST and sea-ice boundary conditions) was generated to 341 

diagnose each ensemble member�s ʄhist.  This approach might provide a useful way to further 342 

explore the relationship between regional changes in surface temperature patterns, heat uptake and 343 

radiative feedbacks
41-43

. 344 

IPCC AR5 radiative forcings: IPCC AR5 assessed
2
 the total anthropogenic effective radiative forcing 345 

over the industrial era (1750 to 2011) to be 2.3 (1.1 to 3.3) Wm
-2

.  To compare against our values we 346 

correct the baseline (i.e. 1750 to 1861-1880) by subtracting 0.09 Wm
-2

 to account for the total 347 

anthropogenic forcing over this period (IPCC AR5 Table AII.1.2).  Similarly, IPCC AR5 assessed the 348 

total aerosol effective radiative forcing to be -0.9 (-1.9 to -0.1) Wm
-2

, to which we add 0.21 Wm
-2

 to 349 

account for the aerosol forcing between 1750 to 1861-1880 (IPCC AR5 Table AII.1.2).  We ignore the 350 

small component from natural forcings in this comparison. 351 

CMIP5 model radiative forcings: The CMIP5 mean and 5-95% range of 23 CMIP5 models� total 352 

historical effective radiative forcings are taken from Forster et al.
3
 (their Table 2, �hist 2003� column). 353 

An offset of 0.2 Wm
-2

 has been applied, since Forster et al.
3
 calculated the CMIP5 historical forcings 354 

at year 2003 rather than 2011.  The 0.2 Wm
-2

 accounts (primarily) for the growth of CO2 between 355 

2003 and 2011, derived from the recent decadal trend in forcing of 0.25 Wm
-2

 dec
-1

 given by Myhre 356 

et al.
2
 (i.e. adjusting to 2011 gives an offset of 8.0*0.25/10.0=0.2 Wm

-2
).  Forster et al.

3
 estimated 357 

the model historical forcings by first diagnosing a feedback parameter from long-term (150yrs) 358 
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abrupt-4xCO2 experiments (ʄ4x), and assuming it applied equally to the models� historical simulations 359 

(ʄhist).  If ʄ4x < ʄhist (i.e. climate sensitivity larger in an AOGCMs abrupt-4xCO2 simulations compared to 360 

its historical simulation
44

) then this could bias low the model forcing estimates given in Forster et al.
3
 361 

and so hamper the comparison to our energy budget constraint.  However they showed their 362 

estimate of model radiative forcing was largely robust to this in a single model.  Gregory et al.
45

 363 

estimated the CMIP5 AOGCM-mean ʄhist to be 1.27 Wm
-2

 K
-1

, which is slightly larger than the mean 364 

ʄ4x of CMIP5 AOGCMs given by Forster et al.
3
 (ʄ4x=1.13 Wm

-2
 K

-1
). If this difference is representative 365 

of the �pattern effect� between historical and abrupt-4xCO2 simulations in AOGCMs it suggests the 366 

forcing estimates of Forster et al.
3
 may be biased low by ~0.14 Wm

-2
 in the multi-model mean, given 367 

their AOGCM-mean historical dT of ~1.0 K.  Future participation by modelling centres in RFMIP
5
 will 368 

address this bias uncertainty across the model ensemble in a more definitive way. 369 

The CMIP5 mean and 5-95% range of 9 CMIP5 models� aerosol effective radiative forcings are taken 370 

directly from Zelinka et al.
29

 (their Table 1).  While Zelinka et al.
29

 assessed the model aerosol 371 

radiative forcing at year 2000, the total global-mean aerosol effective radiative forcing has changed 372 

little
2
 between then and 2011.  The model aerosol forcing estimates have been derived from fixed-373 

SST experiments, and so do not suffer from the uncertainty arising from assuming an invariant 374 

feedback parameter. 375 

Non-aerosol radiative forcings: The non-aerosol radiative forcing distribution, calculated over 2005-376 

2015 minus 1861-1880, is derived from the forcing dataset described in Dessler and Forster
46

. This is 377 

an updated and improved version of the IPCC AR5 forcing and its uncertainty.  For example the 378 

radiative forcing formula for CO2, N2O and CH4 has been updated according to Etminan et al.
31

.  See 379 

Dessler and Forster
46

 for details. 380 

Sensitivity Tests:  We check the robustness of our energy budget constraint on F to various 381 

assumptions and structural uncertainties with sensitivity tests.  (1) The period regarded as �pre-382 

industrial� is often ill-defined
47,48

.  We repeat our calculations using an 1850-1900 pre-industrial 383 

baseline instead, which gives ȴT = 1.00 ± 0.20 [5-95%] K.  (2) Updating our definition of �present-day� 384 

to include the most recent data (13 year average, 2005-2017, centred on 2011) gives ȴT = 1.02 ± 385 

0.20 [5-95%] K.  In either case, the slight upward revision of ȴT relative to the reference calculation 386 

increases the radiative forcing by no more than 0.1 Wm
-2

 (Table 1).  (3) If we ignore the 1.09 scaling 387 

from Richardson et al.
18

 to adjust the blended SST-SAT temperature dataset
20

 to SAT, then ȴT = 0.90 388 

± 0.20 [5-95%] K, but the forcing and its uncertainty is reduced by no more than 0.2 Wm
-2

 (Table 1).  389 

(4) If we allow for a larger pre-industrial energy imbalance than the 0.1 Wm
-2

 assumed here, for 390 

example up to the maximum estimate of 0.2 Wm
-2

 suggested by Gregory et al.
8
, then ȴN = 0.51 ± 391 

0.35 [5-95%] Wm
-2

, but this simply shifts our forcing distributions by a corresponding amount (-0.1 392 

Wm
-2

, Table 1). There are other structural uncertainties harder to quantify.  For example (5) the 393 

fidelity of our distribution on ʄhist will somewhat depend on the underlying SST and sea-ice boundary 394 

conditions that forced the AGCMs from which ʄhist was derived.  Andrews et al.
22

 showed that in two 395 

AGCMs ʄhist was largely insensitive to two different SST datasets, but did depend on assumptions on 396 

the pre-industrial Antarctic sea-ice fractions that are extremely hard to constrain from 397 

observations
49

. For example HadISST2.1
49

 sea-ice trends result in southern hemisphere radiative 398 

feedbacks that are difficult to reconcile with physical understanding of surface albedo feedbacks and 399 

those found in AOGCMs
22,50

.  We therefore retain the ʄhist distribution from Andrews et al.
22

 based 400 

on the AMIP II SST and sea-ice boundary conditions
23

 as our best estimate.  However even if we 401 

inflate our uncertainty in ʄhist by as much as 50%, our constraints on radiative forcing change by no 402 

more than ±0.2 Wm
-2

 (Table 1) and even against this increased 5-95% confidence interval nearly one 403 

third (7 out of 23) of CMIP5 models still have forcings below this range. 404 
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