
This is a repository copy of Connectivity as the capacity to improve an organization’s 
decision-making.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/159705/

Version: Published Version

Proceedings Paper:
Hassannezhad, M., Cassidy, S. and Clarkson, P.J. (2019) Connectivity as the capacity to 
improve an organization’s decision-making. In: Putnik, G.D., (ed.) 29th CIRP Design 
Conference 2019. 29th CIRP Design Conference 2019, 08-10 May 2019, Póvoa de 
Varzim, Portgal. Procedia CIRP, 84 . Elsevier BV , pp. 231-238. 

https://doi.org/10.1016/j.procir.2019.04.222

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


ScienceDirect

Available online at www.sciencedirect.com
Available online at www.sciencedirect.com

SĐŝĞŶĐĞDŝƌĞĐƚ
Procedia CIRP 00 (2017) 000–000

  www.elsevier.com/locate/procedia 

2212-8271 © 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of 
existing products for an assembly oriented product family identification 

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat 
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France 

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction 

In order to improve the quality and speed of decisions, 

organizations need to pay more attention to what needs to be 

decided, by whom, and how quickly [1]. This is becoming 

ever-challenging as new connectivity technologies have trans-

formed the way by which individuals in an organization com-

municate and influence one other. Ideally, by providing the 

right people with the right information, they can formulate 

faster and well-informed decisions at the right time, but the 

reality is far more complicated.  

People involved in different roles have different targets and 

motivations which contribute to uncertainty between them. 

Furthermore, many decisions have to be made under uncertain 

circumstances, with incomplete, imprecise, or even conflict-

ing information. The consequence of a decision often goes 

beyond its local impact in the organization and might globally 

affect other decisions, sometimes without the initial decision-

maker necessarily being aware of the implications [2].  

In such situations, an agent�s decision (e.g., on performing 

a job) might affect and be affected by multiple consequences 

(such as customer satisfaction, productivity, and deployment 

cost) simultaneously, where in many cases there is a kind of 

overlapping impact between these consequences. Therefore, a 

dynamic tool is required to proactively quantify the desirabili-

ty of possible consequences when they mutually affect an 

agent�s decision. Such a tool should not only take account of 

the multiple channels of connectivity between decisions, but 

also compute the compound risk of change in elements based 

on the individual impact of multiple overlapping links.  

This paper presents the development of such a dynamic 

tool called Decision Propagation System (DPS) that is built 

reflecting the advancements in the fields of engineering 

design change, graph theory, and systems engineering. It aims 

to support decision-makers with predictive insights to direct 

decisions towards designing the most effective architecture in 

balance with the consequences; for example, where to make 

changes in the organization � in roles, targets, priorities � to 

achieve the best compromise between total cost and customer 

satisfaction?  

In the following, Sections 2 and 3 outline the research that 

led to the development of DPS. Section 4 introduces the 

proposed method and is followed by its implementation at BT 

Group (BT) in Section 5. The paper concludes in Section 6. 

ScienceDirect 

29th CIRP Design 2019 (CIRP Design 2019) 

Connectivity as the capacity to improve an organization�s decision-making 

 Mohammad Hassannezhada,*; Stephen Cassidyb; P. John Clarksona  

a Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom 
b Future Organizations Laboratories, British Telecom, Adastral Park, Ipswich, United Kingdom   

* Corresponding author. Tel.: +44-1223-748565; fax: +44-1223-332662. E-mail address: mh844@eng.cam.ac.uk 

Abstract 

This paper describes the development of a new computational model to predict the desirability of decision consequences in an organization, and 

the development of a prototype tool to enable real-time interaction and decision support when changes occur simultaneously. A tool, called 

Decision Propagation System, is developed in response to the needs of BT Group plc in understanding the most effective set of interventions in 

the organization where the high degree of connectivity between system components and the uncertainty in connectivity data are two critical 

issues. Designed on a case study of the Fields Operations Engineering, this research demonstrates that a knowledge of overlapping decision 

propagation paths can direct the organizational decisions towards mitigating the risk of unintended consequences. 
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2. Research methodology 

Analogous to the actual engineering design processes [3], 

this research began with understanding the business challeng-

es in BT to identify the modelling requirements, over a time 

period of six months. The original aim was to understand how 

to mitigate the unintended consequences of decisions through 

understanding the decision dynamics. However, as the result 

of the initial studies, a number of more fundamental research 

questions were raised pertaining to the: 

 

• Visibility of connectivity: How to add semantic knowledge 

about the dependencies into the model (getting a more 

composite view of decisions)? 

• Nature of connectivity: How to populate a compound risk 

diagram showing the most critical elements (quantifying 

the influence of decisions)?  

• Implications of connectivity: What is the most efficient set 

of interventions in the organisation to achieve the desired 

set of outcomes (mitigating unintended consequences)? 

 

The next step was to develop a range of alternative models 

(solution space) to address these business challenges. 

Examples of such models can be found in the references [4] 

and [2]. The former model was based on the premise that one 

way to predict a system�s performance is to focus on the 

changeability of its critical elements. Therefore, the Change 

Prediction Method (CPM) approach [5] was used to identify 

the critical elements and combined with the System Dynamics 

to capture dynamics of those (critical) elements. In the latter 

research [2], a conceptual model of a Decision Propagation 

System was proposed, with the aim of obtaining a more 

composite view of decisions by focusing on multiple ways 

that decisions are connected to and can influence each other: 

for example, through their involving agents or consequences. 

In fact, a year of research in a close collaboration with the 

company was required to develop and discuss the concepts. 

This was an iterative process with a continuous refinement of 

the prototype models according to the research questions. A 

primary case of the Fields Force Engineering (FFE) problem 

was considered to assess the plausibility of the proposed 

models. Further investigation of the previous steps eventually 

led to the formulation of DPS algorithm. 

After selecting the concept, the next step was to elaborate 

the model formulation as well as its calibration and impleme-

ntation with respect to the practitioners� feedback. Over a 

time period of nine months, the simulation results were 

reported back several times to the corresponding team in the 

company to ensure that the research questions were fully 

addressed by the model. This paper concentrates on the detail 

formulation and implementation of the method.  

3. Research case study 

The performance of Fields Force Engineering team is vital 

in delivering an optimal service to BT customers. In particul-

ar, the team is responsible for the forecasting, planning, 

scheduling, and allocation of jobs based on the customer�s 

demands. Therefore, there might be many foreseen (e.g., new 

business strategy) and unforeseen (e.g., customer demand, 

weather condition) issues whose changes can influence the 

performance of FFE. These sorts of frequent changes typically 

result in incomplete, imprecise, or even conflicting data when 

planning and re-planning the system.  

An additional challenge for the organization is incorporat-

ing organizational dynamics into the planning system: in this 

case study, there are five different roles ranging from director 

at the strategic level to engineers at the operational level. Each 

role has a specific set of objectives as well as their own 

motivation and varying degrees of interaction with other roles. 

For example, while at the operational level, maintaining 

work-life balance is a priority for engineers to keep them 

motivated, at the strategic level, director is more concerned 

about the big picture of the right balance between number of 

successful jobs, total cost, and stakeholder satisfaction.  

The ideal case would presumably be when, making a 

decision, individuals satisfy both the local objectives of their 

own jobs and at the same time comply with the global 

objectives of the rest of the team and the entire system [6]. 

However, the evidence shows that the ideal case is very 

difficult to achieve, since there are many upstream decisions 

whose consequence affect the downstream decision-makers 

without them taking any control over the situation. For 

example, in the FFE case, the controller (who is responsible 

for prioritizing jobs) does not have any control over how 

many jobs are arrived, how many engineers are deployed, or 

how many jobs an engineer can perform per day. Therefore, 

the efficient management of decisions in such complex 

systems requires a tool to enable every decision-maker to be 

proactively aware of the consequences of his/her actions.  

3.1. Challenges in modelling Field Engineering Systems 

The need for such a tool was initially identified through a 

series of workshops at BT. However, a deeper investigation of 

the business case resulted into several challenges during the 

development of modelling concepts: 

 

Data elicitation. An initial study of the business case 

based on the company documents identified a set of 21 key 

elements which were categorized into an Multiple Domain 

Matrices (MDM) with three layers of agents, decisions, and 

consequences. This data was used to build and populate the 

initial model, and later refined by obtaining a more detailed 

data from the BT experts. Eliciting data from the experts, 

whilst providing more resolution of the business case, was a 

time-consuming and error-prone process which also generated 

different views of the system. This posed a challenge as to 

how much detail was needed to understand what was 

happening in reality. If a deeper set of data could be obtained 

from the experts, would this result in a better model or a 

simpler picture obtained from the documents be sufficient? 

 

Variation in expert views. during the implementation of 

DPS, three experts with an extensive knowledge of the case 

were asked to consider the entire FFE project and determine 

the proportional strength of the links between elements, based 

on a three-range scale: low, medium, and high. Three MDMs 

•
•
•
•
•
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•

•

•
were generated as the result (Fig. 1, b-d) representing different 

views of the case: expert 2 appears to score the links more 

highly than the others. This raised further concerning how to 

resolve variation in expert views? Should they be considered 

individually or as an aggregated view? Further challenge 

would be the mapping of scaled data into probability values, 

e.g., should a high-priority link be valued as 0,8 or 1,0?  

 

Density of links. experience of conducting workshops with 

the experts revealed that, when extending the modelling scope 

from a physical technical system to a digital-physical socio-

technical system and highlighting the mechanism by which 

elements influence each other (i.e., knowledge-sharing tools, 

organization�s hierarchy), the degree of connectivity within 

and across layers significantly increase: for this business case, 

a fully connected network. A key computational challenge is 

therefore how to resolve the algorithmic view of change 

propagation in dense matrix, without simplifying the reality? 

The most commonly used algorithms of change propagations 

such as CPM [5] are based on a sparse matrix and cannot 

accommodate this density. This would be more problematic in 

multi-layer networks as each layer infers a different meaning. 

 

Overlapping impact. it is also inferred that when making 

a decision, if there are two links coming to an individual (e.g., 

from consequences), it is more likely they are independent; 

but if an individual�s decision is influenced through multiple 

links, it is more likely that they are to some degree overlapped 

and there might be a dominant link amongst them (with more 

influence). As the result, the more links coming in, the lower 

probability of aggregated link which implies a kind of 

consolidation of independence. The question is then how to 

reflect the impact of overlapping between multiple paths 

(homogeneity between elements of the same layer) when a 

change propagates across the system?  

3.2. The need for a new approach 

From an engineering change perspective, quantifying the 

risk of decision propagation is essentially a multi-layer socio-

technical change propagation problem, which requires an 

explicit understanding of the interplay between non-technical 

(e.g., agents) and technical (e.g., decisions, consequences) 

elements. Accepting this view, it is discussed that addressing 

such a problem requires dealing with the tight connectivity 

and overlapping issues between heterogeneous elements.  

Reviewing the literature of change management represents 

that, despite a huge repository of models for analyzing change 

propagation (see [7] for an overview), there has been very 

little attention to the propagation between the interfacing 

organizational and technical changes. Moreover, the current 

body of change prediction algorithms, mainly focusing on 

identifying the most influential or influenced elements, does 

not accommodate the density and overlapping issues. Further-

more, current models consider change propagation at a project 

level where changes are typically tree-structure; but if 

changes occur in the middle of a project, the propagations are 

more likely to be cyclical, and successful completion of the 

project relies on the iterative refinement of decisions.  

In addressing these research gaps and the needs of industry 

sponsor, this paper introduces an alternative algorithm for 

predicting the compound risk of changes in a complex system 

where the overall system behavior depends on the 

changeability of the system elements and the extent to which 

they are connected. The proposed model should be able to 

accommodate the following aspects of connectivity: 

 

• The unavoidable subjectivity and variation in expert views; 

• Both unity and proportional data within and across layers; 

• Both tree-like and cyclical dependencies across the system; 

• The density of dependencies, belong to multiple domains; 

• The impact of overlapping in dependencies; 

 

4. A Decision Propagation model for systems design  

4.1. Overview of the Decision Propagation System � DPS 

The DPS method is based on the concept that a system can 

be represented in form of its key decision variables, agents 

who might influence and be influenced by those decisions, and 

(organization- or business-related) consequences of decisions, 

typically known as performance indicators. The underlying 

rationale is that agents in an organization make decisions and 

decisions generate consequences, which will in turn affect the 

behavior of agents. Hence, the more critical a role might be (in 

 

Fig. 1. Capturing Business requirements into input data: Elicitation from the historic documents (a) and from the company experts (b-d) 
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terms of influencing on more decisions), or the more collabor-

ative a decision might be (in terms of involving more agents), 

or the more critical a decision might be (in terms of affecting 

more consequences),  will result in a more connected network 

and accordingly, a more expanded propagation. The proposed 

algorithm used the proportional strength of the direct links 

between elements to compute the indirect risk. This will be 

accomplished in a multi-dimensional space to reflect the 

overlapping impact, where the number of overlapping links 

determines the number of dimensions.  

The DPS method is primarily designed for situations where 

there is insufficient resolution about the business case, such as 

the information of the likelihood and impact values in CPM. 

However, if provided with a more detailed information, the 

method is capable of giving a more precise result. In this 

sense, it is an extension to the CPM in which the fundamental 

assumptions about the independence and cyclical propagation 

paths are fixed. Circumventing these issues has been the 

subject of several studies before such as the use of Matrix 

Multiplications and Bayesian networks in [9] and [10]; but, in 

comparison, DPS offers a dynamic socio-technical change 

prediction model at a far less computational complexity, more 

control over propagation paths, and better reproducibility 

which also requires less domain knowledge from the experts.  

Structurally, the method consists of four steps: eliciting 

data, architecting decision views, populating risks, and 

learning from outputs through visualization. These steps, 

shown in Fig. 2, are explained in the following sub-sections:  

4.2. Step 1: creating organizational model 

The method begins with analyzing the business case in 

order to obtain an initial organizational model. It is a multi-

layer network of interconnectivity between agents, decisions, 

and consequences. Experience of the FFE case study and 

company workshops suggests that, at a certain degree of 

abstraction, it is not too difficult for those familiar with the 

organization to break it down into a list of key elements. The 

outcome is an MDM with three layers with the same elements 

in rows and columns; column headings show the initiating 

elements and rows the influenced elements.  

The value of matrix components (interconnectivity) is set 

to qualitatively represent the proportional strength of a 

connection and is delineated in form of the low, medium, and 

high ratings; this ranking has been a common way of describ-

ing connectivity in the literature [11]. As the output is shown 

in Fig. 1, two data elicitation methods have been applied in 

this research to determine the value of MDM based on: 

studying the company documents (aiming to learn probability 

values based on historic data) and relying on experts� know-

ledge (aiming to improve their judgement under uncertainty).  

4.3. Step 2: framing decision propagation paths 

The input data obtained in the first step embodies the flow 

of decision-making in the whole lifecycle of an organization�s 

change. At this step, however, the user needs to define the 

focus of modelling: architecting the entire network (mapping 

organizational dynamics) or an instantiation of it (representing 

a specific business situation). Considering the modelling con-

text as a complete network, consequently, the model contains 

so many branches that they cannot be fully independent of the 

others. This has two implications: (a) there must be some 

degree of commonality or overlap between network branches; 

and (b) there should be a set of pruning strategies to confine 

the number of expected propagation paths. Two strategies are 

consequently applied in this step:  

 

• Static Pruning (carried out at design time as part of the 

MDM configuration): we prune all paths that do not follow 

our assumptions about decision-making flow, by neutraliz-

ing the corresponding boxes in the MDM (Fig. 2, step 2); 

• Dynamic Pruning (carried out at run time when the 

propagation algorithm is run): we prune all paths whose 

length exceeds three steps. It is considered to be sufficient 

to track the flow of a change across layers back to the same 

layer where the change was originated, e.g., to capture the 

cyclical change propagation.  

 

Differentiating propagation paths in DPS eventually enabl-

es the user to identify the most critical paths and the elements. 

The current change propagation models mostly emphasize 

what element affects what and do not account for how 

(through which elements or paths) this will be done.  

 

Fig. 2. The Decision Propagation System method 

ܦܦ

ܴ
ሺܴሻ ݇ݏܴ݅ ൌ ሺ ݕݐ݈ܾܾ݅݅ܽݎܲ ܲሻ ൈ ሻܫሺ ݐܿܽ݉ܫ
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•

•

4.4. Steps 3: predicting change propagation 

Framing propagation paths in the previous step determines 

all feasible routes through which any two elements in the 

MDM are connected together. An example of those routes 

between two decision points is shown in Fig. 3 (top). Accordi-

ngly, in each route scenario, a propagation tree (limited to 

three steps) can be derived from the network, where there 

might be a number of paths (in each route) to connect the two 

(initiating and affecting) elements. In the example of Fig. 3 

(top-left), it is shown that there are four paths that connect ܦ 

to ܦ  through the consequences. DPS then uses the strength 

value of direct links between elements to compute the risk (ܴ) 

of a change: it is a combination of probability and impact: ܴ݅݇ݏ ሺܴሻ ൌ ሺ ݕݐ݈ܾܾ݅݅ܽݎܲ ܲሻ ൈ  ሻ      (1)ܫሺ ݐܿܽ݉ܫ

4.4.1. Computing Compound Probability 

The compound probability is an average value that a 

change in an element will propagate to a change in another 

one. There are a number of algorithms for aggregating change 

probabilities, yet none of them found to have the potential to 

address the previously outlined challenges in a single frame. 

This paper presents a systematic aggregation method for 

 

 

Fig. 3. A multi-layer aggregation method for computing the compound probability   
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computing the compound probability. It is comprised of three 

levels pertaining to the aggregation of (1) direct links in a 

single path, (2) multiple paths in a single route, and (3) 

multiple routes in the network. These steps are exemplified in 

Fig. 3 for a simplified network with 2 decision points, 2 

agents, and 3 consequences. Of central importance to the 

proposed method is the aggregation engine. Inspired by the 

generalization of distance metrics in a multi-dimensional 

space, we found the Minkowski metric sufficiently agile to 

calculate the aggregation power of overlapping links, while 

being applicable to a dense network. It is in fact the most 

commonly used proximity metric in graph theory that is used 

in this research to give a non-linear approximation of the 

relative probability between elements. For a real number  Թא  ݁ݎ݄݁ݓ)   is the number of dimensions), the  -norm of 

Minkowski measure is defined as below, where ݊ refers to the 

number of incoming links to an element and may be or not 

equivalent to the power of formula ሺሻ: 

ԡݔԡ ൌ ሺȁݔଵȁ  ȁݔଶȁ  ڮ  ȁݔȁሻభ                        (2) 

 (a) Pre-aggregation. Given the probabilistic MDM as the 

input, the algorithm first generates the three-step propagation 

trees for all the elements, such as the ones illustrated in Fig. 3 

(top) for ܦ. Unlike many change prediction models, the DPS 

method differentiates the route-type (by which the elements 

are connected) and the path-number within each route (by 

which an element might be affected). In the given example, 

there are in total three routes that connect the decisions ܦ 

and ܦ  ( ܦ ՜ ܣ ՜ Ǣܦ ܦ  ՜ ܣ ՜ ܣ ՜ Ǣܦ ܦ  ՜ ܥ ՜ ܣ ՜ ܦ ); 

each route  contains 2, 2, and 4 paths, respectively.  

 

(b) Component-level aggregation. At the first aggregation 

level, the model utilizes the AND logic operator and 

multiplies the direct links within each path, starting from the 

top. It is based on the concept of path searching in that if for 

example ܥ is a consequence of ܦ which can affect ܣ, then ܦ can indirectly affect ܣ with an impact that is less than a 

direct impact between them.  

 

(c) Route-level aggregation. When aggregating the direct 

links at the component-level, there is an assumption about the 

independence of multiple paths that belong to the same route. 

However, in reality, the links coming to a decision (ܦ) might 

involve the same element (e.g., two paths going through ܥ) 

which can be contributed to an overlapping impact. Therefore, 

the next level aggregates multiple propagation paths of the 

same route. In the example of Fig. 3(c), all the changes are 

propagated through consequences and agents. Mathematical-

ly, the model considers each individual path in a separate 

dimension, and the density of paths between initiating and 

affected elements determines the power of Minkowski 

formula. In the given example, this number is respectively 

equal to 2, 2, and 4 for routes ending to ܦ . 

 

(d) Network-level aggregation. This phase aggregates all 

the routes by which the two elements are connected together. 

At this point, the model considers the entire network in a 

multi-dimensional space in which a change in an upstream 

decision ሺܦሻ affects a downstream decision ሺܦሻ by different 

routes, through the involving agents, communication between 

agents, or impact of consequences on the agents. Hence, the 

number of possible routes between two elements regulates the 

power of Minkowski formula. Finally, the model normalizes 

the compound probability values to ensure that they lie within 

the range of ሺͲǡͳሻ. 

4.4.2. Computing Compound Impact 

There are several ways to quantify impact of a change. 

Focusing on connectivity, this paper proposes that one way to 

measure the impact of an element is through adjacency 

metrics: looking at the intensity of changes that an element 

exerts on (activity) or receive from (passivity) its immediate 

neighbours. Hence, inspired by the Centrality metrics in Net-

work Science [12], we define the measure of Criticality ሺݎܥሻ 

as the fraction of the cumulative strength of outgoing links 

from an element over the cumulative strength of incoming 

links to that element. As the criticality can take any positive 

value, Feature Scaling is then used to restrict the values 

between the arbitrary points of ܽ (lower strength bound) and ܾ 

(upper strength bound), as the formulas show:  ݕݐ݈݅ܽܿ݅ݐ݅ݎܥ ሺݎܥሻ ൌ ௐ௧ௗ ௦௨  ௩௨  ௨௧ ௦ௐ௧ௗ ௦௨  ௩௨   ௦    (3) 

ሻܫሺ ݐܿܽ݉ܫ         ൌ ቀܽ  ሺିሻൈሺିሻሺೌೣିሻ ቁ                        (4) 

A higher value of impact implies that if change occurs, the 

element has more influence on the other elements, whilst 

being less influenced by the others. Fig. 4 displays the compu-

tation of impact values for a trivial example with 4 elements.  

4.5. Step 4: decision management 

Once the compound risk matrix has been derived, a variety 

of charts and diagrams may be used to visualize the resultant 

data. The primary outcome of the model would be a risk plot. 

It can be tailored to show the mutual risk between agents, 

decisions, and consequences in parallel. The initial analysis 

enables the user to identify the critical elements and the low-

risk leverages, i.e., the sensitivity that consequences show to 

each decision and agent. More iterations may be applied by 

the user to evaluate and compare the impact of change in 

initial data pertaining to for example different decision-

making strategies, multiple expert views, or different trans-

lation of connectivity data (strength values). The following 

section outlines the implementation of DPS. 

 

Fig. 4. Example of computing impact in DPS; the values are bounded 

within the range of [0.2,0.8] 
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5. Implementation and discussion 

The implementation of DPS was an iterative process with 

regular evaluation and calibration after each development 

phase. The primary validation was undertaken with reference 

to the BT�s FFE system. A prototype support tool has been 

developed in Microsoft Excel (due to its compatibility and 

portability across different operating systems) to enable real-

time interaction and decision support (Fig. 5). It is a data-

driven platform that provides ready access to the underlying 

change prediction model in a way that encourages decision 

makers to explore the mutual sensitivity between Consequen-

ces, and also the sensitivity that Consequences have to each 

Decision and Agent (via the output risk plot and matrix).  

The DPS dashboard has been tailored based on the 

sponsors� preferences in such a way that embraces a number 

of views relating to the: impact of elements (bar charts); 

compound risk on the Consequences (risk plot/matrix); risk 

variance between multiple propagation routes (tree boxes); 

and sensitivity analysis engine (combined bar charts) which 

provide an extensive range of narratives to compare variation 

in expert views. This integrated platform enables the user to 

build, populate, re-evaluate, and refine the data until reaching 

a level of relative stability in the outcomes. Each of the icons 

in the XL-DPS ribbon has been designed to address a specific 

aspect of model building, populating, and analysis, based on 

the challenges that have been identified during the workshops 

with partners.  

The implementation of DPS began with the historic data 

that was obtained from the company documents. It was based 

on the assumption that all the links of the same type (e.g., 

agents� influence on decisions as shown in the left-middle box 

in the input MDM) have the same priority. The focus of the 

initial implementation has largely been on creating and testing 

a range of what-if business scenarios that could potentially 

affect the model behavior; for example, to what extent do 

changes in the organization-related consequences (such as 

work-life balance and productivity) effect the business-related 

consequences (such as public image and total cost), and what 

are the key decisions to mitigate that risk? 

After endorsing the plausibility of the model, a range of 

workshops was held with BT experts to obtain more detailed 

connectivity data using the FFE case as an end-to-end project. 

This resulted in a deeper investigation of the challenges that 

were discussed earlier in section 3.1. For example, as far as 

related to the data elicitation approaches, Fig. 6 shows the 

apparent difference in behavior of the model based on a 

sparse (historic data) dataset and a more dense (expert 1) 

dataset. Accordingly, the figure signifies the critical role of 

the density and interdependence of the connections across the 

system, and the validity of the model�s assumptions relating 

to the proportional strength of the connections and the need 

for clarity in displaying the details of the model.  

Further investigations, using the sensitivity analysis panel, 

compared the experts� views in terms of the compound risk 

between consequences: this is displayed by the Stacked Risk 

bars in Fig. 5 (right) together with the Clustered bars represe-

nting the Variance between them. The results explicitly 

identify the connections at which there is more consensus 

between the experts. As a result, the focus of further 

refinements can be shifted towards the areas with a higher 

degree of variation to find out the source, thus helping to 

 

Fig. 5. A data-driven real-time computer support prototype for DPS: a screenshot of the model run in case of Expert 2; each Scatter line in the Output Risk Plot 

stands for the compound risk of a particular agent on consequences; each line in Stacked bar at far right shows a risk of propagation between two consequences  
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achieve a convergent answer in less time and effort.  

Therefore, the rich DPS ribbon supported by a multi-view 

dashboard can provide the user with numerous ways of 

capturing, interpreting, and visualizing a model. The populati-

on panel in XL-DPS enables the configuration of propagation 

architecture, the translation of connections into probability 

values, and setting up the aggregation engine. The primary 

result presented earlier is in fact based on automatic 

computation of the Minkowski power where the density of 

incoming links determines the power of formula. In this case, 

each propagation path is considered as a separate dimension 

and hence, the degree of overlap between multiple paths is 

equal to their number. However, this might not be always the 

case. To address this sort of uncertainty, the aggregation 

engine in DPS is developed to work in two modes: automatic 

and manual. In the latter case, the power of Minkowski metric 

for each propagation route is manually entered by the user, 

and the power engine icon allows the user to evaluate the 

impact of using different power values until reaching the 

stability in the outcomes.  

Finally, the analysis panel provides a mean for analyzing 

the impact of multiple simultaneous changes on the outcome, 

when for example some elements or a particular propagation 

route are excluded from the computation. As pointed out by 

the practitioners, it is an effective way of analyzing the global 

impact of local unforeseen issues, e.g., absence of a particular 

role and its associated decisions. At the end of the initial 

implementation, the research questions (Section 2) and the 

associated modelling challenges (Section 3.1) were reviewed 

with the BT team. The primary workshops confirmed the 

credibility of the results and that the proposed method has 

properly addressed all the modelling challenges. Populating 

the FFE model based on the ultimate (most-dense) scenario 

confirmed that the DPS mathematical engine has the capabi-

lity to deliver the compound risk of making decisions in 

highly connected and overlapped networks without saturation.  

6. Conclusions 

Grounded in the connectivity inside and across organizati-

ons, new business requirements necessitate the need for 

rethinking about the decision-making and decision modelling 

processes. Making well-informed decision in such situations 

requires a proactive approach to quantify the desirability of its 

possible consequences. In response to the needs of industry 

and the research community, this paper has proposed the 

development of a new way of capturing, interpreting, and 

visualizing probabilistic connections in complex systems. The 

implementation of a new change propagation algorithm has 

accommodated the density of connections; and the design of a 

novel dashboard acts as an interface to the model and enables 

real-time interaction and decision support.  

The potential impact of this research to support process 

improvement is significant � particularly in the light of ever 

more connected products and manufacturing processes. Not 

only for engineering and business sectors which often make 

interconnected decisions, but also for the academic communi-

ty which have few tools capable of supporting connected 

decision propagation with overlapping spheres of influence. 

The experience from the primary case study (partially 

illustrated in this paper) represents the relative success of the 

proposed method in tackling an organization�s challenges in 

dealing with socio-technical change predictions. At present, 

the method is under evaluation in BT and being evolved to 

facilitate its utility with respect to the different business 

contexts such as healthcare and infrastructure systems design.  
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