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Abstract  20 

 A means of quantifying continuous, free-living energy expenditure (EE) would 21 

advance the study of bioenergetics. The aim of this study was to apply a non-linear, machine 22 

learning algorithm (random forest) to predict minute level EE for a range of activities using 23 

acceleration, physiological signals (e.g. heart rate, body temperature, galvanic skin response), 24 

and participant characteristics (e.g. sex, age, height, weight, body composition) collected 25 

from wearable devices (Fitbit charge 2, Polar H7, SenseWear Armband Mini and Actigraph 26 

GT3-x) as potential inputs. By utilising a leave-one-out cross-validation approach in 59 27 

subjects, we investigated the predictive accuracy in sedentary, ambulatory, household, and 28 

cycling activities compared to indirect calorimetry (Vyntus CPX). Over all activities, 29 

correlations of at least r=0.85 were achieved by the models. Root mean squared error ranged 30 

from 1-1.37 METs and all overall models were statistically equivalent to the criterion 31 

measure. Significantly lower error was observed for Actigraph and Sensewear models, when 32 

compared to the manufacturer provided estimates of the Sensewear Armband (p<0.05). A 33 

high degree of accuracy in EE estimation was achieved by applying non-linear models to 34 

wearable devices which may offer a means to capture the energy cost of free-living activities. 35 



 

 

3 

Background 36 

The measurement of energy expenditure (EE) is critical to understand human energy 37 

requirements in health and disease, and how components of energy balance contribute to over 38 

and under nutrition. Quantifying energy balance in free-living individuals requires the precise 39 

and accurate estimation of at least two of the three components of energy balance; energy 40 

intake (EI), EE and changes in energy stored (ES). Currently, quantifying true patterns of EI 41 

and EE in the free-living environment is constrained by methodological and practical 42 

limitations. Objective measures of EI can be derived from EE and changes in ES (e.g. the 43 

intake-balance method [1]), but the use of doubly labelled water (DLW) to estimate EE is 44 

costly and fails to capture daily variation in EE, which limits its widespread adoption [2]. 45 

Activity monitors have long been recognised as a potential means to estimate EE [3], 46 

but the accuracy of current devices in estimating the energy cost of a wide range of activities 47 

and intensities is limited [4]. Accelerometery is routinely used to quantify bodily movement 48 

and to predict EE using linear models [5,6]. However, the relationship between EE and 49 

acceleration is variable between activities [7], and accelerometery alone has limited 50 

sensitivity to capture the additional energy demands of activities that do not alter the velocity 51 

of movement (e.g. load carrying or incline walking) [8]. While estimates of EE from devices 52 

with HR sensing technology are likely to have reduced error relative to devices based on 53 

accelerometery alone [4], the relationship between accelerometery, HR and EE exhibits 54 

linearity only within specific activity types. Combined linear models that estimate EE will 55 

therefore not generalise across the range of human activities [9]. In some cases, this may 56 

explain the demonstrably poor manufacturer provided EE estimates obtained from many 57 

current and past activity monitors [10]. 58 

Complex, non-linear machine learning algorithms applied to research-grade 59 

accelerometers have shown remarkable accuracy in estimating EE using tree-based methods 60 
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[11] and artificial neural networks [9,12] and they may offer a means to overcome the limited 61 

accuracy of current devices. However, whether machine learning can be used to improve the 62 

estimation of EE using the sensor data obtained from commercial devices has yet to be 63 

examined. 64 

Machine learning methods demonstrate clear potential to estimate EE using data 65 

obtained from wearable sensors. This study aims to explore the potential for non-linear, 66 

machine learning regression models utilising subject characteristics, movement and 67 

physiological variables to estimate EE in a range of activities.  68 

  69 

Methods 70 

Participants 71 

A sample of 59 participants were included (Female=41, Age = 44.4 ± 14.1 years, 72 

Weight = 75.7 ± 13.6 kg, BMI = 26.9 ± 4.7 kg/m2, FM= 24.8 ± 10.73 kg, FFM = 49.8 ± 8.9, 73 

FM (%) = 32.5 ±  10.3%, FFM (%) = 67.5 ± 10.3%, RMR = 1581.8 ± 280.4 kcal/d). 74 

Participants were primarily from the Leeds centre of the NoHoW trial (n = 44), ISRCTN 75 

registry (ISRCTN88405328), an additional 15 participants were recruited from the University 76 

of Leeds and surrounding areas. Participants were excluded from the study for the following 77 

reasons: pregnancy, medications altering metabolic rate, cardiovascular, metabolic, renal 78 

disorders, illness or injury that provide an increased risk of medical events during PA [13]. 79 

Ethical approval was granted by The University of Leeds, School of Psychology ethics 80 

committee (PSC-407, 18/08/2018).  81 

Physical measurements  82 

Measurements were conducted at an exercise laboratory at The Human Appetite 83 

Research Unit, University of Leeds. Participants arrived at the university between 06:00 am 84 

and 09:30 am, having refrained from the intake of food, caffeine and exercise for 12 hours 85 
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prior to the measurements. Systolic and diastolic blood pressure (BP) and resting heart rate 86 

(HR) (Microlife BP A2 Basic, Gentle Technology, Microlife, Clearwater, FL, USA, Inc.) 87 

were measured at rest and in the sitting position. Height (±0.1cm) was measured barefoot, 88 

using a Seca 704s instrument (SECA, Germany). Fat mass (FM) and fat-free mass (FFM) 89 

were estimated using air displacement plethysmography (BodPod, Life Measurement, Inc.; 90 

USA) and the Siri equation [14]. Body weight (± 0.1kg) was also obtained from the BodPod 91 

scales in light clothing.  92 

Table 1 – insert here 93 

Physical activity devices   94 

Participants wore a number of physical activity devices during the study and all 95 

devices were initialised in accordance with manufacturer’s instructions. The Polar m400 HR 96 

Monitor Watch and a Polar H7 chest strap (Polar Electro, Kempele, Finland) were used to 97 

measure HR. The Polar H7 facilitates approximately 200 hours of continuous transmission. 98 

In this study data were extracted at the second level and averaged to the minute-level. 99 

Participants also wore a Fitbit Charge 2 (FC2) (Fitbit Inc, San Francisco, CA, USA), a wrist-100 

worn activity monitor, which incorporates a tri-axial accelerometer. The FC2 also estimates 101 

HR through a patented technology called ‘PurePulse’, which uses light-emitting diodes to 102 

measure changes to blood volume [15]. An Actigraph GT3-x accelerometer (AG) was placed 103 

on the non-dominant wrist which measured acceleration along vertical, horizontal and 104 

perpendicular axes at a sample rate of 30Hz. Participants also wore the SenseWear Armband 105 

Mini (SWA) (BodyMedia Inc., Pittsburgh, PA) on the non-dominant upper arm. The SWA 106 

collected tri-axial accelerometer data and as well as data from heat-related sensors measuring 107 

heat flux, skin temperature, near body ambient temperature and galvanic skin response. 108 

Energy expenditure measurement  109 
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Resting metabolic rate (RMR) was measured using an indirect calorimetry system 110 

fitted with a ventilated hood (GEM, Nutren Technology Ltd; UK). Participants lay in the 111 

supine position for 30 minutes, whilst VO2 and VCO2 were continually measured. An RMR 112 

estimate was derived from 5 minutes of steady state data, as described previously [16]. 113 

Briefly, after discarding the first 5 minutes, the VO2 and VCO2 measurements in the 5-minute 114 

period with the lowest coefficient of variation during the overall measurement period are 115 

used to estimate RMR. In the absence of an RMR measurement (n=2), a body mass index 116 

(BMI) specific RMR algorithm was used [17]. A stationary metabolic cart (Vyntus CPX, 117 

Jaeger-CareFusion, UK) was used as the criterion measure of EE in the physical activity 118 

protocol. Breath by breath data were aggregated to minute level to estimate EE (kcal/min-1). 119 

The Vyntus CPX is highly valid and reliable [18,19] and served as a criterion comparison for 120 

the developed models. The unit was calibrated prior to each lab visit in accordance with 121 

manufacturer’s instructions. Data were aggerated to the minute level and EE (kcal/min-1) 122 

values were calculated from VO2 and VCO2 data assuming a minimal contribution of protein 123 

oxidation [20]. We expressed minute level EE as a multiple of each participant’s RMR, to 124 

derive metabolic equivalents (METs), which was the outcome variable.  125 

Physical activity protocol 126 

Participants undertook a structured protocol consisting of 10 activities, which were 127 

performed at a consistent intensity of 5 minutes each. The activities were performed in a set 128 

order and included: sitting, standing, treadmill walking (4 km/h), incline treadmill walking (4 129 

km/h, 5% incline), jogging (6-8 km/h, 5% incline), incline jogging (6-8 km/h, 5% incline). 130 

Next, after a 3-minute resting period, participants transitioned to a cycle ergometer for low-131 

intensity (30 watts), and moderate intensity cycling (60 watts). After another period of 132 

recovery, participants performed a folding task and lastly a sweeping task. The physical 133 

activity protocol was performed by all participants, however the jogging task (n=49), the 134 
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jogging 5% incline (n=30) and the moderate cycling tasks (n=58) were not performed by all 135 

participants, due to variation in physical fitness.  136 

Data processing and model development 137 

All data sources were aggregated to the minute-level and were matched by time for 138 

each participant. The first minute of data was removed leaving minutes 2-5 for inclusion in 139 

model development [11,21]. The models developed in this study were trained using complete 140 

minute level data only, so if any data points were missing from the sensors or subject 141 

characteristics, that single minute was not included in the analysis. In the present study, we 142 

developed distinct predictive models for each device (FC2, AG and SWA) and the specific 143 

predictor variables used in each of these is described in table 1. The algorithm used in the 144 

present study was a random forest regressor [22].  Random forests are an ensemble method 145 

which aggregate the output of numerous decision trees to produce a continuous output. In the 146 

random forest algorithm, trees are trained on a random sample of the available predictor 147 

variables, which reduces the chances overfitting the training data [23]. For all the random 148 

forest models, the number of variables randomly sampled at each split was set 1/3 of the 149 

number of predictor variables in the model. For each of the developed models, 1000 trees 150 

were grown, and minimum size of terminal nodes was set to 5. All model development and 151 

training was conducted with the “randomForest” package [24] in R. Model parameters were 152 

established in preliminary tuning experiments and were standardised to allow comparability 153 

between each of the models.  154 

Statistical analysis 155 

Two validation approaches were used in this study. A ‘holdout’ approach was used in 156 

which all available data are split into training and testing, at a ratio of 80:20. Secondly, 157 

Leave-One-Out Cross-Validation (LOOCV), in which models are trained on all participants’ 158 
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data with the exception of one participant, which serves as the testing dataset. This process is 159 

repeated until all participants data has been used to test the algorithm. 160 

 161 

A range of statistical tests were employed to investigate the accuracy of model 162 

estimates, in line with previous validation research [25]: Pearson’s correlation coefficients, 163 

root mean squared error (RMSE) and mean absolute percentage error (MAPE), calculated 164 

with the R package ‘metrics’ [26]. Equivalence tests were used to determine whether the 165 

models were statistically equivalent to the criterion measured METs, to be considered 166 

equivalent, the 90% confidence interval of the estimate must fall within ± 10% of the 167 

criterion mean [27]. Repeated measures analysis of variance (ANOVA) tests were employed 168 

to test for differences in MAPE calculated for each of the models, and the SWA for each 169 

subject’s activity modality. We investigated differences between specific models with 170 

pairwise t-tests conducted with a Holm–Bonferroni false error rate correction. All data are 171 

reported as means and standard deviations (SD) unless otherwise stated. In order to estimate 172 

the precision of estimates in this study, standard errors for the overall RMSE of each model 173 

have been computed at the participant level and are presented in supplementary table 1.  174 

All analyses and data processing were conducted R version 3.5.1 and RStudio 175 

Version 1.1.447 [28], using a p-value of < 0.05 to determine statistical significance. 176 

 177 

Results  178 

Predictive accuracy of models  179 

 The performance of the holdout validation was typically superior to the LOOCV 180 

method, as measured by MAPE. The correlation of all models exceeded r values of 0.94 and 181 

the results of the models using the holdout approach are shown in supplementary table 2. 182 
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Models FBRF1 and FBRF2 demonstrated the greatest MAPE and highest RMSE using this 183 

approach.  184 

Table 2 – insert here 185 

The performance of the models without body composition data (AGRF2, SWRF2, 186 

FBRF1) using a LOOCV validation approach are shown in the form of scatterplots in figure 187 

1. The accuracy statistics from the LOOCV validation and the results of the equivalence tests 188 

are presented in table 2. Data loss occurred for 2 participant’s FC2 data, one participant’s AG 189 

data and one participant’s polar HR data. All models were validated on at least 2000 minutes 190 

and 55 participants and individual level data is presented in supplementary table 3. The SWA 191 

was not statistically equivalent to the criterion measure, in contrast to the random forest 192 

models, which were all statistically equivalent to the criterion measure. The SWA also had 193 

the highest RMSE of 1.8 METs compared to the AGRF and SWRF models which ranged 194 

between 1-1.24 METs and FBRF models, which had RMSE values of 1.37 METs or less.   195 

Figure 1 – insert here 196 

Table 2 – insert here 197 

The results of the ANOVA demonstrated a significant F statistic of 41.79 (p= 7.26-49) 198 

for between model differences, indicating that differences existed between the MAPE values 199 

for each model’s METs estimates relative the criterion METs. Pairwise t-tests demonstrated 200 

that the MAPE for the SWA estimates were significantly higher than all random forest 201 

models (p<0.05), except for FBRF models. Model AGRF1 had MAPE values significantly 202 

higher than AGRF2 (p=1.16-10) and AGRF3 (p=2.03-08). SWRF1 was significantly higher than 203 

SWRF2 (p=7.19-11) and SWRF3 (p=4.14-09). 204 

The introduction of body composition did not result in significantly different MAPE 205 

models developed on AG sensor outputs, however, FBRF1 had a significantly lower MAPE 206 

than the body composition model, FBRF2 (p=0.007) and SWRF2 was significantly lower than 207 



 

 

10 

SWRF3 (p=0.021), indicating a less accurate model performance with the addition of body 208 

composition. All SWRF and AGRF models had significantly lower MAPE values than 209 

FBRF1 and FBRF2 (p<0.01).   210 

Activity specific accuracy  211 

Activity specific accuracy statistics calculated using LOOCV are presented in table 3. 212 

The accuracy of the FBRF models was poorest in sedentary tasks, where MAPE values of 213 

47.87 and 52.30 were observed for FBRF1 and FBRF2, respectively during the standing task. 214 

Both FBRF1 and FBRF2 were statistically equivalent during the jogging task. Models AGRF2 215 

and AGRF3 were statistically equivalent in 5 of 10 tasks, namely: standing, incline walking, 216 

jogging, low intensity cycling and folding, and the AGRF1 model was equivalent in all of the 217 

aforementioned tasks, except from incline walking. The MAPE values ranged from 13.01 218 

(AGRF3, walk incline) to 29.33 (AGRF1, sweeping). Models developed on SWA data were 219 

statistically equivalent for walking (SWRF2 and SWRF3 only), walking incline, jogging and 220 

low intensity cycling, and the SWRF2 was equivalent in sitting. SWRF2 and SWRF3 221 

demonstrated the poorest accuracy in the household tasks with overestimates in models and 222 

MAPE values ranging from 24.11 to 33.41. 223 

Table 3 – insert here 224 

Model characteristics 225 

Using the feature set which included body composition data for each device (AGRF3, 226 

FBRF2, SWRF3), we computed the relative importance of each predictive variables [22]. The 227 

variable in the plots represents the percentage increase to the mean squared error following 228 

the permutation (random shuffling) of each variable. Permutation in this manner breaks the 229 

association between the predictive and outcome variable relative to the original model and 230 

therefore facilitates estimates of the importance of this variable to overall accuracy of the 231 

original model. Outlined in figure 2 for the FB, acceleration (i.e. steps) and HR normalised to 232 
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the sitting HR were the most important variables in the models, with age, kilograms of FFM, 233 

height and FM following after. In the SWRF3 and AGRF3 models (figure 2), HR was 234 

associated with the greatest increase in mean squared error. 235 

Figure 2 – insert here 236 

 237 

Discussion 238 

This is the first study to demonstrate that sensor data obtained from commercial 239 

wearable devices (i.e. FC2) can be used to estimate EE with a high degree of validity in a 240 

diverse range of activities. Commercial activity monitors offer a number of benefits over 241 

research-grade devices, including their economic viability, participant acceptance and cloud 242 

storage capabilities [29] and our findings highlight the potential for these inexpensive tools to 243 

more accurately quantify EE. We show that accelerometer data collected from research-grade 244 

devices on the wrist or arm, can be used to predict EE with a high degree of accuracy in a 245 

diverse population. 246 

The results of the present study are comparable to the accuracy reported in previous 247 

studies, with overall RMSE reaching 1 MET for the most accurate model (SWRF2) and 1.37 248 

METs for the least accurate model (FBRF2). Using Actigraph accelerometer data, Ellis et al. 249 

trained random forest models and reported a RMSE of 1 METs for bout predictions from a 250 

hip worn accelerometer, 1.09 from a wrist accelerometer [11]. Staudenmayer et al. developed 251 

artificial neural networks and report a RMSE of 1.22 METs [9]. Montoye et al., showed that 252 

artificial neural networks trained on wrist accelerometer data were more accurate than 253 

corresponding linear models, with RMSE values between 1.26–1.32 METs [12]. Importantly 254 

however, this is the first study to apply machine learning to the sensor data obtained from a 255 

commercially available tracking device (e.g. FC2) in order to improve the accuracy of EE 256 

estimates. In the present study, the RMSE for FBRF models approached the accuracy of the 257 
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models developed using research grade accelerometers, indicating that models developed 258 

using minute-level data from wearable sensors in combination subject characteristics can be 259 

modelled to accurately predict EE. That said, the activities performed in our protocol are 260 

generally less diverse than some of the aforementioned studies.  261 

The models with more accelerometer variables as input features (AGRF and SWRF) 262 

led to the greatest predictive accuracy, indicating the importance of tri-axial accelerometery. 263 

The variable importance plots show that HR was the most important determinant of error 264 

reduction for the SWRF3 and AGRF3 models, which reflects the established relationship 265 

between HR and VO2 [30,31]. In contrast, the FBRF2 model was less influenced by this 266 

variable and we postulate that this may be related to the sensor used to collect HR estimates. 267 

The polar HR strap, which was used in two AGRF and SWRF models shows near perfect 268 

agreement with electrocardiogram criterion measures [32]. Conversely, 269 

photoplethysmography based HR sensors may produce ‘spurious’ HR measurements [10], 270 

which increases noise in the training and testing data sets and had a detrimental effect on the 271 

predictive accuracy.  272 

We normalised HR to each participant’s sitting HR and used this as a predictor in the 273 

developed models. This was motivated by the established relationship between the sitting HR 274 

and the flex point [33]. Given the important predictive role this variable has on the models, 275 

the use of HR above sitting appears to offer a means of capturing some of the individual 276 

variability in the relationship between VO2 and HR without the need for individual 277 

calibration, as in previous approaches [30].  Despite the importance of HR in achieving the 278 

highest predictive accuracy, we show that AG and SWA models developed without external 279 

HR data can still produce highly accurate estimates of EE, surpassing the manufacturer 280 

estimates of the SWA and FBRF models. Considering the potential burden of additional 281 



 

 

13 

wearable devices (i.e. chest HR straps), this finding has implications for population research 282 

in which the use of a single device is of considerable appeal.  283 

The addition of body composition resulted in a significantly higher MAPE in the case 284 

of SWRF models and this may be explained by the specifics of the random forest algorithm. 285 

Each of the trees grown in the random forest regressor samples approximately 1/3 of the 286 

predictor variables and a bootstrapped sample of the training data, which serves to 287 

decorrelate the trees and limits the likelihood of overfitting. Introducing body composition 288 

could result in a situation in which splits are less likely to include the most relevant predictor 289 

variables such as HR, which theoretically could have a detrimental effect on the global model 290 

[34]. Furthermore, body composition (FFM) is highly correlated with RMR [35], it is likely 291 

that any variance attributable to body composition is already accounted for by normalising 292 

our predictions relative to RMR. Thus, FFM may have a greater predictive ability if absolute 293 

caloric expenditure, rather than METs, was the outcome measure. Regardless, the accurate 294 

and precise measurement of body composition is time consuming, costly and requires 295 

experimental expertise. In this sense, the finding that body composition is not critical to the 296 

predictive accuracy of the random forests has positive implications for the utility of the 297 

models in large studies.  298 

We included ambulatory, resting, cycling and housework tasks, which are challenging 299 

to assess using wearable devices owing to the differing accelerometer patterns produced by 300 

each activity [36]. It is notable that the AGRF and SWRF models were statistically equivalent 301 

with the criterion measure (indirect calorimetry) in a many activity modalities. This 302 

demonstrates the potential of a single non-linear model to accurately estimate the 303 

bioenergetic demands of common activity types and overcome the limitations of traditional 304 

linear approaches, which have a tendency to generalise poorly across the spectrum of human 305 

activities [36–38]. However, equivalence was not achieved in all activities; activity specific 306 
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prediction may be enhanced by generating larger training data or combining activity 307 

classification with regression models. 308 

The SWA is considered one of the more valid wearable devices for estimating TDEE 309 

[39–41], and a recent meta-analysis from our group showed that this monitor was one of the 310 

only wrist or arm-worn activity monitoring devices not to systematically over or 311 

underestimate EE overall relative to DLW [4]. Thus, we compared the SWA METs to models 312 

developed in this study to facilitate the interpretation of the developed models. All models 313 

had lower MAPE, RMSE and higher correlations to the criterion measure than the SWA. 314 

These data therefore suggest that machine learning can be applied to sensor data of 315 

commercially available devices to surpass the accuracy of widely used research-grade 316 

devices. The SWA provides sufficiently accurate estimates of EE that it can be used with 317 

measures of body weight/composition to estimate true EI [42]. Unfortunately, studies such as 318 

this are limited in their duration owing to the data storage capabilities and battery life of the 319 

SWA. Our results indicate that it may be possible to replace the SWA with machine learning 320 

models applied to commercial devices, i.e. FC2. Given that these data are accessible 321 

continually from the Fitbit API, this could offer an opportunity for a new generation of 322 

quantitative, long term energy balance research. Mathematical models developed to predict 323 

EI from body weight have been proposed and demonstrate a high degree of accuracy 324 

compared to EI calculated through DLW and DEXA [43,44]. In addition to the cost 325 

associated with these techniques, a recognised limitation of this model is the lack of a 326 

continuous EE estimate. Refining estimates of EE would improve the accuracy of such 327 

models and provide important data on day-to day variability in physical activity behaviours 328 

and associated EE currently not measurable by the DLW method [45].  329 

 A benefit of the present study is the expression of EE in METs relative to each 330 

participant’s measured RMR. The assumption that 1 MET is equivalent to 3.5 ml O2/kg-331 
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1/min-1 can result in substantial bias, depending on the age and body composition of the 332 

subject in question [46]. Secondly, we report the results of two validation methods, a holdout 333 

approach and LOOCV approach. We envisage different experimental protocols in which 334 

participant’s data may be available for a calibration procedure prior to beginning an 335 

observation period, as is practiced in the historical ‘flex’ method [30]. In this situation, the 336 

holdout method may be more reflective of the potential accuracy. It is more probable that 337 

individual calibration would not be possible, and the models would be applied to unseen 338 

participants, in this case a LOOCV is more appropriate. Thirdly, we computed accuracy 339 

statistics from all available minutes in the dataset, rather than aggregating them to ‘activity 340 

bouts’. Indeed averaging in this manner has the potential to smooth errors and result in an 341 

artificially low average error. Human activity is performed for different durations and it is 342 

therefore valuable to determine accuracy at the minute-level.  343 

Several limitations of this study should be acknowledged, firstly, approximately 70% 344 

of our sample were female. Secondly, the confinement to a laboratory and the utilisation of 345 

only steady state activity minutes may limit the ecological validity of this study and it therefore 346 

remains uncertain how well these models will perform in a less controlled environment with 347 

different activity types. It will be important to validate the models against whole-room 348 

calorimetry and the DLW method. Thirdly, we made no attempt to impute missing data in this 349 

study; devices will be removed or may fail in real life situations this is likely to create missing 350 

data. Considering these limitations, it is of great importance to continuously test and refine the 351 

presented models using data collected from different sedentary and active behaviours, 352 

participants, devices and durations. This is particularly important for commercial devices as 353 

updated and/or new models regularly come to market; nevertheless, the utilisation of three 354 

devices in this study indicates that the modelling approach taken would be applicable to newer 355 

devices.  356 
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 357 

Conclusion  358 

 This study demonstrates the potential for machine learning models developed using 359 

minute-level data from wearable sensors in combination subject characteristics to be 360 

modelled to predict EE with minimal bias. Further, machine learning models using outputs 361 

from a commercial activity monitor achieve greater predictive accuracy than the SWA 362 

armband. This methodology opens the possibility for quantitative energy balance research 363 

with affordable, unobtrusive wearable sensors.   364 
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Tables 546 

Table 1: Predictive variables included in each of the random forest models.  547 

Fitbit Charge 

2 

  

 Model  

 FBRF1 Device outputs:  

Fitbit HR above sitting HR, Steps,  

 

Subject characteristics: 

Age, Gender, Height, weight 

 FBRF2  

1 + FM (kg), FFM (kg) 

   

Sensewear 

Armband Mini 

  

 SWRF1 Device outputs:  

Average (Axis: X, Y, Z), Peaks (X, Y, Z), Mean absolute 

deviation (X, Y, Z), steps/min-1, Near body temperature 

average, skin temperature average, Galvanic skin response. 

 

Subject characteristics: 

age, gender, Height, weight, 

 SWRF2 1 + polar HR above sitting HR 

 SWRF3 2 + FM(kg), FFM (kg) 

Actigraph GT3-

x 

AGRF1 Time domain, multi-axis (X, Y, Z) and first order 

differential (XYZ) features: 
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minimum, maximum, mean, standard deviation, correlation 

(XY, XZ, YZ), Median 0 crossings, percentiles (10, 25, 50, 75, 

90th) 

 

Frequency domain multi-axis (X, Y, Z) and first order 

differential (XYZ) features: 

dominant frequency, dominant frequency magnitude 

 

Subject characteristics: 

Gender, age, height, weight, 

 AGRF2 1 + Polar Heart rate above sitting HR 

 AGRF3 2 + FM (kg), FFM (kg) 

 

 548 

Abbreviations: Fitbit random forest (FBRF), Sensewear random forest (SWRF), Actigraph 549 
random forest (AGRF).    550 
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Table 2: Accuracy statistics computed using the LOOCV validation approach. Criterion 551 
METs Refers to METs calculated from indirect calorimetry, Predicted METs refers to model 552 
prediction. Minutes pooled refers to the number of minutes used for validation and 553 
participants refers to the number of participants included in each validation. RMSE, MAPE 554 
and correlation are presented with 95% confidence intervals. Equivalence refers to the results 555 
of the equivalence tests.  556 
 557 

  Minut
es   

Participa
nts 

Criterion 
METs 

Predicted 
METs 

RMSE  
(METs) 

MAPE  
(%)  

Correlation 
(r)  

Equivalenc
e  

SWA 2188 59 4.19 ± 2.61 3.72 ± 2.40 1.8 33.57 0.76 
not 
equivalent 

AGR
F1 

2161 58 4.20 ± 2.61 4.18 ± 2.32 1.18 20.9 0.89 equivalent 

AGR
F2 

2125 57 4.22 ± 2.63 4.21 ± 2.37 1.03 18.31 0.92 equivalent 

AGR
F3 

2049 55 4.22 ± 2.62 4.21 ± 2.37 1.02 18.52 0.92 equivalent 

FBRF

1 
2077 57 4.19 ± 2.63 4.16 ± 2.30 1.36 28.74 0.86 equivalent 

FBRF

2 
2001 55 4.19 ± 2.63 4.14 ± 2.20 1.37 30.59 0.85 equivalent 

SWR
F1 

2188 59 4.19 ± 2.61 4.19 ± 2.24 1.24 23.61 0.88 equivalent 

SWR
F2 

2153 58 4.21 ± 2.62 4.22 ± 2.35 1 18.82 0.92 equivalent 

SWR
F3 

2077 56 4.21 ± 2.62 4.22 ± 2.34 1.02 19.38 0.92 equivalent 

 558 
 559 
Abbreviations: Metabolic equivalents (METs), Root mean squared error (RMSE), Mean 560 

absolute percentage error (MAPE) , Actigraph random forest (AGRF), Fitbit random forest 561 

(FBRF), Sensewear random forest (SWRF).  562 

563 
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Table 3: Accuracy statistics computed using the LOOCV validation approach, presented for 564 
each of the activities performed. Criterion METs Refers to METs calculated from indirect 565 
calorimetry, Predicted METs refers to model prediction.  Minutes pooled refers to the number 566 
of minutes used for validation and participants refers to the number of participants included 567 
in each validation. RMSE, MAPE and correlation are presented with 95% confidence 568 
intervals. Equivalence refers to the results of the equivalence tests.  569 
 570 

Activity Model Minutes 
pooled 

Participant
s 

Criterion 
METs 

Predicted 
METs 

RMSE 
(METs)  

MAPE (%) Correlation 
(r) 

Equivalenc
e 

Sit                   

  SWA 236 59 1.18 ± 
0.21 

1.15 ± 
0.23 

0.27 15.03 0.26 equivalent 

  AGRF
1 

232 58 1.18 ± 
0.21 

1.33 ± 
0.41 

0.44 22.43 0.21 not 
equivalent 

  AGRF
2 

227 57 1.18 ± 
0.21 

1.28 ± 
0.26 

0.31 18.77 0.25 not 
equivalent 

  AGRF
3 

219 55 1.18 ± 
0.21 

1.28 ± 
0.26 

0.31 19.38 0.25 not 
equivalent 

  FBRF1 223 57 1.18 
±0.21 

1.49 ± 
0.22 

0.43 31.95 0.02 not 
equivalent 

  FBRF2 215 55 1.18 
±0.21 

1.63 ± 
0.22 

0.54 42.92 -0.06 not 
equivalent 

  SWRF
1 

236 59 1.18 ± 
0.21 

1.35 ± 
0.31 

0.38 22.2 0.19 not 
equivalent 

  SWRF
2 

231 58 1.18 ± 
0.21 

1.27 ± 
0.21 

0.27 16.98 0.27 equivalent 

  SWRF
3 

223 56 1.18 ± 
0.21 

1.27 
±0.21 

0.27 17.64 0.26 not 
equivalent 

Stand           

   
  

  SWA 236 59 1.34 ± 
0.24 

1.34 ± 
0.43 

0.49 29.92 0.04 equivalent 

  AGRF
1 

232 58 1.34 ± 
0.25 

1.41 ± 
0.43 

0.44 19.95 0.27 equivalent 

  AGRF
2 

227 57 1.34 ± 
0.24 

1.4 ± 0.33 0.36 18.08 0.28 equivalent 

  AGRF
3 

219 55 1.34 ± 
0.24 

1.4 ± 0.34 0.36 18.38 0.29 equivalent 

  FBRF1 225 57 1.34 ± 
0.25 

1.8 ± 0.63 0.84 47.87 0.04 not 
equivalent 

  FBRF2 217 55 1.33 ± 
0.25 

1.93 ± 0.5 0.82 52.3 -0.05 not 
equivalent 

  SWRF
1 

236 59 1.34 ± 
0.24 

1.57 ± 
0.65 

0.71 31.83 0.07 not 
equivalent 

  SWRF
2 

231 58 1.34 ± 
0.24 

1.44 ± 0.4 0.46 21.82 0.11 not 
equivalent 

  SWRF
3 

223 56 1.34 ± 
0.24 

1.45 ± 
0.42 

0.47 22.74 0.11 not 
equivalent 

Walk           

   
  

  SWA 236 59 3.95 ± 
0.61 

3.6 ± 0.45 0.91 17.98 -0.25 not 
equivalent 

  AGRF
1 

232 58 3.94 ± 
0.61 

4.54 ± 
0.55 

0.99 22.23 0.06 not 
equivalent 

  AGRF
2 

228 57 3.94 ± 
0.62 

4.26 ± 0.6 0.83 17.05 0.19 not 
equivalent 

  AGRF
3 

220 55 3.97± 
0.61 

4.28 ± 0.6 0.84 17.04 0.19 not 
equivalent 

  FBRF1 219 57 3.93 ± 0.6 4.28 ± 
0.39 

0.79 17.84 0.02 not 
equivalent 

  FBRF2 211 55 3.95 ± 0.6 4.28 ± 0.4 0.78 16.8 0.03 not 
equivalent 

  SWRF
1 

236 59 3.94 ± 
0.61 

4.55 ± 
0.38 

0.89 20.2 0.19 not 
equivalent 

  SWRF
2 

232 58 3.95 ± 
0.61 

4.25 ± 
0.52 

0.69 15.34 0.4 equivalent 

  SWRF
3 

224 56 3.97 ± 
0.61 

4.29 ± 
0.52 

0.69 15.18 0.42 equivalent 

Walk 
incline 
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  SWA 236 59 5.24 ± 
0.72 

4.15 ± 
0.85 

1.65 26.14 -0.26 not 
equivalent 

  AGRF
1 

232 58 5.23 ± 
0.72 

4.68 ± 
0.58 

1.03 14.14 0.11 not 
equivalent 

  AGRF
2 

228 57 5.23 ± 
0.73 

4.82 
±0.65 

0.96 13.27 0.21 equivalent 

  AGRF
3 

220 55 5.26 ± 
0.72 

4.85 ± 
0.66 

0.96 13.01 0.21 equivalent 

  FBRF1 216 57 5.19 ± 
0.72 

4.36 ± 
0.46 

1.16 17.01 0.1 not 
equivalent 

  FBRF2 208 55 5.22 ± 
0.72 

4.33 ± 
0.49 

1.2 18.87 0.14 not 
equivalent 

  SWRF
1 

236 59 5.24 ± 
0.73 

4.92 ± 
0.97 

1.28 18.36 -0.05 equivalent 

  SWRF
2 

232 58 5.24 ± 
0.73 

4.97 
±0.65 

0.94 13.86 0.14 equivalent 

  SWRF
3 

224 56 5.27 ± 
0.72 

5 ± 0.65 0.93 13.48 0.14 equivalent 

Jog           

   
  

  SWA 195 49 8.57 ± 
1.21 

8.12  ± 
1.52 

2.01 19.3 -0.01 equivalent 

  AGRF
1 

195 49 8.57 ± 
1.21 

8.73  ± 
1.12 

1.54 15.87 0.14 equivalent 

  AGRF
2 

195 49 8.57 ± 
1.21 

8.63  ± 
1.15 

1.38 13.81 0.32 equivalent 

  AGRF
3 

187 47 8.54 ± 
1.23 

8.59 ± 
1.14 

1.33 13.56 0.36 equivalent 

  FBRF1 191 48 8.55 ± 
1.22 

8.68 ± 
1.19 

1.5 15.3 0.22 equivalent 

  FBRF2 183 46 8.52 ± 
1.24 

8.46 
±1.18 

1.54 15.57 0.18 equivalent 

  SWRF
1 

195 49 8.57 ± 
1.21 

8.48 ± 
1.15 

1.34 12.33 0.36 equivalent 

  SWRF
2 

195 49 8.57 ± 
1.21 

8.59 ± 
1.08 

1.15 11.26 0.5 equivalent 

  SWRF
3 

187 47 8.54 ± 
1.23 

8.5 ±1.1 1.17 11.45 0.5 equivalent 

Jog 
incline 

          

   
  

  SWA 120 30 10.07 ± 
1.32 

8.04 ± 
1.75 

3.03 24.69 -0.06 not 
equivalent 

  AGRF
1 

120 30 10.07 ± 
1.32 

8.59 ± 
1.43 

2.42 19.33 0.03 not 
equivalent 

  AGRF
2 

120 30 10.07 ± 
1.32 

8.86 
±1.45 

2.19 18.03 0.13 not 
equivalent 

  AGRF
3 

116 29 10.06 ± 
1.34 

8.98 
±1.37 

2.04 17.12 0.17 not 
equivalent 

  FBRF1 120 30 10.07 ± 
1.32 

8.86 
±1.54 

2.1 15.9 0.28 not 
equivalent 

  FBRF2 116 29 10.06 ± 
1.34 

8.7 ±1.5 2.21 17.4 0.24 not 
equivalent 

  SWRF
1 

120 30 10.07 ± 
1.32 

8.36 ± 
1.48 

2.45 19.15 0.21 not 
equivalent 

  SWRF
2 

120 30 10.07 ± 
1.32 

8.88 
±1.24 

1.83 15.2 0.41 not 
equivalent 

  SWRF
3 

116 29 10.06 ± 
1.34 

8.9 ± 1.26 1.81 15.03 0.42 not 
equivalent 

Cycle 
low 

          

   
  

  SWA 233 59 4.15 ± 
1.08 

2.53 ± 
0.96 

1.93 40.49 0.46 not 
equivalent 

  AGRF
1 

229 58 4.13 ± 
1.07 

4.33 
±0.74 

1.25 25.11 0.11 equivalent 

  AGRF
2 

225 57 4.14 ± 
1.07 

4.33 
±0.76 

1.03 20.8 0.42 equivalent 

  AGRF
3 

217 55 4.14  ± 
1.08 

4.32 
±0.75 

1.06 21.6 0.39 equivalent 

  FBRF1 220 56 4.11 
±1.09 

3.77 
±1.08 

1.54 29.31 0.03 not 
equivalent 

  FBRF2 212 54 4.1 ± 1.1 3.63 ± 
0.92 

1.45 26.67 0.09 not 
equivalent 

  SWRF
1 

233 59 4.15 ± 
1.08 

4.25 
±0.75 

1.11 22.16 0.3 equivalent 
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  SWRF
2 

229 58 4.17 ± 
1.08 

4.23 ± 
0.86 

0.93 17.81 0.56 equivalent 

  SWRF
3 

221 56 4.17 ± 
1.09 

4.2 ± 0.86 0.97 18.39 0.53 equivalent 

Cycle 
mid 

          

   
  

  SWA 225 58 5.21 ±  
1.43 

3.31  ± 
1.75 

2.55 41.99 0.44 not 
equivalent 

  AGRF
1 

225 58 5.21 ± 
1.43 

4.53  ± 
0.65 

1.61 20.11 0.18 not 
equivalent 

  AGRF
2 

221 57 5.22 ± 
1.44 

4.78 ± 
0.81 

1.32 16.67 0.5 not 
equivalent 

  AGRF
3 

213 55 5.25 
±1.46 

4.82 ± 
0.83 

1.34 17.08 0.5 not 
equivalent 

  FBRF1 207 55 5.19 ± 
1.44 

3.71 ± 
1.13 

2.27 30.96 0.13 not 
equivalent 

  FBRF2 199 53 5.22 ± 
1.47 

3.61 ± 
0.94 

2.27 30.75 0.16 not 
equivalent 

  SWRF
1 

225 58 5.21  ± 
1.43 

4.16 ±  
0.84  

1.79 22.21 0.26 not 
equivalent 

  SWRF
2 

221 57 5.22 ± 
1.44 

4.59 ± 
1.03 

1.47 18.89 0.47 not 
equivalent 

  SWRF
3 

213 55 5.25 ± 
1.46 

4.58 ± 
1.01 

1.49 19.03 0.46 not 
equivalent 

Folding           

   
  

  SWA 236 59 2.75 ± 0.6 4.29 ± 
1.77 

2.37 72.37 0.12 not 
equivalent 

  AGRF
1 

232 58 2.75 ± 0.6 2.91 ± 
0.35 

0.61 18.98 0.32 equivalent 

  AGRF
2 

228 57 2.75 ± 
0.61 

2.95 ± 
0.38 

0.59 18.8 0.44 equivalent 

  AGRF
3 

220 55 2.75 ± 
0.61 

2.96 ± 
0.39 

0.63 19.75 0.36 equivalent 

  FBRF1 228 57 2.74 ± 
0.61 

3.5 ± 0.71 1.19 37.21 0.05 not 
equivalent 

  FBRF2 220 55 2.75 ± 
0.61 

3.58 ± 
0.71 

1.26 39.8 -0.01 not 
equivalent 

  SWRF
1 

236 59 2.75 ± 0.6 3.43 ± 
0.35 

1.04 33.41 0.08 not 
equivalent 

  SWRF
2 

232 58 2.74 ± 0.6 3.37 ± 
0.69 

0.98 30.06 0.32 not 
equivalent 

  SWRF
3 

224 56 2.75 ± 
0.61 

3.42 ± 0.7 1.03 32.08 0.29 not 
equivalent 

Sweepin
g 

          

   
  

  SWA 235 59 3.12 ± 
0.71 

3.52 ± 
1.47 

1.59 41.49 0.13 not 
equivalent 

  AGRF
1 

232 58 3.13 ± 
0.71 

3.64 ± 
0.68 

1.03 29.33 0.17 not 
equivalent 

  AGRF
2 

226 57 3.12 ± 
0.71 

3.57 ± 
0.68 

0.95 27.09 0.28 not 
equivalent 

  AGRF
3 

218 55 3.13 ± 
0.71 

3.56 ± 
0.63 

0.93 27 0.24 not 
equivalent 

  FBRF1 228 57 3.13 ± 
0.72 

3.95 ± 
0.67 

1.2 35.29 0.21 not 
equivalent 

  FBRF2 220 55 3.13 ± 
0.71 

3.96 ± 
0.69 

1.22 35.33 0.2 not 
equivalent 

  SWRF
1 

235 59 3.13 ± 
0.72 

3.65 ± 
0.83 

1.14 30.04 0.15 not 
equivalent 

  SWRF
2 

230 58 3.11 ± 
0.71 

3.51 ± 
0.92 

0.97 24.11 0.43 not 
equivalent 

  SWRF
3 

222 56 3.12 ± 
0.71 

3.57 ± 
0.95 

1.02 25.41 0.42 not 
equivalent 

 571 
 572 
 573 
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Abbreviations: Metabolic equivalents (METs), Root mean squared error (RMSE), Mean 574 

absolute percentage error (MAPE), Fitbit random forest (FBRF), Sensewear random forest 575 

(SWRF), Actigraph random forest (AGRF).   576 

  577 
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Legends for figures 578 

Figure 1. A scatter plot of the Measured METs (Vyntus CPX) and predicted METs. Diagonal 579 
lines represent lines of identity. Data are shown for the Actigraph random forest model 580 
(AGRF2, top left), Fitbit random forest model (FBRF1, top right), Sensewear armband (SWA, 581 
bottom left) and Sensewear armband random forest (SWRF2, bottom right).  582 
 583 
Figure 2. Variable importance plots detailing the increase in mean squared error associated 584 
with permutation (random shuffling) of a single variable. Data are shown in order of 585 
importance for the first 20 variables. Data are shown for models: FBRF2 (blue dots, left), 586 
SWRF3 (red dots, middle), and AGRF3 (green dots, right).   587 
Abbreviations: HR = Heart rate, FM (kg)= Fat mass (kg), FFM (KG) = Fat free mass (kg), 588 
MAD = Mean absolute deviation, FOD = First order differential. 589 
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