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ABSTRACT 

Previous studies of industry level energy demand have not accounted for the hierarchical 

nesting of industries within a system that also adequately allows for country specific 

determinants of energy demand. The principal contribution of this paper is therefore to 

analyse energy demand for European industries over the period 1995-2007 using a dynamic 

multilevel model that accounts for this hierarchical data structure. Among other things, we 

find, firstly, that our dynamic multilevel model suggests that if industry income and the 

industry energy price increase by 10%, long run energy demand will increase by 8.1% and 

fall by 6.8%, respectively. Secondly, we find that the corresponding long run income and 

price elasticities are substantially larger in a standard dynamic model of industry level energy 

demand which does not account for the hierarchical data structure. Our results therefore 

suggest that not accounting for the hierarchical data structure results in unreliable estimates 

of energy demand elasticities. From a policy perspective we argue that it is imperative that 

future industry level energy demand studies account for the hierarchical structure of the data. 

This is to prevent energy policy making being based on industry level evidence that 

substantially inflates the responsiveness of long run energy demand to income and price 

changes.  
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1 Introduction 

The estimated long-run elasticities derived from energy demand functions have retained 

energy demand modelling as an area of interest in the literature. This is because these 

elasticities serve as important tools for the policy makers in making appropriate predictions 

about future energy use and energy related policies, Hunt and Ninomiya (2005). This 

subsequently highlights the potential implications of energy related policies based on 

inaccurate energy demand estimates, which are very likely to be misleading or inappropriate. 

Numerous approaches have been employed to derive energy demand estimates ranging from 

aggregate level to sectoral level analyses, but, majority of the existing literature generate their 

energy demand estimates from aggregate demand models1 . Although, energy demand 

estimates derived from aggregate energy demand functions are useful in formulating 

macroeconomic policies related energy security and carbon emissions, but such analysis fails 

to capture the potentially more diverse energy consumption behaviour of disaggregated units 

in the economy. Consequently, detailed information and understandings required in 

formulating specific energy related policies are lost (Bhattacharyya, 2011). This in turns 

highlights the importance of estimating industrial energy demand as it avoids masking the 

differences in the production process across the various productive sectors.  

The purpose of this paper is to analyse industrial energy demand across 29 European 

countries over the period 1995–2009. The main contribution of this paper over the existing 

literature in industrial energy demand modelling is the introduction of the dynamic multilevel 

model that controls for the hierarchical structure of industry level data. Given that failure to 

control for the multilevel structure of hierarchical dataset could produce unreliable estimates, 

Steenbergen and Jones (2002). The methodology adopts in this paper subsequently highlights 

the implications of ignoring the hierarchical structure of industry level data while modelling 

industrial energy demand. Specifically, we analyse energy demand function for the sectors as 

a whole and for different sector types by classifying the sectors into primary, manufacturing 

and service sectors respectively. The categorising of the whole sample into three different 

sectors allows the estimation of price and income elasticities for each of the sectors, which in 

turn provide insightful information in formulating specific sector’s energy related policies. 

The estimation method employed in this paper is sensible as Lee (1997) demonstrates that the 

estimates from a model using only aggregated industrial data might be biased. 

 
1
 
1 Lee and Lee (2010) list studies that have estimated aggregate energy demand function. In addition; York 

(2007), Adeyemi et al. (2010) and Lee and Chiu (2011) estimate aggregate energy demand function.  
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The remainder of this paper is organised as follows. Section 2 presents the overview of 

existing literature in industrial energy demand. Section 3 introduces the dynamic multilevel 

econometric methodology and discusses our application of it to industrial energy demand.   

Section 4 describes the data used for the estimations. The empirical results are then discussed 

in Section 5. Section 6 presents the concluding remarks and avenues for further research. 

2 Related Literature 

The research interest in modelling industrial energy demand has increased in recent years 

owing to the fact that industrial energy consumption accounts for about one third of the 

global energy consumption (Greening et al., 2007). Further, as noted by Agnolluci et al. 

(2017) the contribution of industrial energy consumption to global energy consumption has 

remained constant over the years fluctuating around 33% and 27% in 1971 and 2013 

respectively (IEA, 2016). In the last three decades, tremendous efforts have been taken to 

empirically model industrial energy demand. The closest relatives to this paper falls into two 

categories: (i) empirical modelling of industrial energy demand using a system of cost share 

with a translog specification and (ii) empirical modelling of industrial energy demand using a 

single-equation model2. In respect to the former, existing literature in industrial energy 

demand modelling primarily focuses on the elasticities of substitution (ES) and 

complementarity (EC) between factor inputs/or fuel types owing to the seminar work of 

Berndt and Wood (1975). Among others, Berndt and Wood (1975), Fuss (1977), Anderson 

(1981), Prywes (1986), Arnberg and Bjøner (2007) and Tovar and Iglesias (2013) find capital 

and energy to be complements. However, some existing studies on industrial energy demand 

refute the claim that capital and energy are substitutes, and therefore argue that capital and 

energy are complements. These include Griffin and Gregory (1976), Uri (1982), Kim and 

Heo (2013), Haller and Hyland (2014), Lin and Ahmad (2016) and Li and Lin (2016).  

In addition to the investigation of the ES between production factors, some of these 

studies simultaneously highlight the importance of the price elasticities. Floros and Vlachou 

(2005) modelled the Greek industrial energy consumption using a two-stage translog model 

for the period 1982–1998. Their results suggest that energy price elasticities vary markedly 

between – 1.13 and – 0.02, with upper bound decreasing to –0.04 when the model only 

contains statistically significant elasticities. Kim and Heo (2013) estimate a translog cost 

 
2
 We classified models that are not system cost-share translog models such as fixed effect, random effect models 

and GMM etc. as single-equation model.  
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function for the manufacturing sectors of 10 OECD countries and find energy price 

elasticities to be inelastic ranging between –0.08 and –0.76. Haller and Hyland (2014) also 

employ translog function to model production in the Irish manufacturing sector over the 

period 1991-2009 and find price to be elastic with an estimated elasticity −1.46. Similarly, Li 

and Lin (2016) estimate both static and dynamic tranglog cost function to analyse inter-

factor/inter-fuel substitution in China over the period 1985–2012. The authors find own price 

elasticities for electricity, coal, and oil to be −0.72, −0.76 and −0.74 respectively. We 

acknowledge that the system based estimation of the translog cost model has remained a 

popular method to model industrial energy demand, because of the flexibility of the translog 

specification as well as this approach is consistent with microeconomic theory related to cost 

minimization. However, notwithstanding this popularity, most of the studies that model 

industrial energy demand using cost functions mainly focus on inter-factor and/or inter-fuels 

substitution possibilities rather than energy price or income/output estimates. 

In contrast, studies that have modelled industrial energy demand with the single-equation 

model have focused more on investigating the implication of energy price and economic 

activity on energy demand by estimating long-run energy price and economic activity 

elasticities of energy demand. Bjøner and Jensen (2002) employ fixed effect model to analyse 

the survey data for 8 Danish industrial companies between 1983 and 1997. They find average 

price elasticity –0.44 for the whole industry, while price elasticities vary between industries 

ranging from –0.69 and –0.21. The elasticities of economic activity vary between 0.44 and 

0.65 with an average of 0.54 for the whole industry. The elasticities of energy price and 

economic activity produce by Agnolluci et al. (2017) are almost identical as the authors find 

average elasticities with respect to energy price –0.41 and economic activity 0.57 for UK 

industrial subsectors. These average elasticities are somewhat similar to the average 

elasticities with respect to energy price and economic activities produce in Agnolucci (2009, 

2010). Hunt et al. (2003a) demonstrate the importance for allowing for inherent underlying 

forces that can be stochastic in nature in energy demand modelling. Structural Time Series 

Model (STSM) of Harvey (1989) was used to estimate energy demand for the UK as a whole 

and for different sectors using a quarterly data for the period 1971q1 to 1997q4. Their 

findings suggest that energy demand models that fail to allow for these underlying forces are 

likely to produce biased estimates. In a very similar study, Dimitropolous et al. (2005) 

reconfirmed the importance for allowing for the inherent underlying forces in industrial 

energy demand modelling using an annual UK data for the period 1967–2002 across different 
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sectors. They find the elasticity with respect to energy price between –0.11 and –0.23 and the 

elasticity with respect to economic activity between 0.34 and 0.81. Similarly, Dilaver and 

Hunt (2011) investigate the impacts of energy price and economic activity on the Turkish 

industrial electricity consumption using STSM. Having controlled for the underlying forces 

that could affect electricity consumption in the model; they find both output and price to be 

inelastic with estimated elasticities 0.15 and –0.16 respectively– value close to Dimitropolous 

et al. (2005) when considering only price.   

One strand in the literature of energy demand argues that there is a difference between the 

impacts of an increased energy price and a decreased energy price- the concept of asymmetric 

methodology introduced by Dargay and Gately (1995). With respect to industrial energy 

demand, Adeyemi and Hunt (2007) consider the APR methodology to demonstrate that the 

use of single-equation model had become a standard procedure while modelling industrial 

energy demand for a panel of 15 OECD countries. They argue on the basis that the procedure 

is simple, straightforward and required limited data. The long-run elasticities with respect to 

economic activity for the two models estimated are 0.76 and 0.56. The estimated long-run 

price elasticity when assuming no asymmetric response is −0.22, though not statistically 

significant;     when assuming asymmetric price responses, the elasticities for price-maxima, 

price-recoveries and price-cuts are −0.52, −0.68 and −0.30 respectively. In a similar approach, 

Adeyemi and Hunt (2014) use the same set of 15 OECD countries explored in Adeyemi and 

Hunt (2007) to model the industrial energy demand using time series analysis over the period 

1962–2010. The authors account for both APR and underlying trend in their models, and find 

estimated long-run income elasticities in the range of 0.34 to 0.96; estimated long-run price-

maximum elasticities in the range of −0.06 to −1.22; estimated long-run price-recovery 

elasticities in the range of 0.00 to −0.27; and estimated long-run price-cut elasticities in the 

range of 0.00 to −0.18.   

Two key points can actually be drawn from the literature. First, existing literature on 

industrial energy demand that in principle heavily rely on industry/sectoral level data do not 

normally account for the hierarchical structure of the industry level data used and 

consequently likely to produce unreliable estimates. Second, despite the huge existing 

literature on energy demand modelling, studies primarily focusing on European industrial 

energy demand remain relatively scarce in the literature given the fact that most previous 
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studies rather focused on modelling energy demand for OECD countries3 or a single country. 

Therefore, first, this paper aims to contribute to the existing literature by estimating industrial 

energy demand with a dynamic multilevel model. Multilevel model is very popular among 

social scientists and has been widely used in other branches of economics. For instance, in 

education economics, Konishi et al. (2010), Ronfeldt et al. (2013) and Voyer and Voyer 

(2014) have employed multilevel model to analyse the determinants of student achievement. 

Moreover, multilevel modelling has been widely used in social and health economics to 

analyse the relationship between social capital and health (Islam et al., 2006; Mohnen et al., 

2011; Layte, 2011; Murayama et al., 2012). In regional economics, multilevel model has also 

been used to control for the nesting of regions within countries (Srholec, 2007; Rentfrow et 

al., 2013). Given the wide use of multilevel models in other branches of economics, we can 

conclude that multilevel model is in fact an established method of analysis in economics, the 

benefits of which are transferable to energy economics. Second, we extend the existing 

literature by modelling the European industrial energy demand.   

3 Empirical Method 

3.1    Multilevel Modelling 

Multilevel modelling aims to model the relationship between a response variable and a set of 

explanatory variables, but differs from standard regression analysis by modelling units of 

observation at different ‘levels’. In particular, multilevel analysis is applied to a hierarchical 

data structure. For instance, in the context of this study, we have a longitudinal data4 that is 

viewed as three-level or clustered data with occasions (that is, time period) nested in subjects 

(that is, industries) which are in other hand nested in countries. Following Rabe-Hesketh and 

Skrondal (2012) we use the term “occasions” i for level-1 units, “industries” j for level-2 

units and “countries” k for level-3 units. In other words, this implies that the individual 

observations are in general not absolutely independent. That is, industries interact with and 

are influenced by the economic environment to which they belong, and that national 

economies are in turn influenced by the industries that make them up.  

More importantly, one can associate differences in energy consumption between 

industries to the countries where they are located, but industries located in different countries 

 
3 In addition to the studies mentioned above, Hass et al. (1998), Griffen and Schulman (2005) Filippini and 
Hunt, (2011) and Lee and Chiu, 2013) have also modelled energy demand for OECD countries. 
4 For interested reader on multilevel modelling for longitudinal or repeated measures data see Rabe-Hesketh and 
Skrondal (2012). 
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may have different energy consumption behaviour even though they have similar industrial 

features. This could arise as a result of diversity in energy prices, climate, economic growth 

and technological progress across countries. In other words, the energy consumption 

behaviour of a typical industry operating in a given country can be influenced by the 

consumption behaviour of another industry operating in a different country. In other hand, 

industries located in the same country tend to have common energy consumption behaviour 

even though they have different industrial characteristics given the fact they face the similar 

economic and social situations. This could be referred as the consumption patterns of clusters, 

that is, industries with different characteristics. Steenbergen and Jones (2002) discuss the 

statistical problems inherent in clustered data and demonstrate that models that do not control 

for this clustering tend to produce unreliable estimates in terms of incorrect standard errors.  

In this paper, we control for clustering in our data by using multilevel model that can 

explicitly accounting for the multilevel structures of the data. Multilevel modelling allows us 

to disentangle the clustering at different levels by including the explanatory variables and the 

disturbance term at every level. That is, our models incorporate predictors at each of the 

levels. This allows us to indirectly control for the heterogeneity of the relationships between 

the response variable and the explanatory variables among clusters- of industries and 

countries. Consequently, we are able to identify the unexplained heterogeneity associated 

with each level. Another advantage of using multilevel regression is to remove the “Robinson 

effect” after Robinson (1950). This is often referred as dis-aggregation bias or ecological 

fallacy where an analyst wrongly analyses data at one level and formulates conclusions at 

another level. Hox et al. (2010, pp. 2-4) discusses the major statistical problem associated 

with this Robinson effect by arguing that when data is aggregated substantial information 

about underlying economic relationships is lost and the statistical analysis loses power, 

leading to a high potential for spurious results. Multilevel modelling is therefore explicitly 

designed to remove this biasedness as it provides a tool for analysing hierarchical data 

structures. 

 3.2 Dynamic Multilevel Modelling of Industrial Energy Demand 

The microeconomic model underlying our econometric specification of European industry 

energy demand is a modification of Medlock (2009) and is specified as follows, where i is a 

time index, j is an industry index and k is a country index: 

כܧ  ൌ ሺܻǡܧ ܲǡ  ሻ                                                                                                                                    ሺͳሻܦ
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where כܧ  is the energy demand, ܻ  is output, ܲ  is the price of energy and ܦ  is the time 

dummies. We acknowledge that some existing literature considered the methodology of APR 

(Adeyemi et al., 2010; Adeyemi and Hunt, 2014) on the basis that there is a difference 

between the impacts of an increased energy price and a decreased energy price. Although, 

Griffin and Schulman (2005) refute this claim by arguing that the APR is only capturing 

energy saving technical progress endogenously, but Huntington (2006) replied by arguing 

that there is role for both the APR and technical progress while estimating energy demand 

model. In this paper, we are in favour of the former (Griffin and Schulman, 2005) as we do 

not considered APR like some existing literature on energy demand such as  Hunt et al. 

(2003); Agnolucci, (2009, 2010);  Lee and Lee (2010) and Lee and Chiu (2013). In a separate 

strand of the literature, the importance of allowing for the underlying nonlinear forces related 

to energy consumption has been considered5 (Hunt et al., 2003a; Dimitropoulous et al., 2005) 

with a mechanism termed as Underline Energy Demand Trend (UEDT)6. As noted by 

Adeyemi et al., (2010), the UEDT is regarded as a measure of energy saving technical 

progress and is captured by the time dummies in a panel data analysis, following the 

argument of Griffin and Schulman (2005). Following these arguments and the importance of 

allowing for the technical progress in energy demand model, we allow for the UEDT in our 

analysis and is captured by the time dummies, ܦ.   
We employ a dynamic multilevel model (DMM hereafter) and generalised method of 

moments (GMM hereafter) estimators (Arellano and Bond, 1991)7 in estimating Eq. (1). 

However, we only discuss the DMM as the GMM has been extensively used and explicitly 

discussed in the literature. Given the structure of our dataset- a hierarchical structure with a 

balanced panel of multiple years of data on industries nested within countries, we apply a 3-

level dynamic multilevel model in estimating European industrial energy demand where the 

numbers of occasion are regarded as level-1, the industries as level-2 which are nested in 

countries, level-3. Given our fully balanced panel data base, the general 3-level DMM is 

specified as follows:    

 
5
 We are grateful to an anonymous referee for pointing this out. 

6 Hunt et al., (2003a) demonstrate the importance of allowing for inherent underlying forces that are nonlinear to 
energy demand and argue that any energy demand model that fail to allow for these nonlinear forces might 
produce biased estimates.  
7 The GMM is recognised as the baseline model for comparison. The GMM is known for controlling for 
endogeneity in the model and we also control for the unobserved country- and time-specific effects by including 
country dummies and time dummies. The industry-specific effects are automatically control for in the GMM 
given the fact that the industries represent our identifiers.  
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ܧ ൌ ିଵǡܧߙ  ܺሺଷሻݑሺଷሻ  ܺሺଶሻݑሺଶሻܦ א                                                                       ሺʹሻ 

where ݇ ൌ ͳǡ ǥ Ǥ ǡ ݆ ,ܭ ൌ ͳǡ ǥ Ǥ ǡ ݅ , andܬ ൌ ͳǡ ǥ Ǥ ǡ  , is the time dummies. For exampleܦ .ܫ

the dependent variable ܧ  denotes the energy consumption for industry j operating in 

country k in time period (or occasions) i. Each j and k group consists of i observations, 

while ܧ and א each have row dimension ܫ. ܺ ሺଷሻ is the ܫ ൈ -design matrix for the third ܭ

level random effects ݑሺଷሻ, and ܺ ሺଶሻ is ܬ ൈ  ሺଶሻ. The random terms are assumed to be identically independently distributedݑ design matrix for the second-level random effects ܭ

ሺଷሻ̱ܰሺͲǡݑ                           ሺଶሻ̱ܰሺͲǡݑ           ;௩ଶሻߪ א          ;௨ଶሻߪ ̱ܰሺͲǡ  ଶሻאߪ

For the purpose of estimation, we redefined Eq. (2) through a three-stage formulation 

using the notation of Bryk and Raudenbush (1992). The level-1 model for occasions i, 

industry j, and country k is a linear regression on time and is specified as: ܧ ൌ ߨ  ܦଵߨ                                                                                                                ሺ͵ሻߝ

where ܦ  is the time dummies and ߝ  is the level-1 residual. The intercept ߨ  in the 

level-1 model vary between industries according to the following level-2 model: ߨ ൌ ߙ  ିଵǡܧଵߙ  ଶߙ ܻ  ଷߙ ܲ                                                                       ሺͶሻߜ

where  ܧିଵǡ is one period lagged value of energy use, ܻ stands for output at industry-level, 

ܲ  energy price at industry-level and ߜ  is a level-2 random intercept. Further, we can 

introduce the country-level predictors by modelling the industry-level intercept, ߙ:  ߙ ൌ ߚ  ଵߚ ܻ  ଶߚ ܲ                                                                                               ሺͷሻߥ

where ܻ   stands for output at country-level, ܲ  energy price at country-level and ߥ  is a 

level-3 random intercept. 

Substituting the level-3 model into the level-2 model gives ߨ ൌ ߚ  ଵߚ ܻ  ଶߚ ܲ  ିଵǡܧଵߙ  ଶߙ ܻ  ଷߙ ܲ  ߥ                       ሺሻߜ
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By making assumptions that the effect of industry-level variables are fixed (i.e., ߙ௫ ൌ  ଵ௫ߚ

for ݔ ൌ Ͳ) and that the effect of the level-1 variable is fixed as well (i.e., ߨଵ ൌ  ଵ), thenߚ

the substitution of level-2 model into level-1 model results to our 3-level model given as: 

ܧ  ൌ ߚ  ଵߚ ܻ  ଶߚ ܲ  ିଵǡܧଵߚ  ଶߚ ܻ  ଷߚ ܲ  ܦଵߚ  ߥ                 ߜ                                                                                                                                   ሺሻߝ

where  ߥ̱ܰሺͲǡ ̱ܰሺͲǡߜ ,௩ଶሻߪ ̱ܰሺͲǡߝ ௨ଶሻ andߪ   .ఌଶሻߪ

This model has unique features as it brings together the predictor at different levels and it 

assumes that the error terms are uncorrelated across levels. A typical multilevel model 

normally consists of two parts: the fixed part, which shows the relationship between the 

predicted value of the dependent variable and the explanatory variables, and the random part, 

which shows the estimates of the group effects on the response variable. In principle, by 

simply including the lagged of the dependent variable into a static model such as Eq. (7), we 

are making a very strict assumption of no correlation between the lagged response and the 

residuals (that is, Covሺߝǡ ିଵǡሻܧ ൌ Ͳ). Therefore, estimating Eq. (7) directly without 

correcting for the potential correlation between the residuals and the lagged dependent 

variable is a very naïve way of estimating a dynamic model and this may consequently lead 

to biased and inconsistent estimates (Nickell 1981).8 This is described as the problem of 

initial conditions in the literature. However, Steele (2008) and Crouchley et al. (2009) have 

argued that the problem of initial conditions is difficult to justify in practice as it only arises if 

the length ‘T’ period of the study is relatively small because the problem is wiped out over a 

relatively long period of time. That is, in a longitudinal study with a relatively long time 

period, the problem of initial conditions might not occur. But unfortunately, none of these 

papers suggest an appropriate time period that is long enough for the problem of initial 

conditions not to be of concern.  Given the above argument, we control for the potential 

correlation that might occur between the lagged dependent variable and the residuals by 

adopting the joint working models proposes by Heckman (1981a) following Skrondal and 

Rabe-Hesketh (2014)9.  

 
8By ignoring the possibility of correlation between the dependent variable and the residuals and estimate Eq. (7) 
might lead to upward biasedness of the coefficient of the state dependency (ߚͲͳͲሻ and the downward biasedness 
of the estimate of the unobserved heterogeneity ߪ௩ଶ .   
9 The approaches discuss in this paper are for binary response models, but they can also be adopted for 
continuous response models. Moreover, interested readers may see Kazemi and Crouchley (2006), Crouchley et 
al. (2009; Chapter 11) for other approaches.  
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The problem of initial condition arises when response at initial period does not coincide with 

the start of the process under study. In theory, response at the initial period ܧ  plays a 

crucial role in dynamic/transition models as subsequent responses (i.e., ܧଵ, ܧଶ,…, ܧ) 

depend on it10. The basic idea of Heckman (1981a) is to model the initial response, jointly 

with the subsequent responses. In practice, Eq. (7) is a as model at a later occasion (i.e., when 

i=1,…,I-1) and since we have on-going data process where initial response ܧ is considered 

to be affected by random intercept ߜand pre-sample ିܧଵǡ response, thus, there is need to 

jointly model initial response ܧ and subsequently responses. An unrefined starting point 

would be to specify a similar version of Eq. (7) using the initial response ܧ  as the 

dependent variable as a function of the predictors, but without the lagged response and the 

time dummies, since we only have initial time period here. This model is regarded as when 

i=0 can be specified as: ܧ ൌ ߛ  ଵߛ ܻ  ଶߛ ܲ  ଶߛ ܻ  ଷߛ ܲ  ߥ  ߜ                                  ሺͺሻߝ

where  ߥ̱ܰሺͲǡ ̱ܰሺͲǡߜ ௩ଶሻ andߪ ̱ܰሺͲǡߝ ௨ଶሻ as given above, andߪ ఌଶߪ ሻ.  

It is important to point out that the remaining disturbance terms at subsequent period, that is, 

i > 0 and the initial period, that is, i= 0 are not equal (that is ߪఌଶ ≠ ߪఌଶ ). This is simply because 

the variance of the residuals of subsequent responses ܧ  condition on the covariates ࢄ and the lagged response ܧିଵǡ is different from the variance of the residual of initial 

responses ܧ which is condition on the covariates ࢄ only. In other words, the residual in 

the initial period is related to the explanatory variables of initial period, while the residuals of 

the subsequent period are related to the explanatory variables at subsequent period, ࢄ and 

the lagged response, ܧିଵǡ. Since Eq. (8) for initial response ܧ and Eq. (7) for response ܧ shared the same industry (i.e., ߜ) and country (i.e., ߥ) random effects therefore, they 

must be jointly estimated.  

For estimation purposes, we create time period indicators that distinguishes the initial 

period (i= 0) coded as ݓଵ from the subsequent periods (i > 0) coded as ݓଶ. The time period 

indicator ݓଵ is coded as 1 for i= 0 and 0 otherwise. The time period indicator  ݓଶ is coded as 

1 for i > 0 and 0 otherwise. Then, we interact ݓଵ with the predictors in Eq. (8) and interact ݓଶ 

 
10 See appendix A1 for the technical notes. 
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with the predictors in Eq. (7). Both models for i= 0 and i > 0 are therefore jointly specified as 

one model as follows: ܧ ൌ ଵݓߛ  ଵݓଵߛ ܻ  ଵݓଶߛ ܲ  ଵݓଶߛ ܻ  ଵݓଷߛ ܲ  ଶݓߚ  ଶݓଵߚ ܻ ଶݓଶߚ ܲ  ିଵǡܧଶݓଵߚ  ଶݓଶߚ ܻ  ଶݓଷߚ ܲ  ܦଶݓଵߚ  ߥ ߜ  ߳                                                                                                                ሺͻሻ 

where ߥ̱ܰሺͲǡ ̱ܰሺͲǡߜ ,௩ଶሻߪ ௨ଶሻ and the estimated variance for level-1 residual ߳ߪ  is 

decomposed into ɂ௧̱ܰሺͲǡ ఌଶߪ ሻ and ɂ௧̱ܰሺͲǡ ଵݓ ఌଶሻ by defining groups based onߪ . It is 

worth pointing out that model 7, 8 and 9 are interrelated by substitution. If ݓଵ and ݓଶ are 

substituted as 0 and 1 respectively into Eq. (9) that gives Eq. (7), and If ݓଵ and ݓଶ  are 

substituted as 1 and 0 respectively into Eq. (9) that gives Eq. (8). Ultimately, the model of 

interest is model 7 when i > 0, that is, when ݓଵ ൌ Ͳ and ݓଶ ൌ ͳ in Eq. (9) as it relates to the 

time period of our analysis. The inclusion of model 8, (i.e., when i=  0) becomes imperative 

only for controlling for the initial conditions problem. Hence, only the results for i > 0 in Eq. 

(9) will be presented in the analysis section. 

4 Data 

The main source of data for our analysis is World Input-Output Database (Timmer et al., 

2015)11. The WIOD is based on national accounts data and it provides a comprehensive, 

harmonized dataset that allows comparison of specific environmental indicators like sectoral 

energy use over the years covered by the database (1995 to 2009). The WIOD has two 

advantages with respect to existing data sources as suggested by Voigt et al. (2014)12. First, 

the harmonization procedures undertaken throughout the data collection minimize the risks of 

measurement errors. Moreover, the consistence in data collection and comparability across 

countries describes the data efficiency gains at the sectoral and global levels. Second, the 

WIOD provides data on sectoral price deflators. This allows for the retaining of important 

information and variations with respect to price development which is an advantage over the 

use of aggregate national price deflators in sectoral analysis.     

 
11 In this paper, we used data from the three major accounts of the WIOD, the National Input-Output Tables 
(NIOT) released in November 2013, Environmental Accounts (EA) released in March 2012 and the Socio-
Economic Accounts (SEA) released in July 2014.  Data downloaded from these accounts are available at 
www.wiod.org 
12 Other studies that have also obtained energy data from WIOD include: Hübler and Glas (2014), Kaltenegger 
et al. (2017) and Loschel et al. (2015).  
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Our analysis is based on a fully balanced sample of 34 sectors13 at three- and four-digit level 

using International Standard of Industrial Classification (ISIC) Rev.4, which is consistent 

with NACE Rev.2 across 29 European countries14 over the sample period 1995–2009. Data 

on purchasing power parity exchange rates (US$) are taken from Penn World Table (PWT 

7.1). Industry energy use (݁) in terajoule (TJ) is taken from the Environmental Accounts of 

WIOD, 2012. Industry output is measured as gross output by industry at current market prices 

in millions of national currency, and data is taken from the Socio-Economic Accounts of 

WIOD, 2014. To generate the real output (ݕ), we deflated the gross output using the price 

index of gross output (1995=100) obtained from the SEA of WIOD, 2014. In other to express 

the real output in international monetary unit, we used the purchasing power parity taken 

from the Penn World Table (PWT7.1) to convert the real output in national currencies to 

international units (US$). Since there is no ready-made data on industry price of energy from 

data sources, we therefore follow a similar process adopted in Adetutu et al., (2016) to 

generate the price of energy. The real price of energy () is computed as the ratio of energy 

input expenditure at constant prices in US$ to energy use in TJ. Energy input expenditure is 

computed as the addition of the value of expenditure on coke, refined petroleum, nuclear fuel, 

electricity and gas supply purchased domestically and internationally (millions of US$). Data 

on the energy commodities are taken from the National Input-Output Tables (NIOT) of the 

WIOD, 2013. To derive the real price of energy in US$, we deflated the energy expenditure 

by constant unit (1995=100), and then divided the real energy expenditure by energy use in 

TJ.  

Table 1 
Descriptive statistics of variables used in the analysis.  

Description Variable Mean Std. Dev Min Max 

Energy consumption  in TJ    E 117125.8 396875.4   42.69    3109309 

Industry real price of energy in US$ per TJ     P 1.59 2.36     0.002   16.01 

Industry real output in US$    Y 19230.86   37032.64    11.97     206776 

Country real price of energy in US$/TJ    Pc
 1.59 1.78 0.004 14.91 

Country real output in US$    Yc 19230.86 28886.28 29.32 123375.5 

 

 

 
13 In the interest of balanced panel data and reliable estimates, sectors without data on energy use were excluded 
from our analysis and all the 34 sectors are listed in the appendix. 
14 Austria, Belgium, Bulgaria, Cyprus, Czec Rep, Denmark, Estonia, Finland, France, Germany, Greece, 
Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherland, Poland, Portugal, Romania, Russia, 
Slovak Rep, Slovania, Spain, Sweden, Turkey and United Kingdom. 
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5 Empirical Analysis 

In this section, we discuss the results of the models estimated and all variables estimated are 

in their natural logarithm. We employ the GMM and DMM to estimate model 9 for all 

sectors as a whole and also separately for primary, manufacturing and service sectors15. For 

straightforward interpretation, we centred the industry-level variables on the log of their 

group means (country-level)16 so that the coefficients of the industry-level and country-level 

variables can be interpreted as the within-country (or between-industry) and between-

countries elasticities. We present the parameter estimates of the GMM and DMM estimators 

in Table 2 and 3 respectively, for the sectors as a whole and in the restricted samples. Unlike 

the initial DMM (model 7) the GMM does not suffer from the endogeneity problem of the 

correlation of the lagged response and the disturbance term that could result to a biased and 

inconsistent estimate. However, the GMM is not an estimator specifically designed to control 

for cluster-level heterogeneity resulting from hierarchical data and consequently not an 

estimator suitable to analyse multilevel model. This is simply because the GMM can only 

automatically control for a given level of heterogeneity at the level of the data in which the 

identifiers are based on. Since our analysis is based on industry data, therefore our identifiers 

are based on industry rather than country. This implies that the GMM automatically controls 

for heterogeneity across industries only and consequently might produce unreliable estimates. 

Generally, we acknowledged the fact that other unobserved heterogeneity (e.g., country-

specific and time-specific effects in our analysis) could also be controlled for in the GMM by 

introducing dummies into the estimated models, but the models becomes very unlikely to 

analyse when the size of the sub-units (e.g country and time period) are very large17. Besides, 

the DMM does not only account for heterogeneity across all the sample units, but also 

produces random-effect results which provide information about the extent of unobserved 

heterogeneity across the sample units. Given the above argument, we choose the DMM as our 

preferred model and hence, we discuss the DMM result in much more detail. Nevertheless, 

our discussions of the estimated results start with the GMM results. 

 

 

 
15

 The classifications of the sectors into primary, manufacturing and service sectors are listed in the appendix. 

16 Henceforth, we shall interchangeably use contextual variables as country-level variables. 
17 This situation is similar to the issue discussed in Wooldridge (2009) when using pooling regression to control 
for fixed specific-effect.   
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5.1     Discussion of the Estimated GMM Results 

The estimated GMM results for model 9 for the sectors as a whole and for different sectors 

are reported in Table 2. To recap, we account for the country-specific and time-specific 

effects by incorporating country and time dummies into models estimated. Given the fact that 

the two-step GMM estimator produces asymptotic efficiency gains over the one-step 

estimator, especially in large samples; we therefore employ the two-step estimator18. As the 

estimated standard errors from GMM otherwise tend to be underestimated, we use the robust 

standard error option throughout. As display in Table 2, all estimated models pass all the 

diagnostic tests (no autocorrelation at first difference, valid instruments and valid over-

identifying restrictions) as none of the tests is statistically significant. As pointed out in the 

empirical model section, we test for the importance for allowing for the underlying nonlinear 

forces in our model by performing a restriction test between the unrestricted model (that is, 

models with time dummies) and restricted model (without time dummies) using a߯ଶ-Test. In 

other words, this imposes the null hypothesis restriction that the coefficients on the time 

dummies are equal to zero (H0: ȕ100=0) that is, there is no importance for allowing for the 

underlying nonlinear forces in the estimated energy demand models. For all models estimated, 

our results support the importance for allowing for the underlying nonlinear forces in energy 

demand model by rejecting the null hypothesis that the coefficients on the time dummies are 

statistically equal to zero. This result is in line with the outcome suggests by Adeyemi and 

Hunt (2007 and 2014).  

 The primary results derived from the estimated GMM are as follows. First, majority 

of the estimated variables are statistically significant with expected signs across board while 

none of the intercepts is statistically significant with mix signs and relatively large values. Of 

course, the negative intercepts would have been difficult to justify, if they were statistically 

significant as this would have been interpreted that the expected demand for energy by 

industries with no influence from economic activity and energy price is negative. With the 

exception of the between-country output elasticity for the primary sector, the statistical 

significant of all other estimated elasticities suggest that both industry-level and country-level 

economic activities and energy prices influence industrial energy demand. Further, in general, 

the values of the between-industry price elasticities and between-country price elasticities are 

largely not different across the board. This suggests that there is no substantial difference on 

 
18 It is worth noting to point out that we employ one-step estimator to analyse the primary sector energy demand 
because its sample size is relatively small. 
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average, between the influence of industry-level energy prices and country-level energy 

prices on industrial energy use. For the whole sector, the coefficient on the industry-level 

energy price of about –0.30 suggests that a 1% increase in within-country energy price is 

associated with a –0.30% reduction in within-country energy use in the short-run. Whereas 

the coefficient on the country-level energy price of about –0.29 suggests that a 1% increase in 

between-country energy price is associated with a –0.29% reduction in between-country 

energy use in the short-run. However, our results suggest otherwise in the case of output 

elasticities as the coefficients of between-industry and between-country output elasticities 

differ in most cases across board. 

For the estimated long-run elasticities, most of the estimated long-run elasticities are 

inelastic with majority being statistically significant with expected signs across the board19. 

Specifically to the whole sector, neither the output elasticity (1.41), nor the price elasticity 

(−0.91) is statistically significant with both relatively have huge values compared to the 

elasticities derived for different sectors with the exception of service sectors’ estimated long-

run price elasticity (−1.21). The huge difference in the values of the estimated long-run 

elasticities for the whole sector, and those derived from sector types is an issue of concern. 

This is because in principle, the estimated long-run elasticities for the whole sector is 

expected not to be too far away from the average of the estimated long-run elasticities of the 

sector types. Our results show that the estimated long-run output elasticity for European 

industries (1.41) is substantially larger than the average of the estimated long-run output 

elasticities of the sector types (0.66) by 75%. Our results also show a similar pattern in the 

price elasticity as the estimated long-run price elasticity (−0.91) is larger than the average 

(0.67) of the sector types by about 23%. A possible explanation for the difference in values 

between the estimated long-run elasticities for the sector as a whole and the sector types may 

be the fact that the GMM is not an appropriate estimator to analysis data with a hierarchical 

structure as it fails to appropriately account for the multilevel structure of the data. These 

results again raise the concern about the appropriateness of GMM in estimating energy 

demand model using hierarchical data. 

 

 

 
19 We find the coefficient on the lagged response for the service sector to be relatively big compare to other 
sectors. One possible explanation for this outcome may be the difference among the sectors as the industries in 
the service sector tend to be more associated with previous energy use.  
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Table 2 
Estimated generalized method of moment (GMM) (standard errors are in parentheses) 
Variables All  

Sector 
Primary  
Sector 

Manufacturing      
Sector 

Service  
Sector 
 

Intercept −8.94 
(48.95) 

10.95 
(39.29) 

−5.69 
  (54.48) 

−0.69 
 (0.38) 

Industry  level variables     
***ିଵǡ   0.67ܧ   

(0.25) 
 0.23*** 
(0.09) 

   0.39***  
  (0.10) 

 0.91*** 
(0.02) 

 ܻ   0.46***  
(0.14) 

 0.41***  
(0.11) 

   0.46***  
  (0.15) 

 0.06** * 
(0.14) 

 ܲ  −0.30***  
(0.06) 

−0.21* 
(0.10) 

   −0.33***  
  (0.08) 

−0.11** * 
(0.02) 

Country level variables     
 ܻ   0.58**  

(0.22) 
 0.43 
(0.29) 

   0.87*** 
  (0.29) 

 0.17***  
(0.05) 

 ܲ  −0.29***  
(0.06) 

−0.36** * 
(0.14) 

−0.47***  
  (0.13) 

−0.10***  
(0.02) 

Diagnostic Tests:     
Arellano-Bond test AR(2)  0.89    0.36    0.18  0.14 
Sangan/Hansen test  0.06  0.99    0.64  0.13 
Hansen exogeneity Test  0.98  0.99    0.12  0.13 
Restriction test (H0: ܦ=0)  ߯ଶ(12)=75.5 

 (0.00)*** 
 ߯ଶ(12)=33.5 
 (0.00)***  

   ߯ ଶ(12)=46.0 
   (0.00)***  

 ߯ଶ(12)=112.8 
 (0.00)***  

Sample size 12779  754    6006  6019 
Number of instruments 210  207    197  464 
Long-run elasticities      
Income  1.41 

(0.74) 
 0.54* 
(0.15) 

   0.75* 
  (0.18) 

 0.68* 
(0.16) 

Energy price  −0.91 
(0.61) 

−0.27 
(0.14) 

−0.54* 
  (0.07) 

−1.21* 
(0.13) 

     
***, ** and * represent statistically significant at 0.1%, 1% and 5% level of significance respectively. ܴܮ ൌఋೣଵିషభǡೕೖ       ݔ ൌ ܻ ǡ ܲ 

Generally, we find the long-run output elasticities ranging from 0.54 to 1.41 to be 

larger than the estimated long-run price elasticities ranging from −0.27 to −1.21. The 

relatively large value of the output elasticities to the price elasticities suggests that across all 

the classifications of sectors, industries are more sensitive to changes in economic activity 

than to changes in energy price in terms of their energy consumption.   

5.2     Discussion of the Estimated DMM Results 

We estimated Eq. (9) for the sector as a whole and for the sector types using the DMM and 

the results are reported in Table 3. Although, it is difficult to statistically demonstrate that the 

DMM is superior to the GMM in estimating an energy demand function, but we nonetheless 

again emphasize that the DMM controls for the hierarchical structure of the data used in this 

paper, and for this, we consider the DMM as the best modelling technique for our analysis.  
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Table 3 
Estimated dynamic multilevel model (DMM) (standard errors are in parentheses) 
Variables All 

Sector 
Primary  
Sector 

Manufacturing  
Sector 

Service  
Sector  

Fixed part:     
Intercept  0.72***  

(0.09) 
 1.12***  
(0.24) 

 1.91***  
(1.15) 

 1.10***  
(0.11) 

Industry level variables     
***ିଵǡ   0.66ܧ   

(0.01) 
 0.57***  
(0.02) 

 0.57***  
(0.01) 

 0.69***  
(0.01) 

 ܻ   0.28***  
(0.01) 

 0.29***  
(0.02) 

 0.36***  
(0.01) 

 0.18***  
(0.01) 

 ܲ  –0.23***  
(0.00) 

–0.22***  
(0.02) 

–0.33***  
(0.01) 

–0.15***  
(0.01) 

Country level variables     
 ܻ    0.29***  

(0.01) 
 0.37***  
(0.03) 

 0.25***  
(0.01) 

 0.20*** 
(0.01) 

 ܲ    –0.17***  
(0.01) 

–0.19***  
(0.01) 

–0.14***  
(0.01) 

–0.13***  
(0.01) 

Random part:      
 *௩ଶ  0.09ߪ 

(0.03) 
 0.14* 
(0.04) 

 0.15* 
(0.04) 

 0.05* 
(0.02) 

 *௨ଶ  0.09ߪ 
(0.00) 

 0.03* 
(0.01) 

 0.16* 
(0.02) 

 0.06 
(0.01) 

 *ఌଶ   0.03ߪ 
(0.00) 

 0.02* 
(0.00) 

 0.03* 
(0.00) 

 0.03* 
(0.00) 

ఌଶߪ     0.44* 
(0.02) 

 0.25* 
(0.05) 

 0.35* 
(0.03) 

 0.45* 
(0.03) 

ICC  0.44  0.74  0.44  0.39 
Restriction tests      
H0: ܦ=0  ߯ଶ(13)=570.7 

 (0.00)***  
 ߯ଶ(13)=80.8 
 (0.00)***  

 ߯ଶ(13)=219.9 
 (0.00)***  

 ߯ଶ(13)=342.2 
 (0.00)***  

H0: ߚଵ=ߚଶ=0  ߯ଶ(2)=1260.5 
 (0.00)*** 

 ߯ଶ(2)=193.4 
 (0.00)*** 

 ߯ଶ(2)=354.4 
 (0.00)*** 

 ߯ଶ(2)=457.9 
 (0.00)*** 

Long-run elasticities     
Income  0.81* 

(0.02) 
 0.67* 
(0.04) 

 0.83* 
(0.02) 

 0.58* 
(0.03) 

Energy price  –0.68* 
 (0.11) 

–0.52* 
  (0.04) 

–0.77* 
  (0.01) 

–0.49* 
  (0.02) 

***, ** and * represent statistically significant at 0.1%, 1% and 5% level of significance.  Intra-class correlation 

coefficient (ܥܥܫሻ ൌ ఙೡమఙೡమାఙೠమାఙഄమ and ܴܮ ൌ ఋೣଵିషభǡೕೖ       ݔ ൌ ܻ ǡ ܲ 

The DMM results reported in Table 3 consist of the fixed part where the estimates of the 

explanatory variables estimated are presented and the random part where the results of the 

random unobserved heterogeneity are presented. Unlike the GMM, all estimated parameters 

of the DMM are statistically significant with expected signs inclusive the estimates of the 

random part. As carried out in the GMM, we also test for the importance for allowing for the 

underlying nonlinear factor in the DMM using the ߯ଶ-Test. The DMM results across all 

sector types also support for allowing for the underlying nonlinear factors while estimating 

energy demand by rejecting the null hypothesis that the coefficients on the time dummies are 
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statistically equal to zero (that is, H0: ȕ100=0) at 0.1% significant level. The primary results 

derived from the DMM models estimated are as follows. 

 First, the statistical significance of the coefficients on all the country-level variables 

reported in Table 3 for the whole sector and sector types emphasize the important roles of 

aggregate activities on industrial energy use. Given the statistical significance of the 

contextual variables, the result suggests that industries are not operating in isolation as 

aggregate economic activities evidenced to influence the energy consumption of industries. 

For robustness check on the importance of the country-level explanatory variables in the 

models estimated, we perform a restriction test using the ߯ଶ-Test to test the null hypothesis 

that the coefficients on the country-level variables are jointly statistically not different from 

zero (that is, H0: ߚଵ=ߚଶ=0). In all models estimated, our results reject the null hypothesis 

that the contextual variables are not statistically different from zero at 0.1% level of 

significance. This outcome thus reinforces the importance of controlling for the country-level 

variables while estimating industrial energy demand with industry-level data as failure to do 

so may lead to biased energy demand elasticities. Second, the difference between the size of 

the within-country and between-country elasticities provides important information about the 

extent of the relationship between energy and the explanatory variables. Across board, the 

relationship between energy and output is the same at industry-level and country-level by 

looking at the difference between the average of the within-country output elasticity 0.27 and 

between-country output elasticity 0.27. However, this is not the case if will consider 

individual sector type. For instance, for the primary sector, the relative size of the within-

country income elasticity 0.29 to its corresponding between-country income elasticity 0.37 

indicates that the relationship between energy and income is stronger at the aggregate level 

than industry level, but otherwise in the manufacturing sector. In general, the within-country 

price elasticity is larger in value than its corresponding between-country price elasticity in all 

models estimated. For price elasticity across board, the average elasticity of the within-

country price 0.23 and its corresponding average elasticity of the between-country price 0.16 

suggest that the relationship between energy and own-price is stronger at the industry level by 

7%. One possible explanation for this might be that industries are more sensitive to changes 

in local energy prices as they can alter their input use combination than a change in national 

energy price.   

In addition, we can also infer from the results reported in Table 3 that the values of 

the estimated short-run price elasticities and short-run output elasticities for the all sectors 
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and primary sector are somewhat similar. However, this is not the case in comparison, 

especially with the short-run elasticities for the service sector as the short-run elasticities for 

the manufacturing sector in some cases somewhat similar in values to that of the all sectors 

and the primary sector20 . For instance, the short-run estimated within-country output 

elasticity for the all sectors and the primary sector are 0.28 and 0.29 respectively. This result 

indicates that a 10% increase in output is associated with about 2.8% and 2.9% increase in the 

energy consumption of the all sector and primary sector respectively. This suggests that the 

impact of a change in the economic activity on the energy consumption of the primary sector 

and that of European industry as a whole is almost the same. The implication of this result is 

that a change in energy consumption of the primary sector is largely associated with a change 

in the energy consumption of the European industry as the degree of responsiveness of the 

primary industry resulting from a change in price or output is similar to that of the industry as 

a whole. For the price elasticity, the short-run estimated within-country price elasticity for the 

all sectors and primary sector are –0.23 and –0.22 respectively, suggesting that a 10% rise in 

energy price is associated with about 2.2% and 2.3% reduction in energy consumption of the 

sectors as a whole and the primary sector respectively.  

We now focus on the results of the random part of the estimated DMM reported in Table 3. 

The information provided by the results of the random part allows us to demonstrate the 

strengths of multilevel modelling in terms of its ability to account for and separate the 

unobserved heterogeneity at different levels of the data, which single-level models such as 

GMM and fixed effect will overlook. As argued earlier, we would like to emphasize that 

failure to account for the cluster level of the data may lead to unreliable estimates. The results 

of the random part reported in Table 3 explain the unobserved cluster level heterogeneity in 

our models. The disturbance terms ߪ௩ଶ ௨ଶߪ ,  and ߪఌଶ  represent country-differences, industry-

differences and time-differences and they measure the changes in energy consumption with 

respect to differences in- country, industry and time respectively. Our results show that all 

estimated disturbance terms reported in Table 3 are statistically significant. Specifically for 

the whole sector, although, the statistical significance of the coefficients on unobserved terms ߪ௩ଶ=0.09, ߪ௨ଶ=0.09 and ߪఌଶ=0.03 demonstrate the importance of country, industry and time 

variations to changes in European industrial energy consumption, but we are very much 

interested to measure the role of country differences in energy consumption. To measure the 

 
20 We do not find this kind of similarity in the estimated GMM reported in Table 2 as we find the short-run 
elasticities across different models estimated to be considerably differs in most cases.  
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extent of contextual effects in determine European industrial energy consumption, we employ 

the intra-class correlation coefficient (ICC). The coefficient of the ICC 0.44 suggests that 44% 

of the unexplained variations in industrial energy use in Europe are traceable to between-

country differences. In other words, the differences in energy use by industries are to some 

reasonable extent affected by aggregate indicators.  

 The ICC for the manufacturing and service sectors are very similar to that of the 

whole sector, implies that the differences in energy use of these sectors are to some 

meaningful extent characterised by aggregate activities. However, the results of the random 

part of the primary sector prove otherwise as the ICC (0.74) suggests that about 74% of the 

unobserved variations in energy use of the primary sector are traceable to between-country 

differences rather than between-industry difference. In other words, industries in the primary 

sector are largely tied to their respective country. One possible explanation for this strong 

relationship between the primary sector and their respective aggregate activities may be as a 

result of the strong role of the government in industries such as the agriculture, fishing and 

forestry, which form the major part of the primary sector. For this reason, they are likely to be 

more sensitive to changes in macroeconomic policies21.  

The estimated long-run elasticities derived from energy demand functions have retained 

energy demand modelling as an important area of interest in the literature. This is because 

these elasticities have served as important tools for the policy makers in making appropriate 

predictions about future energy use and energy related policies. This subsequently highlights 

the potential implications of energy related policies based on inaccurate estimates, which are 

very likely to be misleading or inappropriate. In respect to this argument, we now discuss the 

estimated long-run income and price elasticities reported in Table 3. Unlike the estimated 

GMM long-run elasticities, all estimated DMM long-run elasticities reported in Table 3 are 

statistically significant with expected signs. Our results show that the European industrial 

energy demand is income-inelastic with an estimated long-run elasticity 0.81 and also price-

inelastic with estimated price elasticity –0.68. The results indicate that a 10% rise in income 

and in price is associated with 8.1% rise and 6.8% reduction respectively in European 

industrial energy consumption on average in the long-run. In terms of the elasticity of 

economic activity, our value is similar to that of Dimitropoulous et al. (2005). Our income 

 
21 Interestingly, The Economist (2017) emphasised the danger for the UK farmers that they may be among the 
first to feel the effects of Brexit as UK agriculture is heavily reliant of foreign workers and they may not be 
available for long.  
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elasticity 0.81 is almost the same of the average income elasticity 0.76 for the UK 

manufacturing and transport sector obtained in Dimitropoulous et al. (2005). However, they 

obtained average price elasticity –0.11, a value smaller to ours –0.68. The value of our long-

run price elasticity –0.68 is almost identical to the price elasticity –0.64 obtained in 

Agnolucci (2009) for the British and German industrial sector22.  

The relative big value of the estimated income elasticity (0.81) compare to the price elasticity 

(–0.68) in absolute terms suggests that European industrial energy demand is more 

responsive to changes in economic activity than to changes in energy price. For the 

subsectors, we find the price elasticity of energy demand for the primary, manufacturing and 

service sectors to 0.67, 0.83 and 0.58 respectively. Further, the long-run price elasticities for 

these sectors are −0.54, −0.77 and −0.49 respectively. The results show that the long-run 

elasticities of the manufacturing sector are markedly higher than the long-run elasticities of 

other sector types. This is reasonable as we would expect the largest energy consuming sector 

(manufacturing) to be more sensitive to changes in energy price and economic activity than 

other sectors.  

By comparing the long-run elasticities of the sector types, our results show that the DMM 

long-run output elasticities reported in Table 3 are somewhat similar in values to that of the 

GMM, reported in Table 2. However, with the exception of the service sector, the estimated 

DMM long-run price elasticities for the primary (−0.52) and manufacturing (−0.77) sectors 

are bigger in absolute value than their corresponding estimated long-run price elasticities 

derived from the GMM (−0.27, −0.54). Therefore, in general, one would have expected the 

estimated GMM long-run price elasticity −0.91 for the whole sector (however, not 

statistically significant) to be smaller than that of the DMM −0.68 in absolute terms, but it is 

otherwise. This is due to the large value of the service’s sector price elasticity −1.21 reported 

in Table 2. This is an intriguing finding suggesting that estimates derived from a model using 

industry-level data that fails to control for the multilevel structure of the data may be 

unreliable as in the case of the GMM. Further, the whole sector’s estimated long-run income 

1.41 derived from the GMM, though, not statistically significant is again larger the value 

obtained in DMM 0.81. This further reinforces our argument that failure to account for the 

 
22 However, we advised that one should be exercise caution when comparing our estimates to Dimitropoulous et 
al. (2005) and Agnolucci (2009) due to differences in scope, data and econometric methodology employed. 
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underlying multilevel structure of the data may lead to unreliable estimates in form of 

overestimation or underestimation.    

6     Concluding Remarks 

Given the pivotal role energy plays in the process of economic development and the 

continuation of economic growth, especially in modern industrialised countries, its absence 

or shortage (of course) is expected to cause nothing but a serious damage to the production 

processes and consequently retards economic growth and standard of living. However, rapid 

economic growth or sustainable growth is associated with an increase in energy use that 

typically results in higher carbon and particulate emissions. The devastating impact of 

increasing emissions therefore requires accurate projections of future energy demand, which 

are necessary in order to understand and address issues relating to energy security, resource 

planning, trans-boundary emissions, etc. Thus, the improved energy demand parameters 

provided by our dynamic multilevel modelling approach should be seen as significant tools 

for policymakers.  

 In this paper, we employed a dynamic multilevel model and GMM estimator to 

analyse industrial energy demand across European countries for the period 1995 – 2009. Our 

energy demand models allow for the underlying non-linear forces that might influence our 

energy demand estimates as pointed out in the literature. In all models estimated, our findings 

are in the body of evidence in the literature by supporting the fact that it is important to allow 

for the inherent underlying non-linear forces in the energy demand model. Further, to a 

meaningful extent, we confirm that the DMM performs better than the GMM in terms of the 

estimated parameters that are statistically significant. Moreover, we would also like to 

reiterate that, unlike the GMM, our dynamic multilevel model controls for the hierarchical 

structure of the data used in the analysis by assigning disturbance terms to each level of the 

data. Given the aforementioned advantages of the DMM over the GMM within the context of 

this study, we chose the DMM as our preferred choice of modelling technique.  

Our preferred model finds European industrial energy consumption to significantly influence 

by the country-level variables as all country-level variables estimated are statistically 

significant. This is actually reinforced by the result of ICC in the DMM (0.44), suggesting 

that about 44% of the unexplained variations in industrial energy consumption are traceable 

to between-country differences. Moreover, we find European industrial energy demand to be 

both income- and price-inelastic with estimated long-run elasticities of 0.81 and –0.68 
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respectively. However, the long-run elasticities generated from the alternative model, 

although not statistically significant, but are substantially overestimated with estimated 

income and price elasticity 1.41 and –0.91 respectively. This is an intriguing finding 

demonstrating that unless energy demand models using industry-level data are formulated so 

as to allow for the multilevel structure of the data, the estimated income and price elasticities 

could be seriously biased. Our finding has a serious implication that policy based on such 

wrong or inaccurate energy demand estimates is very likely to be misleading or inappropriate. 

In particular, as our preferred model indicates relatively large long-run income elasticity, this 

suggests that European industries are more responsive to changes in economic activities.  

However, despite the relatively lower estimated long-run price elasticity in our preferred 

model, the results still suggest that policy responses influencing energy prices are likely to be 

effective in reducing energy consumption. More importantly, our results suggest that 

controlling for the hierarchical structure of the energy data is imperative if we wish to make 

more appropriate predictions about future energy use and associated carbon emissions in 

Europe.  In addition, this paper has not simply introduced a new method of modelling energy 

demand, but also highlights the need for more sophisticated modelling of energy demand if 

policy makers seek to formulate appropriate policies related to energy security and climate 

change. We therefore hope that future research will draw on our approach and focus on 

estimating energy demand households provided that there is appropriate data available.        
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Appendix A1 

To show the importance of the response at first period let consider a simple dynamic 

multilevel model for simplicity. ܧǡ ൌ ଵߚ   ିଵǡܧߜ  ǡݔ ଶߚ  Ǥܣ߳ǡ                                                                                                                         ሺݑ ͳͳሻ 

Eq. (A.12) is only for time periods i > 1 because the value of the lagged response at period 1 

is unknown. The model for the response at i = 2 is ܧଶǡ ൌ ଵߚ   ଵǡܧߜ  ଵǡݔ ଶߚ  ݑ  ߳ଶǡ                                                                                                             ሺܣǤ ͳʹሻ 
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and by substituting Eq. (A.12) for the expression ܧଶǡ in model for the response at i = 3, we 

derive ܧଷǡ ൌ ଵߚ   ଶǡܧߜ  ଶǡݔ ଶߚ  ݑ  ߳ଷǡ         ൌ ଵߚ   ଵߚ൫ߜ  ଵǡ݁ߜ  ଵǡݔ ଶߚ  ݑ  ߳ଶǡ൯  ଶǡݔ ଶߚ  ݑ  ߳ଷǡ         ൌ ሺͳ  ଵߚሻߜ  ଵǡܧଶߜ  ൫ݔߜଵǡ  ଶ ߚଶǡ൯ݔ ሺͳ  ݑሻߜ  ଶǡ߳ߜ  ߳ଷǡ                       ሺܣǤ ͳ͵ሻ  

Eq. (A.13) displays the importance of time period 1 as model ܧଷǡ  can be re-specified in 

which it depends on ܧଵǡ  with coefficient ߜଶ . Therefore, by continuing the substitution 

process it is straightforward to show that the response ܧǡ  at any period k (k = 2,…,T) 

depends on ܧଵǡ with coefficient ߜିଵǤ   
Appendix A2 

List of ISIC Rev.4 (NACE Rev.2) Sectors  
S/N NACE 

Description 
Sector 

1 secAtB Agriculture, Hunting, Forestry and Fishing 

2 secC Mining and Quarrying 

3 sec15t16 Food, Beverages and Tobacco 

4 sec17t18 Textiles and Textile Products 

5 sec19 Leather, Leather and Footwear 

6 sec20 Wood and Products of Wood and Cork 

7 sec21t22 Pulp, Paper, Paper , Printing and Publishing 

8 sec23 Coke, Refined Petroleum and Nuclear Fuel 

9 sec24 Chemicals and Chemical Products 

10 sec25 Rubber and Plastics 

11 sec26 Other Non-Metallic Mineral 

12 sec27t28 Basic Metals and Fabricated Metal 

13 sec29 Machinery, Nec 

14 sec30t33 Electrical and Optical Equipment 

15 sec34t35 Transport Equipment 

16 sec36t37 Manufacturing, Nec; Recycling 

17 secE Electricity, Gas and Water Supply 

18 secF Construction 

19 sec50 Sale, Maintenance and Repair of Motor Vehicles and Motorcycles; Retail Sale of Fuel 

20 sec51 Wholesale Trade and Commission Trade, Except of Motor Vehicles and Motorcycles 

21 sec52 Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of Household Goods 

22 secH Hotels and Restaurants 

23 sec60 Inland Transport 
24 sec61 Water Transport 

25 sec62 Air Transport 

26 sec62 Other Supporting and Auxiliary Transport Activities; Activities of Travel Agencies 
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27 sec64 Post and Telecommunications 

28 secJ Financial Intermediation 

29 sec70 Real Estate Activities 

30 sec71t74 Renting of M&Eq and Other Business Activities 

31 secL Public Admin and Defence; Compulsory Social Security 

32 secM Education 

33 secN Health and Social Work 

34 secO Other Community, Social and Personal Services 

Notes: based on the NACE classification, the industries could be classified into: primary sector which consists 
of S/N 1 to 2, manufacturing sector consists of S/N 3 to 18 and service sector consists of S/N 19 to 34. 
 

Appendix A3 

Assuming a standard multilevel model where only level 1 and level 2 variables are 

considered for simplicity is written as:            ܧǡ ൌ ଵߚ   ǡݔ ଶߚ  ଶǡݔ ଷߚ  ݑ  ߳ǡ                                                                                                 ሺܣǤ ʹͳሻ  

where level 1 variable is ݔǡ and level 2 variable is ݔଶǡ. If the level 2 variable is the mean of 

level 1 variable (as the case of this study) that is also included in the model, Eq. (A.21) 

becomes            ܧǡ ൌ ଵߚ   ǡݔ ଶߚ  ҧݔ ଷߚ  ݑ  ߳ǡ                                                                                                       ሺܣǤ ʹʹሻ 

where ݔҧ is the mean of x in group j. In Eq. (A.22) ߚଶ  is the within-group effect of x and ߚଶ ߚଷ  is the between-group effect of x. ߚଶ measures the relationship between an individual’s x 

and E values within group while ߚଶ   ଷ captures the effect of the group mean of x on theߚ

group mean of E. ߚଶ measures the contextual effect of the group mean of x on an individual e 

that is over and above the effect of an individual x on E. The problem with Eq. (A.22) is that 

estimate of the between-group effect cannot be estimated directly. In order to get a direct 

estimate and standard error for the between-group effect of x, ݔǡ is transformed to ݔ െ  ҧݔ

which is called group mean centring, then Eq. (A.22) is therefore re-specified as:            ܧǡ ൌ כଵߚ   ǡݔ൫כଶߚ െ ҧ൯ݔ  ҧݔ כଷߚ  ݑ  ߳ǡ                                                                            ሺܣǤ ʹ͵ሻ 

where the within-group effect equals ߚଶכ ൌ כଷߚ ଶ, andߚ ൌ ଶߚ   .ଷ is the between-group effectߚ

 


