
This is a repository copy of Supervisory control of robot swarms using public events.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/159797/

Version: Accepted Version

Proceedings Paper:
Kaszubowski Lopes, Y., Trenkwalder, S.M., Leal, A.B. et al. (2 more authors) (2020)
Supervisory control of robot swarms using public events. In: Proceedings of 2020 IEEE
International Conference on Robotics and Automation (ICRA). 2020 IEEE International
Conference on Robotics and Automation (ICRA), 31 May - 31 Aug 2020, Paris, France.
IEEE , pp. 7193-7199. ISBN 9781728173962

https://doi.org/10.1109/ICRA40945.2020.9197418

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Supervisory Control of Robot Swarms Using Public Events

Yuri Kaszubowski Lopes1, Stefan M. Trenkwalder2, André B. Leal3,
Tony J. Dodd4 and Roderich Groß2

Abstract— Supervisory Control Theory (SCT) provides
a formal framework for controlling discrete event sys-
tems. It has recently been used to generate correct-by-
construction controllers for swarm robotics systems. Cur-
rent SCT frameworks are limited, as they support only
(private) events that are observable within the same robot.
In this paper, we propose an extended SCT framework that
incorporates (public) events that are shared among robots.
The extended framework allows to model formally the
interactions among the robots. It is evaluated using a case
study, where a group of mobile robots need to synchronise
their movements in space and time—a requirement that
is specified at the formal level. We validate our approach
through experiments with groups of e-puck robots.

I. INTRODUCTION

Swarm robotics comprise numerous, relatively ho-
mogeneous robots that cooperate to accomplish goals.
They are characterised by a scalable design, limited
communication, and robust, emergent behaviour. Such
properties would match the requirements of many real-
world applications [1]. However, most swarm robotics
systems use controllers that have been developed in
an ad-hoc manner. The resulting control software is
typically difficult to comprehend, making it non-trivial
to perform any validation or maintenance.

Supervisory Control Theory (SCT) is a formal ap-
proach to designing and synthesising controllers [2],
[3]. It assumes a discrete event system (DES) [4]. SCT
uses formal languages to model how the state of the
system can possibly evolve (i.e. a capability), and how
it should evolve (i.e. a specification). From these lan-
guages, a controller called supervisor is synthesised,
which is guaranteed to be minimally restrictive and
non-blocking [2], [3]. This means that the state evolu-
tion of the system is only restricted to prevent present
or future violations of the specification; moreover, it
must be possible for the system to settle in a desired
subset of states in the future.

1Y. K. Lopes is with Department of Software Engi-
neering, Federal University of Technology, Paraná, Brazil
yurilopes@utfpr.edu.br

2S. M. Trenkwalder and R. Groß are with Sheffield
Robotics, The University of Sheffield, Sheffield, United Kingdom
{s.trenkwalder, r.gross}@sheffield.ac.uk

3A. B. Leal is with the Department of Electrical Engineering,
Santa Catarina State University, Campus Universitário Prof. Avelino
Marcante, Joinville, Brazil andre.leal@udesc.br

4T. J. Dodd is with the School of Creative Arts and
Engineering, Staffordshire University, Stoke-on-Trent, UK
tony.dodd@staffs.ac.uk

Initial studies were primarily concerned with the
theoretical aspects of supervisory control [5]. In later
studies, the implementation aspects have gained in-
creasing attention. A large body of work has been con-
cerned with SCT implementations for manufacturing
systems [6], [7], which are still commonly equipped
with programmable logic controllers (PLC). The im-
plementations on PLCs differ from those on micro-
controllers, the latter being the common architecture
in swarm robotics. In swarms of robots, additional
challenges arise, such as the system being distributed,
mobile and subject to significant constraints and uncer-
tainties regarding sensing, actuation and communica-
tion.

Previous studies explored how SCT can be extended
to incorporate the requirements of swarm robotics.
In [8], it was shown how SCT can be used to auto-
matically generate the control software for a swarm of
600 robots that had to organise into functional groups.
In [9], a scenario was investigated where a group of
agents needed to accomplish a set of spatial tasks. A
global planner was used to propose optimal task alloca-
tions. In [10], probabilistic cooperative behaviours were
investigated, and deployed on physical robots. In [11],
SCT was used to model a set of behaviours for a group
of simulated robots performing navigation tasks in an
environment with obstacles. A centralized scheduling
agent was used.

Communication among robots—an important prop-
erty of swarm robotics (and multi-robot systems)—has
not yet been formally defined with SCT frameworks.
In this paper, we introduce the concept of public and
private events to address this issue. A private event is
locally dealt with by the robot in which it occurs, as it is
common in SCT frameworks. In contrast, public events
are communicated to other robots of the group, and
hence observable beyond the boundaries of individual
robots. They allow a formal modelling of communica-
tion. The resulting models1 are then used to synthesise
automatically a supervisor, and the associated control
software to be deployed on the physical robots.

II. SYNCHRONOUS MOVEMENT CASE STUDY

To illustrate the use of public events, consider a
group of robots (swarm) that operate in a bounded 2-D

1Although the models we use to describe the system and its
specification are designed manually by an expert, they could in
principle be obtained through automatic design approaches [12].

environment (arena). The robots are autonomous, move
using differential wheels, and have obstacle sensors. All
robots have to perform concurrently the same sequence
of basic movements, comprising of (i) moving forward,
(ii) turning left, and (iii) turning right. The order of
movements is agreed at run time. Robots that detect
obstacles do not perform the agreed movement, but
instead perform one of two collision avoidance move-
ments: (i) rotating left or (ii) rotating right.

This paper focuses on the integration of public events
into the SCT framework. We assume that each robot
can broadcast simple signals to the rest of the group.
Where this is not possible, routing algorithms such as
flooding could be used.

III. SUPERVISORY CONTROL THEORY

In SCT, a set of events, Σ, governs the evolution
of the system. It consists of two disjoint subsets: un-
controllable events, Σu, and controllable events, Σc.
Uncontrollable events represent the control input, for
example, feedback signals from sensors or a timer’s set
off. Controllable events represent the control output, for
example, a control signal to move a robot or activate a
timer.

In SCT, free behaviour models define what the system
can do, and control specifications define what it should
do. Free behaviour models describe the capabilities of
the robot, each component of the robot (e.g. a wheel, a
sensor) can be modelled separately. The control speci-
fications describe the desired behaviour of the system.
For example, a robot is allowed to move forward if
no obstacle has been detected ahead. Free behaviour
models and control specifications are then used to
calculate a control agent called supervisor by a process
called synthesis [4].
A. Generators

There are multiple formal representations of DES
(e.g. Petri-nets [13], Markov chains [14]). We use gen-
erators [8] as they resemble the deterministic finite au-
tomaton (DFA), which is commonly used to represent
controllers of swarm robotics systems. While a DFA
recognises whether a given word belongs to a regular
language, a generator produces words of that language.
Formally, a generator is a 5-tuple,

G = (Q,Σ, δ, q0, Qm), (1)

where Q is a finite set of states; Σ is a finite set of events;
δ : Q×Σ → Q is a partial transition function; q0 ∈ Q is
the initial state; and Qm ⊆ Q is a set of marked states2.
We employ several generators—each one with their
own states—splitting the design in concise models. The
generators can represent both free behaviour models
(describing all of the robot’s capabilities) and control
specifications (restricting these capabilities to a desired
behaviour).

2Marked states are states that are considered safe for the system
(e.g. they could correspond to the end of a task).

q1

mF , tL, tR,
rL, rR

/

q1

oN ,
oL, oR

Fig. 1. Free behaviour models for random movement with collision
avoidance. G1 (left) represents the movement, G2 (right) represents
the sensing.

q1

q2

q3

oL

oR

mF , tL, tR

/

oN

oR

oN

rR

/

oL

oL

oN

rL

/

oR

Fig. 2. Control specification, E1, for random movement with
collision avoidance.

B. Free Behaviour Models

In this section, we focus on the free behavior mod-
els that a robot needs when acting in isolation (i.e.
group size 1). They are represented using generators, as
shown in Figure 1. Free behaviour model G1 defines the
movements that the robot can choose from. The control-
lable events mF , tL, and tR choose a basic movement:
move forward, turn left, or turn right, respectively. The
controllable events rL and rR choose a collision avoid-
ance movement: rotate (in place) counter-clockwise
or clockwise, respectively. The chosen movement is
executed until a new event occurs. Free behaviour
model G2 defines the robot’s ability to detect nearby
obstacles (i.e. other robots or walls) to the left, in
front of, or to the right of the robot. If no obstacle is
detected, uncontrollable event oN occurs. Otherwise,
uncontrollable event oL or oR occur, indicating whether
the obstacle(s) is/are perceived more to the left or to
the right side of the robot. If the situation is symmetric
(e.g. a robot in the front), the obstacles are assumed
to be on the right side. Every 0.1 s, one of oN, oL, oR

occurs.

C. Control Specifications

This section presents the control specification E1 that
a robot needs when acting in isolation. It is represented
using a generator in Figure 2. In state q1, no obstacle
is detected (i.e. oN). The robot can choose any basic
movement (i.e. mF, tL, tR). Note that when multiple
controllable events are permissible, it is common for
the implementation layer to choose at random and
uniformly, which in this case results in a random walk.
If an object is detected on the left or right side the active

state is q2 or q3, respectively. In state q2 the robot can
only rotate to the right (i.e. rR) to avoid a collision with
the object to the left. Similarly, in state q3 the robot can
only rotate to the left (i.e. rL).

IV. PUBLIC EVENTS

Private events are sufficient if we have only a single
robot performing the task, as illustrated in Section III.
In the presence of multiple robots, however, the robots
need to share information to reach agreement on what
movements to perform. For this purpose, we extend
the SCT framework by the concept of public events.

A generator with public events is a 7-tuple,

G = (Q,Σ, δ, q0, Qm,Σext
u,pub,M), (2)

where

• Σ is a finite set comprising private uncontrol-
lable events, Σu,priv ; private controllable events,
Σc,priv ; public uncontrollable events, Σu,pub; and pub-
lic controllable events, Σc,pub; where Σu,priv , Σc,priv ,
Σu,pub, and Σc,pub are pairwise disjoint sets;

• Σext
u,pub is the set that comprises the public uncon-

trollable events, Σu,pub, of G and those of all other
generators in use (if any);

• M : Σc,pub → Σext
u,pub is a function that maps a pub-

lic controllable event onto a public uncontrollable
event;

• Q, δ, q0, and Qm are defined as in (1).

Private uncontrollable events are confined to the
robot within which they are triggered. They are com-
monly used in SCT. When a public uncontrollable
event, eu,pub ∈ Σu,pub, occurs within a robot, any
other robot is notified, and then evolves its current
supervisor state as qk+1 = δ(qk, eu,pub).

Note that controllable events represent potential
choices for the internal controller of a specific robot.
They are not supposed to control directly the opera-
tion of other robots. Hence, prior to being transmit-
ted via the network, public controllable events are
converted into public uncontrollable events by M :
Σc,pub → Σext

u,pub. In other words, a public controllable
event, ec,pub, evolves another robot’s state as qk+1 =
δ(qk,M(ec,pub)). Therefore, if a robot chooses a public
controllable event, all its peers are notified.

A. Free Behaviour Models

Figure 3 shows the additional free behaviour models
that a robot uses when acting in a group. Free be-
haviour model G3 represents the ability of the robot to
request a particular basic movement to be performed:
sF , sL, and sR. Free behaviour model G4 represents
the ability of the robot to receive the requests made
by any other robot; the request (sF , sL, or sR) is
provided via a public uncontrollable event (sF , sL,
or sR). Free behaviour model G5 represents a timer.
Controllable event startT imer activates the timer; and
after 10 s, uncontrollable event timeout occurs. Table

q1

sF , sL, sR

/

q1

sF , sL, sR

q1 q2

startT imer

/

timeout

(a) G3 (b) G4 (c) G5

Fig. 3. Additional free behaviour models for synchronous move-
ment, representing the ability to choose a movement (a), receive a
choice made by another robot (b), and a timer (c). Public control-
lable and public uncontrollable events are shown in blue and red,
respectively.

TABLE I

EVENTS USED IN THE SYNCHRONOUS MOVEMENT CASE STUDY.

Event Type Description
mF , tL, tR C Move forward/left/right
rL, rR C Rotate left/right
oN U No object detected
oL, oR U Object detected on the left/right
sF , sL, sR PubC Request moving forwards/turn-

ing left/turning right
sF , sL, sR PubU Request received to move for-

wards/turning left/turning right
startT imer C Activate timer
timeout U 10 s elapsed since timer activation

I summarises all events; controllable, uncontrollable,
public controllable, and public uncontrollable events
are indicated as C, U, PubC, and PubU, respectively.

B. Control Specifications

Figure 4 shows the additional control specifications
for acting in groups. Specifications E2, E3, and E4 allow
a robot to perform a basic movement only when in
agreement with the last requests (if any) received by
other robots. The movement is selected either by the
robot itself (free behaviour model G3), or in response
to a request received by another robot (free behaviour
model G4). Each of E2, E3, and E4 is concerned with
a particular movement. For example, when a robot
requests to move forward (i.e. event sF), the states of
specifications E2, E3, and E4 evolve to q2, q1, and q1,
respectively, which only allow the move forward event,
mF , to be triggered. Note that an event is enabled
within a robot only when enabled in all of the robot’s
generators that have that event in their alphabet. Events
sF , sL, and sR are disabled by E5 until a timeout
expires. As public controllable event sF is mapped to
public uncontrollable event sF , all other robots obtain
the same state configuration, causing the group to
perform a coherent movement. Specification E5 defines
a minimum time period between subsequent requests
of 10 s.

q1 q2

sF
/

sF

sL, sR,
tL, tR

/

sL, sR sL, sR
/

sL, sR

sF , mF

/

sF

q1 q2

sL
/

sL

sR, sF ,
tR, mF

/

sR, sF sR, sF
/

sR, sF

sL, tL

/

sL

(a) E2 (b) E3

q1 q2

sR
/

sR

sL, sF ,
tL, mF

/

sL, sF sL, sF
/

sL, sF

sR, tR

/

sR

q1 q2

timeout

sF , sL, sR
/

(c) E4 (d) E5

Fig. 4. Additional control specifications for the synchronous move-
ment case study. Public controllable and public uncontrollable events
are shown in blue and red, respectively.

C. Controller Synthesis

The supervisor represents the control logic of the
robot. The supervisor is obtained by combining the free
behaviour models and the specifications. This guaran-
tees that the robot performs only actions that it can
perform and should perform. Formally, this is achieved
using synchronous composition, represented by ||, (see
[15]).

First, we join all free behaviour models and specifi-
cations into a target language, K:

G =G1|| . . . ||G5, (3)

E =E1|| . . . ||E5, (4)

K =G||E. (5)

As K is not necessarily controllable [4], we extract
the largest sub-language, S, that is controllable (see [4],
[15]):

S = SupC(G,K), (6)

S is a single generator (i.e. monolithic supervisor),
which may be prohibitively large due to the combina-
torial explosion of states during synchronous composi-
tion [16]. Two methods have been proposed to obtain
modular supervisors that may have a reduced number
of states. First, the modular supervisors [16] exploit the
modularity of specifications. One target language and
one supervisor are obtained for each specification, as:

Ki =G||Ei ∀i ∈ {1, . . . , 5}, (7)

Si =SupC(G,Ki) ∀i ∈ {1, . . . , 5}. (8)

TABLE II

EVENTS USED IN EACH GENERATOR.

E1 E2 E3 E4 E5

G1

mF X X X X

tL X X X X

tR X X X X

rL X

rR X

G2

oN X

oL X

oR X

G3

sF X X X X

sL X X X X

sR X X X X

G4

sF X X X

sL X X X

sR X X X

G5

startT ime

timeout X

local models Gloc

1
Gloc

2
Gloc

3
Gloc

4
Gloc

5

Second, local modular supervisors [17] exploit in
addition the modularity of the free behaviour models.
In the synthesis of the local modular supervisor for
each specification, only the free behaviour models that
define the events for that specification are used.

For our case study, the relations are expressed in
Table II. From this, we obtain the following local free
behaviour models:

Gloc
1 = G1||G2,

Gloc
2 = Gloc

3 = Gloc
4 = G1||G3||G4,

Gloc
5 = G3||G5.

(9)

The target language and local modular supervisors
for each specification are obtained by:

Kloc
i =Gloc

i ||Ei ∀i ∈ {1, . . . , 5}. (10)

Sloc
i =SupC(Gloc

i ,Kloc
i) ∀i ∈ {1, . . . , 5}. (11)

The monolithic supervisor, S, has 44 states and 420
transitions. The modular supervisors, Si, have a total of
22 states and 286 transitions. The local modular super-
visors, Sloc

i , have in total 13 states and 93 transitions.

V. IMPLEMENTATION

The framework implementation contains the gener-
ator player (i.e. a virtual machine to execute supervi-
sors), the operational procedures (i.e. the interface to
the hardware), and the communication stack.

We extended the open source software tool Nad-
zoru [18], [19] to support public events in the modelling
of free behaviour models and specifications. Using the
graphical interface, the user can flag an event as public.
If the event is controllable, they also need to choose a
corresponding public uncontrollable event. No further
action is needed by the user. The implementation of
the extended framework automatically generates the
controller’s source code.

Algorithm 1 Generator player (for N generators)

1: procedure GENERATOR PLAYER

2: for all j ∈ {1, 2, . . . , N} do
3: set current state cj to initial state q0j ;
4: end for
5: while true do
6: if eu ∈ Σu,pub occurred externally then
7: for all j ∈ {1, 2, . . . , N} do
8: cj = δj(cj , eu);
9: end for

10: else if eu ∈ Σu,pub occurred internally then
11: for all j ∈ {1, 2, . . . , N} do
12: cj = δj(cj , eu);
13: end for
14: Transmit(eu);
15: else if eu ∈ Σu,priv occurred then
16: for all j ∈ {1, 2, . . . , N} do
17: cj = δj(cj , eu);
18: end for
19: else
20: Σenabled

c = subset of enabled events(Σc);
21: if Σenabled

c 6= ∅ then
22: select one ec ∈ Σenabled

c ;
23: for all j ∈ {1, 2, . . . , N} do
24: cj = δj(cj , ec);
25: end for
26: execute callback function of ec;
27: if ec ∈ Σc,pub then
28: Transmit(M (ec));
29: end if
30: end if
31: end if
32: end while
33: end procedure

A. Generator Player

The generator player is shown in Algorithm 1. It is a
modified version from the literature [20], [8]. It evolves
the states of all generators of its robot. First, it checks
if externally-created public (line 6), internally-created
public (line 10), or private (line 15) uncontrollable
events have occurred. For any uncontrollable event,
the generators’ states are updated accordingly (lines 7–
9, 11–13, and 16–18). If a public uncontrollable event
originated locally, then the group is notified (line 14).

If no uncontrollable event occurred, the generator
player compiles a list of enabled (i.e. permissible) con-
trollable events (line 20). Three situations can arise.
First, the list is empty, indicating that no action can
be triggered; the system stalls until an uncontrollable
event happens. Second, the list contains only a single
controllable event, which is the only available option.
Third, the list contains multiple controllable events. In
this case, all events are valid options that fulfill the
control specifications; however, only one event can be

start

0

#pl

1

ack

2

cks

3

cmd

4 5 6 7

cpr

8 9 10 11

... data ... end

#pl 1

Fig. 5. Structure of packages to transmit public events.

triggered, this is known as the choice problem [21].
The generator player uniformly randomly selects one
event and updates the generators’ states accordingly
(lines 23–25).

If a controllable public event occurred, then the
swarm is notified (line 28) with the respective public
uncontrollable event that is determined by function M .

Note that the generator player (controller) prioritises
uncontrollable events over controllable events. This is
important as the control decision must be taken based
on the most recent state that is available. Moreover,
the generator player prioritises public uncontrollable
events over private uncontrollable events as public
uncontrollable events affect the entire system.

B. Operational Procedures

The operational procedures interface the controller
to the hardware [17]. They define one callback function
per event and do not implement control logic. For each
triggered controllable event, the generator player calls
the respected callback function to perform the desired
action (see line 26 of Algorithm 1). Moreover, the opera-
tional procedures implement the routines to determine
whether an uncontrollable event has occurred locally
(see lines 10 and 15).

C. Communication

The generator player operates on top of the underly-
ing network implementation. In other words, the same
supervisor can be deployed over different networks.

In the following experiment, we assume that the
robots are connected to a central hub. The hub serves as
a message delivery agent that transmits any incoming
package to all other robots connected to it.

To establish a wireless network, we use Bluetooth,
IEEE 802.15.1 [22], which is a package-based primary-
secondary protocol. A single primary can communicate
with up to seven secondaries.

We implemented communication by transmitting
packages. The package structure is shown in Figure 5.
Each package is composed of a header and data of a
variable length. The header contains (1) the start byte
(start), (2) the size in bytes of the data being transmitted
(#pl), (3) an acknowledgement identification (ack), (4)
the checksum value (cks), (5) the command (cmd), and
(6) the command parameters (cpr). This is followed by
(7) the data and (8) the end byte.

Whenever the hub receives a package from a robot,
it reads the header and evaluates the checksum. If the
package is valid, the hub emits an acknowledgement

Fig. 6. Sequence of nine (superimposed) snapshots taken during
a period of 3.2 s from one of the ten trials in which five e-pucks
performed synchronous movements while avoiding collisions.

to the robot and performs the required action defined
in the header’s command element. Currently, the only
commands implemented are: (1) broadcasting, where all
robots receive a copy of the package and (2) acknowl-
edgment, where the receiver indicates that the package
was successfully received.

To perform the broadcast, the hub first queues one
copy of the message to be transmitted in a local buffer,
one per recipient robot. The message is then transmit-
ted to the respective robot. To account for transmission
errors the hub waits for an acknowledgement message.
If the acknowledgement is not received within T ack

another attempt is made with an increased T ack. After
seven failed attempts, the message is discarded. If the
acknowledgement is received the message is removed
from the buffer. Robot and hub use the same acknowl-
edgement process.

VI. EXPERIMENTS

To validate the implementation of the SCT extension
in practice, we performed experiments using the mo-
bile robotics platform e-puck [23]. Each robot uses a
copy of the same set of local modular supervisors.

Trials were performed in a 400 cm × 300 cm light
grey floored arena surrounded by white walls that were
50 cm in height. The arena had 165 pencil marks dis-
tributed as a 15×11 grid with columns and rows spaced
25 cm apart. Five e-pucks were uniformly randomly
distributed over the marks with a randomly uniformly
distributed orientation. Ten trials were performed, each
lasting 300 s. With a remote control, the robots were
instructed to start simultaneously.

Figure 6 shows snapshots taken from one of the
experimental trials in which the e-pucks perform syn-
chronous movements while avoiding collisions with
each other and the walls of the arena. The nine snap-
shots are superimposed to show how the robots are
synchronised, the first snapshot is the most transparent
one and the last the most opaque.

Video recordings from all 10 experimental trials and
additional resources (models, the Nadzoru tool, the

time, t (s)

T
ot
al

n
u
m
b
er

of
m
es
sa
ge
s
tr
an

sm
it
te
d

0
15
00

30
00

0 100 200 300

(a)

time, t (s)

F
ai
lu
re

ra
te

0
0.
1

0.
2

0 100 200 300

(b)

Fig. 7. Communication reliability: (a) Number of message transmis-
sion attempts by the hub to the robots. (b) Failure rate. The thick
black dashed line indicates the mean, each other colour is a trial.

used source code) can be found in the online supple-
mentary material [24].

To evaluate the performance of the communication,
the hub collected statistics about the transmission of
packages. The transmission of every occurrence of a
public event is attempted up to seven times, which
was sufficient to successfully transmit packages during
the experiments. Figure 7(a) shows the accumulated
number of message transmission attempts by the hub
to the robots. Figure 7(b) shows the failure rate of the
messages against the total of attempted messages for
each of the five robots, as well as the mean (dashed
line).

VII. CONCLUSIONS

In this paper, we introduced the concept of public
events for the supervisory control of swarms of robots.
This makes it possible to formalise not only how robots
act individually within a group, but also how they
interact, as the robots exchange information. The user
can define desired robot inter-dependencies at the high-
est level—the control specifications. Public events can
be observed by other robots of the swarm, abstracting
the communication between them. They are modelled
as uncontrollable events. If a public controllable event
must be transmitted, a function converts it into a
corresponding public uncontrollable event.

To illustrate the proposed framework, a case study
was presented. Experiments with 5 e-puck robots
showed that the robots could synchronise their move-
ments in space and time, while avoiding collisions with
obstacles. We assumed that all robots can communi-
cate with each other at all times. In the future, we
will explore more complex environments, where local
communication restrictions apply.

REFERENCES

[1] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm
robotics: a review from the swarm engineering perspective,”
Swarm Intelligence, vol. 7, no. 1, pp. 1–41, 2013.

[2] P. Ramadge and W. Wonham, “Supervisory control of a class of
discrete event process,” SIAM J. Control and Optimization, vol. 25,
no. 1, pp. 206–230, 1987.

[3] ——, “The control of discrete event systems,” Proceedings of the
IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[4] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 2nd ed. New York: Springer, 2008.

[5] W. Wonham, K. Cai, and K. Rudie, “Supervisory control of
discrete-event systems: A brief history 1980-2015,” in 20th World
Congress, 2017.

[6] A. B. Leal, D. L. L. Cruz, and M. S. Hounsell, “Supervisory
control implementation into programmable logic controllers,”
14th IEEE International Conference on Emerging Technologies and
Factory Automation - ETFA, 2009.

[7] A. D. Vieira, E. A. P. Santos, M. H. de Queiroz, A. B. Leal, A. D.
de Paula Neto, and J. E. R. Cury, “A method for plc implemen-
tation of supervisory control of discrete event systems,” IEEE
Transactions on Control Systems Technology, vol. 25, no. 1, pp. 175–
191, Jan 2017.

[8] Y. K. Lopes, S. M. Trenkwalder, A. B. Leal, T. J. Dodd,
and R. Groß, “Supervisory control theory applied to swarm
robotics,” Swarm Intelligence, vol. 10, no. 1, pp. 65–97, 2016.

[9] R. C. Hill and S. Lafortune, “Scaling the formal synthesis of
supervisory control software for multiple robot systems,” in
2017 American Control Conference (ACC), May 2017, pp. 3840–
3847.

[10] Y. K. Lopes, S. M. Trenkwalder, A. B. Leal, T. J. Dodd, and
R. Groß, “Probabilistic supervisory control theory (pSCT) ap-
plied to swarm robotics,” in Proceedings of the 16th Conference
on Autonomous Agents and MultiAgent Systems, ser. AAMAS ’17.
Richland, SC: International Foundation for Autonomous Agents
and Multiagent Systems, 2017, pp. 1395–1403.

[11] J. A. Dulce-Galindo, M. A. Santos, G. V. Raffo, and P. N. Pena,
“Autonomous navigation of multiple robots using supervisory
control theory,” in 2019 18th European Control Conference (ECC),
June 2019, pp. 3198–3203.

[12] G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Bi-
rattari, “Automode: A novel approach to the automatic design
of control software for robot swarms,” Swarm Intelligence, vol. 8,
no. 2, pp. 89–112, 2014.

[13] N. Palomeras, P. Ridao, M. Carreras, and C. Silvestre, “Using
petri nets to specify and execute missions for autonomous

underwater vehicles,” in Intelligent Robots and Systems, 2009.
IROS 2009. IEEE/RSJ International Conference on, oct. 2009, pp.
4439–4444.

[14] D. Bruneo, M. Scarpa, A. Bobbio, D. Cerotti, and M. Gribaudo,
“Markovian agent modeling swarm intelligence algorithms in
wireless sensor networks,” Performance Evaluation, vol. 69, no.
3-4, pp. 135–149, 2012.

[15] W. Wonham, “Supervisory control of discrete event systems,”
Dept. Elect. Comput. Eng, Univ. Toronto, Toronto, ON, Canada,
Tech. Rep., 2010.

[16] W. Wonham and P. Ramadge, “Modular supervisory control of
discrete event system,” Mathematics of control, signals and systems,
vol. 1, no. 1, pp. 13–30, 1988.

[17] M. Queiroz and J. Cury, “Synthesis and implementation of
local modular supervisory control for a manufacturing cell,” in
Proceedings of 6th International Workshop on Discrete Event Systems
(WODES). Piscataway, NJ: IEEE, 2002, pp. 103–110.

[18] Y. K. Lopes, A. B. Leal, R. S. U. Rosso, and E. Harbs, “Local
modular supervisory implementation in microcontroller,” in
Proceedings of the 9th International Conference of Modeling, Opti-
mization and Simulation (MOSIM 2012), 2012.

[19] L. P. Pinheiro, Y. K. Lopes, A. B. Leal, and R. S. U. Rosso,
“Nadzoru: A software tool for supervisory control of discrete
event systems,” in IFAC-PapersOnLine, vol. 48, 2015, pp. 182–
187.

[20] Y. K. Lopes, A. B. Leal, T. J. Dodd, and R. Groß, “Application
of supervisory control theory to swarms of e-puck and kilobot
robots,” in Swarm Intelligence, ANTS 2014, ser. LNCS, M. Dorigo,
et al., Ed., vol. 8667. Berlin, Germany: Springer, 2014, pp. 62–73.

[21] M. Fabian and A. Hellgren, “PLC-based implementation of
supervisory control for discrete event systems,” in 1998 IEEE
37th Conference on Decision and Control, vol. 3. Piscataway, NJ:
IEEE, 1998, pp. 3305–3310.

[22] IEEE Standard for Information Technology - Telecommunications and
Information Exchange Between Systems - Local and Metropolitan
Area Networks - Specific Requirements. - Part 15.1: Wireless Medium
Access Control (MAC) and Physical Layer (PHY) Specifications for
Wireless Personal Area Networks (WPANs). IEEE, 2005.

[23] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klap-
tocz, S. Magnenat, J.-C. Zufferey, D. Floreano, and A. Martinoli,
“The e-puck, a robot designed for education in engineering,”
in Proceedings of the 9th Conference on Autonomous Robot Systems
and Competitions, vol. 1, no. 1, 2009, pp. 59–65.

[24] Y. K. Lopes, S. M. Trenkwalder, A. B. Leal, T. J. Dodd, and
R. Groß, “Electronic Supplementary Material,” 2020. [Online].
Available: http://naturalrobotics.group.shef.ac.uk/supp/2020-
001/

