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A three-dimensional, one-field, fictitious domain
method for fluid-structure interactions
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Abstract. In this article we consider the three-dimensional numerical
simulation of Fluid-Structure Interaction (FSI) problems involving large
solid deformations. The one-field Fictitious Domain Method (FDM) is
introduced in the framework of an operator splitting scheme. Three three-
dimensional numerical examples are presented in order to validate the
proposed approach: demonstrating energy stability and mesh conver-
gence; and extending two dimensional benchmarks from the FSI liter-
ature. New three dimensional benchmarks are also proposed.

Keywords: fluid-structure interaction - finite element - fictitious do-
main - immersed finite element - one-field - monolithic scheme - Eulerian
formulation.

1 Introduction

Numerical simulation of Fluid-Structure Interaction (FSI) problems is a compu-
tational challenge due to its strong nonlinearity, especially in the case of large
solid deformations. This challenge is exacerbated in three dimensions due to
the need for efficient numerical algorithms to handle the large number of de-
grees of freedom that are inevitably required. In this paper we generalize our
recent one-field Fictitious Domain Method (FDM) [22,23] from two to three di-
mensions, enhance the efficiency and robustness of the proposed time-stepping
scheme, and demonstrate the resulting algorithm’s capabilities on a number of
challenging test problems. We also provide potential benchmark problems to
allow results to be compared against those from other schemes in the future.
Lagrangian and Arbitrary Lagrangian-Eulerian (ALE) methods are widely
adopted when considering a relatively small solid deformation [6,11,15]. Discrete
remeshing can be used for large deformations [10,18], however this can be very
costly in the case of three dimensions and can present challenges for mass con-
servation. The cut finite element method (cutFEM) [4,5] may also be applied
to solve FSI problems [14,19], although it is not trivial to deal with the dis-
continuous integral across the elements cut by the moving fluid-solid interface,
especially in three dimensional cases. The Fictitious Domain Method (FDM)
[1,3,8,12,13] uses two meshes to represent the fluid and solid separately, which
can easily handle large deformation of the solid. However the FDM approach
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solves a very large equation system: both the velocity in the whole domain (fluid
and solid) and the displacement in the solid domain, coupled via a distributed
Lagrange multiplier (DLM) which is also an unknown variable. The Immersed Fi-
nite Element Method (IFEM) [2,17,27,24] also uses two meshes but only solves
for velocity in the whole domain, while the solid information is assembled on
the right-hand side of the fluid equation as a prescribed force term. This IFEM
approach achieves FSI behaviour through this forcing term, and is therefore rela-
tively efficient in three dimensional simulations compared to the DLM approach.
Performance of the IFEM method depends strongly on the fluid and solid prop-
erties and usually works well when the solid behaves similarly to the fluid (such
as a relatively soft solid) [20]. It has been successfully used, for example, in the
area of biomechanics [16,27].

The one-field FDM approach [22,23] similarly only solves for one velocity
field in the whole domain. However, this proposed method assembles the solid
equations and implicitly includes them in the equation system. The one-field
FDM approach has the same generality and robustness as the FDM/DLM: both
of them solve the fluid equations and solid equations as one system. However the
former needs to solve only for one velocity field while the latter solves for fluid ve-
locity, solid displacement and Lagrange multiplier. The proposed one-field FDM
may also be regarded as a special linearisation of the implicit IFEM, which how-
ever is more robust compared with explicit IFEM and more efficient compared
with the implicit IFEM [24], allowing a wide range of solid parameters to be con-
sidered and naturally dealing with the case of different densities between fluid
and solid [22,23]. In short, the one-field FDM combines the FDM/DLM advan-
tage of robustness and the classical/explicit IFEM advantage of efficiency. The
scheme has been validated through comparison with idealised two-dimensional
test cases and against experimental data and simulation results drawn from the
literature [21].

In this article, the one-field FDM is extended, implemented and validated in
three dimensions for the first time through the use of a newly applied operator
splitting scheme. The paper is organized as follows. The control equations and a
general finite element weak formulation are introduced in Section 2.1 and 2.2 re-
spectively, followed by time discretization in Section 2.3. The operator splitting
scheme is introduced in Section 2.4, followed by the linearisation (implemen-
tation detail) in Section 2.5 and the numerical algorithm for the final linear
equation system in Section 2.6. Several three-dimensional numerical tests are
given in Section 3, and conclusions are presented in Section 4.

2 One-field fictitious domain method

In this section, we review the one-field fictitious domain method [22] and de-
velop it further based upon a three-step operator splitting scheme and the case
novel block-matrix preconditioners. The system is described in a manner that
is independent of the spatial dimensions, thus ensuring its capability in three
dimensions, which is the primary purpose of this paper.



One-field FDM for FSI 3

Flg 1: Schematic diagram of FSI, 2 = ﬁtf ] ﬁf

2.1 Control partial differentiation equations

In the following context, £2f ¢ R? and 2§ ¢ R? (d = 3 in this article) denote
the moving fluid and solid domain respectively, with the moving interface Iy =

ﬁf ﬂﬁf as shown schematically in Figure 1. {2 = ﬁf Uﬁf is a fixed domain with
outer boundary I' = I'p U I'y, with I'p and I'y being Dirichlet and Neumann
boundaries respectively. We denote by X the reference coordinates of the solid, by
x = x(+,t) the current coordinates of the solid, and by x¢ the initial coordinates
of the solid. Notice that we choose X to be the stress-free configuration, which
may be different to the initial configuration xg.

Let p, 4, u,0 and g denote the density, viscosity, velocity, stress tensor and
acceleration due to gravity respectively. We assume both an incompressible fluid
in Q,f and incompressible solid in {2;. The conservation of momentum and con-
servation of mass therefore take the same form as follows. Momentum equation:

du

— =V , 1
P o+ g (1)
and continuity equation:

V-u=0. (2)
An incompressible Newtonian constitutive equation in (th can be expressed as:
oc=0cl =77 —p'1, (3)

with 7/ = pfDu’ being the deviatoric part of stress o/, and Du = Vu + V7 u.
An incompressible neo-Hookean solid with viscosity p° is assumed in 2§ [3], and
the constitutive equation may be expressed as:

og=0°=71°-p°l, (4)

with 7% = ¢ (FFT — I) + p®Du’ being the deviatoric part of stress o®, and
F= g—;‘( = a%(o% = VoxVxxg being the deformation tensor of the solid, and
c1 is a solid material parameter. Finally the system is completed with continuity
of velocity u/ = u® and normal stress o/n® = o*n® on interface I';, and standard

Drichlet/Neumann boundary (on I'p/I'y) and initial conditions.
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2.2 Finite element weak form

In the following context, let L?(w) be the square integrable functions in domain

w, and HY(w) = {u:u,g—gi € L*(w) for i=1,--- ,d}. We also denote by

H}(w) the subspace of H!(w) whose functions have zero values on the Dirichlet
boundary of w, and denote by L2(w) the subspace of L?(w) whose functions have
pf in Qtf
p® in (2]
following symbolic operations:

zero mean value. Let p = { . Given v € H}(£2)?, we perform the

Eq.(1)(0)-v= | Ba() (o) -v+ [ Eq() (o) v
A I3 J

2

;/ Eq.(1) (af)-v+/ (Ea.(1) (6°) = Eq.(1) (o)) - v.
9] 2

£l
t

Integrating the stress terms by parts, the above operations, using constitutive
equations (3) and (4), give:

pf/d—u~v+/Tf:Vv—/pV-v—i—(ps—pf)/ Cl—u~v
o dt o 2 o; dt

—|—/ (TS—Tf)ZVV:/pfg'V+/ (pS—Pf)g'V+/ h-v,
2 2 &

I'n
where h denotes the prescribed normal stress on I'y. Note that the integrals on
the interface I'; are cancelled out due to the continuity of normal stress: o/n® =
o°n®, because they are internal forces for the whole FSI system. Combining with
the following symbolic operations for ¢ € L?($2),

- /Q{ Eq.(2)q - /Q

leads to the weak form of the FSI system as follows.
Given ug and §2§, find u(t) € HY(2)4, p(t) € L*(£2) and (2§, such that for
Vv € H} ()4, Vq € L*(2), the following equation holds:

f
pf/a—u~v+pf/(u-V)u-v—i—'u—/Du:DV—/pV~v
o Ot Q 2 Ja Q

()

s s
t t

Eq.(2)g = — /Q Eq.(2)q,

s
t

ou J
—/qV~u+p5/ —~V+M— Du:Dv (6)
o o 0t 2 Ja:
+01/ (FFT—I):Vv:pf/g-v+p5/ g-v+/ h-v,
foXs 0 Q3 I'n
O _— 5 _ of [ § : s 0() - :
where p° = p* — p/ and p° = p® — p’, and the integral over 2}, =-* is the time

derivative with respect to a frame moving with the solid velocity u® = u| e
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2.3 Discretisation in time

Using the backward Euler method to discretise in time, equations (6) may be

approximated as follows.
Given u,, p, and 25, find u,41 € H'(2)%, ppy1 € L?(2) and 25, such

that for Vv € HE ()%, ¥q € L2(£2), the following equation holds:
Uy — Uy
p‘f/ %V‘Fﬂf/ (un—i-l 'V)un+1 %
o t Q

f
+£ Dun+1¢DV*/Pn+1V'V—/ qV - U1
2 Ja 17 o

5 Up41 — Up Mé (7)
+p —_— .V — Du,41 : Dv
1)

+cl/ g~v—|—/ B~V,
0 I'n

n+1
and (27, is updated from §2; by the following formula:

s
n+1

(FFT—I) :Vv:pf/g-v+p6/
0 0

s s
n+1 n+1

20 ={x:x=x, + Atu,41,x, € 2,,}. (8)

2.4 An operator splitting scheme

The formulation of (7) is implicit. However we shall solve it semi-implicitly via
the following operator spitting scheme which is based upon [9].

(1) Convection step:

u, — Uy,
/ %V‘i"/ (un+1/3'V) un+1/3‘V:0. (9)
[0} 0

— ) f
u'fL un
pf/ +2/3 +1/3 v+% Dun+2/3 IDV
2 2

At
8
5 Up42/3 — Up o
+p/ 7~v—|——/Du+23:Dv
s At 2 s nUn+2/ n

(10)
+c1/ (FuiosFhias—1) s Vv
2

(3) Pressure step:

Up+1 — Up42/3
pf/ %.V_/pn+lv.v_/qv-un+1:0. (11)
Q t Q Q
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In the above, V,,(-) represents the divergence in the current coordinates at t =
t, and D, = V,, + VL. Note that the variables U, y1/3 and U, 4o/3 are just
intermediate values, not specifically the velocity at time ¢ = ¢, + % ort =
ty + QTAt. The notation F,, /3 or Fy, ;5,3 is interpreted as follows:

= % = Vx (x, + uAt), (12)
with t =n+1/3 or n +2/3.

Using this splitting scheme, standard approaches can be taken to solve the
pure convection equation (9) (see [9]), and iterative methods with an efficient
preconditioner can be applied to solve the “degenerate” Stokes Equations (11)
(see Section 2.6 of [7,21]). The main challenge is in how to approximate the
term Fn+2/3FZ+2/3 — I in equation (10), which is nonlinearly related to the

solid displacement and hence to the solid velocity. In the following subsection

} o . s T . . .
we focus on expressing and linearising F,, 2 /3F] , /3~ I in terms of velocity u,,.

F,

2.5 Linearisation of the diffusion step

The specific choice of linearisation is the core of this proposed one-field FDM ap-
proach, and is what makes it distinctive from all other schemes. Let F,, 5 /3F3; +2/37
I be denoted by F/F! — I = s; with t = n + 2/3, then s; can be computed as

follows:

st =FF] —I=(Vxx;Vgx; —I). (13)
Using the chain rule, this last equation can also be expressed as:
st = Vux: V%, Vix, VI =T+ V%, V%, — V. x, VI x, (14)
or
st = VoxiVixe — I+ Viuxy (Vxx,Vixn, —I) Vixq. (15)

Then s; can be expressed based on the previous coordinate x,, as follows:
S = antvzxt I+ antan;Cxt. (16)
Using x; = x,, + Atuy (see (12)), this can finally be expressed as:

s; = At (Vnut + V7Tlut + AtV,LutVZUt) + sp
+ AtQVnutan::ut + AtV,ws,, + AtanZut.

There are two nonlinear terms in this equation, which may be linearised as
VouwViu =V, u,Viu, + V,u,Viu - V,u,Viu,, (18)
and

Vnutan,{ut = VnutanZun + Vnunan£ut - VnunanZun. (19)
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Substituting s,49/3 = Fn+2/3Ff+2/3 — 1, using expressions (17), (18) and
(19), into the diffusion step (10), and neglecting terms of O (At?), after some
algebra we produce the one-field FDM formulation:

u, —u, f
pf/ +2/3 +1/3 -V 4+ %/ Dun+2/3 : Dv
2 2

At
u, —u, S+ At
+p5/ +2/3 v 61/ Dyttysa)s : Dov

—|—Atcl/ (Vnun_,_Q/gsn + snvgun_‘_z/g) Vv
0

g~v+/ l_1~v701/ Sy : Vv
I'n 2

o) Q s

2.6 Iterative linear algebra solver

s
n

In this section, we shall discuss the numerical algorithms in order to solve the
final linear equations from the diffusion step (20) and pressure step (11). For
convection step, we use the Taylor-Galerkin method in this paper [9]. Let us
write equation (20) in an operator matrix form as follows:

Anun+2/3 = bna (21)

where
A, =M/At + K+ PL(M: /At + K3 P,

and
b, =+ Pl + Mu,, 1/3/At + PTMSP,u,, /At

The above matrix operators are defined as:

f
/Mu-v:pf/u~v7 /Ku~v:u—/Du:Dv7
0 0 Q 2 Ja

o 4 At
Kiu-v:i'u—'_ Cl/
(9]

5 Du:Dv + Atcl/ (Vnusn + snvgu) Vv,
25

/f'v:pf/g~v+/ h-v, / ffL'V:p(s/ gov—cl/ Sp Vv,
Q ¢ Iy Q Q 23

where u,v € H'(w)? with w being 2 or £2. Finally P,, is a restriction from
HY(02)% to H'(22)? (PT is the corresponding injection from H(£22)9 to H'(£2)%):
P,u=u’ = u|,. . We use the finite element interpolation to approximate P,
after discretisation in space.

A preconditioned Conjugate Gradient method can efficiently solve equation
(21). We use the incomplete Cholesky decomposition of matrix M/At + K as
a preconditioner in order to solve equation (21). Very good convergence perfor-
mance can be observed from our numerical tests (although the precise perfor-
mance of the linear algebraic solver is not the topic of this article).

s s
n n
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Similarly, the “degenerate Stokes” problem (pressure step (11)) can also be
expressed in an operator matrix form:

R (o) = (M), )

where, Vv in H'(£2)? and ¢ € L*(R2), [,(Bv)q = — [,qV - v. We use the
MinRes algorithm [7] to solve the system with the following preconditioner:

Ma

} , Where/ (App)g = / Vp-Vq, Vp,qec HY(1). (23)
P [0 Q

We justify this since we can derive a Schur complement in the form of S =
BTM~!'B. The operators that are discretised in this form imply that S will be
spectrally equivalent to a discrete Laplacian. Hence we expect this preconditioner
will be effective for this system, similarly to analysis for Stokes equation [7].

3 Numerical experiments

In the following numerical tests, the convection and diffusion steps are discretised
with quadratic finite elements (tri-quadratic hexahedra and quadratic tetrahe-
dra), and the pressure step is discretised with the Taylor-Hood element. For
stability it is sufficient that u° > 0 [21,22], however for simplicity, and to be
consistent with [2,17,27] for example, we assume p® = 0 in these tests.

3.1 Oscillating ball

In this section, we consider a 3D oscillating ball which is an extension of the 2D
disc in [23,28]. We use this example to test stability of the proposed approach
by investigating the evolution of total energy:

Etotal / ‘ n| +7/ ‘un|
At f
M Z/Du;c Duk—i——/ trFFT—d).

The four different energy contributions/terms in the above equation have the
following respective meanings: Kinetic energy of fluid plus fictitious fluid, kinetic
energy of solid minus fictitious fluid, viscous dissipation (over n time steps of
size At) and the potential energy of the solid.

The ball is initially located at the centre of £ = [0,1] x [0,1] x [0, 0.6] with
a radius of 0.2. Using the property of symmetry this computation is carried out
on 1/8 of domain £2: [0,0.5] x [0,0.5] x [0,0.3]. The initial velocities of z and y
components are the same as that used in [22,28], which are prescribed by the
stream function

(24)

& = Pysin(ax)sin(by), (25)
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0.030961
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(a) Velocity. (b) Pressure.

Fig. 2: Distribution of velocity norm and pressure on the fluid mesh at t = 0.21 (the ball is
maximally stretched), At = 5.0 x 1073,

—At=5.0x 107
At=25x 107
——At=1.25x 107

displ 0.995|

0.037731 0.99
0.033538
In,azaam
- 0.025154
- 0.020961
|+ 0.016769
-0.012577 0.975
0.0083846
0.0041923 097

1.3567e-19

Energy Ratio
°
o
8
&

o
@
8

0 0.2 0.4 0.6 0.8 1

(a) Displacement on the solid mesh. (b) Evolution of the energy ratio
Eiotal(tn)/Etotal(to).

Flg 3: Solid deformation corresponding to Figure 2 and Evolution of the energy ratio.

with &y = 5.0 x 1072 and @ = b = 27. The z component of velocity is initially
set to be 0. In this test, pf = 1, uf = 0.01, p* = 1.5 and ¢; = 1. In order
to visualise the mesh and deformation of the solid, a snapshot of fluid velocity
and pressure are presented in Figure 2, and the corresponding deformed solid is
displayed in Figure 3 (a). It can be seen from Figure 3 (b) that the total energy
is nonincreasing, which is an indication of stability. In addition, the total energy
converges to the initial system energy as we reduce the size of the time step,
which shows the desired energy conservation property of the proposed scheme.

3.2 Oscillating cylinder

In this test we consider a cylindrical pillar oscillating in a cuboid channel as
shown in Figure 4, which is a 3D extension of the 2D leaflet in [13,22,25]. We
use this example to test the mesh convergence of the proposed scheme. The size
of the cuboid is: length L = 3, height H = 1 and width W = 0.5. The cylinder
is located at the center of the cuboid’s base, with radius of » = 0.05 and height
h = 0.8. We use a symmetry boundary condition on the top, front and back
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Table 1: Material properties for the oscillating cylinder and oscillating
tri-leaflets.
Fluid Solid
o7 =100 kg/m? |p° = 100 kg/m>
p! =10 N -s/m?[c; = 107 N/m?

surfaces of the cuboid. All the velocity components are fixed to be zero at the
bottom of the cuboid, and the inlet and outlet flow are defined by:

Uy = 15y (2 —y/H) sin (27t), wuy =u, =0. (26)

We use the same material properties as used in [13,22,25] for the 2D leaflet (see
Table 1), which is a natural extension of the corresponding 2D problem with
similar boundary conditions. We use a tri-quadratic hexahedras fluid mesh of

Fig. 4: Sketch of the oscillating cylinder in a cuboid.

size 10 x 20 X 60 (width x height x length) for a coarse mesh, 16 x 32 x 96 for a
medium mesh and 20 x 40 x 120 for a fine mesh. We use a linear tetrahedral solid
mesh of 10304 elements with 2675 vertices for a coarse mesh, 19040 elements with
4786 vertices for a medium mesh and 38080 elements with 8883 vertices for a
fine mesh. A stable small time step At = 1.0 x 10~4 is adopted for all the cases.
In order to visualise the results of this simulation, snapshots of the velocity
norm and stream lines in the background domain and the solid deformations
are presented in Figure 5 and 6 respectively. The displacement of initial point
(1.55,0.8,0.5) (the top of the cylinder) for three different meshes is plotted in
Figure 7 as a function of time, from which mesh convergence with regard to
the displacement is observed (the medium and fine mesh results are almost
indistinguishable in these plots).

3.3 Oscillating tri-leaflets

In this section we consider a 3D circular tube with flexible, opening tri-leaflets.
A similar case has been studied in [26]. The computational domain is shown in
Figure 8 with L = 2 and R = 0.5 in this test. Note that there is a small gap
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[disp|
063735
0.56653

I 0.49571
- 0.4249
- 0.35408
0.28327

0.21245
0.14163
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0

Fig. 5: Velocity norm and stream lines using a
medium mesh at ¢ = 2.3. The shadow shows the

deformation of the solid corresponding to the Flg 6: Solid deformation at three different
case of t = 2.3 in Figure 6. stages.
0.0
0
5 = 0.0
§ £
8 3 o
a K
£ 2
2 S -0.1§
£ 3 03
5 £
£ 2 0.8
-0
15 055 05 1 15 2 25
Time Time
(a) Horizontal displacement against time. (b) Vertical displacement against time.

Flg 7: Displacement at point (1.55,0.8,0.25) versus time.

(with the angle a = 0.4° as shown in Figure 8 (b)) between the three parts of
the tri-leaflets in order to avoid contact, which is not currently included in our
model. The tube walls are no-slip boundaries, and the inlet and outlet flow are
prescribed by:

uy =157 (1 —r/R) (1 +r/R) sin (2nt), r=+\y?>+22, wuy=u,=0,

which is an extension of formula (26). The material properties for the fluid and

2R|

(a) Sketch of the oscillating tri-leaflets in a tube. (b) Geometry of the tri-leaflets with o = 0.4°.

Fig. 8: Computational domain for the test problem of tri-leaflets.
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solid are presented in Table 1. Two different meshes are used to test this problem:
a coarse mesh of 12750 tri-quadratic hexahedra with 106151 nodes and a fine
mesh of 90000 tri-quadratic hexahedra with 735861 nodes in order to discretise
the cube; a coarse mesh of 7390 linear tetrahedra with 2657 vertices and a fine
mesh of 27460 linear tetrahedra with 8917 vertices in order to discretise the tri-
leaflets. The density of the background mesh can be observed in Figure 9, which
also presents a snapshot of the velocity norm and stream lines. The solid mesh
can be observed in Figure 11, which also shows the deformation of the tri-leaflets
with horizontal velocity (x component) at different stages in order to visualise
the pattern of the oscillation. The displacement at one of the tri-leaflet tips is
plotted as a function of time in Figure 10, from which it can be seen that the
coarse mesh leads to small oscillation, however it is not present in the fine mesh
simulation. The maximal fluid velocity is u, = 18.2 at the centre of the channel
when the tri-leaflets are completely open, and the maximal solid velocity at the
leaflet tip is u, = 18.2 when the tri-leaflets are completely close.

Ivelocity] 03

34.118
I 30.327
26.536

—— coarse mesh
— fine mesh

o

o =

- 22745
- 18.955

15.164
F 11.373

7.5818
3.7909
0

Displacement of x component

0.2 0.4 6 0.8 1 1.2

0.¢
Time
Flg 9: Snapshot of velocity norm and stream

lines in background domain and z-component Flg 10: The z-component displacement at the
velocity on the solid mesh at t = 0.2. tip of each of the tri-leaflets.

4 Conclusions

In this article the one-field Fictitious Domain Method (FDM) [22] is extended in
three ways: through an efficient operator splitting scheme, the implementation
of block-matrix preconditioning and into three space dimensions. One numerical
example is presented in order to validate the energy conservation, a second is
used to test mesh convergence, and the last numerical example is extended from
a two-dimensional benchmark for comparison and, we believe, can act as a 3D
benchmark for future comparison. It can be seen from these tests that the one-
field FDM approach may be adopted to simulate a variety of FSI problems with
large solid deformation in three space dimensions. We know from our 2D tests
that, for soft solids, execution times are comparable with an IFEM implemen-
tation: and considerably faster as the solid becomes more stiff (capable of using
a larger time step). Consequently we propose the one-field FDM as a general
approach that combines that robustness of FDM/DLM and the computational
efficiency of IFEM.
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Flg 11: The velocity of x component at different times for the tri-leaflets using the coarse mesh.
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