
This is a repository copy of Do sophisticated evolutionary algorithms perform better than
simple ones?.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/159919/

Version: Accepted Version

Proceedings Paper:
Foster, M., Hughes, M., O'Brien, G. et al. (4 more authors) (2020) Do sophisticated
evolutionary algorithms perform better than simple ones? In: GECCO 2020: Proceedings
of the Genetic and Evolutionary Computation Conference. GECCO 2020 : Genetic and
Evolutionary Computation Conference, 08-12 Jul 2020, Cancún, Mexico. ACM Digital
Library , pp. 184-192. ISBN 9781450371285

https://doi.org/10.1145/3377930.3389830

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM. This is
an author-produced version of a paper subsequently published in GECCO '20:
Proceedings of the 2020 Genetic and Evolutionary Computation Conference. Uploaded in
accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Do Sophisticated Evolutionary Algorithms Perform Beter
than Simple Ones?

Michael Foster, Matthew Hughes, George O’Brien, Pietro S. Oliveto, James Pyle, Dirk Sudholt,
James Williams

Department of Computer Science, University of Sheield, Sheield, UK

ABSTRACT

Evolutionary algorithms (EAs) come in all shapes and sizes. The-

oretical investigations focus on simple, bare-bones EAs while ap-

plications often use more sophisticated EAs that perform well on

the problem at hand. What is often unclear is whether a large de-

gree of algorithm sophistication is necessary, and if so, how much

performance is gained by adding complexity to an EA. We address

this question by comparing the performance of a wide range of

theory-driven EAs, from bare-bones algorithms like the (1+1) EA,

a (2+1) GA and simple population-based algorithms to more so-

phisticated ones like the (1+(�, �)) GA and algorithms using fast

(heavy-tailed) mutation operators, against sophisticated and highly

efective EAs from speciic applications. This includes a famous

and highly cited Genetic Algorithm for the Multidimensional Knap-

sack Problem and the Parameterless Population Pyramid for Ising

Spin Glasses and MaxSat. While for the Multidimensional Knapsack

Problem the sophisticated algorithm performs best, surprisingly, for

large Ising and MaxSat instances the simplest algorithm performs

best. We also derive conclusions about the usefulness of popula-

tions, crossover and fast mutation operators. Empirical results are

supported by statistical tests and contrasted against theoretical

work in an attempt to link theoretical and empirical results on EAs.

1 INTRODUCTION

Numerous successful applications of Evolutionary Algorithms (EAs)

to real world optimisation problems have been reported (see, e. g. [1,

4, 13]). Nevertheless, the reasons behind these successes are not

well understood. In particular, given an optimisation problem, it

is diicult to predict which class of EAs will be successful for that

application and which parameter settings to use.

Considerable advances have been made in the theoretical anal-

ysis of EAs in recent years. Nowadays it is possible to rigorously

analyse the time complexity of sophisticated EAs using popula-

tions, mutation, crossover and several elitist and stochastic selection

mechanisms [6]. Such results are available for standard algorithms

including the simple genetic algorithm (SGA) [22, 23] introduced

by Goldberg [14] and standard steady state GAs [7, 9, 19, 27]. How-

ever, most of these analyses are performed for simple benchmark

functions, such as OneMax and LeadingOnes, designed to cap-

ture speciic characteristics of optimisation problems. Such results

do not yet allow us to draw conclusions on the performance of

standard EAs for more realistic optimisation problems.

Classical NP-hard combinatorial optimisation problems make

more realistic testbeds for estimating the performance of EAs. Con-

cerning such problems, though, most of the available theoretical re-

sults relate to extremely simpliied EAs that do not use populations

or crossover operators [21]. As a result, the current understanding

of the performance of realistic EAs for combinatorial optimisation

relies on the vast array of available experimental results [1, 4, 13].

To counteract the lack of understanding of EA behaviour, trial

and testing of various algorithms and parameter settings is gener-

ally required to identify an algorithm with satisfying performance.

Overall, by searching for an algorithm that produces good solutions

in short time, such eforts efectively tailor the algorithm to the

problem. At the same time some of the generality of EAs is lost, al-

though their general applicability (i.e., their problem independence)

is one of the major advantages and strengths of EAs.

Most experimental papers only report the inal sophisticated

algorithm tailored to the problem at hand and compare its perfor-

mance to either standard EAs or problem speciic algorithms for

which good performance has been previously reported. A gap is

left between the asymptotic runtime bounds available from theory

concerning simpliied EAs and the experimental results for the

tailored EAs. What is particularly unclear is the amount of gain

achieved by the algorithm sophistication, in terms of how much

better these algorithms perform compared to simple evolutionary

algorithms. In this paper we attempt a irst efort to bridge this gap

by comparing the successful algorithms reported in the literature

for some standard combinatorial optimisation problems against a

range of EAs of increasing complexity. Starting from the bare-bones

(1+1) EA and gradually introducing features of more sophisticated

EAs (i.e., ofspring and parent populations and crossover) up to

standard steady state GAs [13]. We also compare against the perfor-

mance of recent theory-guided EAs such as the (1+(�, �)) GA [10]

and fast GAs [11] that use a heavy-tailed mutation operator. Our

aim is to contribute towards illing in the gap between the available

theoretical and experimental results in evolutionary computation.

Our irst aim was to identify a combinatorial optimisation prob-

lem where a standard EA with parameters tuned appropriately

and the addition of a few problem speciic modiications has excel-

lent performance. For this purpose the Multidimensional Knapsack

Problem (MKP) was selected, for which excellent performance has

been reported for a standard steady state (�+1) GA with genotype

diversity, a problem speciic repair mechanism and specialised ini-

tialisation [2]. Our experimental analysis conirms the very good

performance of the algorithm and reveals how algorithmic features

such as populations, crossover, diversity and higher-than-standard

mutation rates are indeed necessary since simple algorithms with

these features outperform their counterparts without them.

In the second part of the paper we switch our attention to

the recently popular Parameterless Population Pyramid (P3) al-

gorithm [15, 16] that combines hill climbing, a novel population

management strategy and advanced crossover operators inspired by

the Linkage Tree Genetic Algorithm (LTGA) [28]. Without needing

to adjust any parameter values, P3 has been shown to be particularly

GECCO ’20, July 8ś12, 2020, Cancún, Mexico Michael Foster, Mathew Hughes, George O’Brien, Pietro S. Oliveto, James Pyle, Dirk Sudholt, James Williams

successful for standard combinatorial optimisation problems includ-

ing MaxSat and Ising Spin Glasses (ISG) [16]. Surprisingly, our

experiments show that unless global optima are sought (which may

be prohibitive for NP-hard problems) simple bare-bones EAs out-

performmore sophisticated ones including the highly-sophisticated

parameterless algorithms for instances of ISG andMaxSat previ-

ously used in the literature to assess the performance of P3.

The rest of the paper is structured as follows. In the following

section we deine precisely the untailored algorithms and our exper-

imental setup. In Section 3 we report on the comparisons against

the problem-tailored GA for MKP. In Section 4 we present the com-

parisons against the P3 algorithm for the Ising Spin Glass problem

and for MaxSat, respectively. We inish with a summary of the

drawn conclusions.

2 PRELIMINARIES

2.1 Bare-Bones Evolutionary Algorithms

The theory of evolutionary algorithms, particularly the ield of rig-

orous runtime analysis, has focussed on simple, bare-bones versions

of evolutionary algorithms. These algorithms facilitate a theoreti-

cal analysis, while still relecting the basic working principles of

evolutionary algorithms. They also provide an excellent baseline

for including features of evolutionary algorithms (e. g. parent pop-

ulations, ofspring populations, crossover, diversity mechanisms,

etc.). Algorithm 1 shows pseudocode for these algorithms; we use

the term łEAž to indicate that no crossover operator is used and

the term łGAž to indicate algorithms that employ it.

The simple theory-driven algorithms examined in this study

are the (1+1) EA and (� + �) EAs and GAs with various values

of � and �, chosen by performing preliminary experiments. All

these algorithms choose parents uniformly at random from the

population and create ofspring using either crossover andmutation

or mutation only. The crossover operator is a uniform crossover

(i.e., each bit is picked independently from either parent uniformly

at random), for which parents are selected uniformly at random

with replacement. For mutation, standard bit mutation is used:

lipping each of � bits independently with probability 1/�. The inal

selection then picks the best � individuals from the union of the �

ofspring and the � parents.

In addition, modern theory-inspired EAs are investigated in

the form of fast GAs [11] that only difer in the choice of mutation

operator (see Section 2.2) and the (1+(�, �)) GA [10] (see Section 2.3).

2.2 Fast Genetic Algorithms

Traditionally, evolutionary algorithms that use a bit-string repre-

sentation set the mutation rate to be 1/� where � is the length of

the bit-string. For the simple EAs and GAs in this paper we ap-

ply this mutation operator. However, for fast genetic algorithms

[11], a heavy-tailed, random mutation rate �/� is used. This value

is computed once per generation, by selecting � from a discrete

power distribution �
�

�/2
where � > 1. Following [11], we choose

� = 1.5 and � is determined according to Pr(� = �) = �−�/
∑�/2
�=1 �

−� .

Mutation then lips each bit independently with probability �/�.

The result of this approach is a mutation rate that is normally set

to low values, but can occasionally reach very high values.

Algorithm 1 Scheme of (�+�) EA and (�+�) GA

Randomly initialise the initial population with � individuals

Evaluate initial population

while solution not found and max evaluations not reached do

For GA: create � ofspring by choosing � pairs of parents

uniformly at random with replacement and applying uniform

crossover to them

For EA: create � ofspring by copying � individuals chosen

uniformly at random from the population

Mutate ofspring

Evaluate ofspring

Select the best � individuals from the union of parents and

ofspring to form the next generation

Genetic Algorithms using the heavy-tailed mutation operator

were called Fast Genetic Algorithms in [11]. Following this, we

call it the fast mutation operator and refer to the (�+�) EA with

fast mutation as (�+�) Fast-EA and likewise for the (�+�) GA and

(�+�) Fast-GA.

2.3 Self-adjusting (1+(�, �)) GA

The (1+(�, �)) GA [10] features a unique approach to ofspring

production. In each generation a set of � ofspring is produced

from the parent � through mutation and are evaluated. The best

individual � ′ is selected from the ofspring and a crossover step

occurs with � and � ′ as parents. � children from the crossover are

produced, evaluated and the best child � is selected as the inal

ofspring.

Mutation Operator. The (1+(�, �)) GA lips ℓ bits chosen uniformly

at random (u. a. r.) from the parent. In each generation, the step size

ℓ is sampled from a binomial distribution Bin(�, �/�) where �/�

can be regarded as the mutation probability.

Crossover Operator. As previously mentioned, the best ofspring

� ′ is taken from the mutation stage and a crossover operator is

performed between � and � ′ to produce � children. The probability

of a child inheriting a bit from each parent is set to � (�) = 1 − 1/�

and � (� ′) = 1/� respectively. This is designed so that, in most

cases, any ofspring produced will be similar to the original parent.

We use the self-adjusting variant of the (1+(�, �)) GA, shown in

Algorithm 2. For this algorithm, the value of � is reset accordingly

for each generation:

�′ =

{

max(�� , 1) if � (�) > � (�)

min(��
1
4 , �) otherwise

(1)

where � is the update strength and � is the problem size. In our

study we set � = 1.5.

It was observed in [15] and [3] that the self-adjusting (1+(�, �)) GA

algorithm can get stuck if � grows too large. We addressed this by

implementing one of the modiications to the original algorithm

used in [15]: if � ≥ �, where the mutation rate has become 1.0,

search is restarted with � = 1 from a uniform random search point.

Goldman and Punch justify this restart strategy by saying that

łthis point is only reached when the algorithm has stalled for a

signiicant number of generationsž [15].

Do Sophisticated Evolutionary Algorithms Perform Beter than Simple Ones? GECCO ’20, July 8ś12, 2020, Cancún, Mexico

Algorithm 2 Self-adjusting (1+(�, �)) GA [10]

Initialise and evaluate initial parent � ; set � = 1.

while solution not found and max evaluations not reached do

Select step size ℓ from Bin(�, �/�)

for � = 1 to � do

Create ofspring[�] by lipping ℓ bits from � u. a. r.

Select best individual � ′ from ofspring

for � = 1 to � do

ofspring[�] ← crossover(� ′, �)

Select best individual � from ofspring

if � (�) > � (�) then � ← �; � ← max{�/�, 1}

if � (�) = � (�) then � ← �; � ← min{�� 1/4, �}

if � (�) < � (�) then � ← min{�� 1/4, �}

2.4 Experimental Setup

In all experiments we stop each algorithm after a time budget of

10,000 itness evaluations and record averages of the best itness in

the inal population. This scheme is repeated for increasing problem

sizes. The reason for recording the number of function evaluations is

that in practical applications this is often the computationally most

expensive operation. In contrast to wall-clock times, this measure

is also independent from the actual hardware used. Theoretical

runtime analyses conventionally study the number of function

evaluations, giving us a solid baseline for discussing the results.

The time budget of 10,000 itness evaluations is ixed, while

the problem size is varied. This means that for small problems,

we expect all algorithms to ind high-quality solutions with ease,

whereas for large problems we may not expect to ind global optima

in the allotted time. Since we use a range of diferent problem sizes,

our experiments include problems that are easy and hard under

the allocated time budget. This efect is particularly evident for

Ising Spin Glasses andMaxSat, where we will see that the solution

quality deteriorates with increasing problem size (see Section 4).

For the MKP the time budget seems generous enough to allow all

algorithms to ind solutions of reasonable quality (see Section 3); in

fact, the solution quality slightly increases when more objects are

being considered. This might be due to the fact that many objects

ofer more combinations to achieve a good packing of the knapsack.

3 COMPARISON AGAINST A SUCCESSFUL GA

In this section we compare the simple bare bones EAs and GAs

against a more sophisticated GA that has been reported to be suc-

cessful in the literature for the Multidimensional Knapsack Problem.

3.1 The Multidimensional Knapsack Problem

The Multidimensional Knapsack Problem (MKP) aims to maximise

the total value of selected objects without surpassing any of the

constraints of the knapsack. This can be deined more formally as:

Maximise

�
∑

�=1

� �� � subject to

�
∑

�=1

�� �� � < �� for all 1 ≤ � ≤ �

where � is the number of objects,� is the number of constraints,

� � is a one if object � has been put in the bag and a zero otherwise,

� � is the value of object � , �� � is the value of constraint � for object �

and �� is the maximum value of constraint � (e.g. maximum weight).

A well-stated MKP has the additional constraints ∀�, � : � � > 0

and ∀� : �� � ≤ �� <

∑�
�=1 �� � to prevent trivial problems. Any � �

where � � ≤ 0, will never be selected as it does not increase the size

of � �� � . For any � � where �� � > �� , there is never any capacity to

select it. If �� ≥
∑�

�=1 �� � then the entire set of � would it, so there

is no reason to not select all the objects. The itness function is

chosen as
∑�

�=1 � �� � if all constraints are met, and as 0 otherwise.

3.2 Chu and Beasley’s GA

Chu and Beasley [5] introduced a GA incorporating problem spe-

ciic knowledge for theMKP. They presented a thorough experimen-

tal analysis comparing their GA against the state-of-the-art exact

solver CPLEX and several heuristics from the literature (i.e., those

proposed by Magazine and Oguz [20], Volgenant and Zoon [29] and

Pirkul [24]). Chu and Beasley considered a large set of randomly

generated test instances of large size that are diicult to solve ex-

actly. They showed that their proposed GA achieved higher quality

solutions on average using a much lower computational efort than

those produced by CPLEX (the instances were too large thus it

was not computationally tractable for CPLEX to ind the optimal

solutions. CPLEX was stopped when the tree memory exceeded 42

MB or after 1,800 CPU seconds). While the other heuristics termi-

nated earlier than the GA, the latter algorithm produced solutions

of considerably higher quality, still within reasonable time.

Chu and Beasley’s GA is described in Algorithm 3. The algo-

rithm is essentially a standard steady-state (�+1) GA with � = 100,

a slightly higher parent selection pressure than uniform (i.e. size

2 tournament selection), a higher mutation probability than the

standard one, a genotype diversity mechanism and a problem spe-

ciic repair mechanism to ix infeasible solutions before they are

evaluated. While the algorithm is not very diferent from a stan-

dard steady-state GA, we believe the parameters have undergone

considerable tuning for the achievement of the reported results.

Our aim is to compare it with bare-bones algorithms with standard

parameter settings and quantify the diference in performance.

In Chu and Beasley’s GA the population is initialised with a

set of feasible solutions. These are obtained by starting with an

empty knapsack and randomly adding items until adding another

one exceeds a constraint maximum. A binary tournament selection

method is used to select parents for crossover. Tournament selection

works by creating two pools of � individuals and then selecting

the individual with the highest itness from each pool. A binary

tournament uses� = 2. Uniform crossover is used to create the new

ofspring and then each bit is lipped independently with probability

2/�. If the ofspring is already contained in the population, then

it is discarded (genotype diversity). Otherwise it is added to the

population as long as it is a feasible solution and an individual

chosen at random amongst those with the lowest itness is removed.

Since the binary string representation allows the generation of

infeasible solutions (i.e.
∑�

�=1 �� �� � > �� for some ��) after crossover

and mutation are applied, a greedy heuristic was implemented by

Chu and Beasley [5] that guarantees to transform an infeasible

solution into a feasible one. This ensures that only valid solutions

reach the itness function, meaning that it can be deined as simply

� (�) =
∑

� �� � . The repair operator is a heuristic applied to any

individual that is not a feasible solution to the problem. It has two

GECCO ’20, July 8ś12, 2020, Cancún, Mexico Michael Foster, Mathew Hughes, George O’Brien, Pietro S. Oliveto, James Pyle, Dirk Sudholt, James Williams

Algorithm 3 Knapsack GA

Set iterations to 0

Initialise 100 random individuals

Evaluate each individual

Find highest evaluated individual and store as BestSolution

while Iterations < MaxIterations do

Select 2 parents (�1 and �2) using tournaments

Create � from uniform crossover of �1 and �2
Mutate �

Make � feasible with repair operator

if � is duplicate of current population then

Discard �

else

Evaluate �

Remove worst individual from population

if C evaluates better than BestSolution then

Set BestSolution to �

Increment iterations by one

return BestSolution and score of BestSolution

phases: the drop-phase and the add-phase. The drop-phase inds the

biggest object marked with a one and drops it if the bag is overfull.

It repeats this until the knapsack is feasibly illed. The add-phase

then iterates over all objects in the reverse order and adds objects

that are not in the bag if they it. This leaves bags that are always

illed as much as possible in a greedy way, but not overilled.

3.3 Experimental Setup

Since previous MKP test instances from the literature were of small

size and generally easy to solve, Chu and Beasley developed a

large number of randomly generated problem instances to test their

genetic algorithm. They generated a total of 270 problems. The

number of constraints,�, was set to 5, 10, and 30 and the number

of variables, � was set to 100, 250, and 500. The capacity constraints

�� were chosen as �� = �
∑�

�=1 �� � where � is called tightness ratio;

lower values of � lead to more constrained problems. 30 problems

were generated for each (�, �) combination, 10 for each of three

diferent tightness ratios (i.e., � := {0.25, 0.5, 0.75}). The problems

were made available in the OR-library1. For all of the 27 problem

structures (except for 2) Chu and Beasley’s GA performed at least

as well as CPLEX and the average performance across all problems

was much better with considerably lower computation time.

All algorithms use the procedure from Chu and Beasley’s GA [5]

to generate an initial population of feasible solutions. All algorithms

are terminated after 10,000 itness function evaluations. The best

itness value in the inal population is recorded and then averages

across 10 runs for each of the 27 settings are reported.

3.4 Experimental Results

We compare the simple algorithms against Chu and Beasley’s GA

in two diferent settings. In the irst setting no algorithm uses the

repair operator (top part of Figure 1) and in the second they all

use it (bottom part of Figure 1). Each plotted point represents the

best found itness averaged over the 10 instances with parameters

1see http://people.brunel.ac.uk/˜mastjjb/jeb/info.html.

(�, �,�) and normalised to the interval [0, 1] by dividing by the

optimal value of the LP relaxation.

As expected all the algorithms perform much better with the

repair operator than without.

In the following we report on results of statistical tests executed

as follows. We performedWilcoxon signed-rank tests for all pairs of

algorithms where the inal itness values were paired according to

problem instances. We performed two-sided tests to check whether

the two input distributions difer or not, followed by one-sided tests

both ways to conirm which algorithm has the higher mean rank.

We report a comparison as statistically signiicant if the �-values

of the two-sided test and that of the respective one-sided test both

satisied � ≤ 0.01, that is, a conidence level2 of 0.01.

Results without repair. Without repair, Chu and Beasley’s algo-

rithm considerably outperforms all the bare-bones EAs and GAs in

solution quality; all comparisons are statistically signiicant. Con-

cerning the latter, the standard crossover algorithms perform better

than those using only mutation. Amongst the crossover based al-

gorithms, those using both parent and ofspring populations (i.e.,

(20+20) GA and (20+20) Fast-GA) produce better solutions than

those creating only one ofspring per generation (i.e., � = 1). All

these comparisons are statistically signiicant. Figure 1 suggests

that fast mutations are beneicial as the (20+20) Fast-GA seems to

outperform the (20+20) GA on most instances. However, there is

no statistically signiicant diference between these two algorithms.

Fast mutation alone, without populations and crossover, does not

perform better than non-fast mutation-only algorithms. Hence we

cannot conclude that fast mutations are better than non-fast ones.

There is a striking performance gap between switching crossover

on and of. The solution qualities of both the (20+20) GA and

(20+20) Fast-GA are statistically signiicantly higher than those

of the (20+20) EA. Finally, the (1+(�, �)) GA performs statistically

signiicantly worse than all other algorithms, even when restarting

the algorithm to avoid problems with diverging parameter �.

From our experiments it is clear that populations and crossover

are helpful for the problem. However, it is unclear whether the

larger population (i.e. � = 100) suices for Chu and Beasley’s GA

to achieve its performance. Nevertheless, given that crossover is

clearly useful, it would be surprising if the genotype mechanism

was not helping too.

Results with repair. With the repairmechanism, Chu and Beasley’s

algorithm is better than all other algorithms with statistical sig-

niicance, except for the (20+20) Fast-GA. We compared Chu and

Beasley’s algorithm against the (20+20) Fast-GAusingMann-Whitney

� tests for each instance and found that on all instances the results

were either not statistically signiicant or showed a signiicant ad-

vantage for Chu and Beasley. The (20+20) Fast-GA, in turn, was

better than all simple algorithms, except for the (20+20) GA. The

(1+(�, �)) GA ranks joint last (alongside the (20+20) EA), with its

2In the remainder, we use pairwise tests to compare the considered algorithms. We did
not apply Bonferroni correction, hence the conidence level might be increased. The
conidence level of 0.01 was chosen low enough to allow for meaningful conclusions.
We often use pairwise tests to compare groups of algorithms that difer in one design
feature (e.g. comparing algorithms with crossover against their direct counterparts
without crossover, while keeping all other parameters the same). In many such com-
parisons all pairwise tests gave signiicant results in favour of the same group, which
is very strong evidence that one group performs better than the other.

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

Do Sophisticated Evolutionary Algorithms Perform Beter than Simple Ones? GECCO ’20, July 8ś12, 2020, Cancún, Mexico

Figure 1: Averages for the best itness in the inal population for MKP and algorithms without repair (top) and with repair

(bottom). For simple algorithms, circles showmutation-only algorithms and crosses show algorithmswith crossover. Instances

from the OR-library with tightness ratio � , � variables and� constraints are labelled (�, �,�).

performance being statistically signiicantly worse than that of all

other algorithms, except for the (20+20) EA.

3.5 Discussion and Related Theoretical Work

From runtime analysis we know the expected runtime of the bare

bones algorithms for exploitation (OneMax) and at escaping local

optima (Jump) for functions of unitation (i.e. functions that only

depend on the number of 1-bits). The steady-state GAs outperform

the EAs for both OneMax (i.e., with expected runtimes at most

((3/4)� + � (1))� ln� versus at least (� − � (1))� ln� [7]) and Jump

(i.e., with expected runtimes � (��−1 log�) versus Θ(��) [9]).

Furthermore, we essentially also know the expected runtime of

Chu and Beasley’s GA for both OneMax and Jump functions. Since

it is a steady-state (�+1) GA (i.e., � = 100) with genotype diversity

and tournament selection for reproduction we know from [26] that

its expected runtime for OneMax is at most (�/2 + � (1))� ln�. We

also know from the analysis for Jump [18] that if uniform parent se-

lection was used instead of tournament selection then the expected

runtime of Chu and Beasley’s GA to escape a local optimum with

basin of attraction of � bits would be roughly � (4� + ���2). Since

the tournaments are of size 2, selection is approximately uniform.

Hence, for unitation functions we expect the EAs to be outper-

formed by the GAs at hillclimbing and at escaping local optima

and similarly the GAs to be outperformed by Chu and Beasley’s

GA. Interestingly we get similar (at least rank-wise) experimental

results for the NP-hard MKP. While the theoretical results hold for

unitation functions, where diversity may be created via mutation by

swapping the positions of a 0-bit with a 1-bit, MKP clearly does not

display the unitation function characteristics. Also the theoretical

results are related to runtimes until optimal solutions are found

and not to approximate solutions as in the presented experiments.

Nevertheless, we see a similar trend. In Section 4 we will see that for

other NP-hard problems very diferent conclusions may be drawn.

GECCO ’20, July 8ś12, 2020, Cancún, Mexico Michael Foster, Mathew Hughes, George O’Brien, Pietro S. Oliveto, James Pyle, Dirk Sudholt, James Williams

Algorithm 4Main loop of P3 (adapted from [15ś17])

Generate uniform random solution �

Perform local search on �

if � not in pyramid then

Add � to level 0 of the pyramid and update clusters

for all levels � = 0, 1, 2, . . . of the pyramid do

Cluster-based crossover of � with level � to create �

if � (�) > � (�) and � is not in pyramid then

Add � to pyramid level � + 1 and update clusters

� ← �

4 COMPARISON AGAINST A SUCCESSFUL
PARAMETERLESS ALGORITHM

Wenow compare the bare-bones EAs andGAs against the Parameter-

less Population Pyramid (P3), a parameterless algorithm for which

good results have been reported for the Ising Spin Glasses problem

andMaxSat amongst others.

P3 is a genetic algorithm conceived by Goldman and Punch [15],

notable by the fact that it does not use conventional generations of

a solution population. The model instead uses a pyramid-like set of

sorted populations. It utilises a combination of local search and an

advanced crossover operator taken from the Linkage Tree Genetic

Algorithm (LTGA) [28] that tries to cluster variables to identify sets

of bits that should be kept together during crossover operations. P3

was designed as a method for performing evolutionary optimisa-

tion without requiring any user-speciied parameters [16], and it

showed excellent performance results in empirical tests on a range

of combinatorial problems like Ising Spin Glasses, NK-landscapes,

MaxSat and synthetic problems [15, 16]. The P3 algorithm was

proven to show competitive performance to the best known unbi-

ased Genetic Algorithms across a range of problems, from unimodal

to deceptive ones and highly multimodal ones such as H-IFF [17].

The main loop of P3 is shown in Algorithm 4; pseudocode for

all subroutines can be found in [15ś17]. P3 builds up a pyramid

of populations: each łlevelž in the pyramid refers to a separate

subpopulation. This pyramid is built bottom-up, with higher levels

being more likely to contain better itness as new, improved solu-

tions are propagated to higher levels of the pyramid. P3 maintains a

hierarchical set of gene clusters in each level of the pyramid. These

are determined using a greedy construction procedure that itera-

tively merges the most similar clusters (where similarity is based

on the pairwise entropy of genes) to create larger clusters. These

clusters are used during crossover: a newly created solution is irst

turned into a local optimum by local search (hill climbing), and

then it is crossed with the bottom level of the pyramid. For each

cluster of genes crossover searches all individuals on the considered

level to ind gene values for said cluster that improve the itness. If

crossover leads to an improvement of itness, the outcome is added

to the next higher level of the pyramid. This process is iterated

until no more improvements can be found. Code for Goldman and

Punch’s implementation is freely available on GitHub3.

3See: https://github.com/brianwgoldman/FastEicientP3

4.1 Ising Spin Glasses and Experimental Setup

The Ising Spin Glasses (ISG) problem is a popular combinatorial

benchmark problem derived from physics. It concerns subatomic

particles and desires a ground state � to be found which minimises

energy. The problem is represented as a two-dimensional torus with

edge set � where each site � has an atomic spin �� ∈ {−1, +1}. The

energy of a state is afected by the interactions between neighbours �

and � called �� � . Then the energy is given by a Hamiltonian function,

which in physics is to be minimised: � (�) = −
∑

{�, � }∈� �� ���� � .

We obtain a itness function for maximisation by changing the

sign, using a straightforward binary encoding for the spins �� and

normalising to the interval [0, 1], with 1 being the optimum itness.

We used 5000 ISG test problems that were included in the P3

repository. This consists of 200 problems of 25 diferent sizes, along

with optimal solutions. In the generation of these instances, the in-

teractions �� � had been chosen uniformly at random from {−1, +1}.

P3 as well as the simple algorithms were run until either the

optimum solution was found, or at least 10,000 itness function

evaluations were made at the end of the iteration4. For each of the

5,000 instances each algorithm was run once, and the best itness

values in the inal population were averaged over all 200 instances

of the same problem size.

4.2 The MaxSat Problem & Experimental Setup

MaxSat is a classical combinatorial problem: given � variables

�1, . . . , �� ∈ {0, 1}
� and a set of clauses, conjunctions of literals

that include variables and their negations, the task is to ind an

assignment of variables that satisies a maximum number of clauses.

We use the procedure and code by Goldman and Punch [15, 16]

to randomly generate problem instances with known optima. They

generated a target solution uniformly at random and then generated

clauses that are satisied by it. This was done by choosing the

variable indices uniformly at random and setting the signs of literals

such that at least one literal is satisied by the target solution. To

avoid biasing search towards inding the target easily, Goldman

and Punch [15] used a 1/6 probability that all clause signs match

the target, a 1/6 probability that two clause signs match the target,

and a 4/6 probability that only one sign matches. This resulted

in a problem instance where the target solution is guaranteed to

be an optimum, although other optima may exist. The clause to

variable ratio was set to a standard value of 4.27. All algorithms

were compared on the same randomly generated instances.

The itness function is then simply taken as the fraction of satis-

ied clauses, with a value of 1.0 being optimal. As before for ISG,

we report averages of the best itness values in the inal population,

averaged over 200 instances for the same problem size.

4.3 Experimental Results

The results for ISG shown in Figure 2 and those forMaxSat shown

in Figure 3 are remarkably similar, hence we describe them together.

4P3 can spend many function evaluations in one iteration due to the computationally
expensive crossover process spanning various levels of the pyramid. In some cases the
threshold of 10,000 evaluations was exceeded considerably, giving P3 an advantage
over other algorithms. We also considered a variant of P3 where after exceeding
10,000 function evaluations the last iteration was discarded, leading to a potential
disadvantage. Both variants performed similarly in comparison to other algorithms.
Hence for simplicity we only show results for the more advantageous setting.

https://github.com/brianwgoldman/FastEfficientP3

Do Sophisticated Evolutionary Algorithms Perform Beter than Simple Ones? GECCO ’20, July 8ś12, 2020, Cancún, Mexico

Figure 2: Averages for the best itness in the inal population for Ising Spin Glasses. Amongst the simple algorithms, circles

show mutation-only algorithms and crosses show algorithms with crossover.

The irst surprising result is that while P3 outperforms all algo-

rithms for small problem sizes, its performance deteriorates drasti-

cally as the problem sizes increase. In order to get more insights

through statistical tests, we divided the problems into small and

large problem sizes. For ISG we deine small problems as � ≤ 144

and large problems as � ≥ 324. ForMaxSat we deine small prob-

lems as � ≤ 196, and large problems as � ≥ 324.

All statistical tests involving P3 on smallMaxSat instances failed

to indicate statistical signiicance. These instances are so easy that

all algorithms ind the optimum in most runs. Hence we focus on (1)

comparisons across large instances and (2) comparisons across all

instances. The following comparisons are all statistically signiicant.

Results for large instances. For large ISG problems, P3 is outper-

formed by all algorithms, except for the (20+20) EA. P3 outperforms

the (20+20) EA, hence the latter algorithm shows the worst per-

formance. All these comparisons also hold forMaxSat, however

there was no statistically signiicant diference between P3 and the

(20+20) Fast-GA. While this does not rule out that P3 would ind

better solutions on average given suicient time, its performance is

worse than that of the simple EAs within the available time budget.

The (1+1) EA turns out to be the best algorithm for large ISG

instances as it outperforms the (2+1) GA and the (2+1) GA out-

performs (1+1) Fast-EA, (1+(�, �)) GA, (5+1) EA, (20+20) GA and

(20+20) Fast-GA. The (5+1) GA seems to perform slightly better as it

is not outperformed by the (2+1) GA (no statistical signiicance). For

MaxSat the same can be said, however there is no statistically sig-

niicant diference between the (1+1) EA and the (2+1) GA, leaving

these as the best two algorithms.

Results across all instance sizes. The comparisons between simple

algorithms give similar results to large instance sizes: the (1+1) EA

outperforms all other simple algorithms for ISG, followed by the

(2+1) GA, whereas for MaxSat these two algorithms both outper-

form all other simple algorithms, with no statistically signiicant dif-

ference between (1+1) EA and the (2+1) GA. Interestingly, for both

ISG and MaxSat the (1+(�, �)) GA performs signiicantly worse

than (1+1) EA, (2+1) GA, (1+1) Fast-EA, and (5+1) GA, while beating

the (20+20) EA with statistical signiicance.

Amongst the simple algorithms the ranking is very diferent

compared to the experiments for the MKP problem. While there the

use of populations and crossover is beneicial, for these instances

of ISG and MaxSat the use of ofspring populations is detrimental:

the (20+20) EA, (20+20) GA and the (20+20) Fast-GA are all out-

performed by all algorithms with population sizes 1, 2 and 5. For

population size 20, crossover is beneicial since for both problems

the (20+20) Fast-GA outperforms the (20+20) EA.

4.4 Discussion and Related Theoretical Work

The experimental results suggest that algorithms that are good at

exploitation show the best performance for both ISG and MaxSat.

Indeed algorithms evolving a single lineage like the (1+1) EA and

the (2+1) GA perform better than those with larger populations,

hence populations do not seem to be necessary. Our indings also

suggest that P3 is not very efective under limited time budgets as it

seems to spend many function evaluations in early stages of a run

building up a pyramidal population model. While this strategy does

pay of when larger budgets are being used [15, 16], it is unhelpful

when the available computation time is small.

There is related theoretical work on the performance of the

(1+1) EA on MaxSat [12], showing that the (1+1) EA is provably

eicient (runs in time � (� log�) with probability 1 − � (1)) when

clauses are generated uniformly at random and the clause density

is at least logarithmic. However, there are no theoretical results for

the (1+1) EA for constant clause densities as used here, which are

more challenging as they are not biased towards the optimum.

We compare the indings against theoretical results for OneMax

as another example where exploitation is crucial. In the absence of

crossover, populations are provably not necessary for OneMax; in

fact, the (1+1) EA is an optimal algorithm amongst all mutation-only

algorithms [25]. It is also known that crossover in a small population

GECCO ’20, July 8ś12, 2020, Cancún, Mexico Michael Foster, Mathew Hughes, George O’Brien, Pietro S. Oliveto, James Pyle, Dirk Sudholt, James Williams

Figure 3: Averages for the best itness in the inal population for MaxSat instances. Amongst the simple algorithms, circles

show mutation-only algorithms and crosses show algorithms with crossover.

leads to faster algorithms [7, 26]: both the (2+1) GA and the (5+1) GA

have better expected runtimes than the (1+1) EA forOneMax [7, 8].

This efect does not show in the present experimental results for

ISG andMaxSat. One conjecture is that for these problems creating

diversity for crossover to be efective is harder than for functions

of unitation where it is suicient to exchange the positions of a

1-bit and a 0-bit. Nevertheless, crossover is still beneicial, since the

(20+20) Fast-GA outperforms the (20+20) EA.

The (1+(�, �)) GA is outperformed by several algorithms. This is

unexpected since in experiments from [15] the (1+(�, �)) GAwas the

runner-up to P3 for large problem sizes of the same planted model

considered here. Also recent theoretical results [3] showed that the

(1+(�, �)) GA is more eicient on a diferent, easier, class of planted

MaxSat instances than any of the simple algorithms studied here.

In [15] the algorithms were allowed to run much longer. Given the

smaller budgets the (1+(�, �)) GA performs better than P3, while

they both perform poorly compared to the more simple algorithms.

Given that the (1+(�, �)) GA has better performance on the set of

instances considered in [3], we conclude that the algorithm displays

poorer performance on more diicult instances.

5 CONCLUSIONS

We have provided an extensive study comparing simple theory-

guided EAs against sophisticated EAs known to perform well on

diicult combinatorial problems. We investigated when and why

sophistication in the EA design is beneicial, and quantiied the per-

formance gain through adding complexity. We considered whether

the theoretical insights obtained on simpler problems extend to

more complex ones and whether the simple and basic algorithms

are competitive with the problem-tailored ones. The conclusions

strongly depend on the problem at hand as we obtained very difer-

ent results for the MKP compared to those for Ising Spin Glasses

(ISG) andMaxSat.

For the MKP, no simple algorithm was able to outperform the

tailored GA by Chu and Beasley independent from the problem

size or the available computational budget [5]. Amongst the simple

algorithms, population-based GAs with crossover performed the

best and the (1+(�, �)) GA showed the worst performance.

In sharp contrast, for ISG and MaxSat, where P3 was reported

to outperform many other algorithms [15, 16], we found that for

large instances, where the time budget was small compared to the

problem size, P3 performed poorly. For these problems, popula-

tions were found to be detrimental and the simplest algorithm, the

(1+1) EA, performs best, for large instances and across all instances.

We conclude that the usefulness of EA features such as popula-

tions and crossover strongly depends on the problem at hand. For

instance, the (20+20) Fast-GA using populations, crossover and fast

mutation operators is amongst the best algorithms for MKP and

amongst the worst algorithms for ISG andMaxSat.

ACKNOWLEDGMENTS

The research leading to these results has received funding from

the EPSRC under grant agreement no EP/M004252/1. This paper

is based upon work from COST Action CA15140 łImproving Ap-

plicability of Nature-Inspired Optimisation by Joining Theory and

Practice (ImAppNIO)ž supported by COST (European Cooperation

in Science & Technology). The authors thank Mark Wineberg for

advice on statistical tests.

REFERENCES
[1] E. Alba, G. Luque, and S. Nesmachnow. Parallel metaheuristics: Recent advances

and new trends. International Transactions in Operational Research, 20(1):1ś48,
2013.

[2] J. E. Beasley. Or-library: Distributing test problems by electronic mail. The
Journal of the Operational Research Society, 41(11):1069ś1072, 1990.

[3] M. Buzdalov and B. Doerr. Runtime analysis of the (1+(�,�)) genetic algorithm
on random satisiable 3-CNF formulas. In Proc. of GECCO 2017, pages 1343ś1350.
ACM, 2017.

[4] R. Chiong, T. Weise, and Z. Michalewicz. Variants of Evolutionary Algorithms for
Real-World Applications. Springer, 2011.

[5] P. Chu and J. Beasley. A genetic algorithm for the multidimensional knapsack
problem. Journal of Heuristics, 4(1):63ś86, 1998.

[6] D. Corus, D. C. Dang, A. V. Eremeev, and P. K. Lehre. Level-based analysis of
genetic algorithms and other search processes. IEEE Transactions on Evolutionary
Computation, 22(5):707ś719, 2018.

Do Sophisticated Evolutionary Algorithms Perform Beter than Simple Ones? GECCO ’20, July 8ś12, 2020, Cancún, Mexico

[7] D. Corus and P. S. Oliveto. Standard steady state genetic algorithms can hill-
climb faster than mutation-only evolutionary algorithms. IEEE Transactions on
Evolutionary Computation, 22(5):720ś732, 2018.

[8] D. Corus and P. S. Oliveto. On the beneits of populations for the exploitation
speed of standard steady-state genetic algorithms. In Proc. of GECCO 2019, pages
1452ś1460. ACM, 2019.

[9] D. Dang, T. Friedrich, T. Kötzing, M. S. Krejca, P. K. Lehre, P. S. Oliveto, D. Sudholt,
and A. M. Sutton. Escaping local optima using crossover with emergent diversity.
IEEE Transactions on Evolutionary Computation, 22(3):484ś497, 2018.

[10] B. Doerr, C. Doerr, and F. Ebel. From black-box complexity to designing new
genetic algorithms. Theoretical Computer Science, 567:87ś104, 2015.

[11] B. Doerr, H. P. Le, R. Makhmara, and T. D. Nguyen. Fast genetic algorithms. In
Proc. of GECCO 2017, pages 777ś784, 2017.

[12] B. Doerr, F. Neumann, and A.M. Sutton. Time complexity analysis of evolutionary
algorithms on random satisiable �-cnf formulas. Algorithmica, 78(2):561ś586,
Jun 2017.

[13] A. Eiben and J. Smith. Introduction to Evolutionary Computing. Natural Computing
Series. Springer Berlin Heidelberg, 2015.

[14] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989.

[15] B. W. Goldman and W. F. Punch. Parameter-less population pyramid. In Proc. of
GECCO 2014, pages 785ś792. ACM, 2014.

[16] B. W. Goldman and W. F. Punch. Fast and eicient black box optimization using
the parameter-less population pyramid. Evolutionary Computation, 23(3):451ś479,
2015.

[17] B. W. Goldman and D. Sudholt. Runtime analysis for the parameter-less popula-
tion pyramid. In Proc. of GECCO 2016, pages 669ś676. ACM, 2016.

[18] T. Jansen and I. Wegener. The analysis of evolutionary algorithms-a proof that
crossover really can help. Algorithmica, 34(1):47ś66, 2002.

[19] J. Lengler. A general dichotomy of evolutionary algorithms on monotone func-
tions. In Proc. of PPSN 2018, pages 3ś15. Springer, 2018.

[20] M. J. Magazine and O. Oguz. A heuristic algorithm for the multidimensional
zero-one knapsack problem. European Journal of Operations Research, 16:319ś326,
1984.

[21] F. Neumann and C. Witt. Bioinspired Computation in Combinatorial Optimization.
Springer-Verlag, 2010.

[22] P. S. Oliveto and C. Witt. On the runtime analysis of the simple genetic algorithm.
Theoretical Computer Science, 545:2ś19, 2014.

[23] P. S. Oliveto and C. Witt. Improved time complexity analysis of the simple genetic
algorithm. Theoretical Computer Science, 605:21ś41, 2015.

[24] H. Pirkul. A heuristic solution procedure for the multiconstrained zero-one
knapsack problem. Naval Research Logistics, 34:161ś197, 1987.

[25] D. Sudholt. A new method for lower bounds on the running time of evolutionary
algorithms. IEEE Transactions on Evolutionary Computation, 17(3):418ś435, 2013.

[26] D. Sudholt. How crossover speeds up building-block assembly in genetic algo-
rithms. Evolutionary Computation, 25(2):237ś274, 2017.

[27] A. Sutton. Crossover can simulate bounded tree search on a ixed-parameter
tractable optimization problem. In Proc. of GECCO 2018, pages 1531ś1538. ACM,
2018.

[28] D. Thierens and P. A. N. Bosman. Hierarchical problem solving with the linkage
tree genetic algorithm. In Proc. of GECCO 2013, pages 877ś884. ACM, 2013.

[29] A. Volgenant and J. A. Zoon. An improved heuristic for multidimensional 0-1
knapsack problem. Journal of the Operations Research Society, 41:963ś970, 1990.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Bare-Bones Evolutionary Algorithms
	2.2 Fast Genetic Algorithms
	2.3 Self-adjusting (1+(lambda, lambda)) GA
	2.4 Experimental Setup

	3 Comparison Against a Successful GA
	3.1 The Multidimensional Knapsack Problem
	3.2 Chu and Beasley's GA
	3.3 Experimental Setup
	3.4 Experimental Results
	3.5 Discussion and Related Theoretical Work

	4 Comparison Against a Successful Parameterless Algorithm
	4.1 Ising Spin Glasses and Experimental Setup
	4.2 The MaxSat Problem & Experimental Setup
	4.3 Experimental Results
	4.4 Discussion and Related Theoretical Work

	5 Conclusions
	Acknowledgments
	References

