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Abstract

An interesting strand of the theoretical literature on measuring competition posits that

when competition increases in an industry, output is reallocated to more e¢cient �rms. Our

�rst contribution is on the methodology for the empirical implementation of this theoretical

test of a change in competition. This contribution moves from the relationship between

a change in competition and a single all-encompassing e¢ciency, to a set of relationships

between a change in competition and multiple e¢ciencies that measure di¤erent components

of economic performance. Our second contribution is to apply our empirical methodology

to large U.S. banks. The results suggest that competition intensi�ed between these banks

during the �nancial crisis and beyond (2008�15), vis-à-vis our pre-crisis period (1994�07).

This points to an increase in competition that has exogenous origins such as the decrease

in the loan-deposit rate spread, which represented the collateral damage to banks from

monetary policy to moderate the Great Recession.
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1 Introduction

It is well-established that industries with a high degree of competition are associated with a

number of consumer bene�ts including, to name but a couple, greater product choice and lower

prices. Robust methods of measuring competition are therefore imperative to provide an insight

into the relationship between changes in the level of competition and changes in these consumer

bene�ts. Given the magnitude and number of bene�ts from a high degree of competition a vast

literature has accrued on measuring the degree of competitiveness in an industry.1

A further promising strand of the aforementioned literature posits that a change in the degree

of competitiveness alters the relationship between the e¢ciency and pro�tability of �rms in an

industry. To illustrate, when there is an increase in competition in an industry this literature

posits that output will be reallocated to more e¢cient �rms, which highlights how a change in

competition is related to �rms� e¢ciencies. Boone (2008) presents a theoretical model of this

relationship between the level of competition and a single all-encompassing measure of e¢ciency.

In this paper we focus on extending and applying the empirical methodology to operationalize

this theoretical relationship.

The empirical Boone literature is a small but emerging area (Duygun et al., 2015; Bolt and

Humphrey, 2010; 2015a; 2015b) that consists of two approaches. The approach in Duygun et al.

tests the hypothesis that competition di¤ers between two regimes, and in the papers by Bolt and

Humphrey a frontier approach is used to calculate competition e¢ciencies. Both approaches use

e¢ciency estimates in an innovative way, which is important as it helps e¢ciency measurement

transcend other �elds. Our �rst contribution extends the method that Duygun et al. develop to

implement the Boone test empirically. This contribution draws on advances in e¢ciency measure-

ment in the stochastic frontier literature to progress from the relationship between a change in

competition and a single all-encompassing e¢ciency, to a set of relationships between a change in

competition and multiple e¢ciencies that measure di¤erent components of economic performance.

We distinguish between di¤erent sources of a change in competition using multiple e¢ciencies with

di¤erent features. The di¤erent features of the e¢ciencies are time-variance, time-invariance, in-

ternalization to the �rm and network e¤ects as �rms compete via their location choices for, among

other things, network linkages. Our second contribution is to apply our extended empirical Boone

test to large U.S. banks, as this is the size category that has the biggest impact on competition in

the industry. Both our contributions are timely, as the Boone index was recently highlighted by

the Bank for International Settlements (2018) as an empirical tool to measure changes in bank

competition. Additionally, since the literature on bank e¢ciency covers a wide range of countries

(e.g., European countries (Fiordelisi and Molyneux, 2010, Liu et al., 2013, and Casu et al., 2016,

to name but a few), G7 countries (Goddard and Wilson, 2009) and countries in Latin America

(Yeyati and Micco, 2007)), there is scope for wider application of our extended methodology to

banks in other countries and to �rms in other industries.

1Commonly used measures of competitiveness particularly in the banking literature include the Her�ndahl-
Hirschman index (HHI), the Lerner index and the H-statistic (Panzar and Rosse, 1987). For more discussion
of these measures in a banking context see Claessens and Laeven (2004), DeGryse et al. (2009) and Bolt and
Humphrey (2015a; 2015b).

2



As our two contributions relate to a second stage parametric analysis, for clarity we set out

how these contributions �t within the broader context of our two-stage framework. The �rst stage

of our analysis consists of the following two parts, which are adapted to the setting of bank branch

networks from the spatial stochastic frontier literature on geographical areas (e.g., countries (Glass

et al., 2016a) and states (Glass et al., 2016b)).

(i) Estimate the structural form of our network stochastic frontier model which includes own

time-varying and own time-invariant ine¢ciencies, which we refer to as net ine¢ciencies as they are

net of time-(in)variance. The resulting own net e¢ciencies are then used to calculate a combined

own time-varying e¢ciency, which in line with our net terminology we refer to as a gross measure.

These net and gross e¢ciencies are standard as they are net of any e¢ciency spillover across the

network. We estimate a network stochastic pro�t frontier in our application as it is more closely

aligned to our second stage Boone test. This is because, across �rms in an industry, this is a test

of a change in the relationship between a �rm�s relative pro�t di¤erence (RPD) and its relative

e¢ciency di¤erence (RED).

(ii) Transform the estimated structural form of our spatial frontier into its reduced form to

relate the own net and gross e¢ciencies to three further e¢ciency measures (internal, network and

overall), which are all partially / entirely made up of an e¢ciency spillover across the network.

We discuss these three further e¢ciency measures in detail in due course. In brief at this juncture,

own and internal e¢ciencies are similar in that they relate to an individual �rm, but at the same

time they di¤er as internal e¢ciency is own e¢ciency plus e¢ciency feedback, where the latter is

e¢ciency that reverberates back to a �rm from other �rms in the network. Network e¢ciency is

the sum of the e¢ciency spillovers that gravitate to a �rm from all the other �rms in the network,

and overall e¢ciency is a composite measure of the internal and network e¢ciencies.

The second stage of our analysis relates to our extended empirical Boone test and can be also

be subdivided into two parts as follows.

(i) Use the net time-varying, net time-invariant and gross time-varying internal, network and

overall e¢ciencies to calculate a series of RED measures. To avoid concerns about endogeneity

calculate the RPD using an alternative measure of pro�tability to the �rst stage measure.

(ii) Identify two subsamples that represent di¤erent competitive regimes. For each subsample,

�rst regress the RPD on the gross time-varying overall RED, and then regress the RPD on

each departmentalization of this gross RED (e.g., net time-varying and net time-invariant overall

REDs). By applying the Boone test to the regressions of RPD on the gross time-varying overall

RED for the two subsamples, we determine if there is a di¤erence in competition in the two

regimes. This mirrors the extant literature on the empirical Boone test that uses a single e¢ciency

measure. By applying our extended Boone test to the regressions of RPD on departmentalizations

of the gross time-varying overall RED for the two subsamples, we determine the sources of a change

in competition.

Having outlined our second stage contributions, we also note that our �rst stage stochastic

frontier method builds on the HHI that Hirtle (2007) uses to account for di¤erences in market

competition in U.S. bank performance models. This bank level HHI is obtained by �rst calculating

domestic deposit based HHIs for individual banks for each geographical market, where a market
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is taken to be a metropolitan statistical area (MSA) or non-MSA county where a bank operates.

A branch deposit share weighted sum of these HHIs is then calculated for each bank. Since mul-

tiple banks operate in the same geographical market, branch deposits will be spatially correlated

because branches face the same local and regional market conditions, which will be inherent in the

deposit data. This HHI therefore captures the spatial correlation in branch deposits, but this is

just one dimension of the spatial correlation between banks� variables. By not accounting for the

other dimensions there is potentially an omitted variable bias, which may lead to biased e¢ciency

estimates and, as a result, biased measurement of changes in competition. To capture the spatial

correlation between banks� variables more fully we use spatial / network techniques that have

been speci�cally designed for this purpose. These techniques account for inter-branch network

interactions using a network linkage matrix, otherwise referred to in spatial econometrics as the

spatial weights matrix. As we explicitly model the spatial correlation between banks� variables

using a spatial / network stochastic frontier, we gain rich insights into the inter-bank spillovers

and, in particular, the network e¢ciency spillovers between banks which play an important role

in our second stage Boone analysis.

There are three parts to our empirical application of our extended Boone test to large U.S.

banks. In the �rst part, for our entire sample of banks and two subsamples (globally and domes-

tically systemically important (GDSI) banks, according to a classi�cation in 2014 = 15, and the

remaining banks), we test for the sources of a change in competition during the �nancial crisis

and beyond (2008� 15), vis-à-vis our pre-crisis period (1994� 07). Among other things, we �nd

that there was an increase in competition in 2008 � 15 for the entire sample, GDSI banks and

non-GDSI banks. This is intuitive because it is consistent with the pro�ts of GDSI banks, and

to lesser extent the pro�ts of non-GDSI banks, declining during 2008� 15, which occurred for a

variety of reasons that we discuss in the empirical application.2

A change in competition can be endogenous, which is actionable by the antitrust authorities,

or exogenous, which the antitrust authorities can do little, if anything, about. In our empirical

application crisis induced changes are consistent with an exogenous increase in competition. There

are three such crisis induced phenomena- the U.S. economy going into recession; the decrease in

the loan-deposit rate spread (i.e., loan returns fell more than deposit rates without the latter

dropping below zero), which represented the collateral damage to banks from monetary policy to

moderate the recession; and the tightening of bank regulation to reduce risk. It is not possible

though to test whether there has been an endogenous change in competition in our empirical

application because the exogenous in�uences on bank pro�ts have not remained constant over

our study period. What we do know though is that in the latter period in the �rst part, crisis

induced phenomena forced a decline in pro�ts upon the banking industry. In the second part

therefore, we consider the origins of the exogenous increase in competition in 2008 � 15 that we

observe in the �rst part, by considering competition over the business cycle.3 We examine this

by analyzing for the pre-crisis period and the period covering the crisis and beyond, whether the

expected increase in competition in the recession (i.e., the �rst portion of each period) is cancelled

2We thank an anonymous reviewer for highlighting the consistency between developments in the industry and
the �nding from the �rst part of our Boone analysis that competition intensi�ed.

3We thank an anonymous reviewer for suggesting this research direction.
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out by the expected decrease in the expansion phase (i.e., the second portion of each period).4 ;5

For both periods we �nd no change in competition over the business cycle. This suggests that

the exogenous increase in competition we observe for 2008 � 15 has two origins- the collateral

damage to banks from monetary policy to moderate the recession that the crisis triggered, and

the post-crisis tightening of bank regulation to reduce risk.

In the �rst part of our Boone analysis we consider rather long subperiods, and the GDSI banks

are limited in number and are based on a 2014 = 15 classi�cation so they are �xed over time. We

therefore in the third and �nal part test for the sources of a change in competition between

successive shorter subperiods for our entire sample of banks and two subsamples of banks that

change annually. Our �rst subsample comprises banks with total assets in the top third of our

sample in each year and our second subsample consists of the remaining banks.6 Moreover, in

all three parts of our empirical Boone analysis, our decision to incorporate multiple e¢ciency

measures into the test is vindicated by the additional �ndings.

The remainder of this paper is organized as follows. In section 2 we provide an overview

of the role of the single all-encompassing measure of e¢ciency in the Boone theory. Section 3

discusses issues that arise in the empirical implementation of our Boone test methodology for

multiple e¢ciencies. In section 4 we present the empirical application, which involves, among

other things, setting out the network stochastic standard pro�t frontier we use to obtain the �rst

stage e¢ciencies. Some concluding remarks are then made in section 5.

2 Overview of the Role of E¢ciency in the Boone Theory

The setting for the Boone model is an industry comprising competing �rms with di¤erent e¢-

ciencies. Competition is modeled using a two-stage game, where in the �rst stage �rms choose

between entering or not entering the market. Knowing which �rms entered in the �rst stage,

the �rms that chose to enter strategically maximize their post-entry pro�ts in the second stage.

Boone identi�es a subgame perfect equilibrium where a �rm�s pro�t is related to its e¢ciency,

conditional on factors such as the aggressiveness of the �rm�s conduct in the market.

Following Boone, let � (E) represent the pro�t level of a �rm in an industry, which is a function

of its e¢ciency level, E. Now consider three �rms in an industry with di¤erent e¢ciency levels,

minE � E � maxE. Using terminology from the Boone paper, Eq. 1 then gives the RPD for

a �rm, �. The RPD measures the di¤erence between the pro�ts of a typical �rm and the least

e¢cient �rm relative to the di¤erence between the pro�ts of the most and least e¢cient �rms.

� =
� (E)� � (minE)

� (maxE)� � (minE)
: (1)

4We only analyze our full sample of banks and non-GDSI banks for the business cycle in the pre-crisis period
because the recession phase lasts for only one year. There is not therefore su¢cient observations to analyze GDSI
banks for this recession.

5For the period covering the crisis and beyond we consider an incomplete business cycle. This is because the
expansion phase in the second portion of this period continues beyond the end of our study period. Even though
this expansion phase is incomplete, it is quite long so there is no shortage of observations for GDSI banks.

6We thank an anonymous reviewer for this recommendation.
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Figure 1: The relative pro�t di¤erence function from the Boone theory

Boone�s model is based on the premise that � falls (rises) when there is increase (decrease) in

competition in the industry because the numerator in Eq. 1 will fall (rise) by more than the de-

nominator. The intuition is- when an industry becomes more competitive, there is a progressively

larger reallocation of output from a �rm, the larger the gap between the �rm�s e¢ciency and the

industry maximum, which results in a progressively larger fall in the �rm�s RPD. The explanation

for this is- the lower a �rm�s competitiveness, the more the �rm will be disciplined by the market

when there is an increase in competition.

The RED, �, is calculated as

� =
E �minE

maxE �minE
: (2)

We present the relationship that Boone established between the RED and RPD, � (�), in �gure

1 for two competitive regimes. The bold schedule represents regime A and the other schedule

depicts regime B. These schedules are also a diagrammatic representation of Theorem 1 in the

Boone paper, which states that when competition intensi�es, � (�) shifts down for all values of

�. Boone compares the values of the integrals under di¤erent � (�) schedules,
R 1
0
� (�) d�, to

ascertain if there is a change in competition under di¤erent regimes. Since in �gure 1 the value of

the integral under the � (�) schedule for regime B is smaller than that for regime A, we conclude

that competition is more intense under regime B.

To summarize the features of the Boone index we compare it to the Lerner index. If e¢ciency

is from a cost frontier, we can see from Eqs. 1 and 2 that the Boone index focuses on changes in

relative costs (e¢ciency) and their e¤ect on relative pro�ts. The Lerner index, however, focuses

on changes in relative revenues (via relative prices) and their likely e¤ect on relative pro�ts. In

determining the level of competition and ultimately whether it is bene�cial overall, the Boone

index takes relative revenues and prices as "given", while the Lerner index treats relative costs

as "given". As is also the case for the Boone index (see the introductory section), if the Lerner

index indicates a change in competition, the change can be endogenous, which is actionable by
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the antitrust authorities, or exogenous, which the antitrust authorities can do little, if anything,

about.7

3 Empirical Implementation of the Extended Boone Test

3.1 Pro�t Components, Multiple E¢ciencies and Sources of Compe-

tition

To operationalize Boone�s theory to empirically test for a di¤erence in competition between two

regimes, at the outset � must be regressed on � for each regime. For panel data, where in each

cross-section there are N �rms (indexed i = 1; :::; N) that operate over T periods (indexed

t = 1; :::; T ), we can write the RPD as �it =
�(Eit)��(minEit)

�(maxEit)��(minEit)
. A feature of the calculation of the

RPD for panel data is that the least and most e¢cient �rms can vary over time.

To calculate �it some measure of pro�t is needed. In the empirical Boone test in Duygun et

al. (2015), the shadow return on equity capital is used as the measure of pro�tability. Whatever

data is used as the measure of pro�t, it is important to recognize that the data is made up of

di¤erent pro�t components. Although we do not suggest that pro�t should be decomposed and

the RPD test applied to the components, these components must be explained in the regression

of � on �, otherwise there is a potential omitted variable bias in the measurement of changes in

competition. To illustrate, in a network industry such as banking, some of a bank�s pro�t can be

attributed to the bank�s network linkages because of, for example, inter-bank lending, as opposed

to emanating from the bank in isolation. Only using in the RPD test therefore an own RED based

on a conventional own e¢ciency measure from a standard non-network stochastic frontier model

would not account for the relative e¢ciency spillover di¤erence, which could potentially lead to

biased measurement of changes in competition. This relative e¢ciency spillover di¤erence arises

because of the e¢ciency spillovers that gravitate to a �rm from all the other �rms in the same

network. Hence why we refer to these e¢ciency spillovers as a bank�s network e¢ciency and the

associated relative e¢ciency spillover di¤erence as a bank�s network RED.8

We �rst address the above potential omitted variable bias in the RPD test by using an over-

all RED based on overall e¢ciency from a network stochastic frontier model, which incorpo-

rates a �rm�s internal and network e¢ciencies. We then draw on recent advances in e¢ciency

measurement in the stochastic frontier literature to departmentalize the overall RED in the em-

pirical Boone test into: (i) time-varying and time-invariant REDs; and (ii) time-varying and

time-invariant internal and network REDs. We will discuss our use of the terminology �depart-

mentalized overall RED� with reference to Eq. 3, which we turn our attention to next.

Departmentalizing the overall RED into K types (indexed k = 1; :::; K) involves computing

7We thank an anonymous reviewer for suggesting that we compare the Boone and Lerner indices to highlight
the features of the former.

8In our empirical application we focus on spatial bank networks. If banks have overlapping branch networks
they are taken to be part of the same spatial network. This is because by operating in the same markets banks�
variables will be spatially correlated. This must be accounted for using a spatial model such as the spatial stochastic
frontier we use in our application. Using this model we obtain the inter-bank e¢ciency spillovers that feature in
our second stage Boone analysis.
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K RED measures. �it is then regressed on K RED measures, where

�kit =
Ekit �minEkit

maxEkit �minEkit
: (3)

A statistically signi�cant di¤erence between the value of the integrals pertaining to two sample

scatters of points that represent di¤erent RPD schedules can therefore be related to the contribu-

tion of each of the K RED measures.9 We interpret these contributions as K sources of a change

in competition.

3.2 Testing for Sources of a Change in Competition

The theoretical test of a change in competition from the kth source is a sign criterion that

compares the integrals for two competitive regimes. This test is therefore of the sign of the

di¤erence between the theoretical integrals in Eq. 4. If b�k is positive (negative), the kth source

has led to competition under regime B being less (more) intense than under regime A.

b�k =

Z 1

0

�Bit
�
�Bkit
�
d�Bk �

Z 1

0

�Ait
�
�Akit
�
d�Ak : (4)

To construct a sample scatter of points that represent the relationship between the RPD

and the kth type of RED (i.e., �it (�kit)) we employ the following polynomial quantile regression

(PQR).

Pr

 
�it � �it (�kit) =

m=MX

m=1

�km�
m�1
kit

!
= q; (5)

where the PQR is based on the parameter �km; the degree of the polynomial M ; and the proba-

bility of isolating the proportion of the sample on or below the quantile regression line q. We use

PQR rather than, for example, OLS because PQR yields the empirical integral estimate in Eq. 6

which is a linear function of the quantile regression coe¢cients. It is therefore appropriate to use

PQR to estimate the theoretical integrals in Eq. 4.

Z 1

0

"
m=MX

m=1

b�km�m�1kit

#
d�k =

m=MX

m=1

b�km
m

= r0b�k; (6)

where b�k denotes the vector of estimated coe¢cients from the PQR and r0 is the vector
�
1; 1

2
; :::; 1

M

�
.

From the variance matrix of b�k the standard error of the integral in Eq. 6 is

SE

 Z 1

0

"
m=MX

m=1

b�km�m�1kit

#
d�k

!
= SE

 
m=MX

m=1

b�km
m

!
= (r0var (b�k) r)1=2 : (7)

Speci�cally, to test if there is a change in competition from the kth source under competitive

regime B vis-à-vis regime A, the null and alternative hypotheses are as follows.

9We take care above to use the terminology �departmentalized overall RED� because we are not able to decom-
pose the overall RED into di¤erent RED measures in the usual sense. This is because each RED is calculated
using di¤erent relatives.
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H0 : � =

Z 1

0

"
m=MX

m=1

�Bkm�
m�1
kit

#
d�k �

Z 1

0

"
m=MX

m=1

�Akm�
m�1
kit

#
d�k = 0;

H1 : � 6= 0: (8)

To �x ideas, the empirical methodology to test for a change in competition from the kth source

between two regimes, A and B, has two parts. First, we compute the values of the integrals

pertaining to the kth source of competition for each competitive regime by splitting the sample

and estimating the PQR in Eq. 5 for each regime. Second, for the kth source of competition,

testing if the integrals di¤er between the two regimes involves pooling the data for the regimes

and estimating the following PQR.

Pr

 
�it �

m=MX

m=1

�km�
m�1
kit +

m=MX

m=1

�km
�
�m�1kit �Dit

�
!
= q; (9)

where �km is a coe¢cient and Dit is a competitive regime dummy variable that takes a value of 0

for regime A and 1 for regime B. In terms of this pooled PQR the null in Eq. 8 is � = r0�k = 0,

where �k is the vector of �km coe¢cients. We test this null via a Wald test with 1 restriction

using the F-distributed test statistic in Eq. 10.


 =
�
r0b�k

� h
r0var

�
b�k
�
r
i
�1 �

r0b�k
�
: (10)

Following Duygun et al. (2015) we use the �tted PQR at the third quartile. The third quartile

is chosen because it is a compromise between inclusivity of the sample points and avoidance of

undue impact from outliers, as 75% of the sample scatter of points will lie on or below the �tted

regression line.

4 Application to Large U.S. Banks

4.1 Network Stochastic Standard Pro�t Frontier

The general speci�cation of the structural form of the panel data network stochastic standard

pro�t frontier that we estimate is

�t = ��+ TL (pt;wt; t) + �
0LNpt + !

0LNwt + �LN�t + � + vt � � � ut (11)

� � N
�
0; �2�

�
� � N+

�
0; �2�

�
vt � N

�
0; �2v

�
ut � N

+
�
0; �2u

�
:

The variables are in log form and in each cross-section there are N �rms (indexed i = 1; :::; N),

which operate over T periods (indexed t = 1; :::; T ). As the network linkage matrix LN is key to

Eq. 11 we present the model in vector form, where successively stacked cross-sections are denoted

by dropping the i subscripts on the variables and error components. �t denotes the vector of

9



stacked cross-sectional observations in period t for normalized pro�t, � is the intercept, and as

the model is in the form of stacked cross-sections, scalars are multiplied by the N�dimensional

vector of ones �.

TL (pt;wt; t) = $t�+
1
2
&t2�+ %0pt + '

0

twt +
1
2
p0t�pt +

1
2
w0

t�wt + p
0

t	wt + �
0pt (t�) +


0

twt (t�)

is the translog approximation of the log of the standard pro�t function. wt denotes the vector

of stacked cross-sectional observations for the normalized input prices (indexed g = 1; :::; G); pt

is the vector of stacked cross-sectional observations for the output prices (indexed h = 1; :::; H);

and non-neutral technical change is accounted for by a non-linear time trend and the interactions

pt (t�)and wt (t�). The objects in TL (pt;wt; t) to be estimated are the $ and 1
2
& coe¢cients; the

vectors coe¢cients, %0, '0, �0 and 
0; and the matrices of coe¢cients, 1
2
�, 1

2
� and 	.

LN is the exogenous (N �N) matrix of non-negative constant linkage weights lij.
10 LN is

speci�ed before the estimation of the model and represents: (i) the arrangement of the cross-

sectional �rms in the network; and (ii) the strength of the linkages between these �rms. Since a

�rm cannot be linked to itself, all the elements on the main diagonal of LN are set to zero. As our

model is more commonly framed as a spatial frontier, in the spatial context LN�t is the spatial

lag of the dependent variable, otherwise known as the spatial autoregressive (SAR) variable. The

SAR coe¢cient � is bounded in the interval (1=cmin; 1=cmax), where cmin and cmax are the most

negative and most positive real characteristic roots of LN . In the parlance of a network, we

refer to LN�t as the network autoregressive (NAR) variable, which we construct by weighting the

normalized pro�t observations of the other �rms in the ith �rm�s network. These observations

are weighted according to the speci�cation of LN , which we discuss in detail in subsection 4:3.

Despite our speci�cation of LN being exogenous LN�t is endogenous, which we account for in

the estimation of the model and provide details of how we do so below. Following the spatial

non-frontier literature (e.g., Anselin, 2003), since LN�t features explicitly in Eq. 11 we refer to

this speci�cation as the structural form of the model.11

The LNpt and LNwt variables are network / spatial lags of pt and wt, and are constructed in

the same way as LN�t. We only include network lags of pt andwt for parsimony, and because from

a behavioral perspective one can argue that a �rm does not consider in its decision making network

lags of higher order variables and network lags of interactions between �rst order variables. There

10We acknowledge an anonymous reviewer for the following point, which involves noting at the outset that
translog frontier models for U.S. banks are typically estimated using large panel data sets that yield parameters
with very narrow sampling distributions. With this type of dataset, �rst order (input and / or output) price
variables are often found to have a lot of explanatory power. The squares of these variables and interactions with
these variables are also often statistically signi�cant. Here, using the same type of dataset, we investigate the
signi�cance of a network e¤ect. To uncover the e¤ect of network spillovers and test their signi�cance, one can
estimate a model with no squared or interaction terms, but which includes a variable (or variables) to capture the
characteristics of the network. One such variable for U.S. banks is the HHI (e.g., Hirtle, 2007). As we noted in
the introductory section, we do not use the HHI to capture the characteristics of the network as it would only
relate to the spatial distribution of deposits, which is just one dimension of the spatial correlation between banks�
variables. We account for the other dimensions and therefore mitigate the omitted variable bias by introducing
a new spatial / network approach to the banking competition literature. This involves creating network lags of
variables by pre-multiplying a variable by the bank network linkage matrix, LN . LN though, in contrast to the
HHI, is not a variable but a matrix of weights, so it is not possible to uncover the e¤ect of LN . However, by using
a spatial / network method that is explicitly designed to model the range of spatial correlations between banks,
for variables and e¢ciency, we are able to distinguish between the own and network e¤ects.
11As will become apparent the NAR variable does not feature explicitly in the reduced form of the model.
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is though an important di¤erence between the network dependence that LN�t models and LNpt

and LNwt model. Via the network multiplier matrix, which as we will see features in the reduced

form of our model, the NAR variable models endogenous global network dependence (i.e., pro�t

spillovers from a �rm�s 1st order network, 2nd order network and so on and so forth). LNpt and

LNwt, on the other hand, model exogenous local network e¤ects (i.e., only network spillovers from

a �rm�s 1st order network), where �0 and !0 are the associated vectors of local network coe¢cients.

LN�t, LNpt and LNwt shift the network standard pro�t frontier technology and therefore

re�ect the observed heterogeneity of the �rms. There are some non-spatial banking studies, how-

ever, that estimate purely theoretical functional forms of frontier technologies and do not therefore

include variables that shift the frontier (e.g., Wheelock andWilson, 2012; 2018). In contrast, there

is a vast non-spatial banking literature that estimates models that augment theoretical functional

forms of frontier technologies with variables that shift the frontier. Some of these shifters are

bank level variables, e.g., a variable that pro�les bank risk, which would re�ect, among other

things, a bank�s venture capital investments and loans to start-ups. Other shifters capture the

macroeconomic and industry environment, e.g., variables that control for monetary policy and

the tightening of bank regulation in response to the crisis.

Our model speci�cation has a very interesting feature as it is a hybrid of the above two

approaches in the banking literature. This is because it includes variables that shift the frontier,

while also having a theoretical network / spatial functional form. We refer to our functional

form as the network Durbin model, which is based on the spatial Durbin labelling in the spatial

literature (e.g., LeSage and Pace, 2009; Glass et al., 2016a). Our function is an extension of the

NAR model, which is Eq. 11 with the local network lagged variables omitted. We retain these

local network lagged variables as spatial lags of the exogenous regressors are often found to be

important determinants in spatial applications.

By including as shifters spatially weighted neighboring �rms� variables that make up their

technologies we are following the empirical banking analysis by Tabak et al. (2013). Tabak et al.

estimate a closely related geographically weighted stochastic frontier model for U.S. savings banks,

which exploits the spatial correlation between variables that are part of banks� technologies.12

Speci�cally, they use geographically weighted observations of these variables for other banks to

e¤ectively control for the environment that the ith bank faces. As a result, in their model and ours

a relatively small number of spatial variables are used to account for a wide range of observed bank

heterogeneities, which circumvents the potentially problematic task of choosing what could be a

large set of environmental variables. For example, in our model a shift in the frontier technology

due to a change in monetary policy would be, together with other impacts, incorporated within

the e¤ects of various spatial variables that shift the frontier, namely, the spatially correlated pro�t,

cost of deposits and prices of loans and securities of other banks in the network.

The Boone type analyses of competition in Bolt and Humphrey (2010; 2015a; 2015b) are based

on the distribution free approach (DFA) to frontier analysis (Berger, 1993). The DFA involves

12We use a di¤erent modeling approach to Tabak et al. to account for the spatial correlation because, among
other things, their model only yields a measure of own e¢ciency. Our model, however, revolves around the network
weights matrix LN , from which we obtain the network multiplier matrix and in turn the network e¢ciency spillovers
we use in our second stage Boone analysis.
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splitting panel data into a number of subperiods and estimating for each subperiod a frontier

model with a composed error. This composed error for a pro�t frontier would be vt � ut, where

vt is the vector of stacked cross-sectional idiosyncratic errors and ut is the vector of stacked time-

varying ine¢ciencies. The DFA then assumes that the average composed error for each �rm across

the subperiods is an average ine¢ciency. This is because, on average, the idiosyncratic errors will

be close to zero.

Our model has a more complex four component error structure, e"t = "+ "t = � + vt � � � ut,
where " = � � � and "t = vt � ut are the time-invariant and time-varying components. � is

the vector of stacked time-invariant ine¢ciencies due to, for example, rigidities in the internal

organization of production and in slow to adjust factors such as �xed assets. � is the vector of

stacked random e¤ects to account for the unobserved �rm heterogeneity that is not part of the

observed �rm heterogeneities that LN�t, LNpt and LNwt capture.
13 vt and ut are as above, and

the vector of stacked combined time-varying ine¢ciencies is � + ut.

Notwithstanding the bene�t of the DFA, if we were to use the DFA to obtain a set of averages

for each e¢ciency measure, we would substantially reduce the number of e¢ciency observations to

calculate the RED regressors for our second stage econometric analysis. Since in our application

we consider GDSI banks, which is a very small subsample of the large bank size category, we

guard against a shortage of e¢ciency observations for our Boone analysis by obtaining annual

e¢ciencies from the �rst stage. We obtain these e¢ciencies by using distributional assumptions

to distinguish between the error components, which we now discuss in more detail.

As network / spatial stochastic frontier analysis is in its infancy, in line with the starting point

for non-spatial stochastic frontier analysis (Aigner et al., 1977), we assume that both � and ut

have half-normal distributions. Since our approach is su¢ciently general to incorporate other

ine¢ciency distributions, a logical future direction for spatial stochastic frontier modeling would

be to follow the evolution of the corresponding non-spatial literature by seeking more appropriate

distributional assumptions for ine¢ciency (e.g., the gamma distribution (Greene, 1980)). As we

will see though, our second stage Boone results are intuitive when both ine¢ciency measures are

half-normally distributed.

We test the appropriateness of the error structure in Eq. 11 for our empirical application

using the one-sided likelihood ratio test in Gouriéroux et al. (1982). The test is for each of the

error components and the asymptotic distribution of the test statistic is a mixture of chi-squared

distributions, 1
2
�20 +

1
2
�21. For b 2 f�;vt; �;utg, rejection of the null (b�2b = 0) in favor of the

alternative hypothesis (b�2
b
> 0) constitutes evidence of the presence of the component.

The estimation procedure we use is set out in Glass et al. (2016b). In particular, it is

an extension of the estimator for the pooled SAR stochastic frontier (Glass et al., 2016a) to a

setting where unobserved heterogeneity is accounted for and there are time-invariant and time-

varying ine¢ciencies in the same model. As we focus on the development and application of the

methodology to test for sources of a change in competition we only outline the procedure we use to

13As our pragmatic estimation procedure rests on the error components being independently distributed, we do
not use �xed e¤ects to account for unobserved heterogeneity and instead use random e¤ects via an error component.
This is because, in contrast to the situation with random e¤ects, the time-varying errors would be correlated with
the �xed e¤ects and so these errors would not be independently distributed.
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estimate Eq. 11. Due to the complexity of our model because of the presence of the endogenous

NAR variable, we use a practically appealing maximum likelihood (ML) estimation procedure

known as pseudo ML (PML). This appeal is because our consistent PML estimator simpli�es the

estimation by breaking it up into a number of steps, which also facilitates model convergence.

Our PML procedure comprises three steps and in each step a log-likelihood function is maxi-

mized. In step 1 we transform Eq. 11 into the corresponding non-frontier random e¤ects network

Durbin model. Estimating this model distinguishes between the time-invariant and time-varying

components of e"t (" and "t). The log-likelihood function for step 1 includes the scaled logged
determinant of the Jacobian of the transformation from e"�t to ��t (T log jIN � �LN j). IN denotes
the (N �N) identity matrix; e"�t and ��t are transformations of e"t and �t into a quasi-di¤erenced
form; and, as is standard in the spatial econometrics literature, the transformation from e"�t to ��t
accounts for the endogeneity of the NAR variable (e.g., Elhorst, 2009). For details on transforming

a model such as Eq. 11 into its non-frontier counterpart and the quasi-di¤erenced transformations

of e"t and �t see Glass et al. (2016b).
By maximizing the log-likelihood function for step 2 and using the Battese and Coelli (1988)

panel data ine¢ciency estimator we split the time-varying error from step 1 into its constituent

parts. In doing so, we compute the estimate of time-varying ine¢ciency, but. In step 3, using the
same approach as in step 2, we split the time-invariant error from step 1 into its two components

and thereby obtain the estimate of time-invariant ine¢ciency, b�. As ut and � form part of our

logged model the corresponding e¢ciencies are NV E = exp (�ut) and NIE = exp (��), where

NV E andNIE denote net time-varying and net time-invariant e¢ciencies, which signi�es that the

former is net of time-invariance and the latter is net of time-variance. The combined time-varying

e¢ciency is GV E = exp (�� � ut) = NIE � NV E, where GV E denotes gross time-varying

e¢ciency.14

The above NIE, NV E and GV E measures from Eq. 11 are the typical type of e¢ciencies

in the stochastic frontier literature as they are bounded in the interval [0; 1]. Even though these

e¢ciencies are from a network stochastic frontier that controls for interdependence across the

network, they are from the structural form of our model and, as a result, are the typical own

e¢ciencies that relate to a �rm in isolation. These e¢ciencies are therefore net of any network

e¢ciency, i.e., they do not include any e¢ciency spillovers. From the reduced form of our model

we compute, among other things, network e¢ciency, which is what we turn our attention to next.

4.2 Elasticities and Network E¢ciencies

It is now well-established in the spatial literature that the coe¢cients from a model that contains

the SAR variable, which we refer to as the NAR variable, cannot be interpreted as elasticities.

This is because the elasticities for the variables are a function of the NAR coe¢cient. Unlike

the simple interpretation of a standard non-network model in log form, to interpret our model

we must apply the approach in the spatial literature and compute what we refer to as internal,

network and overall elasticities. To a di¤erent degree all three of these elasticity measures include

14NIE, NV E and GV E should not be confused with the net and gross e¢ciencies in Coelli et al. (1999), as the
interpretations of net and gross in their model are entirely di¤erent.
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a spillover / linkage e¤ect.

An internal elasticity is interpreted in the same way as a conventional elasticity from a non-

network model, although an internal elasticity also includes a linkage e¤ect which is due to feed-

back. This feedback is the e¤ect of the change in a �rm�s independent variable that partially

rebounds back to the �rm�s dependent variable via its e¤ect on the dependent variables of the

other �rms in the sample. The network multiplier matrix, which we will discuss in more detail

shortly, is at the heart of this feedback and the �fading memory� property of this matrix across

the network is the reason why the feedback is only a partial rebound e¤ect. In contrast to an

internal elasticity, a network elasticity is entirely made up of a linkage e¤ect. There are two

interpretations of a network elasticity which can be calculated in two ways giving the same value.

The �rst interpretation is the average e¤ect of a change in an independent variable for a �rm

on the dependent variables of all the other �rms in the sample. The second interpretation is the

average e¤ect on the dependent variable of a �rm due to a change in an independent variable for

all the other �rms in the sample. Summing the internal and network elasticities gives the overall

elasticity.

We calculate the internal, network and overall elasticities and also the corresponding e¢ciencies

from the reduced form of our structural network frontier. Having presented our structural frontier

in terms of vectors of stacked cross-sections we can move directly to the reduced form in Eq. 12.

We simply take �LN�t in Eq. 11 to the left-hand side to obtain �t� �LN�t = (IN � �LN) �t and

then divide throughout by (IN � �LN).

�t = (IN � �LN)
�1

 
��+ TL (pt;wt; t) + �

0LNpt + !
0LNwt+

� + vt � � � ut

!
; (12)

where (IN � �LN)
�1 plays a key role and denotes the network multiplier matrix that we referred to

earlier, while everything else is as previously de�ned. Note that in line with the spatial literature,

we refer to Eq. 12 as the reduced form because, in contrast to the structural form, the NAR

variable does not explicitly feature (Anselin, 2003).

Although the general approach to calculate elasticities from Eq. 12 is standard in the spatial

literature this is not the case in the OR literature. We therefore outline the approach to compute

internal, network and overall elasticities in the OR context of our network pro�t frontier, which

we demonstrate for an output price, ph;t, at the sample mean. As is also the case with a simple

non-network translog model, in our network setting when the data is mean adjusted the higher

order and interaction terms in our model are zero at the sample mean. The coe¢cients on the

higher order and interaction variables do not therefore feature in the calculation of the internal,

network and overall elasticities for a variable at the sample mean.

Di¤erentiating Eq. 12 with respect to ph;t yields the two matrices on the right-hand side of

Eq. 13, which are independent of the time index.

� =

2
664

@�1
@ph;1

� � � @�1
@ph;N

...
. . .

...
@�N
@ph;1

� � � @�N
@ph;N

3
775

t

= (IN � �LN)
�1

2
664

%h � � � l1N�h
...

. . .
...

lN1�h � � � %h

3
775 : (13)
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The product of these matrices is the matrix �, which comprises internal elasticities on the main

diagonal, while the o¤-diagonal elements are asymmetric network elasticities for each pair of �rms.

Following the approach in the spatial literature, we facilitate interpretation of this large number

of elasticities by calculating mean elasticities (internal, network and overall). The mean internal

elasticity is the average of the diagonal elements and the mean network elasticity is the mean

row (column) sum of the o¤-diagonal elements. Although the two ways of calculating the mean

network elasticity are numerically the same, they are interpreted as the mean spillover elasticity

to (from) a �rm from (to) all the other �rms in the sample. We compute the t�statistics for the

mean elasticities via Monte Carlo simulation of their distributions.

For each of the conventional own e¢ciency measures from the structural form of our model,

we compute the corresponding e¢ciencies from the reduced form model, which in line with the

reduced form elasticities, we refer to as internal, network and overall NIE, NV E and GV E. To

provide the necessary intuition we de�ne these e¢ciencies. As is the case with internal, network

and overall elasticities, to di¤erent degrees the corresponding e¢ciencies all include a spillover /

linkage e¢ciency e¤ect. Internal e¢ciency is interpreted in the same way as own e¢ciency from the

structural form of our model or a conventional non-network frontier. That said, internal e¢ciency

is own e¢ciency plus the linkage e¢ciency we label as e¢ciency feedback. An example of e¢ciency

feedback is the e¤ect of a change in a �rm�s independent variable which a¤ects the dependent

variables and hence e¢ciencies of the other �rms in its 1st and higher order networks. Through

the network multiplier matrix this e¤ect partially rebounds back to the dependent variable and

thus e¢ciency of the �rm that initiated the process.

In line with the network elasticity of a variable, network e¢ciency is entirely a spillover / link-

age e¢ciency e¤ect and there are two ways of calculating network e¢ciency which have di¤erent

interpretations. The �rst measure is the sum of the e¢ciency spillovers that gravitate to a �rm

from all the other �rms in the sample. The second measure is the sum of the e¢ciency spillovers

that are transmitted in the opposite direction from a �rm to all the other �rms. Recall that asym-

metric network elasticities for a variable are obtained for pairs of �rms and averaging the row or

column sums of these elasticities yields the same numerical value for the mean network elasticity.

Similarly, the network e¢ciencies relating to each pair of �rms are asymmetric, but the sample

averages of the two measures of network e¢ciency will be equal. This has implications for overall

e¢ciency because along the same lines as the overall elasticity of a variable is calculated, overall

e¢ciency for a �rm is the sum of its internal and network e¢ciencies. Thus, for individual �rms

asymmetric network e¢ciencies lead to asymmetric overall e¢ciencies, but the sample means of

these two measures of overall e¢ciency will be equal. It is important to note, however, that in the

empirical application we use the sum of the network e¢ciencies that a �rm receives together with

the resulting corresponding overall e¢ciency. This is because with these measures the direction of

travel of the e¢ciency spillovers is appropriate for a �rm level analysis of the sources of a change

in competition.

In line with conventional own e¢ciencies from the non-network stochastic frontier literature

and the structural form of our frontier, the lower bound of the internal, network and overall net

and gross e¢ciencies is of course 0. Rather than having an upper bound of 1 like conventional
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own e¢ciencies, the internal, network and overall net and gross e¢ciencies are not bounded from

above. This is entirely intentional because we calculate absolute internal, network and overall

net and gross e¢ciencies to ascertain whether the network e¢ciency spillovers are substantive. In

contrast, network e¢ciencies that are relative to a benchmark may not be substantive because all

the absolute values that are used to compute such e¢ciencies may be similarly small in magnitude.

It should be emphasized though that the absence of an upper bound for the internal, network

and overall net and gross e¢ciencies in no way impinges on their interpretation as they are

all percentages. They are percentages because they are scaled conventional own net and gross

e¢ciencies from the structural form of our network stochastic frontier. The magnitude of this

scaling re�ects the size of the linkage e¤ect that partially / entirely makes up the internal, network

or overall e¢ciency. By not placing an upper bound on the internal, network and overall net and

gross e¢ciencies these e¢ciencies are relative to the relevant conventional own NIE, NV E or

GV E benchmark. A particularly interesting situation is where the linkage e¤ect is su¢ciently

large to yield an internal, network or overall e¢ciency score greater than 1. In this case, the

linkage e¤ect has pushed the �rm beyond the best practice frontier for the relevant conventional

own e¢ciency from the structural form of our frontier in Eq. 11.

For the technical details on how we calculate the internal, network and overall e¢ciencies in a

spatial setting, which in our application we frame as a network, see Glass et al. (2016a; 2016b).

Throughout our application we use Int, Nwk and Ov to denote the internal, network and overall

net and gross e¢ciencies.

4.3 Data, Network Linkages and Competitive Regimes

In summary, the �rst stage involves estimating the network stochastic standard pro�t frontier

and in the second stage we divide the �rst stage sample up into a number of pairs of subsamples,

where each pair represents two competitive regimes. Each pair of competitive regimes represents

a competition case and for each case PQR is used to test whether we can reject the null that

competition is the same between the two subsamples. Our sample to estimate the frontier model

comprises 183 large U.S. banks over the period 1994 � 15. This sample is a balanced panel and

thus comprises the core surviving large banks, so that in the second stage we can make like-for-

like comparisons as the same banks (or least the same number of banks) are in a given pair of

subsamples. Following Berger and Roman (2016), a bank is classi�ed as large if it has total assets

greater than $3 billion in 2015.

Spatial / network analysis of bank e¢ciency using speci�cally designed spatial / network

methods like we employ (i.e., those that are based on the network linkage matrix LN) is very

much in its infancy. This is evident as there is just one other study that applies this type of

method to banks to estimate a cost frontier (Glass and Kenjegalieva, 2019), whereas we consider

a pro�t frontier. Given the paucity of banking studies that use the type of methods we employ,

we remain consistent with the early evolution of the banking production literature as we base our

choice of inputs and outputs on the intermediation approach (Sealey and Lindley, 1977). This

approach assumes that banks use the savings of customers as inputs to make investments which

represent their outputs. Our study therefore provides a platform for further work to continue
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tracking the evolution of the bank production literature by, for example, using the more recent

value-added approach (Berger and Humphrey, 1992) to choose the inputs and outputs.

Whilst the intermediation approach adopts a mutually exclusive classi�cation of inputs and

outputs, there is no such clear distinction with the value-added approach as it considers all asset

and liability categories to have some output characteristics. With the value-added approach the

classi�cation of inputs and outputs is based on whether the magnitude of the value-added sug-

gests that the category is more like an input or more like an output. Di¤erences arise between

the classi�cation of inputs and outputs using the two approaches. For example, current deposits

would be an input using the intermediation approach, but using the value-added approach Berger

and Humphrey (1992) �nd that current deposits is clearly an output, which is because there are

bank fees associated with these deposits that do not involve further interest payments. Notwith-

standing the emergence of the value-added approach, in line with Glass and Kenjegalieva (2019)

our choice of inputs and outputs follows a U.S. banking paper by Koetter et al. (2012) that uses

the intermediation approach.

Our network frontier and the PQR models are at the bank level. As a result, in the second

stage we conduct a bank level Boone analysis of competition. Strictly speaking competition is

de�ned in terms of the relevant market, which for U.S. banks is typically taken to be the MSA or

non-MSA county. Although in our network frontier we specify the network linkages in LN using

branch location data, the other data we need for this model and the data for the RPDs in the PQR

models is not available at the branch level. In densely populated metropolitan areas such as New

York competition is likely to be �erce between very large banks with little opportunity for high

margins. In terms of the Boone theory in �gure 1, for a given RED, a bank�s RPD in this type

of market will be much lower than the RPD for a much smaller bank in a rural non-MSA county

where there is far less competition leading to higher lending rates. Our bank level Boone analysis

can therefore be viewed as collectively accounting for all the di¤erent RED-RPD relationships

across the di¤erent markets that banks operate in.15

We obtain the majority of our data from the Reports of Condition and Income (i.e., the Call

Reports), which were sourced from the Federal Deposit Insurance Corporation (FDIC). In table

1 we provide summary statistics for the data for our network stochastic standard pro�t frontier

and, for the purposes of comparison, the second stage data for the same period. From table 1 we

can see for the frontier model that the three input prices relate to the cost of �xed assets (w1),

labor (w2) and deposits (w3), and the output prices relate to the three lending and non-lending

activities of banks: loans (p1), securities (p2) and non-interest income (p3). To avoid endogenous

RED measures in the second stage we estimate the frontier model and construct the dependent

RPD variable for each of the PQR models using di¤erent measures of pro�t. For our frontier

model the measure of pro�t is net operating income (�), which is de�ated to 2005 prices using the

CPI. The input and output prices are not de�ated because, as is evident from table 1, they are

ratios. All the de�ated pro�t and input and output price data is �rst logged, then mean adjusted

and, �nally, to be consistent with the estimation of a translog cost function, we use one of the

15We thank an anonymous reviewer for prompting us to explain the relationship between the relevant markets
and our bank level analysis of competition.
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Table 1: Description of the variables and summary statistics

Variable description Mean Std. dev.

Network Stochastic Standard Pro�t Frontier (�rst stage)
Real net operating income (thousands of U.S. dollars) (�) 27; 164; 232 126; 001; 222
Price of loans: Interest income from loans divided by loans and 0:065 0:020
leases (p1)
Price of securities: Interest income from securities divided by 0:325 17:793
total securities (p2)
Price of other activities: Approximated by total non-interest 0:016 0:040
income divided by total assets (p3)
Cost of �xed assets: Expenditure on �xed assets divided by 1:161 21:043
the sum of the value of premises and �xed assets (w1)
Cost of labor: Salaries divided by number of full-time 59:955 20:402
equivalent total employees (w2)
Cost of deposits: Interest expenses on deposits divided by 0:020 0:013
total deposits (w3)
Number of bank branches used to specify LN 181 590
Intensity of a bank�s branch network in LN 7:972 9:412

Polynomial Quantile Regressions (second stage)
Return on assets (ROA) 1:145 1:222

input prices, which in our analysis is w1, as the normalizing factor for � and the other input prices.

By mean adjusting the data all the �rst order internal, network and overall parameters from the

reduced form of our frontier model can be interpreted as elasticities at the sample mean. This is

because at the sample mean the terms in the partial derivatives of a translog function that relate

to the higher order and interaction terms are zero. For each of the PQR models the dependent

RPD variable is constructed using the return on assets (ROA) as the measure of pro�tability.

Using FDIC data from the Summary of Deposits on the state locations of each bank�s branches,

we specify LN using the following four steps.

(i) Begin by specifying an LN for each year by setting all the cells on the main diagonals to

zero because a bank cannot be linked to itself.

(ii) (a) For each state where the ith bank operates, calculate the ratio of the number of jth

bank branches to the number of ith bank branches.16 (b) Where the ith bank operates, sum these

ratios to obtain the non-zero o¤-diagonal elements. (c) Set all the other o¤-diagonal elements to

zero to signify that the ith and jth banks� branch networks do not overlap.

(iii) Average the annual speci�cations of LN from (ii). Also, recall that exogenous linkage

weights is an underlying assumption of our network frontier model. As the o¤-diagonal elements

of this average LN are calculated at the micro level of branch networks across states and the

variables are at the level of the banking �rm, based on parallels with �rm level studies in the

spatial literature that draw on more disaggregated plant level information, it is reasonable to take

the linkage weights to be exogenous. See table 1 for summary statistics on the number of bank

branches and the o¤-diagonal elements. Each of these o¤-diagonal elements is interpreted as a

bank�s branch network intensity vis-à-vis the network of another bank.

(iv) We obtain the LN we use in the estimation by normalizing the elements of the average LN

16We calculate the ratios at the state level as the number of calculations needed to obtain the ratios at the
county or city level exceeded the limit in the Stata software.
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from (iii) by dividing throughout by the largest cell. This is referred to in the spatial literature

as normalizing by the largest eigenvalue. The bene�t of this normalization is that it retains the

information on the absolute intensities of the banks� branch networks as it does not change the

proportional relationship between the linkage weights.17

Figure 2 presents the average state level branch distribution for GDSI banks over our study

period, where the larger the area of a pie chart, the greater the total number of branches in

the state.18 It is clear from this �gure that California has the largest number of branches and,

although less obvious, Florida has the second largest number. Compared to these two states we

can also see from this �gure that there are a number of states with far fewer branches. Despite

the removal of state branching restrictions, U.S. bank branching remains highly geographically

concentrated. This is of course less marked for larger banks, but even for our sample there is

quite a lot of evidence of geographically concentrated branch networks. To illustrate, the median

bank in our sample in terms of total assets in 2015 only operates in two states. As �gure 2 is

for GDSI banks, we can see that some of the largest banks in our sample also have regionally

oriented branch networks, although the geographical concentration of these networks varies. For

example, we can see from this �gure that the Bank of New York Mellon has a highly geographically

concentrated branch network. In contrast, we can also see that some of the largest banks (Wells

Fargo, Bank of America and JPMorgan Chase) have geographically dispersed branch networks

because they are truly multi-market banks. Hannan and Prager (2004; 2009) and Rosen (2007)

note the importance of accounting for this multi-market presence when examining changes in

competition and how we account for this presence is what we turn to next.19

Figure 2 only presents the geographical branch distributions of GDSI banks because in a �gure

like this it is only possible to illustrate such distributions for a limited number of banks. Our

speci�cation of LN though measures the strength of the geographical links between the branch

networks of each pair of banks in the sample. LN therefore accounts for the di¤erent geographical

markets that banks operate in and the di¤erences between their branch presence in these markets.

We illustrate how di¤erences in the geographical concentrations of banks� branch networks are

accounted for by LN by considering the geographical links between the GDSI bank Comerica and

other banks in the sample. We therefore consider in the LN matrix the o¤-diagonal ith � jth

cells in the ith row that relates to Comerica. In this row an o¤-diagonal cell is set to zero if

the jth bank�s branch network does not overlap with Comerica�s (in other words, when the jth

bank operates in states other than Arizona, California, Florida, Michigan and Texas). All the

other o¤-diagonal cells in this row are non-zero and re�ect the degree of overlap between the

branch networks of the jth bank and Comerica. In particular, the non-zero o¤-diagonal cells

17It is common in the spatial literature to normalize the weights matrix by its row sums. This is intended for
binary spatial weights that re�ect, for example, contiguous neighboring regions, which is a di¤erent setting to
the one we consider. We do not therefore pursue this any further because if we row-normalized our non-binary
weights we would lose the information on the absolute intensities. This information would be replaced with relative
intensities which would be di¢cult to interpret.
18GDSI banks in this paper consist of the globally systemically important banks, as de�ned by the Financial

Stability Board (2015), and the domestically systemically important ones identi�ed by the Board of Governors of
the Federal Reserve System (2014).
19We thank an anonymous reviewer for prompting us to highlight how we account for the e¤ect of this multi-

market presence in the modeling.
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Figure 2: Average state level branch distribution for systemically important U.S. banks

represent the sum across the states of the ratio of the number of jth bank branches in a state to

the number of ith bank branches. For example, we can see from �gure 2 that Comerica has more

branches in Michigan than the Bank of America, while the Bank of America has more branches

in Texas than Comerica. These state di¤erences in the number of branches are accounted for

in the sum of the state ratios of the number of Bank of America (Comerica) branches to the

number of Comerica (Bank of America) branches. This is because the ratio of the number of

Bank of America (Comerica) branches to the number of Comerica (Bank of America) branches in

Michigan is lower (higher) than the ratio for Texas.

For each of the competition cases we consider in our second stage analysis we test for sources

of a change in competition between two regimes. Based on the nature of the competition cases

we split our second stage into three parts. The competition cases are described below, where the

two regimes for each case relate to di¤erent time periods, although this is not a requirement for

empirical Boone testing. Di¤erent competitive regimes can instead be contemporaneous because

they relate to, for example, �rms in di¤erent industries, di¤erent sizes of �rms within an industry,

or �rms located in di¤erent geographical areas.

Part I of the Second Stage: Pre-Crisis Period versus the Crisis Period and Beyond

� Case 1 is for all 183 banks and the two competitive regimes are (A) the pre-crisis period

(1994 � 2007) and (B) the crisis period and beyond (2008 � 2015). According to Berger

and Bouwman (2013) the timeline of the U.S. subprime lending crisis spanned the period

2007:Q3 � 2009:Q4. As they regard the majority of 2007 as being pre-crisis and given we

use annual data, we take 2007 as being the last year of the �rst competitive regime for this

case.
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� Cases 2 & 3 are for GDSI banks and non-GDSI banks, respectively, and the two competitive

regimes, (A) and (B), are as in case 1. GDSI banks for both competitive regimes are as

de�ned in �gure 2 and the non-GDSI banks are the remaining banks in the sample.

Part II of the Second Stage: Phases of the Business Cycle

� We �nd for cases 1�3 evidence of more intense competition in regime (B). Related to this, we

would expect an increase in competition during the recession phase of a business cycle and a

decrease in the expansion phase. Over the course of a business cycle, it is possible therefore

that the decrease in competition we associate with the expansion cancels out the increase

that we associate with the recession. If this is indeed the case for the period 2008 � 15,

since we know for cases 1 � 3 that the increase in competition is exogenous due to crisis

induced phenomena, we can infer that this increase does not originate from the recession

triggered by the crisis. This would instead suggest that the increase in competition was

due to the combined e¤ect of two other crisis induced phenomena- the collateral damage

to banks from monetary policy to moderate the recession that the crisis initiated, and the

post-crisis tightening of bank regulation to reduce risk. For the subperiods in part I, we

examine if the increase in competition we associate with the recession (i.e., the �rst portion

of each subperiod) is cancelled out by the decrease that we associate with the expansion (i.e.,

the second portion of each subperiod). Case 4 is for all 183 banks and the two competitive

regimes are (A) the 2001 recession and (B) the 2002� 07 expansion.20

� Case 5 is for non-GDSI banks and the two competitive regimes, (A) and (B), are as in case

4.21

� Case 6 is for all 183 banks and is for the recession and expansion phases of another business

cycle, albeit an incomplete one. The two competitive regimes are (A) the complete 2008�09

recession and (B) the incomplete 2010� 15 expansion.22

� Cases 7 & 8 are for GDSI and non-GDSI banks, respectively, and the two competitive

regimes, (A) and (B), are as in case 6.23

Part III of the Second Stage: Further Subperiods and Bank Classi�cations

20The years for the phases of the business cycles are based on dates from the National Bureau of Economic
Research (NBER). The NBER dates the phases using quarters which we transform to years using our judgement.
For the complete business cycle in our pre-crisis period the NBER dates for the recession and expansion are
2001:Q1 � 2001:Q4 and 2002:Q1 � 2007:Q4. In years this equates nicely to a recession in 2001 and a 2002 � 07
expansion.
21Recall from the introductory section that we do not analyze GDSI banks over the business cycle in the pre-

crisis period. This is because there are insu¢cient observations, as the recession in this cycle lasts for only one
year and there are just 19 GDSI banks.
22For this incomplete business cycle, the NBER �nds that 2007:Q4 � 2009:Q2 is the complete recession phase.

In years this is approximated to be 2008 � 09. According to the NBER the peak of the subsequent expansion is
not reached in our study period. We therefore consider an incomplete expansion phase from 2010� 15.
23Although, as will become apparent, the �ndings for case 7 are entirely reasonable, the recession regime PQR

model for GDSI banks is based on a limited number of observations as the recession spans two years.
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� As cases 1�3 consider two long subperiods in cases 9-17 the two competitive regimes, (A)

and (B), are successive shorter subperiods. The four distinct subperiods we consider are

1994� 00 (before the build-up to the crisis began); 2001� 06 (includes the build-up to the

crisis); 2007� 09 (crisis period); and 2010� 15 (post-crisis period). Also, since case 2 is for

GDSI banks, which are limited in number and �xed over our study period according to a

2014 = 15 classi�cation, three of cases 9� 17 are based on a further classi�cation that leads

to a bigger group of the largest banks in the sample that changes annually. In particular,

this bigger subsample comprises banks with total assets in the top third of the sample in

each year. A further three cases are for the remaining two-thirds in each year and three

cases are for the entire sample of banks.

4.4 Estimated Network Stochastic Standard Pro�t Frontier

The estimated structural form of our network stochastic standard pro�t frontier model is presented

in table 2.24 How well-speci�ed this model is depends on, among other things, whether there is an

endogeneity issue. To examine this we use a Hausman-Wu test, which has been used to test for

endogeneity by Adams et al. (1999) and Glass et al. (2013) in the non-network stochastic frontier

literature. This involves comparing our maximum likelihood (ML) model when the NAR variable

is omitted with the corresponding model when the Hausman-Taylor estimator is used to account

for the possibility that any of the remaining variables are endogenous by using instrumental

variables. We need not be concerned about dropping the NAR variable from the models we use in

this test because this is the only variable where our ML estimator accounts for the endogeneity.

Whether the other variables in our model are endogenous is what we are interested in and test for.

We cannot reject the null hypothesis that there is no di¤erence between the sets of coe¢cients

from the two models at the 10% level, which suggests that our ML model is robust to endogeneity

concerns.

The goodness of �t is a further indicator of how well-speci�ed our model is, which we measure

using the adjusted R2. The adjusted R2 for our �tted model is 0:87, which is su¢ciently high

to suggest that our model is well-speci�ed. Bolt and Humphrey (2015b) note though that if

the goodness of �t is high, it is more likely that a change in competition is not economically

substantive because it is based on a small absolute ine¢ciency. We suggest this is not the case

with our �tted model because when we test for the presence in the error structure of the net

time-invariant and net time-varying ine¢ciencies, we �nd that both ine¢ciencies are statistically

signi�cantly di¤erent from zero. We discuss these test results in more detail in the next subsection

when we turn our attention to the e¢ciencies.

None of the reported structural coe¢cients in table 2 can be interpreted because the variable

elasticities are also a function of �, which is the coe¢cient on L�. For models such as the one we

estimate it is well-established in the spatial literature that it is the reduced form of the structural

model that yields interpretable parameters, which we refer to as internal, network and overall

24As is standard in non-frontier and frontier random e¤ects models, the log
10
{ parameter we report in table 2

is the weight that is attached to the cross-sectional component of the panel data. From table 2 we can see that
the �tted log

10
{ parameter is highly signi�cant at the 0:1% level.
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Table 2: Estimated network stochastic standard pro�t frontier model

p1 �0:387��� p2p3 0:023��� t� �0:037��� Lp3 �0:057
p2 �0:127��� w22 �0:017�� t2� 0:001��� Lw2 �0:066
p3 �0:025��� w23 0:020��� p1 (t�) 0:006� Lw3 0:026
w2 0:692��� w2w3 �0:023�� p2 (t�) 0:004� L� 0:253���

w3 0:196��� p1w2 0:024 p3 (t�) �0:001� log10 { �2:153���

p21 �0:080��� p1w3 �0:043��� w2 (t�) 0:002 �v 0:101 (0:003)
p22 0:012��� p2w2 �0:023� w3 (t�) �0:004��� �u 0:069 (0:009)
p23 �0:012��� p2w3 �0:035��� �� �0:041 �� 0:143 (0:006)
p1p2 0:125��� p3w2 0:010 Lp1 �0:345��� �� 0:292 (0:010)
p1p3 0:039��� p3w3 �0:030��� Lp2 0:087 LL 2711:22

Notes: *, ** and *** denote statistical signi�cance at the 5%, 1% and 0.1%
levels, respectively; LL denotes log-likelihood; and standard errors are in
parentheses.

parameters. We present and comment on these internal, network and overall parameter estimates

further in this discussion of our �tted network frontier. Notwithstanding that the structural

coe¢cients from our �tted model cannot be interpreted, it should be noted that although it

may appear that the signs of the �rst order input and output price coe¢cients in table 2 are

inconsistent with production theory, this is not the case for reasons we will explain when we

present the internal, network and overall parameters.

For some time in a spatial context the SAR parameter, which is the NAR coe¢cient � in

our setting, was interpreted as the elasticity of the spatial lag of the dependent variable, or, in

other words, as a spillover elasticity. It is now well-established that � cannot be interpreted as a

spillover elasticity and that the spillover parameters in our setting are the network parameters,

which, as we have seen in Eq. 13, are a function of, among other things, �. The estimate of

�, however, does provide useful information on the degree of NAR dependence across the banks.

The estimate of � in table 2 is 0:253, which is signi�cant at the 0:1% level. In the context of the

magnitude of the corresponding estimates in the large empirical spatial literature, a signi�cant �

estimate of 0:253 is interpreted as substantial positive NAR dependence between the banks. This

estimate therefore provides support for our network approach to pro�t modelling for large U.S.

banks.

Turning to the coe¢cients on the local network variables (i.e., the network lags of the �rst

order output and input price variables), table 2 indicates that only one is signi�cant, which is

the Lp1 parameter at the 0:1% level. This Lp1 parameter, however, is large, which provides some

support for our network Durbin model speci�cation over the NAR model, as the latter omits local

network variables. Moreover, this Lp1 parameter is negative, which suggests that, on average,

there is a negative correlation between the ith bank�s pro�t and our weighted average of the

p1 observations of the jth banks that have a branch network that overlaps with that of the ith

bank. Since p1 is the price of loans (i.e., interest income as a share of loans) and a negative

coe¢cient on a network lag of a dependent / independent variable is attributed to the e¤ects of

competition (Kao and Bera, 2013), we interpret the negative coe¢cient on Lp1 as evidence of

loan competition between banks with overlapping branch networks. This is the type of strategic
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Table 3: Estimated internal, network and overall parameters

Internal Network Overall Internal Network Overall
p1 �0:387��� �0:0413��� �0:428��� p1w2 0:026 0:0006 0:026
p2 �0:127��� 0:0059 �0:121��� p1w3 �0:045��� �0:0011�� �0:046���

p3 �0:025��� �0:0056 �0:030��� p2w2 �0:025�� �0:0006 �0:025��

w2 0:692��� 0:0104�� 0:702��� p2w3 �0:034��� �0:0008�� �0:035���

w3 0:196��� 0:0068��� 0:203��� p3w2 0:010 0:0002 0:010
p21 �0:077��� �0:0018��� �0:079��� p3w3 �0:030��� �0:0007��� �0:031���

p22 0:012��� 0:0003�� 0:012��� t� �0:036��� �0:0009��� �0:037���

p23 �0:012��� �0:0003��� �0:012��� t2� 0:001��� 0:0000��� 0:001���

p1p2 0:123��� 0:0029��� 0:125��� p1 (t�) 0:006� 0:0001 0:006�

p1p3 0:039��� 0:0009��� 0:040��� p2 (t�) 0:004� 0:0001 0:004�

p2p3 0:023��� 0:0006�� 0:024��� p3 (t�) �0:001� 0:0000 �0:002�

w22 �0:017�� �0:0004� �0:017�� w2 (t�) 0:002 0:0001 0:002
w23 0:020��� 0:0005��� 0:020��� w3 (t�) �0:004��� �0:0001�� �0:004���

w2w3 �0:023�� �0:0006� �0:024��

Notes: *, ** and *** denote statistical signi�cance at the 5%, 1% and 0.1% levels,
respectively.

behavior between banks that we would expect to observe, which supports our weighting of the

observations of the jth banks that have a branch network that overlaps with that of the ith bank

(i.e., our speci�cation of L).

Consider for the moment a non-spatial / network translog standard pro�t frontier. If mean

adjusted data is used to estimate such a model, the coe¢cients on the �rst order output and

input prices can be interpreted as elasticities at the sample mean. Production theory posits that

pro�t is monotonically increasing (decreasing) in output (input) prices. By normalizing by an

input price, the signs of the coe¢cients on the �rst order output (input) prices that production

theory predicts for a �tted non-network standard pro�t frontier switch from positive (negative)

to negative (positive).

In table 3 we present the internal, network and overall parameters from the reduced form of our

structural network standard pro�t frontier. The interpretation of the internal parameters from the

reduced form of our model is the same as the interpretation of the parameters from a non-network

standard pro�t stochastic frontier. The monotonicity properties of a non-network standard pro�t

function also therefore apply to the internal parameters from our model. From table 3 we can

see that all the �rst order internal output and input price parameters are negative and positive,

respectively. Thus, in line with production theory, we conclude at the sample mean that our

model satis�es the monotonicity property of the translog standard pro�t function. Additionally,

all the reported �rst order internal output and input price parameters are signi�cant at the 0:1%

level.

A network elasticity measures the magnitude of the spillover of a variable. In our case the

direction of the spillover is to an individual bank from all the other banks in the sample, and

an overall elasticity for a variable is the sum of the internal and network elasticities. Whereas

production theory provides expected signs for the internal output and input price elasticities from

our network standard pro�t frontier, this theory does not suggest expected signs for the network
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and overall output and input price elasticities. From table 3 we can see that a number of the

network parameters are signi�cant at the 5% level or lower (e.g., the parameters for the p1, w2

and w3 variables), which constitutes further support for our network approach to pro�t modeling

for large U.S. banks.

Interestingly, despite the NAR coe¢cient in table 2 being signi�cant, large and positive, the

absolute magnitude of the largest network parameter for a �rst order output / input price in table

3 is quite small. The network parameters for p2, p3, w2 and w3 in table 3 are small because in

the calculation of these parameters, the small coe¢cients on their network lags in table 2 (i.e.,

Lp2, Lp3, Lw2 and Lw3) dominate the large NAR parameter. To illustrate, as we noted above,

we interpret the large negative coe¢cient on the network lag of the price of loans (Lp1) in table

2 as evidence of loan competition between banks with overlapping branch networks. To obtain

the quite small negative network parameter for p1 in table 3, we can infer in the calculation of

this parameter that the coe¢cient on the network lag of p1 is slightly more dominant than the

large positive NAR coe¢cient. The latter re�ects the positive pro�t dependence between banks

with overlapping branch networks, as, among other things, they face the same local and regional

market conditions.

4.5 Discussion of the E¢ciency Estimates

In our �tted structural model we �nd evidence of own net time-invariant and own net time-

varying ine¢ciencies (� and ut, respectively) that are signi�cantly di¤erent from zero, as we

reject H0 : b�2� = 0 and H0 : b�2ut = 0 at the 1% level. For the entire sample, GDSI banks and the

remaining banks we summarize in table 4 the own NV E, NIE and GV E scores from this model.

Recall that even though the structural form of our model accounts for global NAR dependence

(i.e., spillovers from a bank�s 1st order network, 2nd order network and so on and so forth) and

also some local network dependencies (i.e., spillovers from a bank�s 1st order network only), the

own e¢ciencies we report contain no form of e¢ciency spillover and can therefore be interpreted

in the same way as e¢ciencies from a standard non-network frontier. In contrast, the internal,

network and overall NV E, NIE and GV E estimates from the reduced form of our model are

partially / entirely made up of an e¢ciency spillover. As GV E represents a more complete picture

of economic performance than NV E and NIE, we also summarize in table 4 the internal, network

and overall GV E scores from the reduced form of our model.

Recall also that any GV E measure (i.e., own, internal, network or overall GV E) is obtained

by multiplying the corresponding NV E and NIE scores. We can see therefore from the mean

own e¢ciencies in table 4 for the entire sample and the two subsamples that NV E is a much

bigger contributor to GV E than NIE. This indicates that the vast majority of mean own gross

time-varying ine¢ciency is a persistent phenomenon. Various conjectures can be made to try and

explain this persistent underperformance, including the possibility of a continual quiet life culture

across large banks (Koetter et al., 2012). The mean own NIE for GDSI banks and, as a result,

the mean own GV E for this subsample are always less than the other corresponding reported

estimates, although they are not out of line with these other estimates.

Since the mean GV EInt scores for the entire sample and two subsamples in table 4 are essen-
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Table 4: Various e¢ciency estimates for the entire sample and two subsamples

Own NV E Own NIE Own GV E GV EInt GV ENwk GV EOv

All banks (183 banks)
Mean 0:952 0:757 0:721 0:722 0:075 0:797
Std. dev. 0:014 0:135 0:129 0:130 0:009 0:134

GDSI banks (19 banks)
Mean 0:952 0:702 0:669 0:671 0:073 0:744
Std. dev. 0:012 0:122 0:117 0:118 0:008 0:122

Non-GDSI banks (164 banks)
Mean 0:952 0:763 0:727 0:728 0:075 0:803
Std. dev. 0:014 0:134 0:129 0:130 0:009 0:134

Notes: Own signi�es an e¢ciency from the structural form of our frontier
model; NV E denotes net time-varying e¢ciency; NIE denotes net time-
invariant e¢ciency; GV E denotes gross time-varying e¢ciency; Int denotes
internal; Nwk denotes network; Ov denotes overall; and GDSI denotes
globally and domestically systemically important banks.

tially the same as the corresponding own mean GV E, we can conclude for these three samples

that there is basically no e¢ciency feedback. Drawing parallels with our �ndings for the mean

own e¢ciencies, the mean GV EInt for GDSI banks and thus the mean GV EOv for this subsample

are always below the other corresponding reported scores, although they are not out of line with

these other scores. Finally on the e¢ciencies, we note that the mean GV ENwk scores for the en-

tire sample and the two subsamples are around 7:5%. Although this is not a very large e¢ciency

spillover it is certainly non-negligible as the mean GV ENwk for each of these three samples is

more than 10% of the corresponding own GV E.

4.6 Boone Test Results for the Pre-Crisis Period versus the Crisis

Period and Beyond

In line with our �nding in the previous subsection of no e¢ciency feedback in the mean GV EInt

score, we also observe no e¢ciency feedback in the mean NIEInt and NV EInt estimates. As a

result, on average, the GV EInt, NIEInt and NV EInt scores are of the same order of magnitude as

the own GV E, NIE and NV E measures from the structural form of our network frontier. Own

GV E, NIE and NV E could also be obtained from the corresponding non-network speci�cation of

our model, which would involve omitting from Eq. 11 all the variables that are pre-multiplied by

LN . Moreover, own NIE or own NV E could be obtained from a standard non-network frontier

model where ine¢ciency is either time-invariant or time-varying. We would not of course want to

estimate such non-network models for our application because based on the signi�cant network

variables in table 2 these non-network models would be misspeci�ed, which is a source of biased

e¢ciencies. We instead ascertain the impact of our extended Boone test for multiple REDs that

represent di¤erent ways of departmentalizing the GV EOv RED, by comparing our extended test

results with standard Boone test results for an individual RED which we calculate using in turn

GV EInt, NIEInt and NV EInt from our more appropriately speci�ed network frontier model.

For each initial and new competitive regime (denoted A and B) in cases 1�3, which represents

26



part I of our second stage Boone analysis, we present in table 5 estimates of the four speci�cations

of the PQR model. We apply the standard Boone test to the GV EInt RED using models A(iii)

and B(iii) in this table, and apply this test separately to the NIEInt and NV EInt REDs using

models A(iv) and B(iv) in the same table. Before we focus on the Boone test results for cases

1 � 3, we highlight some of the �ndings from table 5. In line with the Boone theory where a

single all-encompassing RED is the only determinant of the RPD, in models A(i) and B(i) for

cases 1 and 3 the GV EOv RED regressor is signi�cant. In the same models for case 2 (GDSI

banks) the GV EOv RED is not signi�cant. Various reasons for this �nding could be put forward,

such as the possibility of the �too-big-to-fail� status of GDSI banks distorting the competitive

landscape leading to the absence of a relationship between the RPD and the GV EOv RED. For

any PQR model it does not follow that there will be no signi�cant di¤erence between competition

in two regimes if the RED measures are not signi�cant. This is because the di¤erence between

insigni�cant RED measures can be signi�cant.

It is clear that the models in table 5 support departmentalizing the GV EOv RED as models

(ii)-(iv) provide additional information. This is evident as there are a number of instances where

the (in)signi�cance of the GV EOv RED in model (i) is at odds with that for a departmentalized

RED in models (ii)-(iv). Comparing models (i)-(iv) for cases 1� 3 indicates a similarity between

the (in)signi�cance of corresponding RED regressors for cases 1 and 3. Despite the size of the

GDSI banks (case 2), we can conclude therefore that it is the large number of non-GDSI banks

(case 3) which are driving the results in table 5 for the entire sample (case 1). Moreover, although

we report a couple of signi�cant network RED coe¢cients (NV ENwk RED in model A(iv) for

cases 1 and 3), in line with what we expected, the evidence points to internal RED measures

being more important determinants of the RPD.

In table 6 we present for cases 1 � 3 the empirical Boone test results for the di¤erence in

the integrals from the entire models for the new and initial competitive regimes. For the two

regimes we apply the standard empirical Boone test to model speci�cation (i) as it has a single

RED regressor. For both regimes for model speci�cations (ii)-(iv), however, we apply our extended

empirical Boone test to collectively account for the impact of the multiple REDs. We can see from

this table that the di¤erence in the integrals is always negative and signi�cant. This suggests for

the entire sample, GDSI banks and non-GDSI banks that there is robust evidence of competition

being more intense in the new regime covering the crisis and beyond, vis-à-vis the initial pre-crisis

regime. That is, for each of these three groups of banks the relative pro�ts increased at banks

who were relatively more e¢cient in the new competitive regime compared to the initial one.

Consistent with the increase in competition we observe for cases 1 � 3 is the decline in the

pro�ts of GDSI and non-GDSI banks during 2008� 15. This decline was more marked for GDSI

banks, which is in line with their average e¢ciency, as measured by own GV E, being 6% lower

than that for non-GDSI banks during this period. Using ROA, as this is the variable we use

to calculate the RPD, we illustrate the declines in pro�t by noting that, on average, the ROA

for GDSI banks declined by 54% in 2008 � 15 vis-à-vis 1994 � 07, while for non-GDSI banks

there was a 37% decline between these periods. We suggest four reasons for the relative sizes of
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Table 5: Subsample quantile regressions at the third quartile for competition cases 1-3

Case 1: All banks
(183 banks)

Case 2: GDSI banks
(19 banks)

Case 3: Non-GDSI
banks (164 banks)

1994� 07

Model A(i)
RED: GV EOv 0:094��� 0:122 0:094���

Constant 0:325��� 0:318��� 0:323���

Model A(ii)
RED: NIEOv 0:102��� 0:109 0:093���

RED: NV EOv 0:164��� 0:419��� 0:132���

Constant 0:197��� 0:035 0:226���

Model A(iii)
RED: GV EInt 0:092��� 0:209� 0:093���

RED: GV ENwk 0:021 �0:139 0:027
Constant 0:313��� 0:355��� 0:307���

Model A(iv)
RED: NIEInt 0:102��� 0:206� 0:096���

RED: NIENwk 0:011 �0:105 0:018
RED: NV EInt 0:169��� 0:441��� 0:120���

RED: NV ENwk 0:073�� 0:121 0:071��

Constant 0:129�� �0:075 0:166���

2008� 15

Model B(i)
RED: GV EOv 0:050�� 0:061 0:045��

Constant 0:502��� 0:489��� 0:506���

Model B(ii)
RED: NIEOv 0:042� 0:086 0:038
RED: NV EOv 0:103��� 0:221 0:104��

Constant 0:434��� 0:312� 0:437���

Model B(iii)
RED: GV EInt 0:051�� 0:170 0:045�

RED: GV ENwk 0:014 �0:152 0:021
Constant 0:493��� 0:509��� 0:494���

Model B(iv)
RED: NIEInt 0:038 0:220 0:024
RED: NIENwk 0:016 �0:242 0:026
RED: NV EInt 0:106�� 0:312� 0:106��

RED: NV ENwk 0:033 0:017 0:03
Constant 0:402��� 0:311� 0:408���

Notes: RED: GV EOv, GV EInt and GV ENwk are the relative overall, internal and network
gross time-varying e¢ciency di¤erences; RED: NIEOv, NIEInt and NIENwk are the relative
net time-invariant e¢ciency di¤erences; RED: NV EOv, NV EInt and NV ENwk are the relative
net time-varying e¢ciency di¤erences; and A and B denote the initial and new competitive
regimes.

these declines in pro�tability.25 First, GDSI banks were singled out to substantially increase their

capital positions. This raised their cost of funding loans since capital is much more expensive

than demand deposits, savings deposits or purchased funds. By itself, this lowered loan growth

and returns. Second, via the so-called Volcker rule in the 2010 Dodd-Frank legislation, GDSI

banks, who were responsible for most of the trading activities in the industry, were singled out

to substantially reduce these activities. This markedly reduced trading revenue at GDSI banks,

which was a core element of their pro�tability during the initial competitive regime. Third, for

25We thank an anonymous reviewer for providing these explanations of our �ndings for cases 1� 3.
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Table 6: Empirical Boone test results for a change in competition for cases 1-3

Model RPD integral RPD integral Di¤erence in Wald test (F�test) p�value
speci�cation 1994� 07 2008� 15 the integrals of H0: � = 0

Case 1: All banks (183 banks)
Model (i) 0:047 (0:009) 0:025 (0:008) �0:022 329:33 [4023] 0:000
Model (ii) 0:133 (0:022) 0:072 (0:016) �0:061 331:16 [4021] 0:000
Model (iii) 0:057 (0:010) 0:033 (0:009) �0:024 432:62 [4021] 0:000
Model (iv) 0:178 (0:029) 0:097 (0:027) �0:081 333:93 [4017] 0:000

Case 2: GDSI banks (19 banks)
Model (i) 0:061 (0:032) 0:030 (0:067) �0:031 15:52 [415] 0:000
Model (ii) 0:264 (0:051) 0:153 (0:097) �0:111 13:14 [413] 0:000
Model (iii) 0:035 (0:038) 0:009 (0:059) �0:026 27:08 [413] 0:000
Model (iv) 0:331 (0:089) 0:154 (0:111) �0:177 15:86 [409] 0:000

Case 3: Non-GDSI banks (164 banks)
Model (i) 0:047 (0:009) 0:023 (0:008) �0:024 335:50 [3603] 0:000
Model (ii) 0:113 (0:022) 0:071 (0:018) �0:042 368:20 [3603] 0:000
Model (iii) 0:060 (0:010) 0:033 (0:009) �0:027 418:32 [3603] 0:000
Model (iv) 0:152 (0:029) 0:093 (0:032) �0:059 304:44 [3599] 0:000

Notes: standard errors are in (.) and degrees of freedom are in [.].

all the banks in our sample the Durbin amendment to the Dodd-Frank legislation cut debit card

interchange fee revenue by one-half. Fourth, the Great Recession a¤ected all banks in the form

of (a) the recession itself, which increased loan losses and negatively impacted on two pro�t

centers as all trading and loan growth declined; and (b) the associated monetary policy, which

represented the collateral damage to banks from the recession because it had a negative impact

on their pro�tability as it lowered the loan-deposit rate spread, i.e., it lowered loan returns more

than it reduced deposit rates (which did not fall below zero).

Since the quanti�cation of competition using standard empirical measures is well-understood,

for Boone testing to o¤er new insights it is important to understand how it can also be used

to quantify a change in competition. We therefore propose how to proceed with this and �rst

note from �gure 1 that when competition intensi�es, the RPD falls for a given RED. For an

individual bank this downward move can be interpreted as a percentage because the RPD is an

index (see �gure 1 where 0 �RPD� 1). As a result, the di¤erence in the integrals in table 6 can be

interpreted as the average percentage change in competition across the industry. The di¤erence

in the integrals therefore measures the average percentage change in the RPD in the industry that

can be attributed to the change in competition if there was no improvement in the banks� REDs.

We report in table 6 some small changes in competition (e.g., �2:2% for the entire sample from

model (i)) and some large ones (e.g., �17:7% for GDSI banks from model (iv)). Interestingly, we

can see for cases 1� 3 from table 6 that the increase in competition is always larger from models

that have net RED regressors (models (ii) and (iv)) than from models with at least one gross

RED regressor (models (i) and (iii)). This suggests that some information may be being lost by

using gross REDs as regressors rather than net REDs. This is probably because a gross RED

accounts for multiple net REDs, which highlights the usefulness of our extended Boone test for

multiple REDs.

For competition cases 1 � 3 we present in �gure 3 our extended empirical Boone test results
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for the multiple REDs in models (ii)-(iv). These multiple REDs represent di¤erent ways of

departmentalizing the GV EOv RED, which is why our extended test is of the sources of the

increase in competition we observed above. For completeness and to enable comparisons we

also present in �gure 3 the standard empirical Boone test results for the single all-encompassing

GV EOv RED in model (i). The four key �ndings from �gure 3, all of which support our decision

to departmentalize the GV EOv RED as they highlight the additional learnings, are as follows.

First, by comparing the standard Boone test results for the individual GV EInt, NIEInt and

NV EInt REDs in �gure 3 with the results for the multiple REDs for the corresponding entire

departmentalization of GV EOv, we can see that our extended Boone test ensures that we do not

overlook signi�cant sources of the increase in competition.26 To illustrate, for the entire sample

and non-GDSI banks we can see from �gure 3 that by focusing solely on the GV EInt RED we

account for the big signi�cant source of the increase in competition, but also overlook theGV ENwk

RED, which for this departmentalization is the smaller signi�cant other source. Second, we can

see from �gure 3 that the signi�cant increase in competition for GDSI banks from model (i) in

table 6 is not due to any individual signi�cant sources from models (ii)-(iv), but is instead due

to their combined e¤ect. Third, all the signi�cant sources of the increase in competition for the

entire sample and non-GDSI banks relate to time-varying departmentalized REDs (i.e., the REDs

relating to NV EOv; GV ENwk; GV EInt; NV ENwk; and NV EInt). Fourth, we can see that our

extended Boone test results in �gure 3 decompose the di¤erence in the integrals in table 6 for

models (ii)-(iv) into the contributions from individual REDs. For example, for model (ii) using

the entire sample, the contributions of the NIEOv and NV EOv REDs to the �0:061 di¤erence in

the integrals are �0:030 and �0:031.

As a �nal point in this discussion of the �rst set of competition cases, we note that for a change

in competition from a Boone analysis to be informative it needs to be thought of in the wider

context of other social bene�ts and costs that occurred simultaneously. We therefore qualify the

increase in competition we observe for cases 1 � 3.27 Although typically we associate a rise in

social welfare with a more competitive environment, we associate cases 1 � 3 with a substantial

decrease in welfare in 2008 � 15. This is due to the negative e¤ects of the Great Recession far

outweighing any social bene�ts from the increase in competition.28

4.7 Boone Test Results for Phases of the Business Cycle

As we noted in the introductory section, a change in competition can be endogenous and is hence

actionable by the antitrust authorities, or exogenous, which the antitrust authorities can do little,

if anything, about. For cases 1 � 3 we know that the increase in competition we observe is

26For example, the entire departmentalization of the GV EOv RED that relates to the GV EInt RED also includes
the GV ENwk RED.
27We thank an anonymous reviewer for suggesting this.
28There are other competitive regimes in banking which have also had a perverse e¤ect on social welfare.

Typically we would associate the lifting of bank branching restrictions to allow banks to move into new markets
with an increase in welfare. The opposite happened in Spain because savings banks that were previously restricted
to certain regions over-branched. This wasted resources and many banks were forced to merge, while others made
losses. Overall, the rise in competition was temporary and many would conclude that the accompanying short-lived
social bene�ts were more than o¤set by the decline in social welfare from what followed.
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Figure 3: Empirical Boone test results for sources of a change in competition for cases 1-3

exogenous. This is because it is the result of crisis induced phenomena that forced a decline in

pro�ts upon the banking industry. Recall that there are three such phenomena- the U.S. economy

going into recession; the decrease in the loan-deposit rate spread, which represented the collateral

damage to banks from monetary policy to moderate the recession; and the post-crisis tightening

of bank regulation to reduce risk.

We now turn our attention to the origins of the exogenous increase in competition for cases

1�3. We do so by introducing an approach to disentangle the e¤ect of the business cycle on bank

competition from the combined e¤ect of the other two crisis induced phenomena. This involves

testing within the initial and new regimes whether the decrease in competition that we expect in

the expansion phase of the business cycle cancels out the increase that we expect in the recession.

We apply our approach to: (i) the complete recession and expansion phases in the pre-crisis period

(1994� 07) for the entire sample (case 4) and non-GDSI banks (case 5);29 and (ii) the complete

recession and incomplete expansion in the period covering the crisis and beyond (2008 � 15) for

the entire sample (case 6), GDSI banks (case 7) and non-GDSI banks (case 8).

For cases 4� 8, we present in �gure 4 the results of the standard Boone test using the single

all-encompassing GV EOv RED and the results of our extended test using various departmental-

izations of this RED. From this �gure we can see for each case that the standard Boone test

indicates that the decrease in competition we associate with the expansion phase is nulli�ed by

the increase we associate with the recession. This cancelling out of changes in competition over

the business cycle suggests that the exogenous increase in competition for cases 1 � 3 has two

29For reasons previously given we do not consider these phases for GDSI banks.
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Figure 4: Empirical Boone test results for sources of a change in competition for cases 4-8

origins- the collateral damage to banks from monetary policy to moderate the recession that the

crisis initiated, and the post-crisis tightening of bank regulation to reduce risk. Consistent with

this cancelling out, all the results for cases 4�8 in �gure 4 for our extended test (with one possible

exception) suggest that each source of the increase in competition we associate with the recession

is negated in the ensuing expansion.30

4.8 Boone Test Results for Further Subperiods and Bank Classi�ca-

tions

As cases 1 � 3 consider two long subperiods in cases 9 � 17 we consider whether competition

di¤ers in successive shorter subperiods. We consider four shorter subperiods: 1994 � 00 (before

the build-up to the crisis began); 2001 � 06 (build-up to the crisis); 2007 � 09 (crisis period);

and 2010� 15 (post-crisis period). Three cases are for the entire sample (9, 12 and 15) and since

case 2 relates to a small �xed group of GDSI banks, three cases consider a bigger group of the

largest banks that changes annually (10, 13 and 16). This subsample consists of banks with total

assets in the top third of the sample in each year and a further three cases are for the remaining

two-thirds (11, 14 and 17).

30The NV ENwk RED for non-GDSI banks, which is part of case 8, is the possible exception. This is because
it is the source of a marginally signi�cant (i.e., at the 10% level) negative competitive e¤ect over the incomplete
business cycle during 2008� 15.
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Figure 5: Empirical Boone test results for sources of a change in competition for cases 9-17

In �gure 5, we present for cases 9� 17 the results of the standard Boone test using the single

all-encompassing GV EOv RED and the results of our extended test using di¤erent departmen-

talizations of this RED. From this �gure we can see for each case that the standard Boone test

indicates that competition is not statistically signi�cantly di¤erent in the successive subperiod.

This is interesting because comparing these results with the results for the standard Boone test

using the GV EOv RED for cases 1 � 3 suggests that longer subperiods are needed to observe a

change in competition.

From the extended test results for the departmentalized REDs in �gure 5, we can see that

there are just six instances where a source of competition is signi�cantly di¤erent in the successive

subperiod. (These instances are the NV EInt and NV EOv REDs when the initial and new regimes

are 1994 � 00 and 2001 � 06 for the entire sample, the top third of banks and the bottom

two-thirds, where these results are part of cases 9 � 11, respectively). This relative lack of

evidence for cases 9 � 17 of sources of competition that are signi�cantly di¤erent in the new

regime is broadly consistent with the standard Boone test results using the GV EOv RED which

indicate that competition did not change for these cases. Moreover, as the NV EOv RED can be

departmentalized into NV EInt and NV ENwk REDs, we can conclude for cases 9 � 11 that it is

the signi�cant NV EInt RED that is driving the signi�cant results for the NV EOv RED.

33



5 Concluding Remarks

The two contributions this study makes are varied in nature as the �rst is an applied methodologi-

cal one, while the second is empirical for banks. Our �rst contribution extends the method for the

empirical implementation of the Boone competition test to test for di¤erent sources of a change

in competition. This involves moving from a test that uses a single all-compassing e¢ciency to

one that uses multiple e¢ciencies. In other words, we identify the di¤erent sources of a change in

competition using multiple e¢ciencies with di¤erent features, which involves drawing on recent

advances in e¢ciency measurement. The multiple e¢ciencies we incorporate into our extended

Boone test have the following di¤erent features: time-variance; time-invariance; internalization to

the �rm; and network e¤ects as �rms compete via their location choices for, among other things,

network linkages.

Our second contribution is a comprehensive empirical application of our extended Boone test to

large U.S. banks. In this application we provide deeper insights into how a change in competition

from a Boone analysis may be quanti�ed. We also emphasize that one can only carry out a true

test of a change in endogenous competition (i.e., competition that is actionable by the antitrust

authorities) when: (a) it is possible to distinguish between the exogenous and endogenous changes

in competition; or (b) the analysis is performed on data where the exogenous e¤ects on competition

are considered to be minimal, or have remained constant over the study period. Of course for our

study period neither (a) or (b) is the case, but because we know that crisis induced phenomena

forced a decline in pro�ts upon the banking industry, we instead analyze the exogenous origins of

the decline in banking competition we observe for the period 2008� 15. We do so by suggesting

an approach to investigate if one can rule out the exogenous phase of the business cycle as the

origin of a change in competition. When we apply this approach we �nd no change in competition

over the complete and incomplete business cycles we consider (i.e., it appears that the increase

in competition in the recession is cancelled out by the decrease in the expansion phase). On the

basis of this �nding, the exogenous increase in competition we observe for the period 2008�15 has

two origins- the decrease in the loan-deposit rate spread, which represented the collateral damage

to banks from monetary policy to moderate the Great Recession; and the post-crisis tightening

of bank regulation to reduce risk.
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