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Abstract

The principal contribution of this paper is to present the �rst method to sift through a large

number of �rms in an industry to uncover which �rms act as large spatial total factor productivity

(TFP) growth centers. We de�ne a large spatial TFP growth center as a �rm that is a large net

generator of spatial TFP growth spillovers, i.e., it is a source of large TFP growth spill-outs to other

�rms vis-à-vis the size of the TFP growth spill-ins that permeate to the �rm from other �rms. We

use this de�nition because, other things being equal, �rms would want to locate near a �rm that is a

net generator of TFP growth spillovers. In the process of presenting the above method we make three

further contributions, two of which are methodological and the other relates to our application. First,

rather than follow the literature on spatial frontier modeling by considering spatial interaction between

�rms in a single network, we introduce a more sophisticated model that is able to account for spatial

interaction in multiple networks. Second, we obtain bidirectional spatial TFP growth decompositions

by complementing a unidirectional decomposition in the literature, where the spillover components

are spill-ins to a �rm, with a decomposition that includes spill-out components. Third, from a spatial

revenue frontier for U.S. banks (1998� 2015), we �nd a number of cases where banks that represent

large spatial TFP growth centers have branches that cluster together, while in several states we �nd

no such clusters.
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1 Introduction

There has been a lot of methodological and applied non-spatial studies on the decomposition of total

factor productivity (TFP) growth (Diewert and Fox, 2017, Sun et al., 2015, Orea, 2002, Oude Lansink et

al., 2015, and Tsionas and Mallick, 2019, to name but a small selection of studies). There is, of course,

variation in the precise forms of the decompositions in this literature, but a typical decomposition of a

�rm�s TFP growth may consist of returns to scale change, technical/economic e¢ciency change and tech-

nological change. Building on the more general parametric literature that models productivity spillovers

(e.g., Chandra and Staiger, 2007, Takii, 2005, and Girma and Wakelin, 2007), an emerging parametric

literature sets out the methodology to augment the decomposition of a �rm�s own TFP growth with the

decomposition of the TFP growth spillovers it receives from other �rms (Glass et al., 2013, and Glass

and Kenjegalieva, 2019, where the latter is denoted as G&K from hereon). As this literature exclusively

focuses on the TFP growth spillovers that gravitate to a �rm, our �rst methodological contribution is to

propose a new spatial decomposition of TFP growth by augmenting the decomposition of a �rm�s own

TFP growth with the decomposition of the TFP growth spillovers it transmits to other �rms. By con-

joining this contribution with the aforementioned emerging literature we obtain asymmetric bidirectional

spatial decompositions of TFP growth.

Using a spatial stochastic frontier model, which in terms of spatial variables contains at least a spatial

lag of the dependent variable, otherwise known as a spatial autoregressive (SAR) variable, we obtain our

new spatial decomposition of TFP growth. In the spatial stochastic frontier literature the models only

consider spatial interaction within a single network (Druska and Horrace, 2004; G&K; Glass et al., 2013;

2016; 2018a; 2019; Tsionas and Michaelides, 2016; Gude et al., 2018; Orea et al., 2018; Horrace et al.,

2019). Our second methodological contribution extends this literature by introducing a spatial stochastic

frontier model that caters for multiple spatial networks via multiple spatial lags of the dependent variable,

which we then use to obtain our new spatial decomposition of TFP growth. For �rms this will often be a

better representation of what is actually the case because, in practice, a �rm may simultaneously belong

to a number of di¤erent networks.

Our third and principal contribution is to conjoin the asymmetric bidirectional measures of TFP

growth spillovers to introduce a methodology to uncover �rms that act as spatial TFP growth centers

in an industry. We de�ne a �rm as being a spatial TFP growth center if the sum of the TFP growth

spillovers it transmits to other �rms is greater than the sum of the spillovers it receives. We use this

de�nition of a spatial TFP growth center because, everything else being equal, a �rm would want to

bene�t from the net generation of TFP growth spillovers by locating near a center. As we also decompose

the asymmetric bidirectional measures of TFP growth spillovers into asymmetric bidirectional spillovers

of technological change, returns to scale change and e¢ciency change, these decompositions indicate the

components that are key in determining which �rms act as spatial TFP growth centers in an industry.

As �rm level data samples are typically large there are likely to be a large number of �rms in empirical

applications who are net generators and net recipients of TFP growth spillovers. The issue then is which

�rms are the largest net generators in a sample and which are largest net recipients.

Our fourth and �nal contribution is to provide an empirical application of our methodological ad-

vances to the U.S. banking industry. We complement G&K�s spatial cost frontier based application of

their spatial TFP growth decomposition by focusing on the income side of the industry. This involves

estimating a spatial stochastic revenue frontier with multiple networks for the period 1998 � 2015. By

using a translog functional form we calculate elasticities outside the sample mean, which we use to ob-

tain our new annual spatial TFP growth decomposition. This annual decomposition plays a key role in
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uncovering which U.S. banks act as spatial TFP growth centers in the industry. In particular, we use

our annual decomposition to: (i) uncover which banks represent spatial growth centers in 2015, as the

�nal year of our analysis is the most relevant for future policy making; and (ii) investigate if there are

di¤erences between these results for 2015 and those for two subperiods- pre-crisis (1998�2007) and crisis

and beyond (2008� 2015).

It is informative for bank regulatory authorities to know which banks represent the largest spatial

TFP growth centers and which banks are the largest net recipients of TFP growth spillovers. This is

because this information provides new insights into which banks play key roles in the productivity e¤ects

that emanate from the linkages between banks. Such insights for policy makers suggests there is scope for

wider application of our methodology to other industries. Although our application is to banks across the

U.S., our methodology to uncover spatial TFP growth centers can also be applied to �rms that cluster

in a particular location (e.g., the hi-tech enterprises in the Santa Clara Valley area of California and the

large scale manufacturing �rms in the Pearl Delta area of China).

Our quantitative analysis of productivity centers is the �rst of its type. The two closest related

literatures to our analysis are the quantitative studies of hubs and a study by Pesaran and Yang (2019)

that analyzes how the sectors that make up a country�s production network a¤ect its aggregate output.

We now turn to brie�y discuss these two literatures and at the outset point out that in network theory a

hub-and-spoke network has a particular network structure, whereas here we are not so prescriptive about

the structure of bank branch networks. Irrespective of the particular form of a bank branch network, we

simply use banks that have overlapping branch networks to uncover the banks that act as productivity

centers.

There are two broad strands of the quantitative literature on hubs. The �rst strand is a large

methodological OR literature that analyzes the optimal locations of hubs in transportation and logistics

(T&L) networks (e.g., Alumur and Kara, 2008, Campbell and O�Kelly, 2012, Contreas, et al., 2011, and

Ishfaq and Sox, 2011). The second adopts a di¤erent approach because, rather than propose the location

of a hub, it analyzes the e¤ect of hubs on a particular variable when the hubs can be selected prior to the

empirical modeling as they are well-known. Examples of the latter analyze the e¤ect of hub-and-spoke

airline networks on fares (Brueckner et al., 1992; Borenstein, 1989) and airport congestion (Mayer and

Sinai, 2003), and the e¤ect of universities as research hubs on the wider technological innovation in

industries and surrounding areas (Anselin et al., 1997, Cohen et al., 2002, and Fromhold-Eisebith and

Werker, 2013, to name but a few studies from this large literature). Our paper does not �t into either

strand of this quantitative literature on hubs because we do not consider T&L networks, or analyze the

e¤ect of productivity centers that are easily observed and can therefore be selected in advance of the

modeling, which is not a common situation. Instead, the new line of enquiry we pursue considers the case

of a large number of �rms in an industry when the �rms that act as spatial economic performance centers

are not easily observed, which is often the case in practice. For this type of case we propose a resolution

by setting out the �rst method to sift through a large number of �rms in an industry to uncover which

�rms act as spatial TFP growth centers (i.e., those �rms that are large net generators of TFP growth

spillovers). We use spatial TFP growth as our measure of spatial economic performance because TFP is

widely recognized as a comprehensive measure that incorporates both demand and supply phenomena.

There are parallels between our analysis and Pesaran and Yang (2019), but whereas our approach

operates at the micro level of a large number of �rms, their method focuses on the macro level. In their

model sector-speci�c shocks a¤ect the aggregate output of a country if there are �dominant� sectors,

where a sector is dominant if its outdegree is not bounded by the number of sectors in the country. Using

information from an input-output table, they de�ne the outdegree of a sector as the share of the sector�s
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output that is used as intermediate inputs by all the other sectors in the country. They then set out how

to use this information to estimate an exponent that measures the degree of dominance (or pervasiveness)

of a sector in the determination of a country�s aggregate output. In particular, this exponent controls

the rate at which the outdegree of a sector rises with the number of sectors in the country.

In the context of our micro setting, the above outdegree de�nition may not be appropriate for many

industries because �rms may not use other �rms� outputs as intermediate inputs, and in industries where

they do, data on this inter�rm economic interaction may not be in the public domain. For example,

banks interact in this way through interbank lending, but data on such lending is not publicly available.

This necessitates therefore that we use our alternative approach.

By way of an insight into our key empirical �ndings, based on our analysis of 2015, 1998� 2007 and

2008�2015, we �nd that the banks which act as large spatial TFP growth centers tend to have branches

that cluster together in the same areas throughout our study period. In line with our expectations, these

areas are the northeast and cities elsewhere that are among the largest economies (e.g., Los Angeles

and Chicago). Over our study period we observe an increase in the clustering of the branches of the

banks that act as large spatial TFP growth centers, which indicates that these clusters are becoming

an increasingly prominent feature of the industry. That said, we �nd no evidence of banks that act as

large spatial TFP growth centers having clusters of branches in a number of contiguous states (Idaho;

Montana; North Dakota; South Dakota; Wyoming; Maine; Vermont; and New Hampshire).

Additionally, it is important to note that the basic principle of our method to uncover spatial TFP

growth centers is su¢ciently general that it can be applied to any spatial measure. For example, we

could apply our method to uncover �rms that act as spatial technical innovation centers in a sample

of hi-tech �rms. A �rm would be classi�ed as a spatial technical innovation center if the sum of the

technical innovation spillovers it transmits to other �rms are greater than the sum of the spillovers it

receives. The results from such an analysis could be used to improve the e¢cacy of public innovation

policies by targeting policies at �rms that represent spatial technical innovation centers.

Speci�cally, we estimate a multi-network spatial Durbin stochastic frontier, where the spatial inter-

action between the banks in the multiple networks is accounted for by multiple sets of spatial lags of

the dependent and independent variables. In addition to, as we have noted above, the multi-network

aspect of the model being more representative of the links between U.S. banks, we estimate this model

speci�cation for three further reasons, which we now turn our attention to.

First, although a spatial error/ine¢ciency speci�cation (which contains a spatial lag of the distur-

bance/ine¢ciency) and SAR and spatial Durbin models all account for global spatial dependence (i.e.,

1st order and higher order neighbor spatial interaction), as we discuss in more detail in due course,

with the spatial error/ine¢ciency speci�cation the only spillover elasticity in the model relates to the

disturbance/ine¢ciency.1 In other words, with the spatial error/ine¢ciency speci�cation, the only type

of spillover that is modeled is the impact on a �rm�s dependent variable from the spillover of other �rms�

disturbances/ine¢ciencies. From the SAR and spatial Durbin speci�cations, however, as well as being

able to obtain for our new spatial TFP growth decomposition the e¢ciency spillovers to (from) a �rm

from (to) other �rms, in contrast to a spatial error/ine¢ciency model and in line with the requirements

of our new decomposition, the spillover elasticities can also be related to the independent variables. As a

result of this property of the SAR and spatial Durbin speci�cations, we obtain the two further spillover

components for our decomposition (growth in technological change spillovers and growth in returns to

scale spillovers). Second, we favor the spatial Durbin speci�cation over the SAR model because the

1For the further discussion of the spillover elasticity from a spatial error/ine¢ciency speci�cation see footnote 7 in
subsection 2:3.
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former includes spatial lags of the independent variables, while the latter omits these lags. The inclusion

of these spatial lags in the spatial Durbin speci�cation accounts for local spatial dependence. This is a

further type of spatial dependence that is often found to be present in empirical applications and relates

to only 1st order spatial interaction between the independent variables of neighboring �rms. Third, from

the SAR model the ratio of the own and spillover elasticities (referred to in the spatial literature as direct

and indirect elasticities) is the same for all the independent variables, which is implausible. This is not

the case though with the spatial Durbin speci�cation because of the presence of the spatial lags of the

independent variables in the model.

The remainder of this paper is organized as follows. Section 2 has three parts. In the �rst part we

provide a general presentation of the structural form of our new spatial Durbin stochastic frontier model.

The second part sets out our approach to estimate the parameters of the structural model, the own (i.e.,

non-spatial) time-invariant and time-varying e¢ciencies, and the combined measure that draws together

these e¢ciencies. In the third part, as the structural form of our model does not yield interpretable global

spillovers, we present how we calculate a set of elasticities from the reduced form model (direct, indirect

spill-in and spill-out, and total), and then layout our method to compute the corresponding e¢ciencies.

In section 3 we set out our methodology to uncover the �rms that act as spatial TFP growth centers in

an industry, which �rst involves presenting our method to obtain the asymmetric spatial TFP growth

decompositions. In section 4 we present the application to U.S. banks and in section 5 we conclude.

2 A Spatial Stochastic Frontier Model withMultiple Spatial Networks

2.1 General Presentation of the Structural Form of the Model

Before we formally present and discuss our model in detail, we provide an intuitive overview of its

new methodological feature. This feature extends the literature on spatial stochastic frontier models

that consider interactions between �rms within a single spatial network (via a single spatial lag of the

dependent variable), to the more complex setting of multiple simultaneous spatial networks (via multiple

spatial lags of the dependent variable). The motivation for this extension is to represent the di¤erent

types of spatial linkages that simultaneously exist between �rms that are in multiple networks, where

these networks may represent the di¤erent business segments of �rms. In our model there are M spatial

networks that are indexed m 2 1; :::;M . When we apply our model we favor a reasonably small M that

relates to reasonably distinct spatial networks. This does not detract from our model as it guards against

collinearity between some of spatial lags of the dependent variable when M is quite large. With this

in mind, in our application we use just two spatial weights matrices, which re�ect the linkages between

the banks across two networks of very di¤erent branch types. To obtain the small M we construct one

spatial weights matrix by aggregating a number of branch types across a broader category. In further

applications of our model it may be necessary to aggregate networks using a similar approach.

To emphasize the generality of our model and estimator, the following presentation is for the general

case of a concave frontier rather than a speci�c concave frontier technology (e.g., a production, pro�t or

revenue frontier). Our model and estimator, however, is in no way constrained to a concave frontier and

can easily be adapted to convex frontier technologies (e.g., a cost frontier). The general structural form

of our panel data spatial Durbin stochastic frontier (SDSF) model with multiple simultaneous spatial

networks is given in Eq. 1, where the variables are logged.
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yit = �+ x0it� +

0
BBB@

NP
j=1

wij1x
0
jt#1 + :::

+
NP
j=1

wijMx
0
jt#M

1
CCCA+

0
BBB@

�1
NP
j=1

wij1yjt + :::

+�M
NP
j=1

wijMyjt

1
CCCA+ %i + vit � �i � uit: (1)

The panel data comprises observations for N �rms over T time periods, which are indexed i; j 2 1; :::; N

8 i; j and t 2 1; :::; T . yit is the observation for the dependent variable (output, pro�t or revenue) for

the ith �rm in period t; � is the common intercept; x0it is the (1�K) vector of observations for the non-

spatial regressors which are indexed k 2 1; :::;K; and � is the associated vector of regression parameters.

xit includes the variables which together with yit represent the frontier technology.

TheM spatial networks in our model represent di¤erent sources of spillovers and correspond to theM

(N �N) spatial weights matrices, which are indexedWm 2W1; :::;WM. One must specifyW1; :::;WM

in advance of estimating the model, where the elements of Wm are the non-negative constant i; j�th

spatial weights wijm. For the mth spatial networkWm represents the spatial arrangement of the �rms

and the strength of the spatial linkages between the �rms. All the elements on the main diagonal of

Wm are therefore set to zero because a �rm cannot be spatially linked to itself in a network. As Wm

is exogenous it is often speci�ed using some measure of geographical proximity. Although this is also

the case in our empirical application to U.S. banks we adopt an innovative approach. This involves

constructing for each branch type a spatial weights matrix that represents the geographical overlap of

bank branch networks.

Once W1; :::;WM have been speci�ed we can construct the two groups of spatial variables in our

model. The �rst group is the M spatial lags of the dependent variable,
PN
j=1wij1yjt; :::;

PN
j=1wijMyjt.

These spatial lags capture global spatial dependence in the M networks and are endogenous, which our

estimator accounts for. The associated parameters �1; :::; �M 2
h

1
min(fmin

1
;:::;fmin

M
)
; 1
max(fmax

1
;:::;fmax

M
)

i
, where

this space is su¢ciently general and fmaxm is the most positive real characteristic root ofWm. Speci�cally,

Wm denotes a normalized speci�cation of the mth spatial weights matrix, where the normalization we

use in our empirical application gives fmax1 ; :::; fmaxM = 1. For details of our approach to this normalization

see subsection 4:1. In our application and as is common in the empirical spatial literature Wm before

normalization is asymmetric and may therefore have complex roots after normalization. For the case of

complex roots and using our notation, LeSage and Pace (2009) (LSP from hereon) prove that the lower

limit of �m is the inverse of f
min
m , where fminm is the most negative real characteristic root ofWm.

The second group of spatial variables in our model are the M exogenous spatial lags of x0it (i.e.,PN
j=1wij1x

0
jt; :::;

PN
j=1wijMx

0
jt), where #1; :::; #M are the associated vectors of parameters. These spatial

lags capture local spatial dependence in the M networks and together with the spatial lags of the

dependent variable shift the frontier technology. If we were to omit the M spatial lags of x0it then Eq. 1

becomes the SAR model. We do not omit these variables because often local spatial variables are found

to be important determinants in the empirical spatial literature. Due to the inclusion of these local

spatial variables our model belongs to the class of spatial Durbin models.

The error structure in our model is e"it = "i + "it = %i + vit � �i � uit, where "i = %i � �i is the

time-invariant error and "it = vit � uit is the time-varying error. To distinguish between the four error

components our estimator relies on the components being independently distributed. We do not therefore

use �rm �xed e¤ects to account for unobserved heterogeneity because although they will be correlated

with the regressors which is appealing, the time-varying idiosyncratic errors will not be independently

distributed as they will also be correlated with the �xed e¤ects.

G&K model unobserved �rm heterogeneity using random e¤ects which are independently distributed
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because, as is standard, these e¤ects are random errors. As a result, random e¤ects are uncorrelated

with the regressors, which may not be the case in many applications. We therefore follow the spatial

stochastic frontier model with a single spatial network in Glass et al. (2018a) and also Debarsy (2012) and

Wang and Lee (2013) in the spatial literature where there is no ine¢ciency component(s), by modeling

unobserved �rm heterogeneity using common correlated random e¤ects. This approach allows the e¤ects

to be correlated with the regressors while maintaining independently distributed error components and

involves specifying a �rm common correlated random e¤ect as

%i = x0i� +

NX

j=1

wij1x
0
j�1 + :::+

NX

j=1

wijMx
0
j�M + �i: (2)

�i � N(0; �2�) is a random error and therefore represents the component of the �rm speci�c e¤ect that

is uncorrelated with the regressors. x0i =
1
T

PT
t=1 x

0
it and

PN
j=1wijmx

0
j =

1
T

PT
t=1

PN
j=1wijmx

0
jt, where

these means account for correlation between the �rm speci�c e¤ects and each of the regressors. Associated

with these means are the vectors of parameters � and �1; :::; �M .

Turning to the ine¢ciency components of the error structure, �i � N+
�
0; �2�

�
is own time-invariant

ine¢ciency and uit � N+
�
0; �2u

�
is own time-varying ine¢ciency. Here �i and uit are assumed to have

half-normal distributions, which is common in the stochastic frontier literature, although our estimation

procedure is su¢ciently general to accommodate alternative distributional assumptions. The own in-

e¢ciencies from Eq. 1 are directly comparable to the ine¢ciencies from the corresponding non-spatial

frontier model, and following the spatial literature (e.g., Anselin, 2003) Eq. 1 represents the structural

form of our model as it includes the M SAR variables. In the reduced form model, which is used to

compute the elasticities and e¢ciency spillovers, the SAR variables do not feature.

One can test the appropriateness of the error structure in Eq. 1 for an empirical application using the

one-sided likelihood ratio test in Gouriéroux et al. (1982). This involves performing the test for each of

the error components, where the asymptotic distribution of the test statistic is a mixture of chi-squared

distributions, 12�
2
0 +

1
2�

2
1. For G 2 f%; v; �; ug rejection of the null

�
b�2G = 0

�
in favor of the alternative

hypothesis
�
b�2G > 0

�
constitutes evidence of the presence of the error component. Since both of the

nulls for the ine¢ciency components may not be rejected in an empirical application, our model has the

advantage of nesting the corresponding SDSF models that consider only time-invariant or time-varying

ine¢ciency. G&K use the same test for the �rm speci�c random e¤ect in their error structure, which is

akin to testing for the presence of the �i component in %i in our model. With our model, in addition to

applying this test to %i, we can go a step further by applying the test to the three types of component

that make up %i, i.e., �i, x
0
i and

PN
j=1wijmx

0
j . A signi�cant �i component indicates that part of %i is

uncorrelated with the regressors. Signi�cant x0i and/or
PN
j=1wijmx

0
j points to x

0
it and/or

PN
j=1wijmx

0
jt

being signi�cantly correlated with %i.

2.2 Model Estimation and the Own E¢ciency Measures

We estimate the model in Eq. 3 as we treat x0i and
PN
j=1wij1x

0
j ; :::;

PN
j=1wijMx

0
j as auxiliary regressors.
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yit = �+ x0it� +

0
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j=1
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0
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+
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j=1

wijMx
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jt#M

1
CCCA+

0
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j=1

wij1yjt + :::
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j=1
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1
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NX

j=1

wij1x
0
j�1 + :::+

NX

j=1

wijMx
0
j�M + �i + vit � �i � uit; (3)

where now the time-invariant and time-varying errors are "i = �i � �i and "it = vit � uit.

Given Eq. 3 is more complex than a simpler spatial stochastic frontier model with a single SAR

variable and only one type of ine¢ciency (time-varying or time-invariant), we use a practical multi-step

maximum likelihood (ML) estimation procedure.2 This procedure comprises three steps, where in step

1 we estimate the SAR parameters �1; :::; �M , the intercept � and the parameters on the other variables

(i.e., �, #1; :::; #M , � and �1; :::; �M ). In steps 2 and 3 we estimate uit and �i, respectively. We now present

the salient features of our estimation procedure and in the Appendix we provide the technical details of

the log-likelihood function(s) for each step. To proceed we invoke the standard type of reparameterization

of Eq. 3 that is adopted in the stochastic frontier literature (e.g., Aigner et al., 1977). This involves using

�2�� = �2�+�
2
� and ��� = ��=��, and �

2
uv = �2u+�

2
v and �uv = �u=�v. It follows that �

2
� = �2��=

�
1 + �2��

�
;

�2� = �2���
2
��=
�
1 + �2��

�
; �2u = �2uv=

�
1 + �2uv

�
; and �2v = �2uv�

2
uv=
�
1 + �2uv

�
.

We estimate the aforementioned parameters in step 1 by transforming the spatial stochastic frontier

model in Eq. 3 into the spatial model in Eq. 4. As a result of this transformation �rms are not yet

permitted to be ine¢cient. In subsequent steps this is relaxed to estimate the time-varying and time-

invariant ine¢ciencies. To rewrite Eq. 3 as Eq. 4 we transform the intercept and the negatively skewed

time-invariant and time-varying errors "i and "it as follows: �
� = ���"i��"it ; "

�
i = "i+�"i = �i��i+�"i ;

and "�it = "it + �"it = vit � uit + �"it , where �"i =E(�i) and �"it =E(uit). As a result, the transformed

time-invariant and time-varying error components satisfy the zero-mean condition, i.e., "�i � N(0; �2"�i
)

and "�it � N(0; �2"�it
).3

2This practicality is the result of breaking down the estimation problem into steps, which faciltates in each step conver-
gence of the log-likelihood function(s). Although this is bene�cial, the cost associated with this practicality is the loss of
some statistical e¢ciency of the parameter and e¢ciency estimates from stepwise estimation of the model (vis-à-vis esti-
mation in a single step). See Gude et al. (2018) and Horrace et al. (2019) for ML methods that estimate spatial stochastic
frontier models all in a single step. Their models, however, consider one spatial network and only time-varying ine¢ciency
and are thus much simpler than our model, which is why we use a practical stepwise estimator.

3Our estimator extends to multiple spatial networks the multi-step ML estimator in Kumbhakar et al. (2014) for the
corresponding random e¤ects non-spatial stochastic frontier model (i.e., our model with the means of the x variables and
their spatial lags and the spatial lags of x and y omitted). Simulated ML has also been used by Filippini and Greene (2016)
to estimate in a single step the corresponding non-spatial stochastic frontier model with common correlated random e¤ects
(i.e., our model with the spatial lags of the means of the x variables and the spatial lags x and y omitted). Since the
focus here is on presenting our method to uncover �rms that act as spatial TFP growth centers and given ML methods
are well-established approaches to estimate corresponding non-spatial stochastic frontier models, we do not formally pursue
the asymptotic properties of our estimator. It is clear though that the asymptotic properties of our estimator in the �rst
step (e.g., the consistency of the estimates of the parameters in Eq. 4) would not raise any issues. This is because these
properties would be the amalgamation of those for the pooled least squares estimator of the non-spatial model with common
correlated random e¤ects (Pesaran, 2006), and the estimator of the SAR random e¤ects model using ML (Lee and Yu, 2012).
It should also be noted that in the same way as the x variables in Eq. 4 must be uncorrelated with "�i and "

�
it to obtain

consistent estimates of the coe¢cients on these variables, the means of the x variables and their spatial lags must also be
uncorrelated with these error components to obtain consistent estimates of the coe¢cients on these auxiliary regressors.
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yit = �� + x0it� +

0
BBB@

NP
j=1

wij1x
0
jt#1 + :::

+
NP
j=1

wijMx
0
jt#M

1
CCCA+

0
BBB@

�1
NP
j=1

wij1yjt + :::

+�M
NP
j=1

wijMyjt

1
CCCA+ x

0
i�+

NX

j=1

wij1x
0
j�1 + :::+

NX

j=1

wijMx
0
j�M + "�i + "

�
it: (4)

To give spatial econometrics greater economic foundation Corrado and Fingleton (2012) suggest

that more emphasis should be placed on using spatial techniques to estimate equations that are well

grounded in economic theory. We can also apply this research direction to address a particular issue

in spatial econometrics because such an approach can alleviate a potential problem with the identi-

�cation of the spatial parameters in Eq. 4, i.e., the coe¢cients on both the local spatial variables�PN
j=1wij1x

0
jt; :::;

PN
j=1wijMx

0
jt

�
and global spatial variables

�PN
j=1wij1yjt; :::;

PN
j=1wijMyjt

�
. Identi-

�cation of these spatial parameters can be problematic if x0it su¤ers from omitted variables, as there is a

tendency for the e¤ect of these omitted variables to in�ate the spatial parameters because the omitted

variables are spatially correlated. To circumvent this problem in our empirical application yit and x
0
it

are speci�ed according to a well-established function from production theory, i.e., a translog revenue

function, where revenue is a function of �rst and second order output prices and input quantities and

interactions between these �rst order variables. Consequently, in our empirical model the local and global

spatial parameters are identi�ed because according to economic theory no variables are omitted from x0it.

Using Q to denote the Hessian matrix associated with the log-likelihood function for the model in Eq.

4, it is well known that the variance-covariance matrix to calculate the standard errors of the parameters

is �Q�1. Calculating this Hessian, however, is not as straightforward as for the corresponding non-spatial

model. To calculate the Hessian we follow the approach of LSP for spatial non-frontier models, which

involves using a mixture of analytical and numerical methods. All the second order derivatives that

form the Hessian are computed analytically with the exception of @2LL=@�21 ; :::; @
2LL=@�2M , which are

calculated numerically. Calculating the second order derivatives of a log-likelihood function analytically

rather than numerically is far less sensitive to badly scaled data. Calculating @2LL=@�21 ; :::; @
2LL=@�2M

numerically when N is large though, as is the case in our empirical application, simpli�es matters

somewhat as it avoids a number of large matrix multiplications involvingW1; :::;WM.

As will become apparent in due course, the spatial multiplier matrix (IN � �1W1 � :::� �MWM)
�1

plays a key role in the reduced form of our model as it is where the global spillovers come from, where

IN is the (N �N) identity matrix. In our empirical application this matrix inversion does not pose any

problems and, as a result, we obtain the spatial multiplier matrix we need to calculate the direct, indirect

and total elasticities and e¢ciencies. See subsection 2:3 for discussion of the role of the spatial multiplier

matrix in the calculation of the direct, indirect and total elasticities and e¢ciencies.

Using b"�it from step 1, in step 2 we begin the process of splitting b"it into buit and bvit by using ML
to obtain the estimate of �uv, which is then used to obtain the estimate of �uv. See the Appendix

for technical details on this. We then also in step 2 use b�uv, b�uv and the relevant other estimates
to calculate the consistent estimate of own time-varying ine¢ciency uit (conditional on "it), using the

following well-established Jondrow et al. (1982) (JMLS) estimator:

buit = E (uitj"it) =
�u�v
�uv

�
�it

1� �it
�
"it�uv
�uv

�
: (5)
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�it = �("it�uv=�uv), where � is the standard normal cumulative distribution function; �it =

� ("it�uv=�uv), where � is the probability density function for the standard normal distribution; and

"it = "�it � �"it .

In step 3 we use the same approach to estimate own time-invariant ine¢ciency �i (conditional on "i)

as we use to calculate buit in step 2. In brief, this involves using b"�i from step 1 to split b"i into b�i and b�i,
by calculating b��� and subsequently b��� and then b�i via the JMLS method. Finally, in a similar way
to how we obtain b"it and b"i, we scale b�� to obtain the consistent estimate of the constant term, b� =
b�� + b�"i + b�"it .4

We can transform the log form in Eq. 1 into its multiplicative form for level data by taking the

exponents of the terms in Eq. 1. For the ine¢ciency terms this is the widely used Battese and Coelli

(1988) method to transform an ine¢ciency estimate into the e¢ciency measure. For our model this

gives estimates of what we refer to as own net time-varying e¢ciency, NV Eit = exp (�buit), and own
net time-invariant e¢ciency, NIEi = exp (�b�i). We use net to indicate that these e¢ciencies are net
of time-invariance and time-variance, respectively. Based also on the multiplicative form of Eq. 1, we

compute the estimate of own combined e¢ciency, GV Eit = exp [� (b�i + buit)] = NIEi � NV Eit, which

we refer to as own gross time-varying e¢ciency.5 In line with simpler multiplicative models that contain

only an own time-varying/invariant measure of e¢ciency, NV Eit, NIEi, GV Eit 2 [0; 1].

2.3 Bidirectional Elasticities and E¢ciency Spillovers

For the corresponding non-spatial form of Eq. 1 and the local spatial form one can interpret the �tted

model as the estimated coe¢cients on the variables are elasticities.6 As LSP note, however, the �tted

structural form of a spatial model, which in terms of spatial variables contains at least one SAR variable,

does not yield interpretable spillovers. This is because the spillover elasticities for the x variables from

such a model are a function of the SAR parameter(s). Following LSP, who developed the method to

interpret such models, we use the �tted parameters for the structural form of our model to calculate direct,

indirect and total elasticities, which are partially/entirely made up of a spillover. A direct elasticity is

interpreted in the same way as an elasticity from a non-spatial model, although a direct elasticity contains

a particular type of spillover known as feedback, which in empirical applications is typically found to be

small (e.g., Autant-Bernard and LeSage, 2011). Feedback is the portion of the e¤ect of a change in an

independent variable for a particular �rm that reverberates back to the same �rm�s dependent variable,

via the impact on the dependent variables of the other �rms in the sample.

Indirect elasticities are entirely due to spillovers and are calculated in two ways as they are bidirec-

tional. This gives rise to two interpretations of an indirect elasticity: (i) the e¤ect on a �rm�s dependent

variable when there is a change in an independent variable for all the other �rms in the sample; and (ii)

the e¤ect on the dependent variables of all the other �rms in the sample when there is a change in an

independent variable for a particular �rm. The mean indirect spill-in and spill-out elasticities across the

4 In contrast to this upward scaling of b�� for stochastic production, revenue and pro�t frontiers, for a stochastic cost
frontier b� = b�� � b�"i � b�"it .

5 In the non-spatial parametric e¢ciency literature own GV E is referred to as own overall time-varying e¢ciency. We,
however, depart from this diction for non-spatial frontiers as we proceed beyond own e¢ciency measures. Having computed
own GV E and borrowing some terminology from the spatial literature, we compute direct, indirect and total GV E, which
are all spatial e¢ciencies as they are entirely/partially made up of a spillover e¢ciency. As a result, we avoid referring to
total GV E as total overall time-varying e¢ciency, which would be confusing. As we refer to a combined e¢ciency as a
gross measure, it is logical to refer to the time-invariant and time-varying components of a GV E measure as net e¢ciencies.
Additionally, own NIE, NV E and GV E should not be confused with the net and gross e¢ciencies in Coelli et al. (1999),
as the interpretations of net and gross in their model are entirely di¤erent to how we interpret net and gross here.

6The non-spatial form is Eq. 1 with the M spatial lags of x0it, their means in %i and the M spatial lags of yit omitted.
The local spatial form is Eq. 1 with the M spatial lags of yit omitted.
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sample of �rms (i.e., (i) and (ii) above, respectively) will be equal, but for an individual �rm they will

di¤er in magnitude. Summing the direct and indirect elasticities for a variable gives a total elasticity. For

an individual �rm the asymmetric bidirectional indirect elasticities lead to asymmetric measures of the

total elasticity for a variable. In the �rst part of our empirical application, our reported spatial frontier

is at the sample mean and is in terms of the mean direct, indirect and total elasticities across the �rms

to concisely highlight that the �tted model is well-speci�ed. In the second part we use the �rm speci�c

parameters from the model to calculate indirect elasticities for individual �rms outside the sample mean.

These elasticities are then used to obtain the asymmetric bidirectional TFP growth spillovers over the

study period, which play a key role in uncovering the spatial TFP growth centers.

The direct, indirect and total elasticities are calculated using the reduced form of our model, which

we move towards by rewriting the structural form in Eq. 1 using matrix notation:

yt = ��+ x0t� +

 
W1x

0
t#1 + :::

+WMx
0
t#M

!
+

 
�1W1yt + :::

+�MWMyt

!
+ %+ vt � � � ut: (6)

Here we drop the i and j subscripts from Eq. 1 to denote vectors of stacked cross-sectional observations,

� is an (N � 1) vector of ones and everything else is as previously de�ned. (�1W1yt + ::: +�MWMyt)

is then taken to the left-hand side giving (IN � �1W1 � :::� �MWM) yt and to obtain the following

reduced form we divide throughout by (IN � �1W1 � :::� �MWM):

yt =

 
IN � �1W1 � :::

��MWM

!�1 
��+ x0t� +

 
W1x

0
t#1 + :::

+WMx
0
t#M

!
+ %+ vt � � � ut

!
: (7)

We present the method to calculate the direct and indirect elasticities for the kth exogenous inde-

pendent variable xkt. As we demonstrate in Eq. 8a, we di¤erentiate Eq. 7 with respect to xkt to obtain

a matrix of direct and indirect elasticities for the �rms. This matrix of partial derivatives is equal to

the matrix product on the right-hand side of Eq. 8b, where this product is independent of the time

index. As we noted above, to concisely show that our empirical model is well-speci�ed we present it

in terms of mean elasticities across the �rms. The mean direct elasticity is the mean of the diagonal

elements of the matrix product in Eq. 8b. The mean indirect spillover elasticity can be interpreted as the

mean spill-in/spill-out elasticity, which are equal in magnitude, and are the mean row/column sums of

the o¤-diagonal elements of the aforementioned matrix product.7 Our approach to uncover spatial TFP

growth centers, however, uses asymmetric bidirectional indirect elasticities for individual �rms. These

spill-in and spill-out elasticities are the individual row and column sums of the o¤-diagonal elements of

the matrix product in Eq. 8b.

7As we noted in the introductory section, the only mean spillover (i.e., indirect) elasticity from a spatial error/ine¢ciency
model relates to the disturbance/ine¢ciency. To simplify the discussion we focus on the spatial error model as it is a common
speci�cation in the spatial literature. The spatial error model contains no ine¢ciency component(s) and regarding spatial
terms includes only a spatial lag of the disturbance (see the �rst equation in subsection 5:3 of Viton (2010) on page 11 for
the structural form of this model). In contrast to the reduced form of our model in Eq. 7, where the spatial multiplier
matrix pre-multiplies all the other components of the model, in the reduced form of the spatial error model the spatial
multiplier matrix only pre-multiplies the disturbance (see the �nal equation in subsection 5:3 of Viton (2010) on page 11).
Hence why the only indirect elasticity from this reduced form relates to the disturbance.
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�
@y
@xk;1

; � � � ; @y
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�
t
=

2
664

@y1
@xk;1
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@xk;N

...
. . .

...
@yN
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3
775

t

(8a)

= (IN � �1W1 � :::� �MWM)
�1�

2
66666664

�k � � �
w1N;1#1;k + :::

+w1N;M#M;k
...

. . .
...

wN1;1#1;k + :::

+wN1;M#M;k
� � � �k

3
77777775

: (8b)

Following the convention in the spatial econometrics literature (e.g., LSP), we conduct statistical

inference for the mean direct, indirect and total elasticities using the standard deviation of 1; 000 Monte

Carlo simulations of each mean elasticity. Each simulation is based on drawing a set of parameter values

from the variance-covariance estimates that form the Hessian matrix, where each parameter value has

a random component drawn from N (0; 1). Alternative approaches can be used to conduct statistical

inference by using sequences of a quasi-random nature such as Halton, Faure or Sobol sequences. Using

Halton sequences is appealing for reasons of conceptual simplicity and computational speed (Bhat, 2001).

For mixed logit models Bhat observes that using 75 Halton draws for statistical inference is more accurate

than using 2; 000 pseudo-random draws. To the best of our knowledge, however, there is no corresponding

study for any spatial econometric models and, as a result, this is an important area for future research.

Such research would provide the foundation for the use of alternative approaches to statistical inference

in the spatial literature going forward.

Based on how we calculate the direct and asymmetric bidirectional indirect and total elasticities, we

calculate the corresponding e¢ciency measures for each �rm, which collectively we refer to as spatial

e¢ciencies because each of these e¢ciencies is partially/entirely made up of a spillover. Direct e¢ciency

is interpreted in the same way as own e¢ciency from a non-spatial or spatial frontier, but also includes

a further component as it is own e¢ciency plus e¢ciency feedback. E¢ciency feedback occurs when,

for example, a change in a �rm�s dependent variable due to a change in one of its independent variables

a¤ects the dependent variables of the other �rms in the sample and thus their e¢ciencies. Via the spatial

multiplier matrix this e¤ect partially rebounds to the dependent variable and e¢ciency of the �rm that

initiated the process. In line with the indirect elasticities for individual �rms we calculate asymmetric

bidirectional indirect e¢ciencies, which are the sum of the e¢ciencies that spill-in (spill-out) to (from) a

�rm from (to) all the other �rms in the sample. We can therefore interpret the spill-in e¢ciency as being

the combined e¤ect of the M networks on an individual �rm�s e¢ciency, and the spill-out e¢ciency as

being the contribution of an individual �rm to the e¢ciency of the M networks as a whole. Mirroring

the situation for the asymmetric indirect and total elasticities for individual �rms we obtain asymmetric

total e¢ciency measures.

The direct and asymmetric bidirectional indirect and total e¢ciencies we calculate are all absolute

measures. Glass et al. (2016), on the other hand, calculate relative spatial e¢ciencies. Relative e¢ciencies

can be sensitive to the best performing �rm in each period being an outlier, which one would need to

adjust for. Additionally, relative indirect spill-in and spill-out e¢ciencies do not indicate whether the

absolute magnitude of the e¢ciency spillover is substantive. As a result, there can be cases where it is

of no consequence whether the relative indirect e¢ciencies are high or low because the absolute indirect
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e¢ciencies used to calculate these relative measures are small. We therefore calculate absolute measures

of the direct and asymmetric bidirectional indirect and total e¢ciencies by adapting the method in G&K

for a single spatial network to our more complex setting of multiple networks.

Using the reduced form of our model in Eq. 7, we can relate the own NIE, NV E and GV E

measures to the absolute measures of the direct and asymmetric bidirectional indirect and total

e¢ciencies. This involves recognizing from Eq. 7 that (IN � �1W1 � :::� �MWM)
�1 � = �TotIn ,

(IN � �1W1 � :::� �MWM)
�1 ut = uTotIn;t and (IN � �1W1 � :::� �MWM)

�1 (� + ut) = �TotIn + uTotIn;t are

(N � 1) vectors of absolute total (Tot) net time-invariant, net time-varying and gross time-varying in-

e¢ciencies, respectively. The subscript In attached to these total ine¢ciency vectors indicates that the

ine¢ciency spillovers used in the calculation of the total ine¢ciencies are the ine¢ciency spill-ins to the

ith �rm from all of the jth �rms where i 6= j. Since from the structural form of our model in Eq. 1 own

NIEi = exp (��i) and own NV Eit = exp (�uit), the (N � 1) vectors of absolute total net e¢ciencies

that directly correspond to the absolute total net ine¢ciency vectors, �TotIn and uTotIn;t, are NIE
Tot
In =

(IN � �1W1 � :::� �MWM)
�1 exp (��) and NV ETotIn;t = (IN � �1W1 � :::� �MWM)

�1 exp (�ut). Sim-

ilarly, as own GV Eit is NIEi � NV Eit = exp (��i � uit), the (N � 1) vector of absolute total gross

time-varying e¢ciencies that mirrors the corresponding ine¢ciency vector, �TotIn + uTotIn;t, is GV E
Tot
In;t =

(IN � �1W1 � :::� �MWM)
�1� exp (�� � ut).

NV ETotIn;t can be represented as follows and using the same form we can also represent NIETotTo and

GV ETotTo;t.

 
IN � �1W1�

:::� �MWM

!�1
0
BB@

NV E1
...

NV EN

1
CCA
t

=

0
BB@

NV EDir11 + � � � +NV EInd1N
...

. . .
...

NV EIndN1 + � � � +NV EDirNN

1
CCA
t

=

0
BB@

NV ETotIn;1
...

NV ETotIn;N

1
CCA
t

; (9)

where the NV EDirijt component of the NV ETotIn;it element denotes absolute direct NV E for the ith �rm.

When i 6= j the NV EIndijt component of the same element represents the absolute indirect NV E spill-in

to the ith �rm from the jth �rm, and NV EIndIn;it =
PN
j=1NV E

Ind
ijt is the sum of the absolute indirect

NV E spill-ins to the ith �rm from all the jth �rms. We are therefore additively decomposing the (N � 1)

vector NV ETotIn;t into the (N � 1) vectors NV EDirt and NV EIndIn;t. In the same way we can decompose

NIETotIn into NIEDir and NIEIndIn , and GV E
Tot
In;t into GV E

Dir
t and GV EIndIn;t.

TypicallyW1; :::;WM will be asymmetric, which means (IN � �1W1 � :::� �MWM)
�1 will also be

asymmetric. As a result, there will be asymmetric spill-ins and spill-outs of NV E, NIE and GV E. G&K

set out the methodology for NV E, NIE and GV E spill-outs, although they did not calculate these

measures in their empirical application, whereas in our application we do so to provide an empirical

demonstration of these spill-outs. Recall that an element of NV ETotIn;t is the horizontal sum of the

components in Eq. 9, whereas an element of NV ETotOut;t is the vertical sum of these components. The

subscript Out denotes that the total e¢ciency vector is calculated using the sum of the absolute indirect

NV E spill-outs from all the ith �rms to a jth �rm (NV EIndOut;jt =
PN
i=1NV E

Ind
ijt ). We are therefore

additively decomposing the (1�N) vector NV ETotOut into the (1�N) vectors NV E
Dir
t and NV EIndOut;t.

In the same way we decompose the NIETotOut and GV E
Tot
Out;t vectors.

Own NIE, NV E and GV E are standard measures of e¢ciency from a stochastic frontier model and

are therefore bounded in the interval [0; 1]. Direct, asymmetric bidirectional indirect and total NIE,

NV E and GV E also have a lower bound of 0. All these spatial e¢ciency measures, however, have no

upper bound, but this in no way prevents the changes in these e¢ciencies from being included in our
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spatial TFP growth decompositions. This is because these spatial e¢ciency measures are scaled own

NIE, NV E and GV E. Consequently, if the relevant e¢ciency spill-in/spill-out, which represents an

e¢ciency performance multiplier, is su¢ciently large, the direct/indirect/total NIE, NV E or GV E

measure will be greater than 1. In this situation the e¢ciency spill-in/spill-out is large enough to place

the �rm beyond the corresponding own best practice frontier from Eq. 1.

3 Methodology to Uncover Spatial TFP Growth Centers

Our methodology to uncover �rms that act as spatial TFP growth centers comprises three parts. The

�rst part relates to the speci�cation of the technology that is modeled by the spatial Durbin frontier,

although our approach to uncover centers is in no way limited to a particular technology (cost, revenue,

etc.). The second part shows how the frontier model can be used to obtain asymmetric bidirectional

decompositions of two measures of spatial TFP growth. The two decompositions di¤er depending on

whether the spillover components represent spill-ins to a �rm or spill-outs from a �rm. In the third part,

the TFP growth spill-ins and spill-outs are combined to develop a method to uncover which �rms act as

spatial TFP growth centers.

3.1 Spatial Revenue Frontier with Multiple Spatial Networks

We complement the G&K spatial cost frontier based application of their spatial TFP growth decompo-

sition by focusing in our application on the income side of a �rm�s operations. We estimate a spatial

Durbin stochastic revenue frontier, which we present by tailoring the general presentation of our model

in Eq. 1 to the speci�c functional form we employ, where unless otherwise stated everything is as de�ned

for Eq. 1.

rit = �+ TL (qit; pit; ti) +

0
BBBB@

STL1

 
NP
j=1

wij1 (qjt) ;
NP
j=1

wij1 (pjt) ;
NP
j=1

wij1 (tj)

!
+ :::

+STLM

 
NP
j=1

wijM (qjt) ;
NP
j=1

wijM (pjt) ;
NP
j=1

wijM (tj)

!

1
CCCCA
+

0
BBB@

�1
NP
j=1

wij1rjt + :::

+�M
NP
j=1

wijMrjt

1
CCCA+ %i + vit � �i � uit; (10)

where all the variables are logged. rit is a total revenue observation, and TL (qit; pit; ti) = !ti +
1
2 &t

2
i +

�0qit +  
0pit +

1
2p
0
it�pit +

1
2y
0
it
yit + p

0
it	yit + 

0qitt+ '
0pitt and represents the variable returns to scale

translog approximation of the log of the revenue frontier technology. qit is the (1�H) vector of observa-

tions for the inputs which are indexed h 2 1; :::;H; pit is the (1� L) vector of observations for the normal-

ized output prices which are indexed l 2 1; :::; L; and t, t2 and the interactions with t collectively represent

a non-linear time trend that measures non-neutral technological change. STL1 + :::+ STLM represent

M spatial lags of TL (qit; pit; ti), where these lags together with �1
PN
j=1wij1rjt + :::+ �M

PN
j=1wijMrjt

shift the frontier technology.8 To be estimated, among other things, are various regression parameters

(�, !, 12 &, !sm and
1
2 &sm, where the sm subscript denotes a local spatial parameter for the mth network);

vectors of parameters (�0,  0, 0, '0, �0sm,  
0
sm, 

0
sm and '0sm); and matrices of parameters (

1
2�,

1
2
, 	,

1
2�sm,

1
2
sm and 	sm). From the properties of the translog function (Christensen et al., 1973) Eq.

8 In the functions denoted STL1; :::; STLM in Eq. 10 the variables are in brackets to indicate that in addition to spatially
lagging the variables, we also spatially lag functions of the variables (e.g., q2jt).
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10 is twice di¤erentiable with respect to a normalized output price, an input and the M spatial lags

of the normalized output prices and inputs. The resulting Hessian is symmetric due to the symmetry

restrictions placed on the parameter matrices.

3.2 Asymmetric Bidirectional Spatial TFP Growth Decompositions

In practice the approach to parametric non-spatial TFP growth decompositions involves �rst calculating

the components, which are then summed to obtain TFP growth. We also adopt this approach here, which

involves for the two spatial TFP growth decompositions we employ summing the direct and indirect

components to obtain two measures of total TFP growth. Our �rst decomposition corresponds with that

in G&K as it consists of direct and indirect spill-in components to a �rm, which gives the same type of

total TFP growth measure. Here we use a more sophisticated spatial frontier with multiple networks, and,

as a result, total TFP growth and its direct and indirect components will di¤er in magnitude from what

we would obtain using the simpler spatial frontier with a single network in G&K. Despite our �rst and

second decompositions having the same direct components, the decompositions di¤er because the indirect

components in the second formulation gravitate in the opposite direction as they are spill-outs. As a

result, we obtain asymmetric bidirectional measures of total TFP growth from the two decompositions.

Our �rst decomposition is based on the direct and indirect spill-in translog revenue models and the

resulting total model. The forms of these models are given in Eqs. 11�13. These models are constructed

by incorporating the direct, indirect spill-in and total parameters (from the matrix product in Eq. 8b)

into the reduced form of our model in Eq. 7.9 For our second decomposition we again use the direct

model and also the indirect spill-out model in Eq. 14 and the associated total model in Eq. 15.

rDirit = !Diri ti +
1

2
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2
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Ind0
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Ind0
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9This is with the caveat that there are no direct, indirect and total intercepts in Eqs. 11�13, which is also the case for the
other models we utilize for our second spatial TFP growth decomposition. We could obtain these intercepts using a similar
approach to how we calculate the corresponding revenue ine¢ciencies, but this would be an unnecessary complication. This
is because we are interested in the factors that lead to changes in the various measures of revenue (direct revenue, indirect
revenue spill-ins and spill-outs, and total revenue), whereas the associated intercepts are �xed parameters.
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An indirect spill-in elasticity measures the responsiveness of the revenue that spills over to the ith �rm,

rIndIn;it, due to the spill-in e¤ect on an ith �rm�s independent variable. An indirect spill-out elasticity, on

the other hand, measures the responsiveness of the revenue that spills over to the jth �rm, rIndOut;jt, due to

the spill-out e¤ect from an ith �rm�s independent variable. Each total parameter is obtained by summing

the direct and indirect spill-in/spill-out parameters. Similarly, a �rm�s asymmetric total ine¢ciencies are

the sum of its direct ine¢ciency and its indirect ine¢ciency spill-ins/spill-outs. Ine¢ciency spill-ins/spill-

outs have negative connotations, whereas in practice �rms seek to exploit agglomeration economies, which

are the bene�ts from locating near one another in cities and industrial clusters. It is therefore logical to

transform the ine¢ciency spill-ins and spill-outs into e¢ciency measures using the method in subsection

2:3, which is the approach we adopt in our spatial TFP growth decompositions.

We do not observe rDirit , rIndIn;it, r
Tot
In;it, r

Ind
Out;jt and r

Tot
Out;jt. They can though, if necessary, be computed

using the above translog models, where rTotIn;it = rDirit + rIndIn;it and r
Tot
Out;jt = rDirit + rIndOut;jt because for

rDirit i = j. Note also that each observation in the direct, indirect and total translog models is not

pre-multiplied by the sum of the spatial weights. This is because the e¤ect of the spatial weights is

incorporated within the direct, indirect and total parameters.

From our two decompositions we obtain the asymmetric bidirectional generalized Malmquist total

TFP growth indices (�TFP TotIn;it+1 and �TFP
Tot
Out;jt+1) by summing their components. We obtain our

two decompositions by following the corresponding non-spatial (i.e., own) TFP growth decomposition

(Orea, 2002). Accordingly, our �rst decomposition in Eq. 16 is the result of fully di¤erentiating the

direct and indirect spill-in translog functions in Eqs. 11 and 12.10 By replacing the full derivative of Eq.

12 in the �rst decomposition with the full derivative of the indirect spill-out translog function in Eq. 14,

we obtain our second decomposition in Eq. 17.

�TFP TotIn;it+1 = �TC
Tot
In;it+1 +�RTS

Tot
In;it+1 +�GV E

Tot
In;it+1

= �TFPDirit+1 +�TFP
Ind
In;it+1

= �TCDirit+1 +�RTS
Dir
it+1 +�GV E

Dir
it+1 +�TC

Ind
In;it+1 +�RTS

Ind
In;it+1+

�GV EIndIn;it+1: (16)

�TFP TotOut;jt+1 = �TC
Tot
Out;jt+1 +�RTS

Tot
Out;jt+1 +�GV E

Tot
Out;jt+1

= �TFPDirjt+1 +�TFP
Ind
Out;jt+1

= �TCDirjt+1 +�RTS
Dir
jt+1 +�GV E

Dir
jt+1 +�TC

Ind
Out;jt+1 +�RTS

Ind
Out;jt+1+

�GV EIndOut;jt+1: (17)

The components of our two spatial TFP growth decompositions are as follows.

1. �TCTotIn;it+1 and �TC
Tot
Out;jt+1 are the total technological change components for the ith and jth

�rms, respectively. Each of these components relates to an upward or downward shift in the

10There is slight abuse of terminology here because by full di¤erentiation we mean total di¤erentiation. To avoid confusion
with the total terminology we use from the spatial literature, we instead use full as the descriptor.
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relevant total frontier for a �rm when there is total technological progress or regress for the �rm.

To decompose �TCTotIn;it+1 and �TC
Tot
Out;jt+1 in Eqs. 18 and 19 into their direct and indirect

technological change components, we use the following �rst order derivatives of the direct and

indirect spill-in and spill-out translog functions with respect to time.
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2. �GV ETotIn;it+1 and �GV E
Tot
Out;jt+1 measure the rise or fall in the total gross time-varying e¢ciency

of the ith and jth �rms. To decompose �GV ETotIn;it+1 and �GV E
Tot
Out;jt+1 into their direct and

indirect components we use Eqs 20 and 21.

�GV ETotIn;it+1 = GV ETotIn;it+1 �GV E
Tot
In;it
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�
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�
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: (20)
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Out;jt
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�
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Ind
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�
�
�
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�
: (21)

3. �RTSTotIn;it+1 and �RTS
Tot
Out;jt+1 are the changes in the total returns to scale for the ith and jth

�rms. To decompose �RTSTotIn;it+1 and �RTS
Tot
Out;jt+1 into their direct and indirect components we

use Eqs. 22 and 23.
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17



�RTSTotOut;jt+1 =
1

2

"
HX

h=1

�
eToth;Out;jt+1SF

Tot
Out;jt+1 + e

Tot
h;Out;jtSF

Tot
Out;jt

�
ln

�
qh;it+1
qh;it

�#

=
1

2

"
HX

h=1

�
eDirh;jt+1SF

Tot
Out;jt+1 + e

Dir
h;jtSF

Tot
Out;jt

�
ln

�
qh;it+1
qh;it

�#
+

1

2

"
HX

h=1

�
eIndh;Out;jt+1SF

Tot
Out;jt+1 + e

Ind
h;Out;jtSF

Tot
Out;jt

�
ln

�
qh;it+1
qh;it

�#
: (23)

e denotes a revenue elasticity with respect to the hth input of the ith �rm, where these elasticities

are obtained from the direct, indirect and total translog functions. SF Tot denotes a total scale factor

and to illustrate for our �rst decomposition SF TotIn;it+1 =
�PH

h=1 e
Tot
In;h;it+1 + 1

�
=
PH
h=1 e

Tot
In;h;it+1. To

additively decompose �RTSTotIn;it+1 and �RTS
Tot
Out;it+1 into changes in direct and indirect spill-in

and spill-out returns to scale, we weight the contributions of the direct and indirect spill-in and

spill-out input elasticities by the relevant total scale factor.

3.3 Combining Bidirectional TFP Growth Spillovers to Uncover the Centers

We de�ne a �rm as being a spatial TFP growth center if it is a net generator of TFP growth

spillovers. This is the case if �TFP IndOut;jt+1 ��TFP
Ind
In;it+1 > 0, where �TFP

Ind
Out;jt+1 = �TC

Ind
Out;jt+1+

�RTSIndOut;jt+1 + �GV E
Ind
Out;jt+1 and �TFP

Ind
In;it+1 = �TCIndIn;it+1+ �RTSIndIn;it+1 + �GV E

Ind
In;it+1. We

adopt this de�nition for a spatial TFP growth center because, other things being equal, �rms would

wish to locate near a �rm that is a net generator of TFP growth spillovers. For other �rms

�TFP IndOut;jt+1 � �TFP
Ind
In;it+1 < 0 as they are net recipients of TFP growth spillovers. Typically, the

sample of �rms is large in an empirical application so there will be a large number of net generators and

net recipients of spatial TFP growth spillovers. The interesting issue therefore is which of these �rms

are the biggest net generators and which are the biggest net recipients.

Using the components of �TFP IndOut;jt+1 and �TFP
Ind
In;it+1 we uncover the key factors that determine

which �rms act as spatial TFP growth centers. We use these components to establish if a �rm is a net

generator of spillovers of: (i) growth in technological change; (ii) returns to scale change; and (iii) gross

time-varying e¢ciency change. To illustrate, a �rm is a net generator of returns to scale change spillovers

if �RTSIndOut;jt+1 ��RTS
Ind
In;it+1 > 0.

4 Empirical Application to U.S. Banks

4.1 Data and Speci�cation of the Linkages in the Spatial Networks

The data set is a rich balanced panel of annual observations covering the period 1998 � 2015 for 387

medium-sized and large commercial U.S. banks.11 This period is interesting because it includes very

di¤erent bank operating environments. To investigate the impact of the di¤erent operating environments

on which banks are the largest net generators of TFP growth spillovers, we use the parameters from our

�tted translog spatial revenue frontier to calculate elasticities outside the sample mean. Using these

elasticities we obtain our new annual spatial TFP growth decomposition. This annual decomposition

then forms part of the analysis to: (i) uncover which banks act as spatial TFP growth centers in 2015, as

11We construct our data sample by following Berger and Roman (2017) by classifying a U.S. bank with total assets
between $1 billion and $3 billion in 2015 as medium-sized, and a bank with total assets greater than $3 billion in 2015 as
large. Based on this classi�cation both bank size categories are well represented in our data sample with 218 medium-sized
banks and 169 large.
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the �nal year of our analysis is the most relevant for future policy making; and (ii) investigate if there are

di¤erences between these results for 2015 and those for two subperiods- pre-crisis (1998�2007) and crisis

and beyond (2008�2015). According to Berger and Bouwman (2013), the timeline of the U.S. subprime

lending crisis spanned the period 2007:Q3 � 2009:Q4. As they regard the majority of 2007 as being

pre-crisis and given we use annual data, we take 2007 as being the last year of the pre-crisis subperiod.

Moreover, we use balanced panel data (i.e., we consider the continuously operating medium-sized and

large banks over our study period) to make like-for-like comparisons between spatial TFP growth in

di¤erent years.

To specify the two spatial weights matrices in our spatial Durbin stochastic revenue frontier we use the

linkages between banks across two branch type networks- brick and mortar branches, BM , and all other

types of branches, O. We discuss in detail how we specify the spatial weights further in this section,

but in essence we use disaggregated information on the number of bank branches and their locations

to calculate the state level geographical overlap of banks� branch networks. We therefore con�ne our

analysis to medium-sized and large banks, as their su¢ciently extensive branch networks leads to a

su¢cient amount of network overlap. As a result, there is not a lack of interconnectedness between the

banks in our spatial weights matrices, which would be the case if we also included the large number of

small U.S. banks.

We explored using an alternative study period and thus an alternative pre-crisis subperiod that go

back to 1994. This was for two reasons. First, the state branch location information we use to specify

the spatial weights matrices, which we will discuss further shortly, is available from 1994. Second,

the Interstate Banking and Branching E¢ciency (IBBE) Act, otherwise known as the Riegle-Neal Act,

came into e¤ect on June 1, 1997, which allowed a bank to open branches outside its state of origin.12

This resulted in greater opportunities for banks to have overlapping branch networks leading to greater

potential spatial dependence between banks. Many states though implemented this Act in advance of

the e¤ective date. See table 1 in Dick (2006) for the date when each state implemented the Act. For

example, Oregon was the �rst contiguous state to do so on 2=27=95, while twelve states were the last to

implement it on 6=1=97.13

Compared to a study period of 1998�2015, when we experimented using the period 1994�2015 we �nd

that �O is in line with our expectations as it remains positive and signi�cant, while although �BM remains

positive it is not as we would expect because it becomes insigni�cant. This suggests for 1994 � 1997

that there was insu¢cient positive spatial revenue dependence between banks with overlapping brick and

mortar branch networks to yield a signi�cant estimate of �BM for 1994 � 2015. We therefore chose to

begin our study period and pre-crisis subperiod in 1998. This is because our results suggest that it has

taken some time for banks to exhibit the signi�cant positive spatial revenue dependence we associate

with banks that have overlapping multi-state brick and mortar branch networks.

The data for the dependent and independent variables in our spatial Durbin frontier (Eq. 10) is

at the level of the banking �rm or bank holding company. All of this data was sourced from the Call

Reports which are available from the Federal Deposit Insurance Corporation (FDIC). Underlying the

speci�cation of the output prices and inputs is the well-established intermediation approach to banking

(Sealey and Lindley, 1977). In panel A of table 1 we describe the dependent and independent variables

and provide summary statistics for the level data for our study period. In particular, the output prices

and inputs we include follows the input-output choices in a leading U.S. banking e¢ciency paper by

12All but two states committed to the nationwide branching in the Act on or prior to the 6=1=97 federal deadline. The
two states that opted out ahead of this deadline were Montana and Texas.
13These twelve states are as follows: Colorado; Georgia; Hawaii; Illinois; Kansas; Kentucky; Louisiana; Minnesota;

Missouri; New Hampshire; Tennessee; and Wisconsin.
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Table 1: Description of the data and summary statistics

Panel A: Variable Descriptions Mean Std. Dev.

Total revenue (in 000s of 2005 U.S. dollars) (r) 869; 838 4; 967; 991
Price of loans (p1): Interest income from loans divided by loans 0:0628 0:0173
and leases
Price of securities (p2): Interest income from securities divided 0:0408 0:0267
by securities
Price of other activities (p3): Approximated by total non-interest 0:0140 0:0317
income divided by total assets
Fixed assets (in 000s of 2005 U.S. dollars) (q1): Value of 136; 177 655; 340
premises and �xed assets
Labor (q2): Number of full-time equivalent employees 2; 931 16; 070
Total deposits (in 000s of 2005 U.S. dollars) (q3) 10; 953; 887 68; 987; 060

Panel B: Features of the Two Branch Networks Mean Std. Dev.

Number of full service brick and mortar branches 38; 659 13; 580
Number of other full and limited service branches 4; 990 1; 643

Panel C: Selected Features of the Other Branch Network Mean Std. Dev.

Number of full service retail o¢ces 3; 288 1; 198
Number of full service cyber o¢ces 45 21
Number of limited service administrative o¢ces 144 30
Number of limited service military facilities 14 4
Number of limited service mobile/seasonal o¢ces 220 122
Number of limited service trust o¢ces 38 18
Number of limited service drive-through facilities 1; 237 285

Koetter et al. (2012).

Summarizing, there are three output prices and three inputs in our model. The output prices relate

to the prices of the following lending and non-lending activities of banks: loans (p1), securities (p2) and

non-interest income (p3). Total revenue (r) is the sum of the revenues from these outputs and the inputs

are �xed assets (q1), labor (q2) and deposits (q3), where q1, q3 and r are de�ated to 2005 prices using the

CPI. The output prices are not de�ated because as is evident from panel A of table 1 they are ratios.

All the variables are then logged, mean adjusted and, �nally, we use one of the output prices (p1) as the

normalizing factor for r and the other output prices. By mean adjusting the data all the �rst order direct,

indirect and total input, time and normalized output price parameters can be interpreted as elasticities

at the sample mean. This is because in the �rst order partial derivatives of a translog function the terms

relating to the squared and interaction terms are zero at the sample mean.

We explored departing from the input-output choices in Koetter et al. by also including equity capital

as an input. Although this resulted in a model for our study period where, as we would expect, �O remains

positive and signi�cant, �BM is no longer positive and signi�cant and in line with our expectations, and

is instead negative and insigni�cant. An insigni�cant �BM suggests that there is no substantive spatial

revenue dependence between banks that have overlapping brick and mortar branch networks, which we

feel is counterintuitive for banks that operate in the same markets. In line therefore with Koetter et al.

we omit equity.

For the reasons given in subsection 2:1, our modeling framework is intended for a reasonably small

number of fairly distinct simultaneous spatial networks. In practice, many cases, including our application

to U.S. banks, can be adapted to this setting by aggregating networks. In particular and as we noted

above, we focus on two distinct bank branch networks- the full service brick and mortar branch network

and the aggregated network of other types of full service and limited service branches. Other types of

branches can potentially cover up to twelve branch types, although there are only seven of the twelve in

our sample.14 We present in panel B of table 1 some summary statistics for the two branch networks we

14For the full list of the twelve other branch types see
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consider, and in panel C of table 1 we list the seven other branch types that feature in our sample and

provide some further summary statistics.

Our two-way split of the bank branch networks is logical for two reasons. First, the split di¤erentiates

between the majority of branches in our sample (brick and mortar branches which account for 88:4% of

branches) and the relatively small number of other branch types. Second, the split distinguishes between

the di¤erent degrees of centralization of activities across the two branching networks. To illustrate, across

a large number of brick and mortar branches similar general activities are highly decentralized, whereas in

some other branch types there is a high degree of centralization of specialist activities. This explains why

in panel C of table 1, the sample means of, for example, the number of cyber o¢ces and administrative

o¢ces are small. A related issue we examine is whether the degree of SAR revenue dependence across

overlapping brick and mortar branch networks is greater than across overlapping networks of other

branches due to the dominance of brick and mortar branches in our sample. Alternatively, SAR revenue

dependence could be greater across overlapping networks of other branches due to the higher degree of

centralization of activities in some of the other branch types.

In our model the two speci�cations of W based on brick and mortar branches and other branch

types are denoted WBM and WO, respectively. Using information from the FDIC in the Summary of

Deposits on the state locations of banks� brick and mortar branches and other branch types, in advance

of estimating the models we constructWBM andWO in the same way using the following four steps.

(i) Start with a matrix for each year and set all the cells on the main diagonal to zero because a bank

cannot be in its own neighborhood set.

(ii) For each state where the ith bank has chosen to locate the relevant branch type, we calculate the

ratio of the number of jth bank branches to the number of ith bank branches. This ratio represents

the state level branch intensity of the jth bank relative to the ith bank. The o¤-diagonal elements

are then calculated by summing these ratios across the states. A zero o¤-diagonal element signi�es

no overlap between the branch type networks of the ith and jth banks.15

(iii) Average the annual matrices from (ii) to obtain a matrix for the sample.

(iv) Normalize the matrix for the sample by dividing throughout by the largest element (i.e., normalize

by the largest eigenvalue). This normalization is appealing because it preserves the proportional

relationship between the spatial weights. As a result, the information on the absolute intensity of a

bank�s branch type network relative to the overlapping network of another bank is retained. This

normalization also aids the interpretation of the indirect elasticities. This is because the spillovers

to and from a bank will be positively related to the absolute intensities, rather some transformation

of these intensities.16

As the revenue of a bank in a particular time period depends on, among other things, the number

of branches which the bank has and their locations, it is reasonable to conclude for our spatial revenue

https://www5.fdic.gov/sod/de�nitions.asp?systemform=soddnld3&helpitem=brsertyp&baritem=1.
15Using matrix terminology the ith bank corresponds to a row of a W matrix and the jth bank relates to a column.

Additionally, as other branch types represent a small share of the total number of branches, we calculate the branch
intensities for the banks at the rather aggregate state level. This is to ensure there are su¢cient overlapping networks of
other branch types in our sample.
16 It is common to normalize the spatial weights in a W matrix by the row sums. This is appropriate when the spatial

weights are binary to re�ect, for example, contiguous neighboring regions. This, however, is very di¤erent to the non-binary
spatial linkages between U.S. banks that we use. If we row-normalized our non-binary spatial weights the information about
the absolute branch network intensities would be lost. This is due to the normalizing factor not being the same for all the
weights.
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frontier model that WBM and WO are exogenously determined. Exogenous multiple spatial weights

matrices is an assumption which our modeling framework is based on and is in line with the majority of

the spatial literature, although in this literature it is typical to consider the simpler standard case of a

single spatial weights matrix.17

4.2 Estimated Spatial Revenue Frontier and the Elasticities

The estimated coe¢cients for our spatial Durbin revenue frontier with common correlated e¤ects

(SDRFC) are presented in table 2.
18 As we have previously noted, the estimated SAR coe¢cients

cannot be interpreted as spillover elasticities. The interpretable spillover parameters from our model are

the indirect parameters. In table 3 we present the mean indirect parameters for our sample together with

the mean estimates of the direct and total parameters. Note that we do not use these mean parameters

to compute the spatial TFP growth decompositions and to uncover which banks act as spatial TFP

growth centers, and instead use the direct, indirect and total parameters for the individual banks. This

is because mean indirect spill-in and spill-out parameters are equal, whereas these parameters for indi-

vidual banks di¤er in magnitude and lead to the asymmetric indirect TFP growth spill-ins and spill-outs

we need to uncover which banks act as spatial TFP growth centers. We report the mean direct, indirect

and total parameters here, however, to concisely demonstrate that we use a well-speci�ed model for our

spatial TFP growth decompositions.

Although a SAR coe¢cient cannot be interpreted as the elasticity of the spatial lag of the dependent

variable or, in other words, a spillover elasticity, it can provide useful information on the degree of

SAR dependence across the �rms. For models with multiple SAR variables, a SAR parameter can be

negative because networks in the model overlap. In this case a network with a negative SAR parameter

is o¤setting some of the positive SAR dependence across another overlapping network, where a negative

SAR parameter is interpreted as evidence of competition between �rms in a spatial network (e.g., Kao

and Bera, 2013).

From table 2 we can see that the estimates of the SAR coe¢cients, �BM (0:167) and �O (0:232), are

signi�cant at the 5% and 0:1% levels, respectively. In the context of the spatial literature, the magnitudes

of these parameters points to non-negligible positive SAR revenue dependence between banks with brick

and mortar branches and other types of branches in the same state, which o¤ers support for a spatial

approach to revenue modeling for U.S. banks. As �BM and �O are both positive our model indicates that

there is not, on average, a su¢cient overlap between the two bank branch networks. This suggests that

the distribution across the states of a bank�s brick and mortar branches is statistically di¤erent from the

distribution of its other branch types. �BM though is noticeably less than �O, which suggests that the

dominance of brick and mortar branches in our sample is a smaller source of SAR revenue dependence

than the high degree of centralization of activities in some of the other branch types.

In table 2 a number of local spatial coe¢cients are signi�cant at the 5% level or less (e.g., the

17 If there are the necessary methodological advances, an area for further work would be to replace our exogenous multiple
spatial weights matrices, which are based on geographical branch information, with endogenous speci�cations that are
constructed using business/economic factors such as branch deposits. The literature on endogenous spatial weights matrices
(Qu and Lee, 2015) is in its infancy and considers only a model for cross-sectional data with a single spatial weights matrix,
while also assuming that �rms are 100% e¢cient. To �t our framework one would need to extend this model to panel data,
multiple spatial weights matrices and ine¢cient �rms. We do not pursue these extensions here as we focus on introducing
a methodology for practitioners to uncover spatial TFP growth centers.
18With regard to our model speci�cation, we omit spatial lags of t for parsimony as these lags would model the spillover

of the same technological change phenomenon that is modeled by t, as t is the same for all the banks. Again for parsimony
and to simply illustrate the importance of the mean auxiliary variables, we only include means of the �rst order inputs and
normalized output prices as these are the key technology variables. We omit the mean of t as it would be same for all the
banks and would not therefore account for any inter-bank heterogeneity.
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Table 2: Estimated spatial revenue frontier with two simultaneous spatial networks

Model
coe¤

Model
coe¤

Model
coe¤

Constant 0:001 WBMq2 �0:356� WO

�
q21
�

0:119�

q1 0:012�� WBMq3 �0:005 WO

�
q22
�

0:125
q2 0:095��� WBMp2 0:090 WO

�
q23
�

�0:147�

q3 0:885��� WBMp3 �0:064 WO (q1q2) �0:361��

p2 0:137��� WBM

�
q21
�

�0:425��� WO (q1q3) 0:086
p3 0:175��� WBM

�
q22
�

0:114 WO (q2q3) 0:186
q21 �0:009��� WBM

�
q23
�

�0:191 WO

�
p22
�

�0:049�

q22 0:036��� WBM (q1q2) 0:016 WO

�
p23
�

�0:061
q3 0:030��� WBM (q1q3) 0:733�� WO (p2p3) 0:120
q1q2 �0:002 WBM (q2q3) �0:288 WO (q1p2) �0:127
q1q3 0:005 WBM

�
p22
�

�0:115 WO (q1p3) 0:198��

q2q3 �0:065��� WBM

�
p23
�

0:064 WO (q2p2) �0:168
p22 0:004 WBM (p2p3) �0:485��� WO (q2p3) 0:014
p23 0:049��� WBM (q1p2) 0:176 WO (q3p2) 0:232�

p2p3 �0:047��� WBM (q1p3) �0:468��� WO (q3p3) �0:220�

q1p2 0:054��� WBM (q2p2) �0:043 WO (q1t) 0:001
q1p3 0:008�� WBM (q2p3) 0:658��� WO (q2t) �0:013
q2p2 �0:030��� WBM (q3p2) �0:071 WO (q3t) 0:013�

q2p3 0:037��� WBM (q3p3) �0:164 WO (p2t) �0:006
q3p2 �0:020�� WBM (q1t) 0:025� WO (p3t) 0:010�

q3p3 �0:034��� WBM (q2t) �0:043�� WBMr 0:167�

t 0:001� WBM (q3t) 0:018 WOr 0:232���

t2 �0:001��� WBM (p2t) 0:002 � 0:165���

q1t 0:003��� WBM (p3t) �0:001 q1 �0:104���

q2t �0:004��� WOq1 �0:014 q2 �0:002
q3t 1� 10�4 WOq2 �0:224� q3 0:144���

p2t �0:006��� WOq3 �0:046 p2 �0:029���

p3t �3� 10�4 WOp2 0:204�� p3 0:004
WBMq1 0:350��� WOp3 0:027

Note: *, ** and *** denote statistical signi�cance at the 5%, 1% and 0.1%
levels, respectively.

coe¢cients on WBMq1, WBMq2, WOq2 and WOp2). This constitutes support for the spatial Durbin

model over the SAR speci�cation as the latter omits local spatial variables. The same table reveals

that the coe¢cients on three of the �ve mean variables (q1, q3 and p2) are signi�cant at the 0:1% level.

Using a �25 likelihood ratio test of the corresponding random e¤ects model (SDRFR) against the SDRFC

speci�cation, we reject the null that all the coe¢cients on the mean variables in the SDRFC are zero at

the 0:1% level. This highlights the importance in our application of accounting for correlation between

the �rm speci�c e¤ects and at least the key exogenous regressors.19

As we use mean adjusted data all the �rst order parameters of the direct, indirect and total translog

functions in table 3 are elasticities at the sample mean. Since direct parameters can be interpreted in the

same way as the standard own parameters from the corresponding non-spatial model, the monotonicity

properties of a non-spatial revenue frontier also apply to the direct elasticities from our model. It is

evident from table 3 that all the direct �rst order output price and input parameters are positive. This

19Note also that � in table 2 is the weight attached to the cross-sectional component of the data and is signi�cant at the
0:1% level.
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Table 3: Direct, indirect and total parameters

Direct
parameter

Indirect
parameter

Total
parameter

q1 0:012�� 0:120��� 0:132���

q2 0:095��� �0:111� �0:016
q3 0:885��� 0:162��� 1:047���

p2 0:138��� 0:053� 0:190���

p3 0:175��� 0:009 0:185���

q21 �0:009��� �0:138�� �0:147��

q22 0:036��� �0:081 �0:045
q23 0:030��� �0:075 �0:045
q1q2 �0:002 0:116 0:114
q1q3 0:006 0:235�� 0:241��

q2q3 �0:066��� �0:034 �0:100
p22 0:004 0:035 0:038
p23 0:049��� �0:052 �0:003
p2p3 �0:048��� �0:351��� �0:399���

q1p2 0:054��� 0:107 0:162��

q1p3 0:008�� �0:037 �0:029
q2p2 �0:030�� �0:047 �0:077
q2p3 0:037��� 0:168�� 0:205���

q3p2 �0:020�� 0:042 0:023
q3p3 �0:034��� �0:122� �0:155��

t 0:001� 1� 10�4 0:001�

t2 �0:001��� �1� 10�4��� �0:001���

q1t 0:003��� 0:008� 0:011��

q2t �0:004��� �0:021��� �0:025���

q3t 1� 10�4 0:013�� 0:013��

p2t �0:006��� �0:004 �0:010��

p3t �3� 10�4 0:005 0:005

Note: *, ** and *** denote statistical signi�cance
at the 5%, 1% and 0.1% levels, respectively.

is consistent with production theory as it indicates that our model satis�es the monotonicity properties

of the translog revenue frontier at the sample mean. These �rst order output price and input parameters

are signi�cant at the 1% level or less, and the latter point to constant direct returns to scale (0:99).

Also from table 3 and in line with our expectations, the �rst order direct time parameter is positive and

signi�cant, which suggests annual technological progress for the sample average bank.

Production theory does not predict the signs of the indirect and total elasticities for the output prices

and inputs. Tables 3 reveals that a large number of indirect parameters are signi�cant, which once again

justi�es our spatial approach to revenue modeling for U.S. banks. To illustrate, the only �rst order

indirect output price and input parameter that is not signi�cant relates to p3. The indirect q1, q3 and

p2 parameters are all positive, whereas the indirect q2 parameter is negative. The latter is because the

negative and signi�cant WBMq2 and WOq2 parameters in table 2 more than o¤set the positive e¤ect

of the two SAR parameters. As a result of the positive and signi�cant direct and indirect q1, q3 and

p2 parameters, summing these parameters gives positive and signi�cant total parameters. Interestingly,

the negative and signi�cant indirect q2 parameter o¤sets its positive and signi�cant direct counterpart,

which results in a total parameter that is not signi�cant.
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Table 4: Summary of the own, direct, indirect and total e¢ciencies

Own NV E Own NIE Own GV E GV EDir
i GV EInd

In;i GV ETot
In;i GV EInd

Out;j GV ETot
Out;j

Mean 0:938 0:887 0:833 0:833 0:148 0:981 0:148 0:981
Median 0:943 0:902 0:846 0:846 0:075 0:932 0:022 0:881
Std. dev. 0:027 0:065 0:070 0:070 0:209 0:221 0:606 0:615

Note: GV EDir
i = GV EDir

j

4.3 Estimates of the Di¤erent Revenue E¢ciency Measures

In table 4 we summarize, among other things, the own NV E, NIE and GV E scores from the �tted

structural form of our SDRFc. Although the structural form of the SDRFc accounts for global SAR

and local spatial interactions, the own e¢ciencies do not include any form of e¢ciency spillover. On the

other hand, if the relevant type of e¢ciency spillover is present, the direct, indirect and total e¢ciencies

from the reduced form of the SDRFc will be partially/entirely made up of a spillover.

From table 4 it is evident that the sample mean own NV E and NIE scores are 0:938 and 0:887.

Multiplying these measures yields a sample mean own GV E of 0:833. When we test the �tted structural

form SDRFc for net time-invariant and net time-varying ine¢ciencies (� and u), we �nd that � and u

are signi�cant as we reject each null at the 1% level (H0 : b�2� = 0 and H0 : b�2u = 0). A feature of the

sample mean own NV E, NIE and GV E scores is that they are relatively high, which is intuitive for

our sample of U.S. banks because in a number of sub-periods high revenue growth is widespread.

GV E is a more complete representation of economic performance than NIE or NV E, so in table 4

we also summarize the direct, indirect and total GV E results from the reduced form SDRFc. Although

in theory there can be e¢ciency feedback, this table reveals that the sample mean GV EDir is 0:833 and

hence equal to the sample mean own GV E, which suggests that there is no e¢ciency feedback. This

�nding is in line with G&K and Glass et al. (2019) who, using similar samples of U.S. banks to our

sample, essentially �nd no GV E feedback from spatial cost and spatial pro�t stochastic frontiers with a

single spatial network.

We can see from table 4 that the sample mean GV EIndIn;i is 0:148 and, as we highlighted in the

methodology, is equal to the sample mean GV EIndOut;j . These sample means, although not huge, are

non-negligible with GV EIndIn;i and, in particular, GV E
Ind
Out;j varying a lot across the banks. This is evident

from table 4 because although the standard deviation of GV EIndIn;i is large, it is slightly more than a third

of the standard deviation of GV EIndOut;j .

In contrast to the symmetric bidirectional sample means of the indirect GV E scores, the GV E

spill-ins and spill-outs for individual banks are asymmetric. As a result, these spill-ins and spill-outs

for individual banks are more akin to the asymmetric median GV EIndIn;i and GV E
Ind
Out;j scores in table

4. For GV EIndIn;i and particularly GV E
Ind
Out;j the median is less than the mean, which is consistent with

the distributions being positively skewed. This is intuitive for our sample because a relatively small

number of banks with very large GV EIndIn;i and GV E
Ind
Out;j is consistent with the number of banks that

have extensive branch networks, which, as a result, overlap with a lot of other networks. A larger number

of banks with small GV EIndIn;i and GV E
Ind
Out;j , on the other hand, is in line with the majority of our sample

having much smaller branch networks, which leads to less overlap between the networks.

Note that GV EDiri + GV EIndIn;i = GV ETotIn;i and GV EDirj + GV EIndOut;j = GV ETotOut;j . We can see

therefore from table 4 that the sample means of GV EIndIn;i and GV E
Ind
Out;j push the sample mean GV E

Tot
In;i

and GV ETotOut;j scores close to 1. Given how close the sample means of GV E
Tot
In;i and GV E

Tot
Out;j are to 1,

unsurprisingly GV ETotIn;i and/or GV E
Tot
Out;j greater than 1 is the case for a number of individual banks.

This indicates for these banks that GV EIndIn;i and/or GV E
Ind
Out;j have raised performance above the level
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of the own GV E frontier.

4.4 Spatial TFP Growth Decompositions with Asymmetric Bidirectional Spillovers

In �gure 1 we present for the sample three annual average spatial TFP growth decompositions. In this

�gure we express the spatial TFP growth decompositions as indices as we take the exponential of the

growth rates. In all three cases we decompose a spatial measure of TFP growth as each measure and its

components are partially/entirely made up of spillovers.

� First, we decompose the �TFPDiri measure into �TCDiri , �RTSDiri and �GV EDiri . This measure

of spatial TFP growth and its components are partially made up of the same type of spillover as

they all contain feedback to a bank.

� Second, we decompose the �TFP IndIn;i measure into �TC
Ind
In;i, �RTS

Ind
In;i and �GV E

Ind
In;i, and the

�TFP IndOut;j measure into �TC
Ind
Out;j , �RTS

Ind
Out;j and �GV E

Ind
Out;j . The �TFP

Ind
In;i and �TFP

Ind
Out;j

measures of spatial TFP growth (and their corresponding components) di¤er as they are entirely

made up of spill-ins and spill-outs, respectively. In �gure 1, however, we do not distinguish between

the inbound and outbound direction of the spillovers and thus between �TFP IndIn;i and �TFP
Ind
Out;j

and each of their corresponding components. This is because in this �gure to concisely present

the decompositions of �TFP IndIn;i and �TFP
Ind
Out;j , for each year we average across the sample

giving �TFP IndIn;i = �TFP IndOut;j , which is also the case for their corresponding components. As

we noted previously in the methodological part of the paper, to uncover �rms that act as spatial

TFP growth centers we cannot use annual symmetric sample average indirect elasticities because

they yield �TFP IndIn;i = �TFP IndOut;i. We instead use annual asymmetric indirect elasticities for

individual banks, which we will provide evidence of further in this subsection. Using asymmetric

indirect elasticities is necessary to yield a group of banks with �TFP IndOut;j� �TFP
Ind
In;i > 0, which

is our criterion to classify a bank as a spatial TFP growth center.

� Third, we decompose the �TFP TotIn;i measure into �TC
Tot
In;i, �RTS

Tot
In;i and �GV E

Tot
In;i, and the

�TFP TotOut;j measure into �TC
Tot
Out;j , �RTS

Tot
Out;j and �GV ETotOut;j . Recall that �TFP TotIn;i =

�TFPDiri + �TFP IndIn;i and �TFP TotOut;j = �TFPDirj + �TFP IndOut;j . Since �TFPDiri =

�TFPDirj , any di¤erence between �TFP TotIn;i and �TFP
Tot
Out;j is entirely due to the di¤erence

between �TFP IndIn;i and �TFP
Ind
Out;j . In �gure 1 though �TFP

Tot
In;i = �TFP

Tot
Out;j , which is also the

case for their corresponding components. This is because in this �gure to concisely present the

decompositions of �TFP TotIn;i and �TFP
Tot
Out;j for each year we average across the sample.

There are four overriding features of �gure 1. First, as �TFP Ind closely tracks �TFP Tot it is clear

that it is �TFP Ind which is driving �TFP Tot and not �TFPDir. Second, there are a number of years

in our study period where �TFP Ind is substantial, e.g., in 2005�2006 it is of the order of 8%. Third, in

terms of the components of�TFP Ind, it is evident that�RTSInd is basically the sole driver of�TFP Ind

and, as a result, �RTSTot has a similarly important role in the calculation of �TFP Tot. Together these

�ndings highlight the importance of analyzing spatial returns to scale in U.S. banking (see Glass et al.,

2018b, for such an analysis). Fourth, as the two dark shaded areas in �gure 1 represent the two recessions

in U.S. economic activity over our study period, we can see that there are clear downturns in �TFP Ind

during these recessions.20 There are not similar downturns in �TFPDir in these recessions, which is

20Strictly the dark shaded areas represent illustrations of the dates of the two recessions from the National Bureau of
Economic Research (NBER). The areas are only illustrative because we use annual data, whereas U.S. recessions are dated
by the NBER in months (quarters). The NBER dates of the two recessions in our study period are Mar (Q1) 2001-Nov
(Q4) 2001 and Dec (Q3) 2007-June (Q2) 2009.
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almost certainly because �TFP Ind is more re�ective of the economic environment in the U.S. banking

industry than �TFPDir. Our reasoning here is that �TFP Ind is the result of spillovers between a bank

and its industry networks, whereas if we overlook the typically small feedback component, �TFPDir

considers a bank net of its spatial interaction with other banks.

The key policy implication from the spatial TFP growth decompositions concerns the impact of

the suggestion that size caps should be imposed on very large U.S. banks. The background to this

suggestion relates to the key role of the �too-big-to-fail� (TBTF) status of very large U.S. banks in the

2008 �nancial crisis, as this status promoted excessive risk taking. To guard against a repeat of this risk

taking, the 2010 Dodd-Frank reforms involved: tightening the regulatory regime through, for example,

more stringent bank liquidity constraints; and establishing a formal process to resolve large bank failures

with the intention of ensuring that no bank is TBTF. Fisher and Rosenblum (2012), among others, argue

that Dodd-Frank could have gone further to prevent TBTF banks by introducing size caps on the very

large banks. From the perspective of a revenue based measure of TFP growth, our results do not support

such a policy. Our argument is that if such caps were introduced it would conceivably lead to negative

�RTSInd because smaller banks would yield smaller spillovers. Based on our results this will then lead

to negative �TFP Ind and �TFP Tot, as �RTSInd is by far and away the biggest driver of both these

measures.

As we noted above, we use annual asymmetric indirect elasticities for individual banks to obtain an

annual asymmetry between �TFP IndOut;j and �TFP
Ind
In;i for each bank. But we cannot concisely present

this annual asymmetry for individual banks for a su¢ciently large proportion of the sample. For any

subset of the sample, however, the annual average �TFP IndOut;j and �TFP
Ind
In;i are asymmetric. We

concisely demonstrate this asymmetry in �gure 2 by presenting the annual average �TFP IndOut;j and

�TFP IndIn;i for the 1st and 5th quintiles of the �TFP
Ind
In;i distribution in 2015. All the annual �TFP

Ind
Out;j

and �TFP IndIn;i in �gure 2 for each quintile are therefore comparable because they are based on the same

subset of banks.

There is a lot of evidence in �gure 2 of an annual asymmetry between �TFP IndOut;j and �TFP
Ind
In;i .

This is the case because in the blue shaded areas �TFP IndOut;j > �TFP
Ind
In;i , which are the periods where

the 1st and 5th quintiles are, on average, net generators of TFP growth spillovers. In the red shaded

areas �TFP IndOut;j < �TFP IndIn;i , which are the periods where the 1st and 5th quintiles are, on average,

net recipients of TFP growth spillovers. Figure 2 also suggests that there are downturns in �TFP IndIn;i

for both quintiles around the two recessions. Interestingly, for the 1st quintile there is a downturn in

�TFP IndIn;i that precedes and coincides with the second recession, whereas for the 5th quintile there is a

downturn in �TFP IndIn;i that immediately follows this recession.

4.5 Spatial TFP Growth Centers and the Drivers

In �gure 3 we present the geographical distribution of the branches of the banks that are net generators

of TFP growth spillovers in 2015, i.e., �TFP IndOut;j ��TFP
Ind
In;i > 0. The banks whose branches feature

in �gure 3 are therefore classi�ed as spatial TFP growth centers. In this �gure we are particularly

interested in the red shaded areas as they represent the branches of the banks that are the largest spatial

TFP growth centers. As we would expect, �gure 3 reveals that banks which represent the largest spatial

TFP growth centers tend to have branches that cluster together in parts of the northeast and in cities

elsewhere that are among the largest economies (e.g., Los Angeles and Chicago, to name but a couple).

In several smaller major state cities, however, a good example being Indianapolis, there are at best only

modest clusters of branches pertaining to banks that act as large spatial TFP growth centers. Having

established from �gure 1 that the key driver of �TFP Ind is the �RTSInd component, in �gure 4 we
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Figure 1: Annual direct, indirect and total TFP growth decompositions for the sample
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Figure 2: Annual asymmetric bidirectional indirect TFP growth spillovers for selected quintiles
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Figure 3: Net generators of TFP growth spillovers in 2015

present for 2015 the geographical distribution of the branches of the banks that are net generators of

RTS growth spillovers. As �gures 3 and 4 are clearly very similar, we conclude for 2015 that being a net

generator of RTS growth spillovers is what determines whether a bank is a spatial TFP growth center.

The spatial TFP growth centers in �gure 3 represents one part of the analysis of the net TFP growth

spillovers. This is because if there are banks that are spatial TFP growth centers there must be another

group of banks that derive net bene�ts from these centers. In �gure 5 we focus on the other part of the

analysis as we present the geographical distribution of the branches of the banks that are net recipients

of TFP growth spillovers in 2015, i.e., �TFP IndOut;j � �TFP
Ind
In;i < 0. In this �gure we are particularly

interested in the dark shaded areas as they represent the branches of the banks that are the largest net

recipients of TFP growth spillovers. Comparing �gures 3 and 5, we can see, as we would expect, that

the large net recipients tend to have branches that cluster near the branches of the banks that act as

large spatial TFP growth centers. This is less true in the northeast as the large net recipient banks do

not tend to have branches that cluster in this region. The large center banks with branches that cluster

in the northeast may instead be large spatial TFP growth centers because they have branches that are

near an international �nancial center.

As the magnitudes of the net TFP growth spillovers in the red and dark shaded areas in �gures 3 and

5 are substantive, we examine these net spillovers in more detail by providing an insight into the banks

that are the largest net generators and largest net recipients. Recall that Berger and Roman (2017)

classify a U.S. bank with total assets between $1 billion and $3 billion in 2015 as medium-sized, and a

bank with total assets greater than $3 billion in 2015 as large. Based on this bank size classi�cation,

in 2015 the largest 15 net generators and the largest 15 net recipients are an interesting mix of large

and medium-sized banks. In summary, both bank size categories are well represented in the largest 15

net generators as there are 7 medium-sized banks in this group. There are fewer medium-sized banks

in the largest 15 net recipients as this group includes 9 large banks. Among these groups is at least

one bank with total assets in the top 5 in the industry in 2015 as JP Morgan Chase is one of the 15

largest net recipients, and Bank of America and Wells Fargo are among the 15 largest net generators.

The smallest banks in the largest 15 net recipients are Woori America Bank ($1:45 billion) and First

Bank and Trust Company ($1:50 billion), where their total assets in 2015 are in parentheses. In the
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Figure 4: Net generators of returns to scale growth spillovers in 2015

Figure 5: Net recipients of TFP growth spillovers in 2015
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Figure 6: Net generators of TFP growth spillovers over the two subperiods

largest 15 net generators the smallest banks are- Midwest Bank ($1:64 billion); Bear State Bank ($1:46

billion); Peoples Bank ($1:48 billion); First National Bank Texas ($1:41 billion); and Moody National

Bank ($1:09 billion). Such �ndings are informative for U.S. banking authorities as they provide new

insights into the di¤erent sizes of banks that play key roles in the transmission of productivity spillovers.

Using �gure 6 we examine to what extent the large spatial TFP growth centers in 2015 (�gure 3)

are similar to those for other portions of our study period. In particular, in panels A and B of �gure

6 we present the geographical distributions of the branches of the banks that are, on average, classi�ed

as spatial TFP growth centers over two subperiods- pre-crisis (1998 � 2007) and crisis and beyond

(2008� 2015). To construct �gure 6 we use the branch networks for what is approximately the median

year in each subperiod (2002 and 2011).

Comparing the locations of the branches in �gures 3 and 6 of the banks that act as large spatial TFP

growth centers, where these locations are represented by red shaded areas, gives rise to two key �ndings.

The �rst is that throughout our study period the banks that act as large spatial TFP growth centers have

branches that tend to cluster together in the same locations (the northeast and cities elsewhere with large

economies). This indicates that �gure 3 is a robust re�ection of the branch locations of the banks that

act as large spatial TFP growth centers in other portions of our study period. Our second key �nding

is the increase in the size of the red shaded areas in �gure 3, vis-à-vis those in �gure 6 (particularly

those in panel A). In other words, over our study period we observe an increase in the clustering of the

branches of the banks that act as large spatial TFP growth centers, which indicates that these clusters
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are becoming an increasingly prominent feature of the industry. As we observed from �gure 4 for 2015,

for both subperiods we �nd that being a large net generator of RTS growth spillovers is what determines

whether a bank represents a large spatial TFP growth center.21

5 Concluding Remarks

Our quantitative analysis of productivity centers is the �rst of its type. The two closest related literatures

to our analysis are the quantitative studies of hubs and a study by Pesaran and Yang (2019). The

quantitative literature on hubs has thus far focused on uncovering the optimal locations of hubs in

transportation and logistics (T&L) networks, or on estimating the impact of hubs on a particular variable

when the hubs are selected in advance of the modeling because they are well-known. We add a new

dimension to this literature because our paper does not �t into either of these two strands, as we do

not consider T&L networks or analyze the e¤ect of productivity centers that are easily observed and

can therefore be selected in advance of the modeling. Instead we consider a large number of �rms in an

industry when it is not immediately obvious which �rms act as spatial economic performance centers,

which is often the situation in practice. Our principal contribution therefore is to set out the �rst method

to sift through a large number of �rms to uncover which �rms act spatial TFP growth centers. We use

spatial TFP growth as our spatial measure of economic performance as TFP is widely recognized as a

comprehensive measure that incorporates both demand and supply changes. A feature of our method is

that it is not con�ned to spatial TFP growth and can be easily applied to any spatial measure to uncover

�rms that represent various types of spatial center. For example, one could estimate a spatial model

of the number of patents for a sample of hi-tech �rms and use the patent spillovers from the model to

uncover which �rms represent technical innovation centers.

There are parallels between our analysis and Pesaran and Yang�s study, but whereas our approach

operates at the micro level of a large number of �rms, their method focuses on the macro level. In

particular, they analyze how the sectors that make up a country�s production network a¤ect its aggregate

output. Their model is based on each sector using the outputs of other sectors as intermediate inputs,

but in the context of our micro setting this may not be appropriate for many industries. This is because

�rms may not use the outputs of the other �rms� in the industry as inputs, and in industries where they

do, data on this inter�rm economic interaction may not be in the public domain. For example, banks

interact in this way through interbank lending, but data on such lending is not publicly available, which

necessitates that we use our alternative method.

By developing and applying our method to uncover spatial TFP growth centers we make three further

contributions. The �rst two are methodological and are extensions of the method in G&K for their spatial

TFP growth decomposition, while the third relates to our application. First, as a spatial stochastic

frontier model must �rst be estimated before one can implement a spatial TFP growth decomposition,

rather than follow G&K and estimate a spatial stochastic frontier model with a single SAR variable,

we introduce a more sophisticated model that contains multiple SAR variables. Via the multiple SAR

variables our new model accounts for spatial interaction in multiple networks, which is likely to be more

representative of what is actually the case because a �rm may often simultaneously belong to a number

of networks. Second, we obtain asymmetric bidirectional spatial TFP growth decompositions. We do

so by complementing the unidirectional decomposition in G&K, where the spillover components are

spill-ins to a �rm, with the corresponding decomposition that includes spill-out components. Third, we

21For brevity we do not present the corresponding maps of the branch locations of the banks that are net generators of
RTS growth spillovers over the two subperiods. These maps are available from the corresponding author on request.
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complement G&K�s application of their unidirectional decomposition to U.S. banks using a spatial cost

frontier, by focusing on the income side of the industry via bidirectional decompositions from a spatial

revenue frontier.

From our application we �nd that the banks which act as large spatial TFP growth centers tend

to have branches that cluster together in the same areas throughout our study period. As we would

expect, these areas are the northeast and cities elsewhere that are among the largest economies (e.g.,

Los Angeles and Chicago). Over our study period we �nd that the clusters of branches of the banks

that act as large spatial TFP growth centers increase in size, which indicates that these clusters are

becoming an increasingly prominent feature of the industry. We do, however, observe several smaller

major state cities where at best the clusters of branches of the banks that act as large spatial TFP growth

centers are modest. We cited Indianapolis as a good example where the large center banks have at best

a modest cluster of branches, which is also what we observe in Pittsburgh, Tulsa, El Paso, Columbus

(OH), Cleveland (OH) and Albuquerque.
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Appendix: Technical Details of the Model Estimation Procedure

The log-likelihood function for Eq. 4 is as follows.
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where IN is the (N �N) identity matrix and T log jIN � �1W1 � :::� �MWMj represents the contribu-
tion to the log-likelihood from the Jacobian of the transformation from "�it to yit.

22 Following the simpler
model with a single SAR variable and as is standard in the spatial literature, the transformation from
"�it to yit accounts for the endogeneity of the M SAR variables (Anselin, 1988, pp. 63; Elhorst, 2009).

Di¤erentiating Eq. A1 with respect to "�i , solving this derivative for "
�
i , and substituting in for "

�
i in

Eq. A1 yields (after rearranging) the concentrated log-likelihood function for step 1 of the estimation
procedure (Eq. A2). This function is with respect to �, #, �, � and �, where we use #, � and � to
collectively denote #1; :::; #M , �1; :::; �M and �1; :::; �M .
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(A2)

where an asterisk denotes the transformations of yit and x
0
it into the quasi-di¤erenced variables in Eqs.

A3 and A4. The resulting transformed error "��it is in square brackets in Eq. A2, where x
0�
i =

1
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x0�it = x0it � (1� �)
1
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TP
t=1
x0it; (A4)

where � denotes the weight attached to the cross-sectional component of the data and 0 < �2 =

�2"�it
=
�
T�2"�i

+ �2"�it

�
� 1. For the reasons given in subsection 2:1 we rule out � = 0 to prevent our

model collapsing to the �xed e¤ects speci�cation. When � = 0 we can see that the transformed mean
variables get eliminated from Eq. A2 and the � transformation of the other variables becomes the
demeaning procedure used to estimate a �xed e¤ects model.

22To simplify the notation in Eq. A1 we subsume �� into x0it.
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To obtain the estimates of �1; :::; �M we use the concentrated log-likelihood function in Eq. A5.

LLC (�1; :::; �M ) = $ �
NT

2
log
�
(e�0 � �1e

�
1 � :::� �Me

�
M )

0 (e�0 � �1e
�
1 � :::� �Me

�
M )
�
+

T log jIN � �1W1 � :::� �MWMj ; (A5)

where $ is a constant that does not depend on �1; :::; �M . e�0 and e�1; :::; e
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cross-sections for t 2 1; ::; T , IT is the (T � T ) identity matrix and 
 denotes the Kronecker prod-
uct. As Eq. A5 can only be solved numerically because closed form solutions for �1; :::; �M do not
exist, before we begin the iterations of Eq. A5 and in line with the approach of Pace and Barry
(1997) for the simpler case of a spatial model with a single SAR variable and no ine¢ciency compo-
nent(s), we calculate log jIN � �1W1 � :::� �MWMj for a large number of combinations of values of

�1; :::; �M 2
h

1
min(fmin

1
;:::;fmin

M
)
; 1
i
. In particular, we calculate log jIN � �1W1 � :::� �MWMj for combina-

tions of values of �1; :::; �M based on 0:001 increments over the above feasible range.
Using � to collectively denote the �, #1; :::; #M , � and �1; :::; �M vectors of parameters and given the
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where b0 and b1; :::; bM are the slope estimates from the OLS regressions of y�t and (IT
W1)y
�
t ; :::; (IT


WM)y
�
t on Z

�
t . Given the estimates of � and �

2
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, we calculate the estimate of � using the following

concentrated log-likelihood function.

LLC(�) = �
NT

2
log
�
"��0"��

�
+
N

2
log �2; (A8)

where an element of the vector "�� is "��it , which, as we noted above, is given in square brackets in Eq.
A2.

We use the following concentrated log-likelihood function to estimate �uv in step 2, and thus begin
the process of splitting b"it into estimates of the idiosyncratic error bvit and own time-varying ine¢ciency
buit.
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where b"�2it is from step 1, � is the standard normal cumulative distribution function and
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2

: (A10)

Substituting b�uv from maximizing LLC(�uv) into Eq. A10 gives the maximum likelihood estimate of
�uv. As noted in subsection 2:2, we then also in step 2 use b�uv, b�uv and the relevant other estimates to
calculate the consistent estimate of own time-varying ine¢ciency uit (conditional on "it). In particular,
we compute buit using the well-established Jondrow et al. (1982) estimator.

In step 3 we split b"i into own time-invariant ine¢ciency b�i and the random error component of the �rm
speci�c e¤ect that is uncorrelated with the regressors b�i. We do so by using the corresponding approach
to step 2, which involves using b"�i from step 1. Accordingly, using the corresponding equation to A9

LLC(���) is maximized to compute b���, which is then used to calculate b��� using the corresponding
equation to A10. b��� and b���, among other things, are then used to calculate the consistent estimate of
�i (conditional on "i) using the corresponding equation to 5 in subsection 2:2.
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