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Abstract

The literature on bank scale economies focuses on the familiar type of returns to scale that

are internal to the �rm. Using a spatial approach, we analyze returns to scale for banks that are

made up of external (i.e., spillover) economies. We extend ray-scale economies (RSE), expansion-

path scale economies (EPSE) and expansion-path subadditivity (EPSU) to the spatial case. This

involves introducing direct and composite and decomposed indirect RSE, EPSE and EPSU. These

direct and indirect measures relate to the cost implications for a �rm from a change in: (i) the

�rm�s output levels that are, as is standard, under its control; and (ii) the composite/decomposed

spillover e¤ect on the �rm�s output levels, which is primarily, but not entirely, outside its control.

We include an application to U.S. banks (1998�2015) that allows a bank to simultaneously belong

to a number of spatial networks, which is typically what we observe for �rms. For large banks

we �nd constant direct RSE and EPSE, and zero composite indirect RSE and constant composite

indirect EPSE. These composite indirect results do not counteract any policy suggestions from

the direct RSE and EPSE concerning the debate on whether there should be size caps on very

large U.S. banks. The direct RSE and EPSE for large banks suggest that these banks use society�s

resources e¢ciently to provide their services. Size caps on very large banks would place downward

pressure on these direct RSE and EPSE results, which could lead to large banks using society�s

resources ine¢ciently.
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1 Introduction

The �too-big-to-fail� (TBTF) status of very large U.S. banks played a key role in the 2008 �nancial

crisis as it promoted excessive risk taking. The 2010 Dodd-Frank reforms to guard against a repeat

of this risk taking involved: tightening the regulatory regime through, for example, more stringent

bank liquidity constraints; and establishing a formal process to resolve large bank failures with the

intention of ensuring that no bank is TBTF. Fisher and Rosenblum (2012), among others, argue

that Dodd-Frank could have gone further to prevent TBTF banks by introducing bank size caps.

Interestingly though many of the largest banks are much bigger now than they were before the crisis

(Wheelock and Wilson, 2018).

From a cost perspective, the categorization of returns to scale (increasing/constant/decreasing)

determines whether size caps have a negative or positive e¤ect on how e¢ciently society�s resources

are used to provide banking services (Stern and Feldman, 2009; Wheelock and Wilson, 2018). This

highlights the importance of measuring returns to scale in banking, which is particularly so for U.S.

banks as all three returns to scale categories have been reported in the literature. Despite such

evidence for U.S. banks there is some consensus across a number of in�uential studies (Wheelock

and Wilson, 2009; 2012; 2018; Hughes and Mester, 2013; Kovner et al., 2014; Mester, 2010), which

primarily point to non-negligible increasing returns, although in some of these studies there is also

a small amount of evidence of constant returns. We do not, however, review the large literature on

scale economies in U.S. banking as this literature focuses on the familiar scale economies that are

internal to the �rm. Instead we pursue a new line of inquiry on bank scale economies by using a

spatial modeling approach to analyze external returns to scale in U.S. banking.

External returns to scale refer to the economies that bene�t a �rm because of the way in which

the industry it operates in is organized (Economist, 2008). External returns are not therefore as

tightly de�ned as internal returns to scale. Consequently, in di¤erent literatures external returns

to scale are de�ned more speci�cally. For example, external economies are a prominent feature

of the urban economics literature, where these returns are referred to as agglomeration economies.

These economies represent the bene�ts from �rms and people locating near one another in cities

and industrial clusters. It is still the case though that agglomeration economies can take a range of

forms so from an empirical perspective it is necessary to focus on a particular type of bene�t, which

traditionally involves estimating a wage equation. We, on the other hand, consider external economies

using an OR production framework by �rmly embedding these economies within the relevant function

(cost, revenue, etc.).

Following the large literature that uses non-spatial methods to estimate the familiar scale economies

that are internal to a bank would involve overlooking potentially important external scale economies.

These external economies are important because, like internal scale economies, they can be related to

a �rm�s outputs. In particular, internal economies relate to a �rm�s output levels that are within its

control, while external economies relate to an individual �rm�s output levels that are due to spillovers

to the �rm from other �rms, which are primarily, but not entirely, outside the �rm�s control. These

spillovers are likely to depend on some industry level factor such as the size or structure of the industry,

which an individual �rm may have a degree of control over through its involvement in the interre-

lated strategic choices of �rms.1 The upshot is that the classi�cation of both internal and external

economies (increasing/constant/decreasing) is important because if they have the same classi�cation

1We thank an anonymous reviewer for highlighting that external economies may not be entirely outside an individual
�rm�s control.
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they will have the same type of implications for costs. If they are classi�ed di¤erently the implications

for costs will di¤er and the issue is whether the e¤ect of the internal economies is greater than that

of the external economies or vice-versa. We illustrate this point in detail when discussing the policy

implications from our application in subsection 4:3.

The external scale economies we analyze are the result of the spatial correlation between banks�

internal scale economies. The mechanism in our analysis that leads to these external economies is

as follows. Using a spatial cost function we estimate inter-bank spillovers, which then allows us to

analyze external returns to scale by measuring the spillover to a bank�s cost due to the spillover e¤ects

on its outputs. These spillover e¤ects on its outputs arise from a change in other banks� outputs,

which represents the attribution to the outputs of the spatial correlation between banks� costs and

the spatial correlations between the e¤ects of a bank�s outputs on its costs. These spatial correlations

are the result of banks operating in the same markets, where a banking market is typically taken to

be a metropolitan statistical area (MSA) or non-MSA county (Hirtle, 2007). The spatial correlations

can be negative or positive and the external scale economies are based on the net spatial correlation.

Although we do not use structural economic theory to model the channels that lead to the spatial

correlations, which is an area we leave for further work, negative spatial correlation in the spatial

literature is attributed to the e¤ects of competition (e.g., Kao and Bera, 2013, Boarnet and Glazer,

2002, and Garrett and Marsh, 2002). Positive spatial correlation is typically associated with common

phenomena between neighbors such as market growth and headline changes in local and regional

economies.

Our spatial cost function is made up of the bank�s technology, which is a relationship between

the bank�s cost and its outputs and input prices, and spatial variables that shift this cost technology.

These spatial variables are spatial lags of the bank�s cost, output and input price variables. In contrast

to how scale economies are calculated from a non-spatial function, it is not simply a matter of using

�tted coe¢cients from our spatial cost function to calculate the spatial scale economies we propose.

This is because, as is well-established in the spatial literature, any coe¢cient from for simplicity a

log-linear cost function augmented with a spatial lag of the dependent variable is not an elasticity.

To illustrate, for one of a �rm�s input prices or outputs the elasticity is instead a function of the

coe¢cient on the variable and also the coe¢cient on the spatial lag of the dependent variable. To

see this note that when one of a �rm�s own variables changes there are two e¤ects. First and as is

standard in non-spatial models, this change will a¤ect the �rm�s cost, which is what the coe¢cient on

the �rm�s own variable measures. Second, this change will a¤ect the cost of each of the other �rms

in the sample via the spatial lag of the dependent variable and this e¤ect will partially reverberate

back to the �rm whose own variable changed, which is referred to as feedback.2 By combining these

two e¤ects we obtain what LeSage and Pace (2009) (LSP) refer to as the direct elasticity of a �rm�s

variable.

LSP also derive from a model with a spatial lag of the dependent variable indirect and total

elasticities, which we also compute. An indirect elasticity can be calculated in two ways depending on

whether the focus is on spill-ins or spill-outs. We are interested in returns to scale spill-ins to a �rm

so the indirect elasticity is the e¤ect on a �rm�s dependent variable from the spillover impact that

permeates to its independent variable. We also depart slightly from the terminology in the spatial

literature by referring to this elasticity as a composite indirect measure to distinguish it from its three

2The feedback is a partial rebound e¤ect because spatial models are based on the assumption that there is a fading
memory across space, which we revisit further in the paper and is entirely reasonable for many applications. Typically
this feedback is small in empirical applications.
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components, which we calculate to consider di¤erent spillover sources. By summing the direct and

composite/decomposed indirect elasticities we obtain the total elasticity.

A spatial error model uses a spatial autocorrelated error term to account for global cross-sectional

nuisance dependence, where global spatial dependence refers to 1st order neighbor and higher order

neighbor spatial interactions, and local spatial dependence is con�ned to 1st order neighbor spatial

interaction. We, on the other hand, as LSP recommend use a model speci�cation that accounts for

economically substantive cross-sectional global and local dependencies. This global dependence is

accounted for using the spatial lag of the dependent variable and the local dependencies are captured

using spatial lags of the independent variables. Important features of our model include the following.

(a) By including the spatial lags of the dependent and independent variables we address a potential

source of omitted variable bias and any associated parameter inconsistency, whereas the inclusion of

the spatial autocorrelated error term in the spatial error model has no bearing on the consistency of

the parameter estimates and only reduces their standard errors (i.e., the inclusion of this term only

improves the e¢ciency of the parameter estimates). (b) Crucially, to enable us to calculate the spatial

scale economies we propose and as we described above, since our model contains the spatial lag of the

dependent variable we can relate the indirect elasticities to a �rm�s output(s). One cannot calculate

such economies from a spatial error model because it is now well-known that the only type of indirect

elasticity it yields relates to the disturbance.3

We focus on extending the methods to calculate non-spatial scale and product mix economies across

the multiple products in banking (Berger et al., 1987; Wheelock and Wilson, 2001) to the spatial case.

It is useful to note that the origins of these non-spatial scale and product mix economies emanate

from the cost or supply side bene�ts from joint production that Baumol et al. (1982) emphasize.

Applying this idea to banking, Berger et al. (1987) posit that these bene�ts are in the form of two

sources of cost savings from joint production. First, if excess capacity exists, joint production presents

an opportunity to allocate �xed costs more widely by spreading �xed or quasi-�xed brick and mortar

branch costs, or loan o¢cer and teller expenses across a wider product mix. Second, joint production

presents the opportunity to exploit information economies because information that is obtained from

servicing a customer�s deposits and/or loans can be reused. Reusing this information, for example,

reduces the cost of evaluating the default probabilities for other types of loans.

Using the direct, composite and decomposed indirect and total parameters associated with a

bank�s independent variable, we set out the methodology to extend the non-spatial approaches to

scale and product mix economies in banking to the spatial case. The direct (composite/decomposed)

[total] measures of scale and product mix economies we introduce relate to the cost implications for

a bank from a change in: (i) the bank�s output levels that are, as is standard, under its control;

(ii) (the composite/decomposed spillover e¤ect on the bank�s output levels from other banks, which

are primarily, but not entirely, outside a bank�s control); and (iii) [the bank�s output levels that are

under its control and the composite spillover e¤ect on its output levels combined].4 Direct scale and

product mix economies are therefore akin to the standard internal measures from a non-spatial model

and borrowing terminology from the spatial literature we label the external scale and product mix

economies as indirect measures. Total scale and product mix economies represent the combined e¤ect

of the direct and composite/decomposed indirect measures.

3We thank an anonymous reviewer for suggesting that we highlight why the spatial economies we propose cannot be
calculated from a spatial error model.

4Although we set out the direct, composite and decomposed indirect and total measures of scale and product mix
economies for a cost technology, our methodology is in no way limited to a cost setting and can easily be adapted to
other technologies (e.g., revenue and pro�t).
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Putting the contributions of this paper into a wider methodological context, to the best of our

knowledge, there are just three studies (Glass et al., 2013; 2016; Glass and Kenjegalieva, 2019) that

compute spatial returns to scale from a spatial functional form of production and cost technologies.

For European countries, Glass et al. (2016) compute spatial ray-scale economies (RSE), which we

discuss in due course, and Glass et al. (2013) propose a partial spatial decomposition of total factor

productivity (TFP) growth. Their decomposition is partial as its omits the changes in technical and

allocative e¢ciency spillovers. Glass and Kenjegalieva (2019) address these omissions and apply their

methodology to spatially decompose TFP growth for U.S. banks. In both these spatial TFP growth

papers spatial RSE is the basis for the calculation of the spatial returns to scale e¢ciency change

component in the decompositions.

We build on the three aforementioned studies in the following four respects. First, in contrast to

the �rst two papers, our paper is closely aligned to OR as we undertake a �rm level analysis of spatial

returns to scale. Second, although the third study also analyzes U.S. banks it computes the change

in spatial returns to scale e¢ciency, whereas we report the level estimates of spatial returns to scale

which enables us to focus on the minimum e¢cient size of a bank. Third, in addition to computing

spatial RSE, we extend two further measures of scale and product mix economies (expansion-path

scale economies (EPSE) and expansion-path subadditivity (EPSU)) to the spatial setting. Fourth,

the spatial model we use to calculate the spatial scale and product mix economies is more technically

advanced than the standard model in the above three studies, which has a single spatial lag of the

dependent variable. Our model, on the other hand, includes multiple di¤erent speci�cations of the

spatial lag of the dependent variable. This allows a �rm to simultaneously belong to a number

of spatial networks (otherwise known as spatial regimes in the literature), which is what we often

observe in practice. Due to banks belonging to multiple spatial networks in our model, we obtain rich

decomposed indirect RSE, EPSE and EPSU measures that relate to the spatial cost correlation

between banks in the combined networks, and the spatial correlation between the e¤ect of a bank�s

outputs on its cost in each network. Mathematically it is not possible to obtain decomposed indirect

RSE, EPSE and EPSU measures that relate to the spatial cost correlation between banks in each

network, which further in the paper we revisit in more detail.

Our banking application �ts this multi-network setting very well because all the banks in our

sample have two distinct branch networks. The �rst is a bank�s full service brick and mortar branch

network and the second is a bank�s network of other types of full and limited service branches. Splitting

up a bank�s branches in this way makes sense as the spatial interaction between the banks in the two

networks will di¤er because, as we discuss in more detail further in the paper, compared to brick

and mortar branches there is a much smaller number of other branches as often the latter focus on

centralized specialist activities (e.g., full service cyber o¢ces, limited service loan production o¢ces

and limited service consumer credit o¢ces).

In a two-dimensional output space composite indirect RSE refers to an equiproportional increase

in a �rm�s two output levels attributable to spillovers along the radial ray. Composite indirect EPSE

relates to an incremental change in a �rm�s two outputs attributable to spillovers along its expansion-

path for these types of outputs, which allows for the possibility that this path does not coincide with

the composite indirect radial ray. Our empirical analysis of U.S. banks over the period 1998 � 2015

often points to, on average, constant direct RSE and EPSE, whilst we also report zero composite

indirect RSE and constant composite indirect EPSE. This suggests along the relevant radial ray

and expansion-path that there is a much bigger di¤erence between the expansion of a bank�s outputs

that are attributable to spillovers from other banks, than there is between the standard expansion
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of its outputs that are under its control. Greater similarity between direct RSE and EPSE vis-

à-vis the corresponding composite indirect measures is not surprising. This is because underlying

direct/internal scale economies is the standard theoretical cost function that is monotonically increas-

ing in a �rm�s output levels that are under its control, whereas there is no such theoretical relationship

between a �rm�s cost and its output levels due to spillovers, which are primarily, but not entirely,

outside its control.

From our key results on the spatial economies there are some policy implications on whether

there should be caps on the size of very large banks, which we discuss in detail further in the paper.

Although these policy implications are from a recent data sample, one should be cautious about how

long these implications are valid for because the U.S. banking industry is known to change quickly.

Also, given the novelty of our above �ndings and the large literature on bank e¢ciency covering a

wide range of countries (e.g., EU member states (Asmild and Zhu, 2016), Spain (Lozano-Vivas, 1997),

China (Asmild and Matthews, 2012) and South Asia (Bibi et al., 2018)), there is a lot of potential for

further banking applications of our approach, which we provide some practical guidance on.

The remainder of this paper is organized as follows. Section 2 has two parts. In the �rst part

we set out the general form of our spatial cost model and provide a brief overview of our model

estimation strategy. In the second part we explain the method that underlies the direct, composite

indirect and total elasticities, and we also set out the three-part decomposition of a composite indirect

elasticity. Based on these elasticities, in section 3 we set out our method to calculate the spatial RSE,

EPSE and EPSU measures. In section 4 we apply these new measures to U.S. banks for the period

1998� 2015 and discuss the policy implications. Section 5 concludes and elaborates on the scope for

further applications.

2 Cost Function with Simultaneous Spillover Regimes

2.1 Model Layout and an Overview of the Estimation Procedure

We estimate a panel data spatial Durbin cost function (SDCF) with �xed e¤ects and simultaneous

spillover regimes. Our structural model has the following general form, where the variables are logged.

cit = �+ TL (yit; pit; ti) +

0
BBBB@

STL1

 
NP
j=1
wij1yjt;

NP
j=1
wij1pjt;

NP
j=1
wij1tj

!
+ :::

+STLM

 
NP
j=1
wijMyjt;

NP
j=1
wijMpjt;

NP
j=1
wijM tj

!

1
CCCCA
+

0
BBB@

�1
NP
j=1
wij1cjt + :::

+�M
NP
j=1
wijMcjt

1
CCCA+ �i + "it: (1)

The panel data comprises observations for N �rms and T periods, which are indexed i; j = 1; :::; N

8 i; j and t = 1; :::; T . Following the typical case that is encountered when using �rm level data we

take N to be large and T to be small. cit is an observation for total cost for the ith �rm in period t

and together with TL (yit; pit; ti) = �ti+
1
2 &t

2
i + �

0pit+ �
0yit+

1
2p
0
it�pit+

1
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0
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0
it	yit represents

the variable returns to scale translog approximation of the log of the cost frontier technology. � is

the common intercept; yit is the (1�K) vector of observations for the outputs, which are indexed

k = 1; :::;K; pit is the (1� L) vector of observations for the input prices, which are indexed l = 1; :::; L;
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t and t2 collectively represent a non-linear time trend; "it is the idiosyncratic error; and �i is a �xed

e¤ect.5 We account for unobserved heterogeneity using �xed e¤ects rather than random e¤ects because

the former are less restrictive as they can be correlated with the time-varying errors.

In Eq. 1 there are M simultaneous spillover regimes. M corresponds to the number of spatial

weights matrices indexed Wm= W1; :::;WM, where Wm is an (N �N) exogenous matrix that is

speci�ed in advance of estimating the model. Wm comprises non-negative constant i; j�th elements

wijm, which are commonly referred to as spatial weights. In practice,M will be small re�ecting a small

number of very distinct sets of spatial linkages, as opposed to quite a large number of rather similar

competing spatial weights matrices, where there is a high chance of collinearity between the resulting

spatial autoregressive (SAR) variables. Accordingly, there are two simultaneous spatial regimes in our

application to U.S. banks, i.e., the spatial linkages between banks� full service brick and mortar branch

networks and the spatial linkages between the networks of all their other branch types collectively.

In general terms, we model the cross-sectional correlation using multiple simultaneous spatial

processes that explicitly relate a �rm to its neighbors (i.e.,W1; :::;WM), which for the simpler case

of a single spatial process is an approach with a long history (see Whittle, 1954). More speci�cally,

for the mth spatial regime Wm represents the spatial arrangement of the �rms and the strength of

the interaction between the �rms. As a result of the latter, all the elements on the main diagonal of

Wm are set to zero as a �rm cannot be part of its own neighborhood set. A measure of proximity

must be used to populate Wm, where in line with the situation for nearly all spatial models we are

conscious that our model takesW1; :::;WM to be exogenous. With this in mind we use what can be

taken in the context of our application to be a exogenous measure of geographical proximity. As will

become apparent though the measure of geographical proximity we use is rather novel.

Although there are clearly geographical links between banks that operate in the same markets

because they compete with one another and are exposed to the same headline changes in local and

regional economies, there are of course also economic linkages between banks. One would suspect that

most measures of economic proximity between banks such as inter-bank loans would be endogenous,

but it may be possible to come up with an exogenous measure. A test has recently been developed for

an endogenous spatial weights matrix (Bera et al., 2018), but it is not clear how we would proceed with

our analysis using endogenous speci�cations of W1; :::;WM. This is because despite some progress

by Qu and Lee (2015) on accounting for an endogenous spatial weights matrix by using the control

function method to propose three new estimators (a two-stage instrumental variables (2SIV) method, a

generalized method of moments (GMM) approach and a quasi-maximum likelihood (QML) procedure),

these estimators are for cross-sectional data only. To incorporate into our banking modeling framework

an endogenous spatial weights matrix, one would need to extend their GMM/QML estimator to panel

data with �xed e¤ects, which is outside the scope of this paper.6 We are therefore prudent and ensure

that we avoid the situation whereW1; :::;WM are endogenous by specifying these matrices using an

exogenous measure of geographical proximity.

Since our model is based on the literature that revolves around the spatial weights matrix, which

5As we model multiple spatial regimes for parsimony we omit from our speci�cation of TL (yit; pit; ti) interactions
with t.

6More generally, further work on spatial econometric models with an endogenous spatial weights matrix based on
economic/social linkages would draw parallels with the modeling of these linkages in other types of econometric analysis.
These include time series studies that look at the impact of a well-established economic linkage (e.g., Pesaran et al.,
2004), and studies that consider a range of social linkages to investigate which are the sources of the spatial correlation
(e.g., Conley and Topa, 2002, which is based in part on the methodology in Conley, 1999). Our paper is more akin to
the approach in the time series literature as we use indirect elasticities to quantify the impact of the spatial correlation
from the geographical linkage between banks that have overlapping branch networks.
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is one of the two main strands of the literature on panel data modeling of cross-sectional dependence

when N is large relative to T , we account for what is referred to as the weak form of spatial de-

pendence. This is because the multiple simultaneous spatial processes of the dependent variable are

characterized by a fading memory across space. The fading memory arises because underlying our

model is the assumption that the row and column sums of W1; :::;WM before normalization (de-

noted as fW1; :::;fWM) and the row and column sums of (I� �1 fW1 � :::� �MfWM)
�1 (for all values

of �1; :::; �M ) are uniformly bounded in absolute value as N !1. As a result of this fading memory

assumption, the spatial processes are limited to a manageable degree which rules out explosive growth

of the dependent variable across space (Kelejian and Prucha, 2001).

The other main strand of the above literature accounts for the strong form of spatial dependence,

which di¤ers from its weak counterpart as there is no decay in the dependence across space. This

literature uses multi-factor models comprising a number of unobserved common factors that lead to

multiple common e¤ects of di¤erent magnitudes on all the spatial units. These models are well-suited

to analyze the common e¤ects across U.S. banks of industry wide phenomena such as regulatory

policies and the �nancial crisis. Although analyzing the common e¤ects across space of such macro

phenomena is clearly interesting, our focus is on the external economies of scale that gravitate to a

bank from other banks, which is an interesting di¤erent type of phenomenon. It is di¤erent because

these external economies consider bank interdependence at the micro level which, as a result, varies

across space according to the extent to which banks operate in the same markets. A multi-factor

model would not take this variation in the dependence across space in to account, so we instead use a

model that is based on the spatial weights matrix and which also yields the indirect elasticities that

our new external economies are based on.

Having speci�edWm one can construct spatial lags of the dependent and independent variables.

The mth spatial lag of the dependent variable,
PN
j=1wijmcjt, is endogenous, which our estimator

accounts for. We adopt a su¢ciently general parameter space for the associated SAR parameter,

�m 2
h

1
min(rmin

1
;:::;rmin

M
)
; 1
max(rmax

1
;:::;rmax

M
)

i
, where rmaxm is the most positive real characteristic root of

Wm. Note that Wm denotes a normalized speci�cation of our mth spatial weights matrix, where

the normalization we use in our empirical application gives rmax1 ; :::; rmaxM = 1. For details of this

normalization see subsection 4:1. In our empirical applicationWm before normalization is asymmetric

so Wm may have complex roots. In this case LSP prove that the lower limit of �m is the inverse of

rminm , which is the most negative purely real characteristic root ofWm. Following the spatial literature

(e.g., Anselin, 2003), Eq. 1 is the structural form of our model as it includes the M SAR variables

as regressors. In the reduced form of the model, which we use to compute the elasticities, these SAR

variables do not feature.

In Eq. 1 STL1 + :::+ STLM represent M spatial lags of TL (yit; pit; ti) and together withPN
j=1wijmcjt they shift the frontier technology.

7 In contrast to
PN
j=1wijmcjt, which accounts for

endogenous global SAR dependence, STLm is exogenous in Eq. 1 and accounts for local spatial de-

pendence. If we were to omit STL1 + :::+ STLM from Eq. 1 the model collapses to what is referred

to as the SAR model with multiple spatial regimes. We include STL1 + :::+ STLM though because

in the empirical spatial literature local spatial variables are frequently found to be important deter-

minants. As a result of the local spatial variables in our model it is referred to as the spatial Durbin

model with multiple spatial regimes.

7 If we were to use a row-normalized speci�cation ofWm we would omit from the mth spatial lag of TL (yit; pit; ti),
which we denote STLm,

PN

j=1
wijmtj and

PN

j=1
wijmt

2

j due to perfect collinearity with ti and t
2

i (e.g., ti =
PN

j=1
wijmtj).

In our application we include
PN

j=1
wijmtj and

PN

j=1
wijmt

2

j because the Wm we use, as will become apparent in
subsection 4:1, involves an alternative normalization and, as a result, there is no such collinearity.
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In addition to the aforementioned parameters there are additional parameters (�, 12 &, �sm and
1
2 &sm, where a subscript s denotes a local spatial parameter), vectors of parameters (�

0, �0, �0sm and

� 0sm) and matrices of parameters (
1
2�,

1
2�, 	,

1
2�sm,

1
2�sm and 	sm) to be estimated. From the

properties of the translog functional form (Christensen et al., 1973) Eq. 1 is twice di¤erentiable with

respect to an output, an input price and their M spatial lags. Due to the symmetry restrictions that

are placed on the parameter matrices the resulting Hessians are also symmetric.

Parametric estimation of a spatial models involves using ML, 2SIV, GMM or Bayesian Monte

Carlo Markov Chain methods. We follow, for example, Elhorst and Fréret (2009) and Elhorst et al.

(2012) and estimate our model using ML. The estimation of our model has a couple of important

features. First, as is standard for �xed e¤ects models, we estimate our model using the within

transformation by demeaning the variables at the level of each �rm which eliminates the �xed e¤ects.

This transformation circumvents the well-known incidental parameter problem associated with the

�xed e¤ects. Second, the log-likelihood function includes the scaled logged determinant of the Jacobian

of the transformation from "�it to c
�
it, where the � denotes demeaned transformations of "it and cit.

In other words, the log-likelihood function includes T log jI� �1W1 � :::� �mWmj. As is standard

in spatial econometrics and mirroring the role of the transformation from "�it to c
�
it in ML estimation

of the simpler model with a single SAR variable, the transformation from "�it to c
�
it for our model

accounts for the endogeneity of the SAR variables and the fact that "it is not observed (Anselin, 1988;

Elhorst, 2009).

2.2 Method for the Elasticities and the Decomposition

Due to LSP it is now well-known for the structural form of a model in logs with at least one SAR

variable such as Eq. 1 that the �tted parameters cannot be interpreted as elasticities. The reason is

that the elasticity of a variable is a function of the SAR parameter(s). To compute the elasticities for

the variables for such a model we adopt what is now the standard approach in spatial econometrics,

which involves computing the direct, indirect and total elasticities using the �tted parameters from

the structural form of the model. A direct elasticity is interpreted in the same way as an elasticity

from a non-spatial model, although a direct elasticity takes into account feedback e¤ects that occur

via the spatial multiplier matrix. Feedback is the e¤ect of a change in an independent variable for a

particular �rm which reverberates back to the same �rm�s dependent variable through its e¤ect on

the dependent variables of the other �rms in the sample. An indirect elasticity can be calculated in

two ways yielding the same numerical value. This leads to two interpretations of an indirect elasticity:

(i) average change in the dependent variable of all the other �rms in the sample following a change

in an independent variable for one �rm; or (ii) average change in the dependent variable for one �rm

following a change in an independent variable for all the other �rms in the sample. Summing the

direct and indirect elasticities gives the total elasticity.

The indirect elasticity we refer to above is a composite measure. We now explain how we compute

the direct, composite indirect and total elasticities and their t�statistics. As spillovers is the focus

of our interest we also explain how we decompose a composite indirect elasticity into its constituent

parts. Direct, composite indirect and total elasticities are computed from the reduced form of a

structural spatial model. We obtain the reduced form of Eq. 1 by �rst rewriting the model using

matrix notation as follows.
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ct = ��+ TL (yt; pt; t) +

 
STL1 (W1yt;W1pt;W1t) + :::

+STLM (WMyt;WMpt;WMt)

!
+

 
�1W1ct + :::

+�MWMct

!
+ �+ "t;

(2)

where the i and j subscripts from Eq. 1 are dropped to denote vectors of successively stacked

cross-sectional observations, � is an (N � 1) vector of ones and everything else is as previously

de�ned for Eq. 1. We next take (�1W1ct + :::+ �MWMct) to the left-hand side which gives

(I� �1W1 � :::� �MWM) ct, and then take (I� �1W1 � :::� �MWM) to the right-hand side to ob-

tain the reduced form of the model in Eq. 3.

ct =

 
I� �1W1 � :::

��MWM

!�1
0
B@
��+ TL (yt; pt; t) +

 
STL1 (W1yt;W1pt;W1t) + :::

+STLM (WMyt;WMpt;WMt)

!

+�+ "t

1
CA ; (3)

where using terminology from the spatial literature (I� �1W1 � :::� �MWM)
�1 is the spatial mul-

tiplier matrix, which is key in spatial models.

The intuition behind the above mathematical transition from the structural form of the model to

its reduced form is as follows. In the structural form the spatial correlations between �rms� costs across

the M networks is accounted for by the M SAR variables. Additionally, in the structural form the

spatial lags of a �rm�s own independent variables capture the spatial correlations between the e¤ects

of a �rm�s own independent variables on its costs across neighboring �rms in the M networks. By

transforming the structural form into its reduced form we are simply attributing these di¤erent spatial

correlations to the own independent variables to obtain a form of the model that yields interpretable

elasticities.

We present the method to calculate the direct, composite indirect and total elasticities for the

variables in the context of a �rst order output, which we denote yk;t. To facilitate the presentation

of this method we distinguish between the structural form of our model in Eq. 1 and its local spatial

counterpart, i.e., Eq. 1 with the M SAR variables omitted. The local spatial counterpart would only

account for �rst order neighbor e¤ects via the exogenous spatially lagged variables, whereas Eq. 1 is a

global spatial model due to the presence of the SAR variable(s). If we were to estimate the local spatial

counterpart using mean adjusted data, which is a common data transformation for translog functions,

all the �tted coe¢cients on the �rst order own and local spatial variables are elasticities at the sample

mean. This is because at the sample mean the own and local spatial quadratic and interaction terms

are zero. Applying this to the reduced form of our model in Eq. 3, the �k and �s1;k; :::; �sM;k coe¢cients

on the yk;t and W1yk;t; :::;WMyk;t variables can be directly used to calculate the direct, composite

indirect and total elasticities for yk;t at the sample mean. Note that the �rst order direct, composite

indirect and total parameters are only elasticities at the sample mean and not at any other points in

the sample. To obtain elasticities outside the sample mean we must apply the approach for a non-

spatial translog function to our spatial setting. This involves using, among other things, the direct,

composite indirect and total parameters on the �rst order, quadratic and interaction variables.

If, as set out in Eq. 4a, we di¤erentiate Eq. 3 with respect to yk;t, we obtain a matrix of direct

and composite indirect elasticities for individual �rms from the product of the two matrices on the

right-hand side of Eq. 4b, where this product is independent of the time index. To summarize
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the large number of elasticities from this product we report the mean direct elasticity (mean of the

diagonal elements of this product) and a mean composite indirect spillover elasticity. (The mean

spillover elasticity to a �rm is the mean row sum of the o¤-diagonal elements of this product and the

mean spillover elasticity from a �rm is the mean column sum of the o¤-diagonal elements). Across

all the �rms in the sample it does not matter which of the two measures of the mean composite

indirect elasticity we use as they yield the same numerical value. In contrast, outside the sample

mean for a subset of the �rms (e.g., the mean for a particular quartile), the two measures of the mean

composite indirect elasticity will not be equal. In this case we use the former measure of the mean

composite indirect elasticity as we are interested in the spillover of scale and product mix economies

that gravitate to a �rm.

h
@c
@yk;1

; � � � ; @c
@yk;N

i
t
=

2
664

@c1
@yk;1

� � � @c1
@yk;N

...
. . .

...
@cN
@yk;1

� � � @cN
@yk;N

3
775

t

(4a)

= (I� �1W1 � :::� �MWM)
�1�

2
66666664

�k � � �
w1N;1�s1;k + :::

+w1N;M�sM;k
...

. . .
...

wN1;1�s1;k + :::

+wN1;M�sM;k
� � � �k

3
77777775

(4b)

= (I� �1W1 � :::� �MWM)
�1�

0
BBBBBBBBBB@

2
664

�k � � � 0
...

. . .
...

0 � � � �k

3
775+

2
664

0 � � � w1N;1�s1;k
...

. . .
...

wN1;1�s1;k � � � 0

3
775+

:::+

2
664

0 � � � w1N;M�sM;k
...

. . .
...

wN1;M�sM;k � � � 0

3
775

1
CCCCCCCCCCA

: (4c)

In the context of the yk;t variable we are using for illustrative purposes, we can see from the

reduced form of the model (Eq. 3) that this variable is multiplied by the direct, composite indirect

and total elasticities. A direct elasticity is akin to an own elasticity from a standard non-spatial model

because the only di¤erence between the two is the feedback component in the direct elasticity, which

originates from the ith �rm anyway and is typically small in empirical applications. We therefore

refer to the direct elasticity multiplied by yk;t as a change in the �rm�s output that is under its control

(i.e., a change in a �rm�s output that is considered in textbook production theory). In contrast, we

refer to the composite indirect elasticity multiplied by yk;t as a change in the �rm�s output due to the

spillover e¤ect from other �rms, which is primarily, but not entirely, outside the �rm�s control (i.e., a

change in a �rm�s output that is not considered in textbook production theory).

We follow the spatial literature by calculating t�statistics for the mean direct, composite indirect

and total parameters via Monte Carlo simulation of the distributions of these means. This involves

drawing 1; 000 parameter combinations from the variance-covariance matrix for Eq. 1, where each

parameter has a random component drawn from N (0; 1). For each parameter combination we cal-

culate mean direct, composite indirect and total parameters. The t�statistics for the mean direct,
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composite indirect and total parameters from Eq. 4b are then calculated by dividing each of these

mean parameters by the standard error of the parameter across the 1; 000 estimates from the Monte

Carlo simulations.8

We use Eq. 4c to decompose a composite indirect elasticity into M +1 components. This involves

using the M + 1 constituent parts of the second matrix on the right-hand side of Eq. 4b. The M + 1

decomposed indirect elasticities comprise the following. (i) An indirect elasticity that measures the

spillover to a �rm�s dependent variable due to the spillover e¤ect that is attributed to its independent

variable from all M spatial lags of the dependent variable, where these lags are accounted for in the

spatial multiplier matrix in Eq. 4c by the matrices ��1W1 � ::: � �MWM. (ii) M indirect spillover

elasticities that measure the spillovers to a �rm�s dependent variable due to the M spillover e¤ects

that are attributed to its independent variable from each of the M spatial lags of the latter.

(i) relates to the o¤-diagonal elements of the product of the spatial multiplier matrix and the

matrix with �k along the main diagonal in Eq. 4c. In terms of our application, (i) measures the cost

spillover to a bank due to the spillover e¤ect that is attributed to its independent variable from both

spatial lags of the dependent cost variable, which together capture the spatial correlations of banks�

costs across the banks� networks of brick and mortar branches and other types of branches.

The mth indirect elasticity from (ii) relates to the o¤-diagonal elements of the product of the

spatial multiplier matrix and the mth matrix in Eq. 4c with wij;m�sm;k o¤-diagonal elements. The

two measures of (ii) that we calculate in our application measure the cost spillover to a bank due to the

spillover e¤ect that is attributed to its independent variable from the each of the two spatial lags of the

latter. These two spatial lags and thus the two cost spillover elasticities capture the spatial correlations

between the e¤ects of a bank�s independent variable on its cost across the banks� networks of brick and

mortar branches and other types of branches. As described above for mean direct, composite indirect

and total parameters, the t�statistics for the three types of mean decomposed indirect parameters we

report (i.e., from above one measure of (i) and two measures of (ii)) are calculated via Monte Carlo

simulation.

3 Spatial Measures of Scale and Product Mix Economies

From the direct, composite indirect and total translog functions in Eqs. 5 � 7, which we construct

using the relevant parameters from Eq. 4b, we compute the spatial measures of returns to scale and

product mix.

cDirit = �Dirti +
1

2
&Dirt2i + �

Dir0pit + �
Dir0yit +

1

2
p0it�

Dirpit +
1

2
y0it�

Diryit + p
0
it	

Diryit; (5)

cCIndit = �CIndti +
1

2
&CIndt2i + �

CInd0pit + �
CInd0yit +

1

2
p0jt�

CIndpit +
1

2
y0it�

CIndyit + p
0
jt	

CIndyit; (6)

cTotit = �Totti +
1

2
&Tott2i + �

Tot0pit + �
Tot0yit +

1

2
p0it�

Totpit +
1

2
y0it�

Totyit + p
0
it	

Totyit; (7)

8We thank an anonymous reviewer for suggesting that we elaborate on how we calculate the t�statistics for the mean
direct, composite indirect and total parameters.
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where Dir, CInd and Tot denote direct, composite indirect and total. In other words, we compute

direct, composite indirect and total returns to scale and product mix. In the same way we also

constructM+1 decomposed indirect translog functions, which we use to calculate decomposed indirect

measures of returns to scale and product mix. The discussion of the indirect translog functions,

however, is con�ned to the composite case as it is simple to adapt the presentation to the M + 1

decomposed indirect translog functions. This involves replacing the composite indirect parameters in

Eq. 6 with each set of decomposed indirect parameters.

It is evident from Eq. 6 that a composite indirect elasticity measures the e¤ect on cCIndit from

the spillover impact that permeates to the ith �rm�s independent variable. Although Eqs. 5 � 7 all

have a translog functional form and from the properties of this functional form the Hessians from

these equations are symmetric, the theoretical monotonicity and curvature properties only apply to

the direct translog function and not to the composite and decomposed indirect and total functions.

This is because a direct parameter is akin to an own parameter from a standard non-spatial model,

whereas textbook production theory does not say anything about composite/decomposed spillovers

and hence the total parameters. In our application we check the proportion of the sets of direct

output and input price elasticities over the sample that satisfy the monotonicity property, and the

proportion of the sample where our direct translog cost function satis�es the curvature property. In

addition to the mismatch between the theoretical properties of a non-spatial translog function vis-à-

vis composite/decomposed indirect and total functions, unlike for a non-spatial cost function where

of course we observe the dependent variable, we do not observe cDirit , cCIndit and cTotit . Using Eqs. 5�7

though one can compute cDirit , cCIndit and cTotit . Moreover, in contrast to, for example, the M SAR

variables in Eq. 1, wij does not pre-multiply the observations in Eqs. 5�7 because in these equations

the e¤ect of the spatial weights is incorporated within the estimates of the direct, composite indirect

and total parameters.

To set the scene for the spatial scale and product mix economies consider �gure 1, which is a slight

modi�cation of a �gure in Berger et al. (1987) and Wheelock and Wilson (2001) for the non-spatial

case. In the ith �rm�s two-dimensional output space and using our terminology, their �gure is in

terms of the bundle of output levels that are under the �rm�s control (yi1 and yi2). In contrast, our

�gure is for the composite indirect case as the source of changes in yi1 and yi2 in �gure 1 is composite

spillovers to the ith �rm, which are primarily, but not entirely, outside the �rm�s control. We can

also apply �gure 1 to: (i) the direct case if the source of changes in yi1 and yi2 is the ith �rm; (ii) a

decomposed indirect case if the source of changes in yi1 and yi2 is decomposed spillovers to the ith

�rm; and (iii) the total case for changes in yi1 and yi2 that are from the combined sources of the ith

�rm and composite spillovers to the �rm.

We extend the non-spatial ray, expansion-path and expansion-path subadditivity measures of

scale and product mix economies in banking (Berger et al., 1987; Wheelock and Wilson, 2001) to

the spatial case. More speci�cally, we extend these non-spatial measures for banks to the case where

there are simultaneous spillover regimes. This involves introducing new sets of measures of scale and

product mix economies, where each set comprises direct, composite and decomposed indirect and

total measures. We set out formally below each new set of measures of the scale and product mix

economies in the context of the composite indirect measure as it is simple to adapt the presentation

to obtain the direct, decomposed indirect and total measures.

Using �gure 1 we illustrate output levels for the three types of composite indirect economies as

follows, where as we noted above the sources of the changes in yi1 and yi2 are composite spillovers

to the ith �rm. (a) Composite indirect ray-scale economies (RSECInd) relate to equiproportional
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Figure 1: Illustrative output levels for the composite indirect spillover scale and product mix economies

changes in yi1 and yi2 along the radial ray OA. (b) Composite indirect expansion-path scale economies

(EPSECInd) relate to incremental changes in yi1 and yi2 along a non-radial ray such as DA, which

represents a portion of the �rm�s composite indirect output expansion-path ODA. (c) Composite

indirect expansion-path subadditivity (EPSUCInd) measures the returns from a single �rm at A

producing the combined outputs of two smaller �rms at D and E.

To calculate the direct, composite and decomposed indirect and total RSE, each radial ray is

characterized by the �rm producing the relevant type of outputs in constant proportion to one another,

as de�ned by the �tted model. In other words, the product mix of the ith �rm�s relevant type of

outputs is held constant along the ray. Whereas with these RSE measures the absolute mix of the

relevant type of outputs does not change along the ray, when we calculate the direct, composite

and decomposed indirect and total EPSE this mix changes along the relevant non-radial output

expansion path. There will though be no change along an expansion path in the relative proportions

of the relevant type of outputs.

With reference to �gure 1 we now turn to the formal presentation of the composite indirect

measures of the scale and product mix economies.9

1. Spatial Ray-Scale Economies (RSE)

Consider a particular point
�
yOi ; p

O
i ; t

O
i

�
in the (yi; pi; ti) space, where the set of points < =��

�yOi ; p
O
i ; t

O
i

�
j� 2 (0;1)

�
represents a radial ray. The superscript O in the context of the two-

dimensional output space in �gure 1 represents the output levels at a point along OA.

From a theoretical perspective, to measure RSECInd along < we de�ne FCIndi (�jyi) �

cCIndi (�yi; pi; ti) =�c
CInd
i (yi; pi; ti). If F

CInd
i (�jyi) is increasing (/constant/decreasing) in �, RSE

CInd

9We thank an anonymous reviewer for suggesting that we relate our formal presentation of the composite indirect
scale and product mix economies to �gure 1.
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is increasing (/constant/decreasing) along <. By adapting the approach in the large body of empirical

literature that estimates non-spatial RSE, for a particular point
�
yOi ; p

O
i ; t

O
i

�
along < we compute

RSECIndi using Eq. 8.

RSECIndi =
@cCIndi (�yi; pi; ti)

@�
j�=1 =

KX

k=1

@cCIndi (yi; pi; ti)

@yik
; (8)

where the elasticity @cCIndi (yi; pi; ti) =@yik is the �rst order derivative of Eq. 6 with respect to the

kth output of the ith �rm.

In order to consider in the application RSEDiri , RSECIndi and RSEToti at di¤erent points along

the relevant radial ray, we compute these RSE measures at the sample mean and at various other

points in the sample. The resulting estimates indicate how expected cDiri , cCIndi and cToti vary along

the relevant radial ray, which informs how RSEDiri , RSECIndi and RSEToti vary at di¤erent scales of

production.

For the direct, composite indirect and total returns in each of the three sets of spatial scale and

product mix economies, the classi�cation of the returns is the same as in the standard non-spatial case.

Accordingly, RSEDiri , RSECIndi and RSEToti <; = or > 1 indicates increasing, constant or decreasing

direct, composite indirect and total returns to scale. The classi�cation of RSEDiri , RSECIndi and

RSEToti and also the direct, composite indirect and total returns from the other two sets of spatial

scale and product mix economies need not of course be the same. We conduct statistical inference

by using the direct, composite indirect and total parameters from the Monte Carlo simulations to

compute 1; 000 estimates of RSEDiri , RSECIndi and RSEToti .

Summarizing: if RSEDiri ;
�
RSECIndi

�
;
�
RSEToti

�
is <; = or > 1 and there is an equiproportional

increase in each of the ith �rm�s K outputs along the relevant radial ray, where the source of each

output is the ith �rm (composite spillovers to the ith �rm) [the ith �rm and composite spillovers to

the �rm combined], cDiri ;
�
cCIndi

�
;
�
cToti

�
will rise by a smaller, the same or a larger proportion.

2. Spatial Expansion-Path Scale Economies (EPSE)

Although non-spatial and spatial RSE are convenient metrics and in the non-spatial setting is a

widely reported measure, in practice these metrics may not be appropriate as a �rm is unlikely to

be located along the relevant radial ray. To address this shortcoming Berger et al. (1987) propose a

non-spatial measure of the degree of scale economies along a �rm�s output expansion-path (EPSE).

To move from non-spatial EPSE to the spatial case of EPSECInd we consider another point�
yBi ; p

B
i ; t

B
i

�
in the (yi; pi; ti) space, where

�
yBi ; p

B
i ; t

B
i

�
lies somewhere along a non-radial ray.

EPSECInd measures the increase in expected cCIndi as the �rm moves along this ray between the

points
�
(1� �) yBi ; p

B
i ; t

B
i

�
and

�
(1 + �) yBi ; p

B
i ; t

B
i

�
, where � is a small positive number that we elab-

orate on below. A movement in �gure 1 that is representative of the move between the points�
(1� �) yBi ; p

B
i ; t

B
i

�
and

�
(1 + �) yBi ; p

B
i ; t

B
i

�
would be a move between points that represent incre-

mental moves from point B down and up the non-radial ray DA.

Using cCIndi from Eq. 6, we compute EPSECIndi as follows.

EPSECIndi =
cCIndi

�
� (1� �) yBi ; p

B
i ; t

B
i

�

�cCIndi

�
(1� �) yBi ; p

B
i ; t

B
i

� = cCIndi

�
(1 + �) yBi ; p

B
i ; t

B
i

�
�
1+�
1��

�
cCIndi

�
(1� �) yBi ; p

B
i ; t

B
i

� ; (9)

where due to the relative proportions of the �rm�s composite indirect spillovers of outputs being

constant � (1� �) yBi = (1 + �) y
B
i . This gives � = (1 + �) = (1� �) and subsequently the expression
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on the far right of Eq. 9. As the equations for EPSEDiri , EPSECIndi and EPSEToti have the same

form it is simple to adapt Eq. 9 to the cases of EPSEDiri and EPSEToti .

Following the non-spatial study by Wheelock and Wilson (2012), in the empirical application we

use � = 0:05 to compute EPSEDiri , EPSECIndi and EPSEToti . In particular, we compute these

EPSE measures for movements along the relevant output expansion-path between �� of the mean

output vector for the full sample or a sub-sample. We therefore consider movements between 95%

and 105% of the relevant mean output vector.

Clearly if each of the ith �rm�s K outputs increases by a factor � > 1, where the source of the

increase is the ith �rm, composite spillovers to the �rm and the combined sources of the ith �rm

and composite spillovers to the �rm, cDiri , cCIndi and cToti will increase by factors of EPSEDiri �,

EPSECIndi � and EPSEToti �, respectively. Conversely, if each of the ith �rm�s K outputs decreases

by a factor ��1, where the source of the decrease is the ith �rm, composite spillovers to the �rm

and the combined sources of the ith �rm and composite spillovers to the �rm, cDiri , cCIndi and cToti

will decrease by factors of
�
EPSEDiri �

��1
,
�
EPSECIndi �

��1
and

�
EPSEToti �

��1
, respectively. It

therefore follows that EPSEDiri , EPSECIndi and EPSEToti <; = or > 1 corresponds to increasing,

constant or decreasing direct, composite indirect and total returns to scale along the speci�ed portion

of the relevant output expansion-path. Following the above approach for the spatial RSE measures,

statistical inference for EPSEDiri , EPSECIndi and EPSEToti involves computing 1; 000 estimates.

Summarizing: if EPSEDiri ;
�
EPSECIndi

�
;
�
EPSEToti

�
is <; = or > 1, as the ith �rm moves

along its direct (composite indirect) [total] output expansion-path from
�
(1� �) yBi ; p

B
i ; t

B
i

�
to�

(1 + �) yBi ; p
B
i ; t

B
i

�
, cDiri ;

�
cCIndi

�
;
�
cToti

�
will be rise by a smaller, the same or a larger proportion

than the rise in yi.

3. Spatial Expansion-Path Subadditivity (EPSU)

Berger et al. (1987) also present in a non-spatial setting EPSU , which is a combined measure of

scale and product mix economies. To adapt their approach to the spatial case of EPSUCInd suppose

the �rst points on two non-radial rays in the (yi; pi; ti) space are
�
yDi ; p

D
i ; t

D
i

�
and

�
yEi ; p

E
i ; t

E
i

�
. We

then consider a further point
�
yAi ; p

A
i ; t

A
i

�
where

�
yDi ; p

D
i ; t

D
i

�
+
�
yEi ; p

E
i ; t

E
i

�
=
�
yAi ; p

A
i ; t

A
i

�
. Here the

three superscripts attached to the output vectors represent the corresponding points for three �rms

in the two-dimensional output space in �gure 1, i.e., �rm A produces the combined outputs of two

smaller �rms D and E, where all the outputs are the result of spillovers to the �rms.

Using cCIndi from Eq. 6, EPSUCInd is calculated as follows.

EPSUCIndi =
cCIndi

�
yDi ; p

D
i ; t

D
i

�
+ cCIndi

�
yEi ; p

E
i ; t

E
i

�
� cCIndi

�
yAi ; p

A
i ; t

A
i

�

cCIndi

�
yAi ; p

A
i ; t

A
i

� : (10)

The equations for EPSUDiri , EPSUCIndi and EPSUToti have the same form so one can easily compute

EPSUDiri and EPSUToti by adapting Eq. 10. EPSUDiri , EPSUCIndi and EPSUToti <; = or > 0

corresponds to increasing, constant or decreasing direct, composite indirect and total returns to scale

when a �rm produces the sum of two smaller �rms� output quantities, where the source of each

output quantity is an individual �rm, composite spillovers to the �rm and the combined sources of

an individual �rm and composite spillovers to the �rm, respectively. In the empirical application we

conduct statistical inference for the estimates of EPSUDiri , EPSUCIndi and EPSUToti by once again

following the above approach for the spatial RSE measures .

As Wheelock and Wilson (2001) note in the non-spatial context, EPSE and EPSU are both

combined measures of scale and product mix economies, but it is the latter that is more akin to a
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measure of returns to scope. This also applies to the EPSUDiri , EPSUCIndi and EPSUToti measures

we introduce. To illustrate, EPSUCIndi is based on the change in the composite cost spillover to the

ith �rm, �cCIndi , when the ith �rm produces the sum of two smaller �rms� output quantities, where

the source of each output quantity is composite spillovers to the �rm and the mix of the composite

indirect spillover of outputs for the two smaller �rms di¤ers. EPSECIndi , on the other hand, is based

on �cCIndi when there is only an incremental change in the ith �rm�s output levels that emanate from

composite spillovers. Consequently, there is only an incremental change in the mix of the composite

indirect spillover of outputs that gravitate to the ith �rm. With EPSUCIndi there are potentially

large di¤erences in the mix of the composite indirect spillover of outputs that gravitate to the larger

�rm and the two smaller �rms.

Summarizing: if EPSUDiri ;
�
EPSUCIndi

�
;
�
EPSUToti

�
is <; = or > 0 and the ith �rm produces

the combined output quantities of two smaller �rms with di¤erent product mixes, where the source of

each output quantity is the individual �rm (composite spillovers to the �rm) [the �rm and composite

spillovers to the �rm combined], cDiri ;
�
cCIndi

�
;
�
cToti

�
will rise by a smaller, the same or a larger

proportion than the rise in yi.

4 Application to U.S. Banks

4.1 Data and the Spatial Weights Matrices for the Di¤erent Regimes

Our data set is a rich balanced panel of annual observations for 387 large and medium-sized U.S.

banks for the period 1998 � 2015. This is an interesting period as it includes the �nancial crisis

as well as su¢ciently long pre and post-crisis periods. Our sample is a balanced panel because we

analyze continuously operating banks to focus on the spatial scale and product mix economies of the

core group of surviving large and medium-sized institutions. Following Berger and Roman (2017) we

classify a U.S. bank as large if its total assets in 2015 were greater than $3 billion and medium-sized

if in 2015 its total assets were between $1 billion and $3 billion. Based on this classi�cation both

bank size categories are well represented in our sample as there are 218 medium-sized banks and 169

large.10

The data for the variables is from the Call Reports sourced from the Federal Deposit Insurance

Corporation (FDIC). Monetary values are de�ated to 2005 prices using the consumer price index

and the choice of output and input price variables is guided by the well-established intermediation

approach to banking (Sealey and Lindley, 1977). See table 1 for descriptions of the outputs and input

prices and summary statistics for the level variables. All the variables are logged and then mean

adjusted so the �rst order direct, indirect and total output and normalized input price parameters

can be interpreted as elasticities at the sample mean. The three outputs in our model speci�cation,

which re�ect the lending and non-lending activities of banks, are total loans (y1), total securities (y2)

and total non-interest income (y3). There are three input prices that re�ect the cost of �xed assets

(p1), labor (p2) and deposits (p3), where p1 is the normalizing input price. Total operating cost (c)

is the dependent variable and is the sum of the expenditures on the three inputs, where c is also

normalized by p1.

10Given we focus on medium-sized and large banks because their su¢ciently large branch networks lead to a su¢cient
network overlap, and then distinguish between these bank size categories, size thresholds need to be used. There is not
an industry accepted source for U.S. bank size thresholds so we use the thresholds from a leading recent paper in the
banking literature (Berger and Roman, 2017). These thresholds are well-suited to our data set as they are for bank size
in the �nal year of Berger and Roman�s study period (2015), which is also the �nal year of our study period.
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Table 1: Variable descriptions and summary statistics

Full Sample

(387 banks)

Variable description
Model

notation
Mean Std. Dev.

Total operating cost (in 000s of 2005 U.S. dollars): Sum of salaries, c 394,215 2,333,162

interest expenses on deposits and expenditure on �xed assets

Cost of �xed assets: Expenditure on �xed assets divided by the p1 0.320 0.596

sum of the value of premises and �xed assets

Cost of labor (in 000s of 2005 U.S. dollars): Salaries divided by the p2 56.241 16.392

total number of full-time equivalent employees

Cost of deposits: Interest expenses on deposits divided by total p3 0.018 0.012

deposits

Loans: Net loans and leases (in 000s of 2005 U.S. dollars) y1 8,543,801 48,204,623

Total securities (in 000s of 2005 U.S. dollars) y2 2,781,599 17,894,416

Total non-interest income (in 000s of 2005 U.S. dollars) y3 304,672 1,979,639

We simultaneously use two speci�cations ofW in our model. This involves splitting each bank�s

branch network into two types of branches- full service brick and mortar branches, and all other

types of full and limited service branches. Each bank has both branch categories and so each bank

features in both speci�cations of W. We use WBM to denote the full service brick and mortar

based speci�cation andWO to denote the speci�cation based on other branch types. Other types of

branches can potentially cover up to twelve branch types, although seven is the most a bank has in

our sample.11

The thinking behind our split of the banks� branch networks is that the split will capture di¤erent

spatial linkages due to the di¤erent levels of centralization of activities across our two bank branch

categories. There are a much large number of brick and mortar branches where similar general activi-

ties are highly decentralized across the branches. In contrast, there is a high degree of centralization of

specialist activities in some of the other types of branches, which explains the relatively small number

of full service cyber o¢ces, limited service loan production o¢ces and limited service consumer credit

o¢ces. With regard to the split of the bank branching networks, on average over our sample 88:4%

are full service brick and mortar branches, which indicates that other branch types represent a rela-

tively small share. An important related issue we examine is whether the degree of SAR dependence

across overlapping brick and mortar networks is greater than across overlapping networks of other

branches because of the dominance of brick and mortar branches in our sample. Alternatively, the

SAR dependence could be greater across overlapping networks of other branches due to the higher

degree of centralization of activities in these branches.

We constructWBM andWO in the same way using the following �ve steps.

(1) Begin with two matrices for each year in the sample and set all the cells on the main diagonal

of a matrix to zero because a bank cannot be its own neighbor.

(2) For each state where the ith bank has the relevant type of branch (full service brick and mortar

or other types of branches), we calculate the ratio of the number of jth bank branches to the

11For example, two of the twelve other types of branches are limited service loan production
branches, which process loans and do not accept deposits, and limited service consumer credit branches,
which only process consumer credit loans. For the full list of the twelve other branch types see
https://www5.fdic.gov/sod/de�nitions.asp?systemform=soddnld3&helpitem=brsertyp&baritem=1.
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number of ith bank branches. For the two matrices in each year we compute the non-zero o¤-

diagonal elements by summing these ratios across the states where the ith bank has the relevant

type of branch.12

(3) All other o¤-diagonal elements of the two matrices for each year are set to zero. These elements

signify for the relevant type of branch that the ith and jth banks do not have overlapping branch

networks.

(4) Average the annual matrices for each of the two branch categories from (3) to obtain two matrices

for the sample.

(5) Normalize the elements of the average matrix for each of the two branch categories by dividing

throughout by the largest element, which is referred to in the spatial literature as normalizing by

the largest eigenvalue. The advantage of this normalization is that it preserves the information

for the relevant type of branch on the absolute intensity of a bank�s branch network vis-à-vis the

overlapping branch network of another bank. This is because the normalization does not change

the proportional relationship between the spatial weights. As a result, the spillovers between

the banks are positively related to the absolute intensities.13

AsWBM andWO are constructed using micro level geographical information on branch networks

and the variables in the model are at the more aggregate level of the banking �rm/bank holding

company, based on parallels with �rm level studies that include independent variables to re�ect

disaggregated plant level characteristics, it is reasonable to takeWBM andWO to be exogenous.

As a �nal point on the data and spatial weights matrices, we note that there were a lot of

mergers and acquisitions in the U.S. banking industry over our study period. Since our data set

is a balanced panel and therefore contains only continuously operating medium-sized and large banks,

this consolidation resulted in a non-negligible number of these banks increasing in size. Such size

increases led to greater overlaps between banks� branch networks and, as a result, more interconnected

banks. We in turn associate this with an increase in systemic risk, which was a key feature of the

�nancial crisis. The greater overlap between banks� branch networks is inherent in the information

about branch locations that we use to specify the spatial weights matrices. Moreover, the increase

in interconnectedness and hence greater systemic risk are consistent with positive spatial correlation

between banks� costs. This correlation will be re�ected in the degree of spatial cost dependence across

banks� overlapping brick and mortar branch networks and across their overlapping networks of other

branch types (i.e., the estimates of �BM and �O).

4.2 Estimated Spatial Cost Model and the Elasticities

The �tted coe¢cients for our spatial Durbin cost function (SDCF) with two spatial regimes, WBM

and WO, are presented in table 2. Throughout our empirical analysis results that relate to WBM

and WO (e.g., the parameters that are pre-multiplied by WBM and WO in table 2) apply to the

12As other types of branches represent a small share of bank branch networks, we calculate the above ratios at the
rather aggregate state level to ensure there are overlapping networks of other branch types.
13Often the elements of a spatial weights matrix are normalized by the row sums. This is suitable when the elements

are binary (e.g., elements that re�ect contiguous geographical areas), which is very di¤erent from the case we consider.
If we row-normalized our non-binary elements we would transform the information about the absolute intensities into
relative intensities, which would make the spillovers di¢cult to interpret.
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Table 2: Estimated spatial cost model with two simultaneous spatial regimes

Model
coe¤

Model
coe¤

Model
coe¤

y1 0:603��� WBMy2 0:171 WOy3 �0:032
y2 0:157��� WBMy3 �0:341� WOp2 �0:470���

y3 0:177��� WBMp2 �0:108 WOp3 0:012
p2 0:535��� WBMp3 0:102 WOy

2
1 �0:013

p3 0:368��� WBMy
2
1 0:039 WOy

2
2 0:015

y21 0:060��� WBMy
2
2 �0:070 WOy

2
3 0:056

y22 0:012��� WBMy
2
3 �0:088� WOy1y2 0:056

y23 0:046��� WBMy1y2 �0:178 WOy1y3 �0:034
y1y2 �0:023��� WBMy1y3 0:070 WOy2y3 �0:093�

y1y3 �0:095��� WBMy2y3 0:201� WOp
2
2 0:446���

y2y3 0:006�� WBMp
2
2 0:500�� WOp

2
3 0:019�

p22 0:049��� WBMp
2
3 �0:047��� WOp2p3 �0:242���

p23 0:053��� WBMp2p3 �0:161� WOy1p2 �0:424���

p2p3 �0:091��� WBMy1p2 �0:295 WOy1p3 0:083���

y1p2 �0:051
���

WBMy1p3 �0:074 WOy2p2 �0:058
y1p3 0:070��� WBMy2p2 0:242 WOy2p3 0:041�

y2p2 0:012�� WBMy2p3 �0:151��� WOy3p2 0:486���

y2p3 0:004� WBMy3p2 0:112 WOy3p3 �0:131���

y3p2 0:029��� WBMy3p3 0:137�� WOt 0:006
y3p3 �0:062��� WBMt 0:003 WOt

2 �0:002���

t 0:001 WBMt
2 �0:002�� �BM 0:214��

t2 0:002��� WOy1 �0:363��� �O 0:268���

WBMy1 �0:017 WOy2 0:135

Notes: *, ** and *** denote statistical signi�cance at the 5%, 1%
and 0.1% levels, respectively.

same banks as each bank in our sample has both types of branches (i.e., full service brick and mortar

branches and other types of full and limited service branches).14

It is now well-known that the spillover parameters from a model that contains one or more SAR

variables are the indirect parameters. From Eqs. 4b and 4c we can see that the composite and decom-

posed indirect parameters depend on, among other things, the SAR parameters for the spatial regimes

(i.e., the �1; :::; �M parameters). Before we present and discuss the composite and decomposed indi-

rect parameters, we note that even though a SAR coe¢cient is not an elasticity, it has an informative

interpretation as it represents the degree of SAR dependence across the cross-sectional �rms. From

table 2 we can see that the estimates of �BM and �O are signi�cant at the 1% level or less. In the

context of the empirical spatial literature and in line with our expectations, the magnitudes of these

estimates suggest non-negligible positive SAR cost dependence between banks with brick and mortar

branches and other types of branches in the same state. As �BM is less than �O we conclude that the

dominance of brick and mortar branches in our sample is a smaller source of SAR cost dependence

than the high degree of centralization of activities in some of the other branch types. It is also evident

from table 2 that a number of the coe¢cients on the local spatial variables are signi�cant at the 5%

level or less (e.g., the coe¢cients on WBMy3, WOy1 and WOp2). These �ndings are supportive of

our spatial Durbin model as opposed to a SAR model as the latter omits local spatial regressors.

In table 3 we present the direct, composite indirect and total parameters from our �tted SDCF,

where for the moment we focus on the direct parameters. The �rst order direct output and input

14We thank an anonymous reviewer for suggesting that we point out that the results that relate to WBM and WO

apply to the same banks.
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Table 3: Estimated direct, composite indirect and total parameters

Direct
parameter

Composite
indirect
parameter

Total
parameter

y1 0:602��� �0:085 0:517���

y2 0:157��� 0:172�� 0:329���

y3 0:177��� �0:089 0:088
p2 0:534��� �0:192 0:342���

p3 0:368��� 0:123��� 0:491���

y21 0:060��� 0:017 0:076
y22 0:012��� �0:011 0:001
y23 0:046��� 0:016 0:061��

y1y2 �0:023��� �0:027 �0:050
y1y3 �0:095��� �0:018 �0:113�

y2y3 0:006�� 0:010 0:016
p22 0:050��� 0:431��� 0:481���

p23 0:053��� 0:008 0:060���

p2p3 �0:092��� �0:214��� �0:305���

y1p2 �0:052��� �0:361��� �0:413���

y1p3 0:070��� 0:042 0:112���

y2p2 0:012�� 0:047 0:059
y2p3 0:004� �0:024 �0:021
y3p2 0:030��� 0:333��� 0:363���

y3p3 �0:062��� �0:048� �0:110���

t 0:001 0:005 0:006�

t2 0:002��� �0:002��� 0:000

Notes: *, ** and *** denote statistical
signi�cance at the 5%, 1% and 0.1% levels,
respectively.

price parameters indicate that the elasticities for these variables at the sample mean are positive

and signi�cant at the 0:1% level. Since the direct parameters can be interpreted in the same way

as the parameters from the corresponding non-spatial cost function, the monotonicity and curvature

properties of a non-spatial cost function also apply to the direct cost function (refer back to Eq. 5 for

the general form of our direct translog cost function).

We conclude that our �tted model in table 2 is well-behaved as the resulting direct translog cost

function in table 3 satis�es the monotonicity and concavity properties at virtually all of the data

points.15 We �nd that 98:1% of the sets of direct output and input price elasticities outside the

sample mean satisfy the monotonicity property as they include only positive elasticities. In line with

production theory, a cost function is concave in input prices (Kumbhakar and Lovell, 2000) if the

input price Hessian is negative semi-de�nite (i.e., all the odd numbered principal minors are non-

positive and all the even numbered ones are non-negative). Checking the sign pattern of the principal

minors of a Hessian from a direct translog function involves following the approach in Glass et al.

(2016), who apply the method for the non-spatial setting in Diewert and Wales (1987) to the spatial

case. We observe that the reported direct translog cost function is almost exclusively concave in input

prices over the sample, as 99:6% of the input price Hessians outside the sample mean are negative

semi-de�nite and thus consistent with production theory.

We associate a negative and signi�cant direct �rst order time parameter with annual Hicks neutral

technical change for the sample average bank. The direct �rst order time parameter in table 3,

15We thank an anonymous reviewer for suggesting we investigate whether our reported direct translog cost function
satis�es the monotonicity and concavity conditions outside the sample mean.
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however, is positive, albeit only signi�cant at the 10% level, so there are some signs that the model

is picking up something other than Hicks neutral technical change. Based also on the positive direct

second order time parameter, which is signi�cant at the 0:1% level, there are signs that bank costs

are characterized by a positive time trend that increases annually.

One can think of production theory as accounting for spillovers because the representative �rm can

be viewed as minimizing its costs that are under its control, having taken as given the cost spillovers.

As the spillovers are taken as given, production theory does not posit the e¤ect of a change in an input

price (output) spillover to the representative �rm on its cost. As a result, we do not consider further

empirical monotonicity and curvature characteristics beyond the above analysis of the reported direct

function that considers the portions of a bank�s input prices, outputs and thus cost that are under the

bank�s control. We do not therefore explore the empirical monotonicity and curvature characteristics

of the reported composite and decomposed indirect translog functions, which consider the portions of

a bank�s input prices, outputs and thus cost that are due to aggregate and disaggregated spillovers,

respectively. Nor do we explore such characteristics of the reported total function as a part of the

bank�s input prices, outputs and thus cost that this function considers are due to aggregate spillovers.

Recall that a composite indirect parameter measures the cost spillover to the ith bank due to

the spillover e¤ect on one of the bank�s own independent variables. We can see from table 3 that

the composite indirect y2 and p3 parameters are signi�cant and non-negligible, which further justi�es

adopting a spatial approach to cost modeling for U.S. banks. Both these composite parameters are

positive because the correlations in the structural form of our model (Eq. 1) that are attributed

to y2 and p3 in the reduced form of the model (Eq. 3) are positive. This is evident because the

two SAR coe¢cients that capture the spatial correlation between banks� costs and the parameters

that capture the spatial correlations between the e¤ects of a bank�s y2 and p3 variables on its cost

(i.e., theWBMy2,WOy2,WBMp3 andWOp3 parameters) are all positive (see table 2). Both SAR

parameters are signi�cant, whereas the coe¢cients on the spatial lags of y2 and p3 are not signi�cant.

This indicates that the signi�cant composite indirect y2 and p3 parameters are due to the SAR

parameters dominating the coe¢cients on the spatial lags of y2 and p3. As a result of the direct and

composite indirect y2 and p3 parameters, the total parameters for these variables are also positive and

signi�cant.

The composite indirect y1, y3 and p2 parameters in table 3 are not signi�cant. This is due to the

negative spatial correlations between the e¤ects of these variables on a bank�s cost (as captured by

the negative coe¢cients on the spatial lags of these variables in table 2) cancelling out the e¤ect of

the signi�cant positive SAR parameters. For y1 and p2 the total parameters in table 3 are positive

and signi�cant because in both cases the positive and signi�cant direct parameter more than o¤sets

the relatively small, negative and insigni�cant composite indirect parameter. In contrast, the total y3

parameter resembles di¤erent aspects of its direct and composite indirect components as it is positive

like the former and not signi�cant like the latter.

As ultimately it is the spatial scale and product mix economies we are interested in, we shed

more light on the output spillover e¤ects in table 4 by presenting the decomposed indirect parameters

for the ith bank�s �rst order outputs, squared outputs and interaction terms containing an output,

where we use x to denote any of these variables. A composite indirect parameter does not indicate

the di¤erent sources of the spillover e¤ect on x, so in table 4 we provide the following three-way

decomposition of this e¤ect. (i) An indirect parameter when the spillover e¤ect that is attributed to x

is collectively from the two SAR variables,WBMc andWOc (column 2).
16 (ii) An indirect parameter

16 It is not feasible to further decompose (i) into two indirect parameters relating to the separate spillover e¤ects that
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Table 4: The decomposition of the composite indirect parameters relating to the outputs

x

Decomposed indirect (i)
parameter relating to the

attribution to x fromWBMc
andWOc collectively

Decomposed indirect (ii)
parameter relating to the
attribution to x from

WBMx

Decomposed indirect (iii)
parameter relating to the
attribution to x from

WOx

y1 0:138��� �0:006 �0:217���

y2 0:036��� 0:056 0:080
y3 0:041��� �0:112� �0:018
y21 0:014��� 0:011 �0:008
y22 0:003��� �0:023 0:009
y23 0:011��� �0:028 0:033
y1y2 �0:005��� �0:056 0:034
y1y3 �0:022��� 0:023 �0:019
y2y3 0:001� 0:064� �0:056�

y1p2 �0:012��� �0:099 �0:250���

y1p3 0:016��� �0:023 0:048��

y2p2 0:003� 0:079 �0:035
y2p3 0:001� �0:049��� 0:024�

y3p2 0:007��� 0:038 0:288���

y3p3 �0:014��� 0:044�� �0:077���

Notes: *, ** and *** denote statistical signi�cance at the 5%, 1% and 0.1% levels, respectively.

when the spillover e¤ect that is attributed to x is fromWBMx (column 3). (iii) An indirect parameter

when the spillover e¤ect that is attributed to x is fromWOx (column 4). The noteworthy features of

table 4 are the positive and signi�cant e¤ects in column 2 for all the variables and the negative and

signi�cant e¤ects in columns 3 and 4 for y3 and y1, respectively.

In �gure 2 we present the average annual direct, composite indirect and total output elasticities

to see how they evolve over the study period. We draw attention to the note directly below this �gure

which explains how we present the elasticities. From this �gure we can see that the average direct

elasticity for securities (y2) is reasonably stable over the study period, whilst there are signs that the

paths of the average direct elasticities for loans (y1) and non-interest income (y3) contrast. This is

in line with the change in the nature of U.S. banking that is reported in the literature because, as

Clark and Siems (2002) note, there was a fall in the commercial bank share of total U.S. �nancial

intermediation, while there was an increase in commercial banks� non-interest income, which is heavily

in�uenced by o¤-balance sheet activities. To illustrate, Clark and Siems report that the ratio of non-

interest income to total income increased from 19% in the late 1970s to nearly 46% in 1999. Moreover,

Lozano-Vivas and Pasiouras (2014) undertake a cross-country analysis of banks (1999 � 2006) and

�nd that, on average, banks in major advanced countries (including the U.S.) have a higher ratio of

non-interest income to total income.

We can also see from �gure 2 that the average composite indirect elasticity for y2 is positive,

non-negligible and quite stable over the study period, whereas the average annual composite indirect

elasticities for y1 and y3 are trending downwards and upwards. We can therefore conclude that, on

average, the relationships between a bank�s cost and the spillover e¤ects on its y1 and y3 variables

have changed considerably over the study period. To illustrate, due to the downward trend in the

composite indirect elasticity for y1, by the end of the study period we �nd that a marginal increase

in the spillover e¤ect on a bank�s loans will lead to a marked fall in its cost. This is entirely plausible

because based on the spatial literature (e.g., Kao and Bera, 2013, Boarnet and Glazer, 2002, and

are attributed to x fromWBMc andWOc (Elhorst et al., 2012).
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Figure 2: Average annual direct, composite indirect and total output elasticities

Garrett and Marsh, 2002) we would typically associate the increase in the magnitude of this negative

relationship over a large part of the study period with more intense bank competition to make loans.

This increase in competition �ts with U.S. bank loan markets being �uid, which explains why studies

have used data sets for di¤erent time periods to analyze if loan competition between U.S. banks

changed over time (e.g., Berger et al., 2004, 2007, and Bolt and Humphrey, 2015).

Following table 4, in �gure 3 we present the three-way decomposition of the average annual

composite indirect output elasticities (see (i)-(iii) above). Again we draw attention to the note below

this �gure which explains how we present these decomposed spillover elasticities. We can see from this

�gure that the average decomposed indirect (i) elasticity for y2 exhibits a high degree of stability over

the study period, whereas there are signs of a small trade-o¤ between the same elasticities for y1 and

y3. These elasticities for y1�y3 are positive over the study period, which re�ects the positive e¤ects on

cost from the spillovers that are attributed to the outputs from the two spatial lags of the dependent

variable. Speci�cally, the decomposed indirect (i) elasticities for y1 � y3 are positive because the

two positive SAR parameters are evidently capturing the positive spatial correlations between banks�

costs. These spatial correlations are positive because banks that operate in the same markets and

thus have overlapping branch networks are subject to common phenomena such as market growth

and headline changes in local and regional economies.

Figure 3 also reveals that the average decomposed indirect (ii) elasticity for y1 is very small over

the study period. The same elasticity for y3, despite a slight change around the 2008 �nancial crisis,

is always non-negligible and negative. This re�ects over our study period the negative e¤ect on cost

from the collective spillover e¤ect that is attributed to y3, y
2
3 and interaction terms that include y3

from WBMy3, WBMy
2
3 and the interaction terms that include y3 and are pre-multiplied by WBM,
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Figure 3: Average annual decomposed indirect output elasticities

respectively. See, for example, the large negative and signi�cant coe¢cient on WBMy3 in table

2. Speci�cally, the decomposed indirect (ii) y3 elasticity over our study period is negative because

collectively the WBMy3, WBMy
2
3 and the interaction terms that include y3 that are pre-multiplied

byWBM are capturing the negative spatial correlation between the collective e¤ect of y3, y
2
3 and the

interaction terms that include y3 on a bank�s cost across the networks of brick and mortar branches.

This spatial correlation is negative as banks that operate in the same markets via brick and mortar

branches and thus have overlapping brick and mortar branch networks are evidently competing for

non-interest income (y3) (i.e., fees and charges).

The average decomposed (ii) indirect elasticity for y2 goes from being very small in the early part

of our study period to positive non-negligible levels in later years, which is again despite a dip around

the crisis. In contrast to a decomposed (i) indirect output elasticity, which, as was noted above,

relates to the spatial correlation between banks� costs across the two branch networks, decomposed

(ii) and (iii) indirect output elasticities capture particular output phenomena (e.g., the aforementioned

competition for non-interest income). Along the same lines, we suggest that the rise in the average

decomposed (ii) indirect elasticity for y2 (securities) in the second half of the study period is capturing

the increase in the positive spillover e¤ect on a bank�s securities (and hence its cost) due to the increase

in securities across the industry (He et al., 2010; Lang�eld and Pagano, 2015).

WO captures the overlap of banks� networks of other branch types. Recall that for some of these

other types of branches we highlighted the high degree of centralization of particular activities in

a branch vis-à-vis a brick and mortar branch. From �gure 3 it is evident that the annual average

decomposed indirect (iii) elasticity for y1 (loans) is always negative and non-negligible, and tends to

increase in magnitude over the study period. This is conceivably because other types of branches that

specialize in loans (e.g., limited service loan production o¢ces) are capturing the e¤ect of the increases

in bank competition to make loans that we asserted was driving the evolution of the composite indirect

elasticity for loans in �gure 2.
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Table 5: Average spatial ray-scale economies for the full sample and large and medium-sized banks

Measure of RSE
Full
sample

Large banks
Medium-sized

banks

Average direct RSE,
RSEDir

0:936� 0:824� 1:024�

Average composite
indirect RSE, RSECInd

�0:002a �0:045a 0:032a

Average total RSE,
RSETot

0:934� 0:779� 1:055�

Average decomposed
indirect (i) RSE, RSEDInd(i)

0:215�a 0:189�a 0:235�a

Average decomposed
indirect (ii) RSE, RSEDInd(ii)

�0:061a �0:025a �0:089a

Average decomposed
indirect (iii) RSE, RSEDInd(iii)

�0:156�a �0:209�a �0:114�a

Notes: A bank is classi�ed as large (medium-sized) if it has total assets greater
than $3 billion in 2015 (inbetween $1 billion and $3 billion in 2015) (Berger
and Roman, 2017). At the 5% level * denotes signi�cantly di¤erent from zero
and a and b denote signi�cantly less (greater) than or greater (less) than +1 (-1)
for positive (negative) returns, respectively

4.3 Estimates of the Spatial Economies and the Policy Implications

For clarity we follow the non-spatial analyses by Wheelock and Wilson (2001; 2012) and discuss our

estimates of the three di¤erent sets of spatial economies separately. We then pull together our key

empirical �ndings from these sets to suggest the policy implications.

1. Results and Analysis: Spatial Ray-Scale Economies (RSE)

In table 5 we present for the full sample and two subsamples of large and medium-sized banks

average estimates of RSEDir, RSECInd, RSETot and the three measures of RSEDInd, where DInd

denotes decomposed indirect. Each of the three reported estimates of RSEDir is not signi�cantly

less than or greater than 1, which points to constant RSEDir. For large banks the magnitude of the

average estimate of RSEDir is some way below 1, which is consistent with the increase in the size

of the largest banks since the �nancial crisis. To illustrate, Wheelock and Wilson (2018) note that

at the end of 2006 the largest U.S. bank holding company (Citigroup) had total consolidated assets

of $1:9 trillion and two others (Bank of America and JPMorgan Chase) had more than $1 trillion in

assets. Compare this to the end of 2015 when the assets of the largest company (JPMorgan Chase)

had increased to $2:35 trillion with three others having more than $1:7 trillion in assets.

The average estimate of RSEDir for large banks is not signi�cantly di¤erent from constant returns

due to the rather large standard error. This is what we would expect for large banks as there is a

lot of variation in size in this sub-sample with some of the smaller large banks being much closer in

size to medium-sized banks than very large banks, where for medium-sized banks the magnitude of

the average estimate of RSEDir is only slightly above constant returns. As the direct parameters

from a spatial model are akin to standard own parameters from a non-spatial model there is a close
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resemblance between direct and own returns to scale. It is not surprising therefore to �nd that our

constant RSEDir results are in line with some of the results for own RSE from the non-spatial studies

of U.S. banks by Wheelock and Wilson (2001; 2012).

We can see from table 5 that the three reported estimates of average composite spillover returns

to scale to a bank (RSECInd) are not large and not signi�cantly di¤erent from zero. This indicates

that there are, on average, no cost implications for a bank from an equiproportional change in its

output levels that are attributable to spillovers from other banks. Although we would have expected

the three reported average estimates of RSECInd to suggest a non-negligible and signi�cant change in

the cost of a bank when there is an equiproportional change in its output levels due to spillovers, our

subsequent �ndings, which we brie�y summarize here and cover in more detail in due course, indicate

that the relationship between a bank�s cost and its output levels due to spillovers is more complex

than this. This is for two reasons, �rst, although we report zero RSECInd estimates, closer analysis

reveals that they are made up of signi�cant non-negligible positive and negative decomposed spillover

returns to scale (RSEDInd) that cancel one another out. Second, we �nd that composite indirect scale

economies are sensitive to the nature of the change in the output levels attributable to spillovers. To

illustrate, whereas the zero RSECInd we report relate to a change in a bank�s output levels due to

spillovers along the radial ray, when we consider an incremental change in these output levels along

the bank�s non-radial expansion-path we observe EPSECInd that are positive, non-negligible and

signi�cant, which is more in line with our expectations.

When the reported estimates of average RSEDir and RSECInd are summed to obtain RSETot

there is of course some similarity between the magnitudes of the corresponding average estimates of

RSEDir and RSETot. As is the case for the reported RSEDir, the average estimates of RSETot

for the full sample and large and medium-sized banks are not signi�cantly less than or greater than

1, which suggests constant RSETot. This indicates that, on average, if there is an equiproportional

change in a bank�s outputs levels that are under its control and its output levels due to spillovers,

there will be the same proportionate change in the bank�s cost.

In terms of the components of each of the insigni�cant RSECInd, we can see from table 5 that

RSEDInd(i) and RSEDInd(iii) are signi�cantly di¤erent from zero; RSEDInd(ii) is insigni�cant; and RSEDInd(i)

and RSEDInd(iii) are signi�cantly less than or greater than +1 and �1, respectively. Since the decom-

posed indirect (i) elasticities for y1 � y3 are used to calculate RSE
DInd
(i) , the explanation of RSEDInd(i)

mirrors that for these elasticities. Accordingly, we conclude that the positive RSEDInd(i) are capturing

the positive spatial correlation between banks� scale economies because of the common phenomena

that exist between banks that operate in the same markets.

Turning to the interpretation of RSEDInd(i) � RSEDInd(iii) . The estimates of RSE
DInd
(i) in table 5

indicate that if there is an equiproportional increase in the spillover e¤ect on a bank�s outputs (i.e.,

on vector y) that emanates from a combined increase inWBMc andWOc, c
DInd
(i) will rise by smaller

proportion than y. Conversely, from the negative estimates of RSEDInd(iii) we can conclude that if

due to an increase in the spillover e¤ect on y that emanates from an increase in WOy there is an

equiproportional decrease in a bank�s outputs, which we attribute to the e¤ects of competition, cDInd(iii)

will decline by a smaller proportion than y. Interestingly, it is evident that we obtain insigni�cant

average RSECInd for the full sample and large and medium-sized banks because in all three cases the

positive and signi�cant RSEDInd(i) is cancelled out by the negative and insigni�cant RSEDInd(ii) and the

negative and signi�cant RSEDInd(iii) .

In �gure 4 we present the sample average annual RSEDir, RSECInd and RSETot together with

the 95% con�dence intervals. The general conclusion from this �gure is that the evolution of average
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Figure 4: Average annual direct, composite indirect and total ray-scale economies

annual RSEDir, RSECInd and RSETot re�ect what we observed in table 5. This is because average

annual RSECInd is always not signi�cantly di¤erent from zero and, as a result, average annual RSETot

mirrors its RSEDir component. We can also see from �gure 4 that average annual RSEDir and

RSETot are on downward trends and by the end of the study period both are close to being signi�cantly

less than 1. This suggests that, on average, banks are moving towards becoming smaller than their

minimum e¢cient size.

An interesting issue that emerges from �gure 4 is the sources of the insigni�cant annual RSECInd

over the study period. To examine these sources in �gure 5 we present the decomposition of the

annual RSECInd into its three constituent parts (RSEDInd(i) �RSEDInd(iii) ). From this �gure we can see

that annual RSEDInd(i) �RSEDInd(iii) closely resemble the results for the averages of these measures over

the study period (see table 5). This is evident as we always observe annual RSEDInd(i) and RSEDInd(iii)

that are signi�cantly di¤erent from zero; an insigni�cant annual RSEDInd(ii) ; and annual RSEDInd(i) and

RSEDInd(iii) that are signi�cantly less than or greater than +1 and �1, respectively. Given the similarity

between an annual RSEDInd measure and its average over the study period the conclusions we reach

are similar. We conclude that the steadily declining positive annual RSEDInd(i) in �gure 5 is due to a

declining positive spatial correlation between the scale economies of banks that operate in the same

markets because the common phenomena between these banks is having a smaller e¤ect. We also

attribute the increasingly negative annual RSEDInd(iii) to progressively more intense competition over

the study period.

Looking ahead, from �gure 4 insigni�cant annual RSECInd seems to be an interesting persistent

feature of our sample of U.S. banks, which is in no way an artifact of our model speci�cation or

estimator. Given the interesting trends of the three components of annual RSECInd over the study

period, researchers need to continue checking whether annual RSECInd becomes signi�cantly di¤erent

from zero and, if so, check which components are driving the change.

2. Results and Analysis: Spatial Expansion-Path Scale Economies (EPSE)
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Figure 5: Average annual decomposed indirect ray-scale economies

In table 6 we present for the full sample and two subsamples of large and medium-sized banks

average estimates of EPSEDir, EPSECInd, EPSETot and the three measures of EPSEDInd. The

average estimates of EPSEDir for the full sample and large banks are not signi�cantly di¤erent from

1, which points to constant returns and is in line with our RSEDir estimates. In the same way

as RSEDir and own RSE from a non-spatial study have a close resemblance, �nding evidence of

constant EPSEDir is in line with some of the own EPSE results for U.S. banks that Wheelock and

Wilson (2001; 2012) report. There have though been claims that large U.S. banks are �too big�, which

although may be valid for an individual large bank on a case-by-case basis, our average EPSEDir

estimate for large banks suggests that this is not a typical feature of this bank size category as we

�nd that the size of the average large bank (and also the average bank in our full sample) is at its

minimum e¢cient level. For medium-sized banks, in contrast to the constant average RSEDir, the

average EPSEDir suggests signi�cant decreasing returns, although the magnitude of these returns is

only marginally above 1. If anything, this suggests that it is medium-sized banks where the average

bank size is above its minimum e¢cient scale.

Recall that summing the direct output elasticities gives the constant RSEDir estimates in table

5. We have seen that these RSEDir results are in line with the constant EPSEDir estimates in table

6 as the numerator and denominator in the calculation of these EPSEDir estimates are evidently not

too di¤erent. By summing the composite indirect output elasticities we also obtained the RSECInd

estimates in table 5, which are not signi�cantly di¤erent from zero. In table 6 we provide a di¤erent

insight into returns to scale spillovers as we report constant EPSECInd. On average, this suggests

that an increase along a bank�s composite indirect output expansion-path from 95% of its mean vector

of outputs attributable to composite spillovers to 105% will lead to the bank�s cost also rising by 10%.

Our �ndings therefore suggest along the relevant radial ray and non-radial expansion-path that there

is a much bigger di¤erence between expansion of a bank�s outputs that are attributable to composite
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Table 6: Average spatial expansion-path scale economies for the full sample and large and medium-
sized banks

Measure of EPSE
Full
sample

Large banks
Medium-sized

banks

Average direct EPSE,
EPSEDir

1:020�b 1:000�b 1:040�c

Average composite
indirect EPSE, EPSECInd

1:021�b 1:040�b 0:976�b

Average total EPSE,
EPSETot

1:026�b 0:999�b 1:056�c

Average decomposed
indirect (i) EPSE, EPSEDInd(i)

1:020�b 1:000�b 1:039�c

Average decomposed
indirect (ii) EPSE, EPSEDInd(ii)

0:972�b 1:018�b 0:926�b

Average decomposed
indirect (iii) EPSE, EPSEDInd(iii)

1:022�b 1:041�c 1:002�b

Notes: A bank is classi�ed as large (medium-sized) if it has total assets greater
than $3 billion in 2015 (inbetween $1 billion and $3 billion in 2015) (Berger and
Roman, 2017). Based on 95% con�dence intervals * denotes signi�cantly
di¤erent from zero and a, b and c denote signi�cantly less than, equal to or
greater than 1, respectively.

spillovers than there is between the expansion of the bank�s standard type of outputs that are under

its control. It is not entirely surprising though that there is greater similarity between RSEDir and

EPSEDir vis-à-vis the di¤erence between RSECInd and EPSECInd. This is because underlying

direct scale economies is the standard theoretical cost function that is monotonically increasing in

a �rm�s output levels that are under its control, whereas there is no such theoretical relationship

between a �rm�s cost and its output levels that are attributable to composite/decomposed spillovers,

which are primarily, but not entirely, outside its control.

In contrast to RSETot being the sum of RSEDir and RSECInd, EPSEDir and EPSECInd are

ratios with di¤erent denominators so summing them does not give EPSETot. From table 6 we can

see that the estimates of EPSETot for the full sample and large banks are not signi�cantly di¤erent

from 1, which suggests constant returns along the two associated total output expansion-paths. For

medium-sized banks the estimate of EPSETot is signi�cantly greater than 1. The reported estimates

of EPSETot are therefore in line with the corresponding EPSEDir. To elaborate on this recall that

total output is output which is under a bank�s control plus the composite spillovers from other banks

to the bank�s output. The EPSETot estimates therefore suggest that the average bank in the full

sample and the average large bank are operating at their minimum e¢cient total output levels, and

that the total output of the average medium-sized bank is greater than its minimum e¢cient level.

We suggested that the magnitude of the EPSEDir for the average medium-sized bank is marginally

greater than 1, whereas the magnitude of the EPSETot for this bank can be viewed as being clearly

above 1.

In line with what we have discussed about RSETot and EPSETot, the sum of RSEDInd(i) �RSEDInd(iii)

is RSECInd but EPSEDInd(i) � EPSEDInd(iii) have di¤erent denominators so summing them does not
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yield EPSECInd. Each of the average EPSEDInd(i) � EPSEDInd(iii) estimates for the full sample is not

signi�cantly di¤erent from 1, which is consistent with the corresponding EPSECInd. For large banks

its the average EPSEDInd(i) and EPSEDInd(ii) that are not signi�cantly di¤erent from 1 and in line

with the corresponding EPSECInd, whilst the average EPSEDInd(iii) is signi�cantly greater than 1. For

medium-sized banks it is the average EPSEDInd(i) that is signi�cantly greater than 1, whereas the

average EPSEDInd(ii) and EPSEDInd(iii) are not signi�cantly di¤erent from 1 and thus consistent with

the corresponding EPSECInd.

3. Results and Analysis: Spatial Expansion-Path Subadditivity (EPSU)

For banks across consecutive deciles of our bank size distribution, where bank size is measured

using total assets, in table 7 we present estimates of EPSUDir, EPSUCInd, EPSUTot and the

three measures of EPSUDInd. To illustrate, 1st decile/2nd decile EPSUDir, EPSUCInd, EPSUTot

and EPSUDInd(i) � EPSUDInd(iii) (see (a)-(d) below, respectively) measure the potential proportional

di¤erence in the direct, composite indirect, total and decomposed indirect (i)/(ii)/(iii) cost of an

average 2nd decile bank with its output mix compared to the following.

(a) The combined direct costs (i.e., cost that is under the control of a bank and is net of the

composite indirect cost spillover to the bank from the other banks in the sample) of two smaller

banks with di¤erent output mixes. These two banks are the bank producing the average output

vector across the 1st decile and the bank producing the di¤erence between the average output

vectors in the 2nd and 1st deciles.

(b) The combined composite indirect cost spillovers to the two smaller banks in (a).

(c) The combined total costs (i.e., direct cost of a bank plus the composite indirect cost spillover

to the bank) of the two smaller banks in (a).

(d) The combined decomposed indirect (i)/(ii)/(iii) cost spillovers to the two smaller banks in (a).

As was also the case for the above spatial EPSE results, EPSUDir, EPSUCInd and EPSUDInd(i) �

EPSUDInd(iii) are ratios with di¤erent denominators, so summing EPSUDir and EPSUCInd does not

yield EPSUTot, and EPSUCInd is not the sum of EPSUDInd(i) �EPSUDInd(iii) . To explain the interpre-

tation of the estimates in table 7 consider for the medium-sized distribution: the signi�cant negative

EPSUDir for the 1st decile/2nd decile; the signi�cant positive EPSUDInd(i) for the 6th decile/7th

decile; and the EPSUTot for the 2nd decile/3rd decile, which is not signi�cantly di¤erent from zero.

These estimates suggest that the direct cost of the average 2nd decile bank, the decomposed indirect

(i) cost of the average 7th decile bank and the total cost of the average 3rd decile bank are higher

than, lower than and not signi�cantly di¤erent from the sum of the relevant costs of the two smaller

banks.

There are two prominent features of table 7. First, from the EPSUDir, EPSUCInd and EPSUTot

results we can see that it is the EPSUDir estimates which are key as all but one is signi�cant,

whilst all but one of the EPSUCInd estimates and all of the EPSUTot results are not signi�-

cant. Second, there are sequences across consecutive deciles of signi�cant positive/negative estimates

of EPSUDir, EPSUDInd(i) and EPSUDInd(iii) . Over our entire bank size distribution there are two

EPSUDir, EPSUDInd(i) and EPSUDInd(iii) cycles, where a cycle comprises sequences of negative and

then positive estimates.
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Table 7: Estimates of spatial expansion-path subadditivity for di¤erent bank sizes

Bank size
Direct EPSU,

EPSUDir

Composite

indirect EPSU,

EPSUCInd

Total EPSU,

EPSUTot

Decomposed

indirect (i) EPSU,

EPSUDInd(i)

Decomposed

indirect (ii) EPSU,

EPSUDInd(ii)

Decomposed

indirect (iii) EPSU,

EPSUDInd(iii)

1st decile/2nd decile �0:030� �1:000 0:012 �0:030� �0:127 �0:167�

2nd decile/3rd decile �0:043� �0:978 0:018 �0:043� �0:145 �0:246�

3rd decile/4th decile �0:068� �0:742 0:030 �0:068� �0:150 �0:387�

4th decile/5th decile �0:128� �0:577 0:071 �0:128� �0:152 �0:688�

Medium 5th decile/6th decile �0:795� �0:451� �0:213 �0:793� �0:151 �2:113�

6th decile/7th decile 0:180� �0:394 �0:043 0:181� �0:152 1:371

7th decile/8th decile 0:072� �0:304 �0:021 0:073� �0:141 0:511

8th decile/9th decile 0:041� �0:242 �0:013 0:041� �0:128 0:273

9th decile/10th decile 0:008� �0:031 �0:002 0:008� 0:083 �0:078�

Medium/Large 10th decile/1st decile �0:029� �5:566 0:011 �0:029� �0:277 �0:144�

1st decile/2nd decile �0:061� 1:873 0:023 �0:062� 2:391 �0:303�

2nd decile/3rd decile �0:251� 1:557 0:079 �0:252� 0:352 �0:843

3rd decile/4th decile 0:172� 1:614 �0:078 0:173� 0:280 1:267

4th decile/5th decile 0:065� 1:568 �0:027 0:065� 0:200� 0:399�

Large 5th decile/6th decile 0:039� 1:647 �0:015 0:039� 0:143� 0:238�

6th decile/7th decile 0:026� 1:268 �0:010 0:026� 0:108� 0:150�

7th decile/8th decile 0:018� 0:595 �0:007 0:018� 0:076� 0:098�

8th decile/9th decile 0:011� 0:385 �0:005 0:011� 0:048� 0:062�

9th decile/10th decile 0:004 �0:019 �0:001 0:004 0:025� 0:077

Notes: A bank is classi�ed as large (medium-sized) if it has total assets greater than $3 billion in 2015 (inbetween $1 billion and $3 billion in 2015) (Berger and Roman,

2017). * denotes signi�cantly di¤erent from zero based on the 95% con�dence interval.
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4. Results and Analysis: Policy Implications

We use our RSE and EPSE results to inform the policy debate on whether there should be size

caps on very large U.S. banks. We use these results as the basis for the policy implications rather

than the EPSU results because RSE and EPSE relate to actual banks in the data space, whereas

EPSU considers amalgamations of hypothetical non-existent banks that may be far removed from

actual banks (Wheelock and Wilson, 2001).17 That said, it is still appropriate to include in this paper

the method to calculate the spatial EPSU measures together with our application of these measures

to U.S. banks. This is because our EPSUDir results have an interesting cyclical pattern over the

bank size distribution, which can provide an indication to policy makers about particular bank sizes

that may look to become larger to exploit scale economies. In particular, the positive and signi�cant

EPSUDir results for some of the largest hypothetical banks suggest that there is an incentive for

these hypothetical banks to become even larger to realize scale economies.

The policy implications from our results relate to the absence of any counteraction for large banks

between: (i) the average RSECInd and RSEDir; and (ii) the average EPSECInd and EPSEDir. The

absence of counteraction in (i) and (ii), however, is for di¤erent reasons. In the case of (i), since the

average RSECInd for large banks is zero the average ray-scale returns for large banks depends only

on RSEDir and not also on the spillover of scale economies to a large bank from other banks. The

average RSEDir for large banks points to constant returns to scale for the standard type of output

levels that are under a bank�s control, which suggests that large banks are using society�s resources

e¢ciently to provide their services. Size caps on very large banks would place downward pressure on

the average RSEDir across the large bank size category, and if this leads to signi�cant scale economies

then large banks would be using society�s resources ine¢ciently. Although in terms of the e¢cient

use of society�s resources our average RSEDir for large banks is not supportive of size caps on very

large banks, there may be a case for size caps on these banks if they are TBTF and taking excessive

risks as a result. This issue is very di¤erent to one we consider and is outside the scope of this paper.

Turning to discuss (ii) above, since the average EPSECInd for large banks is not signi�cantly

di¤erent from 1 this suggests that, on average, there are constant returns for a large bank from the

size spillovers to the bank from other banks. As the average EPSEDir for large banks is also not

signi�cantly di¤erent from 1, size caps on very large banks would place downward pressure on both

of the average EPSEDir and EPSECInd measures for large banks, where these measures relate to

the output levels that are under a bank�s control and the spillover e¤ect on these output levels which

is primarily, but not entirely, outside the control of the bank. If this downward pressure leads to

signi�cant scale economies for both measures, in contrast to (i) where the downward pressure from

the size caps on the average RSEDir for large banks would represent a single source of ine¢ciency in

the use of society�s resources, the downward pressure on the average EPSEDir and EPSECInd for

large banks would represent two such sources. Despite this di¤erence between the number of potential

sources, in terms of only the e¢ciency of the use of society�s resources and in line with our policy

implications from our average RSEDir for large banks, our average EPSEDir and EPSECInd for

large banks are also not supportive of size caps on very large banks.

To illustrate for large banks the impact of the absence of counteraction between the average

RSECInd and RSEDir and between the average EPSECInd and EPSEDir, consider the following

situation. Suppose for large banks the average EPSECInd was 0:05 higher (i.e., increases to 1:09),

17Although we cannot of course be certain, this may be why in their two most recent papers on scale economies in
U.S. banking Wheelock and Wilson (2012; 2018) do not calculate EPSU , but in an earlier paper (Wheelock and Wilson,
2001) they do.
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where this increase is su¢cient for the average EPSECInd to go from constant returns to statistically

signi�cant decreasing returns. At the same time suppose the average EPSEDir for large banks was

0:05 lower (i.e., declines to 0:95), where this decrease is su¢cient for the average EPSEDir to go from

constant returns to statistically signi�cant increasing returns. Note that to make out point we choose

to adjust EPSECInd and EPSEDir because the adjustments do not represent very big departures

from our EPSE results for large banks. The point we make also applies to RSECInd and RSEDir

although the changes we would need to make to these measures for large banks to make the same point

would have to be much bigger and would therefore be less plausible, but this is not say that this would

be the case for all applications. Moreover, as we observe zero average RSECInd for the full sample

and large and medium-sized banks, the classi�cation of the returns as increasing/constant/decreasing

is redundant, although again this is not say that these returns would be zero in other applications.

It is plausible in another application that there are increasing average RSEDir that are not too far

below 1 and increasing average RSECInd that are well below 1 but signi�cantly greater than 0. Even

though the classi�cation of the average RSECInd is clear the magnitude of these returns is important

as they may be large enough when the average RSEDir and RSECInd are added together to give

constant or increasing average RSETot.

There would be counteraction between the policy implications from the adjusted values of the

average EPSECInd and EPSEDir for large banks. This is because in terms of the average output

vector across the large banks, on one hand, the average EPSECInd points to this output vector being

too large due to composite indirect diseconomies of scale, whilst on the other, the average EPSEDir

suggests that the vector is too small as there are direct economies of scale. As the composite indirect

diseconomies of scale are greater than the direct economies, from only a cost perspective this would

indicate that, on average, large banks are too big and should be sub-optimally smaller. The upshot

is that due to the possibility of counteraction it is important to calculate composite indirect scale

economies and to classify these returns as increasing/constant/decreasing.18

5 Concluding Remarks and Further Work

This paper sets out the methodology to extend well-established non-spatial measures of scale and

product mix economies that are internal to a bank to the spatial case. We consider the interesting

situation where banks simultaneously belong to multiple spillover regimes, which more generally is

typically what we observe for �rms. Our approach introduces sets of spatial measures of RSE, EPSE

and EPSU . Using some terminology from the spatial literature each of these sets comprises direct,

composite and decomposed indirect and total measures.

The key �ndings from our empirical application to a sample of large and medium-sized U.S. banks

(1998�2015) relates to the large di¤erence between the composite indirect RSE and EPSE vis-à-vis

the similarity between the corresponding direct estimates. These direct measures are akin to standard

internal scale economies from a non-spatial model and are therefore interpreted in the same way. The

composite indirect measures relate to the cost spillover to a �rm when there is a change in its output

levels that are attributable to the composite spillovers from other �rms in the sample.

For our full sample and subsamples of large and medium-sized banks we often observe constant

direct RSE and EPSE, while we also report zero composite indirect RSE and constant composite

indirect EPSE. There are not big implications therefore from only focusing on direct RSE or direct

18We thank an anonymous reviewer for suggesting that we emphasize why this classi�cation of composite indirect
scale economies is informative.
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EPSE, but this is certainly not the case for the composite indirect RSE and EPSE, which is why

it is important to calculate both these measures. This is because along the relevant radial ray and

non-radial expansion-path there is a much bigger di¤erence between a change in a bank�s output levels

that are attributable to spillovers and are thus primarily, but not entirely, outside its control, than

there is between a change in its standard type of output levels that are under its control. In other

words, there is a much bigger di¤erence between the composite indirect radial ray and the composite

indirect expansion-path than there is between the direct radial ray and direct expansion-path. This

should not come as a great surprise because underlying direct/internal scale economies is the textbook

theoretical cost function that is monotonically increasing in a �rm�s output levels that are under its

control, whereas there is no such theoretical relationship between a �rm�s cost and its output levels

that are attributable to spillovers, as these outputs are primarily, but not entirely, outside its control.

As a result of our paper there is a lot of scope for further banking applications of spatial economies

because the underlying idea of cost spillovers between banks is quite intuitive. As our paper is

the �rst of its type our approach focuses on providing the necessary comprehensive coverage of the

methodology. Further applications can be simpler and more applied and policy focused than the

application we provide because as a result of our paper further applications need not revisit the

methodology in such detail. Simpler further applications could consider just one spatial network

rather than multiple ones; focus on a subset of the spatial economies we introduce (e.g., the non-

spatial analyses by Wheelock and Wilson (2012; 2018) focus on RSE and EPSE); and/or overlook

the decomposed indirect spatial economies by considering only the direct, composite indirect and total

returns.
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Bera, A. K., O. D¼ogan and S. TaŞpinar (2018): �Simple tests for endogeneity of spatial weights matrices�.

Regional Science and Urban Economics, vol. 69, pp. 130-142.
Berger, A. N., A. Demirg½Uç-Kunt, R. Levine and J. G. Haubrich (2004): �Bank concentration and compe-

tition: An evolution in the making�. Journal of Money, Credit and Banking, vol. 36, pp. 433-451.
Berger, A. N., G. A. Hanweck and D. B. Humphrey (1987): �Competitive viability in banking- scale, scope

and product mix economies�. Journal of Monetary Economics, vol. 20, pp. 501-520.
Berger, A. N. and R. A. Roman (2017): �Did saving Wall Street really save Main Street? The real e¤ects of

TARP on local economic conditions�. Journal of Financial and Quantitative Analysis, vol. 52, pp. 1827-1867.
Berger, A. N., R. J. Rosen and G. F. Udell (2007): �Does market size structure a¤ect competition? The case

of small business lending�. Journal of Banking and Finance, vol. 31, pp. 11-33.
Bibi, U., H. O. Balli, C. D. Matthews and D. W. L. Tripe (2018): �Impact of gender and governance on

micro�nance e¢ciency�. Journal of International Financial Markets, Institutions and Money, vol. 53, pp. 307-319.
Boarnet, M. G. and A. Glazer (2002): �Federal grants and yardstick competition�. Journal of Urban Economics,

vol. 52, pp. 53-64.
Bolt, W. and D. Humphrey (2015): �Assessing bank competition for consumer loans�. Journal of Banking and

Finance, vol. 61, pp. 127-141.
Christensen, L. R., D. W. Jorgenson and L. J. Lau (1973): �Transcendental logarithmic production frontiers�.

Review of Economics and Statistics, vol. 55, pp. 28-45.
Clark, J. A. and T. F. Siems (2002): �X-e¢ciency in banking: Looking beyond the balance sheet�. Journal of

Money, Credit and Banking, vol. 34, pp. 987-1013.
Conley, T. G. (1999): �GMM estimation with cross sectional dependence�. Journal of Econometrics, vol. 92, pp.

1-45.

35



Conley, T. G. and G. Topa (2002): �Socio-economic distance and spatial patterns in unemployment�. Journal of
Applied Econometrics, vol. 17, pp. 303-327.

Diewert, W. E. and T. J. Wales (1987): �Flexible functional forms and global curvature conditions�. Economet-
rica, vol. 55, pp. 43-68.

Economist (2008): Idea- Economies of scale and scope. Oct. 20th, 2008.
Elhorst, J. P. (2009): Spatial panel data models. In the Handbook of Applied Spatial Analysis, Fischer, M. M.,

and A. Getis (Eds). New York: Springer.
Elhorst, J. P. and S. Fréret (2009): �Evidence of political yardstick competition in France using a two-regime

spatial Durbin model with �xed e¤ects�. Journal of Regional Science, vol. 49, pp. 931-951.
Elhorst, J. P., D., J. Lacombe and G. Piras (2012): �On model speci�cation and parameter space de�nitions

in higher order spatial econometric models�. Regional Science and Urban Economics, vol. 42, pp. 211-220.
Fisher, R. W. and H. Rosenblum (2012): �Vanquishing too Big to Fail�. 2012 Annual Report of the Federal

Reserve Bank of Dallas. Dallas, TX: Federal Reserve Bank, pp. 5-10.
Garrett, T. A. and T. L. Marsh (2002): �The revenue impacts of cross-border lottery shopping in the presence

of spatial autocorrelation�. Regional Science and Urban Economics, vol. 32, pp. 501-519.
Glass, A. J. and K. Kenjegalieva (2019): �A spatial productivity index in the presence of e¢ciency spillovers:

Evidence for U.S. banks, 1992-2015�. European Journal of Operational Research, vol. 273, pp. 1165-1179.
Glass, A. J., K. Kenjegalieva and J. Paez-Farrell (2013): �Productivity growth decomposition using a spatial

autoregressive frontier model�. Economics Letters, vol. 119, pp. 291-295.
Glass, A. J., K. Kenjegalieva and R. C. Sickles (2016): �Returns to scale and curvature in the presence of

spillovers: Evidence from European countries�. Oxford Economic Papers, vol. 68, pp. 40-63.
He, Z., I. G. Khang and A. Krishnamurthy (2010): �Balance sheet adjustments during the 2008 crisis�. IMF

Economic Review, vol. 58, pp. 118-156.
Hirtle, B. (2007): �The impact of network size on bank branch performance�. Journal of Banking and Finance,

vol. 31, pp. 3782-3805.
Hughes, J. P. and L. J. Mester (2013): �Who said large banks don�t experience scale economies? Evidence from

a risk-return driven cost function�. Journal of Financial Intermediation, vol. 22, pp. 559-585.
Kao, Y-H. and A. K. Bera (2013): �Spatial regression: The curious case of negative spatial dependence�. Univer-

sity of Illinois, Urbana-Champaign, Mimeo.
Kelejian, H. H. and I. R. Prucha (2001): �On the asymptotic distribution of the Moran�s I test statistic with

applications�. Journal of Econometrics, vol. 104, pp. 219-257.
Kovner, A., J. Vickery and L. Zhou (2014): �Do big banks have lower operating costs?�. Federal Reserve Bank

of New York Policy Review, vol. 20, pp. 1-27.
Kumbhakar, S. C. and C. A. K. Lovell (2000): Stochastic Frontier Analysis. Cambridge, UK: Cambridge

University Press.
Langfield, S. and M. Pagano (2015): �Bank bias in Europe: E¤ects on systemic risk and growth�. European

Central Bank Working Paper No. 1797.
LeSage, J. and R. K. Pace (2009): Introduction to Spatial Econometrics. Boca Raton, Florida: CRC Press,

Taylor and Francis Group.
Lozano-Vivas, A. (1997): �Pro�t e¢ciency for Spanish savings banks�. European Journal of Operational Research,

vol. 98, pp. 381-394.
Lozano-Vivas, A. and F. Pasiouras (2014): �Bank productivity change and o¤-balance-sheet activities across

di¤erent levels of economic development�. Journal of Financial Services Research, vol. 46, pp. 271-294.
Mester, L. J. (2010): �Scale economies in banking and �nancial regulatory reform�. The Region. Minneapolis,

MN: Federal Reserve Bank, pp. 10-13.
Pesaran, M. H., T. Schuermann and S. M. Weiner (2004): �Modeling regional interdependencies using a global

error-correcting macroeconometric model�. Journal of Business and Economic Statistics, vol. 22, pp. 129-162.
Qu, Xi. and L-F. Lee (2015): �Estimating a spatial autoregressive model with an endogenous spatial weight

matrix�. Journal of Econometrics, vol. 184, pp. 209-232.
Sealey, C. and J. T. Lindley (1977): �Inputs, outputs and a theory of production and cost at depository �nancial

institutions�. Journal of Finance, vol. 32, pp. 1251-1266.
Stern, G. H. and R. Feldman (2009): �Addressing TBTF by shrinking �nancial institutions: An initial assess-

ment�. The Region. Minneapolis, MN: Federal Reserve Bank, pp. 8-13.
Wheelock, D. C. and P. W. Wilson (2001): �New evidence on returns to scale and product mix among U.S.

commercial banks�. Journal of Monetary Economics, vol. 47, pp. 653-674.
Wheelock, D. C. and P. W. Wilson (2009): �Robust nonparametric quantile estimation of e¢ciency and pro-

ductivity change in U.S. commercial banking, 1985-2004�. Journal of Business and Economic Statistics, vol. 27, pp.
354-368.

Wheelock, D. C. and P. W. Wilson (2012): �Do large banks have lower costs? New estimates of returns to scale
for U.S. banks�. Journal of Money, Credit and Banking, vol. 44, pp. 171-199.

Wheelock, D. C. and P. W. Wilson (2018): �The evolution of scale economies in US banking�. Journal of
Applied Econometrics, vol. 33, pp. 16-28.

Whittle, P. (1954): �On stationary processes in the plane�. Biometrika, vol. 41, pp. 434-449.

36


