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Abstract—Caching is a promising solution for the cloud radio
access network (Cloud-RAN) to mitigate the traffic load prob-
lem in the fronthaul links. Multiuser downlink beamforming
plays an important role for efficient utilization of spectrum
and transmission power while satisfying the user’s quality of
service (QoS) requirements. When the number of users exceeds
the serving capacity of the network, certain users will have
to be dropped or re-scheduled. This is normally achieved by
appropriate admission control mechanisms. Introducing local
storage or cache at the remote radio heads (RRHs) where
some popular contents are cached, we propose beamforming and
admission control technique for cache-enabled Cloud-RAN in the
downlink. This minimizes the total network cost including power
and fronthaul cost while admitting as many users as possible. We
formulate this multi-objective optimization problem as a single
objective optimization problem. The original problem which is
mixed-integer non-linear program (MINLP) is first converted to
the mixed-integer second order cone programming form (MI-
SOCP). Branch and Bound (BnB) algorithm is then used to
determine the optimal and suboptimal solutions. Simulation study
has been conducted to assess the performance of both methods.

Index Terms—Cloud-RAN, downlink beamforming, admission
control, fronthaul limitation, caching, second order cone pro-
gramming.

I. INTRODUCTION

Due to emergence of smart devices and high volume data

applications, wireless networks are becoming very congested.

This has resulted in a need for a heterogenous network

architecture with more densely populated access points rather

than the traditional single-layer network architecture [1]. How-

ever, increasing the number of access points will introduce

major challenges in wireless networks, operational cost and

management of network interference [2].

The cloud radio access network (Cloud-RAN) is a

promising solution to tackle these challenges [3]. In the

Cloud-RAN, the remote radio heads (RRHs) are attached to

a centralized base band unit (BBU) through the fronthaul
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Sciences Research Council for the support of this work through grants
EP/R006385/1 and EP/N007840/1 and the International Scientific Partnership
Program (ISPP) at King Saud University through grant ISPP134.

links. Base band data processing and acquisition of channel

state information (CSI) are performed at the BBU which

enables the RRHs to deliver data to users in a cooperative

manner. This will allow multiple RRHs to jointly process

data and design precoders. However, carrying out fully joint

processing requires a significant amount of overhead for

the RRHs to share data. This introduces a heavy load on

fronthaul links [4]. Using wide bandwidth millimeter-wave

frequency for fronthaul connectivity may not necessarily

relieve fronthaul load due to continuous increase in the

number of users and demand on high data rate applications.

Hence, the capacity of the link between BBU and RRH will

still be an issue, particularly for long distance and in non-line

of sight environment.

One way to mitigate the fronthaul capacity requirements, is

to serve each user by a cluster of RRHs cooperatively through

joint precoding. In this case, the data for each user will only be

transferred to a particular RRH from the BBU rather than that

being distributed to all of the RRHs. As a result, a significant

reduction in fronthaul load can be achieved [5].

Another way to reduce the fronthaul capacity requirement,

is to use the local storage at the RRHs, where some popular

contents can be cached. Getting the contents closer to the user

or keeping them at the user terminal directly through broad-

casting will enhance users’ perceived experience in addition to

minimizing the network congestion [6], [7], [8]. Caching some

popular contents at the local storage in RRHs or user terminals

during off peak time [9], [10], will significantly improve the

network throughput and delay. Hence, caching and RRH clus-

tering are promising techniques to reduce the fronthaul load in

the Cloud-RAN. As the number of deployed RRHs increases

in the Cloud-RAN, employing downlink beamforming will

further enhance spectral and energy efficiency.

For the works related to energy efficient techniques in the

literature, a weighted mixed norm minimization was proposed

to enhance energy efficiency of the downlink beamforming

in a Cloud-RAN in [11]. The authors in [12] investigated



multiuser-access point (MU-AP) association and beamforming

design for both the downlink and uplink power optimization.

A multi-stage algorithm based on the group-sparsity was

proposed to minimize the power consumption for multicast

Cloud-RANs in [13]. The authors in [14] proposed an energy-

saving mechanism for Cloud-RANs based on the formation of

virtual base station. However, these works have not considered

the fronthaul limitation. The work in [15] proposed low-

complexity algorithms to minimize transmission power under

the fronthaul link constraint. In [16], the authors proposed

low-complexity algorithms to jointly optimize the data assign-

ment and the transmit power minimization for beamforming

in backhaul limited caching networks. The authors in [17]

investigated the issues of user scheduling and beamforming

for energy efficient Fog-RAN. A cache-enabled Cloud-RAN

was introduced in [18] to enhance the network performance

while reducing the fronthaul cost through content-centric base

station clustering and beamforming approach.

The works discussed above do not consider admission

control (AC) which is crucial for enhancing spectral efficiency

in multi-antenna aided Cloud-RANs. In practice, the number

of users in a particular frequency band may exceed the number

of antennas which will force some users to be dropped or re-

scheduled. The work in [19] proposed to maximize admitted

users under the power constraint by jointly designing beam-

formers and AC. This problem is Nondeterministic Polynomial

(NP) hard. However, it has been converted to a convex

problem based on semidifinite relaxation and approximations.

The authors in [20] proposed a holistic sparse optimization

framework which considered power minimization and user AC

for the multicast Cloud-RAN.

The authors in [21] developed a two-stage algorithm aiming

to maximize the power efficiency by jointly optimizing the

admitted users and cooperative beamformers. Three main

approaches were presented in [22] to jointly optimize the

admitted users and cooperative beamformers in heterogenous

network based on the level of coordinations between macro

and femto base stations. The authors in [23] studied the joint

coordinated beamforming and AC for fronthaul constrained

Cloud-RANs by formulating the optimization problem as

a single-stage semidifinite program (SDP). However, joint

multiuser downlink beamforming and AC with cache-enabled

Cloud-RAN has not been considered in the literature.

The main focus of this paper is the network cost minimiza-

tion which includes both the cost of transmission power and

fronthaul capacity, by taking into account caching in Cloud-

RAN design. The issue of users seeking access exceeding

the limited network resources is tackled through our proposed

joint downlink beamforming and AC (JBAC) technique. The

contributions of this work are summarized as follows:

• We propose joint beamforming and AC for the cache-

enabled Cloud-RAN with limited fronthaul capacity. In

particular network cost under multiple constraints such as

quality of service (QoS) requirement, fronthaul limitation

and transmission power is optimized while admitting as

many users as possible.

• The JBAC is a combinatorial problem which is NP

hard and non-convex. To reduce the complexity of the

problem, we first formulate the problem into a mixed-

integer second order cone programming (MI-SOCP) with

constraint relaxations [24] which makes our proposed

problem formulation different from that of [23].

• We then develop a branch and bound (BnB) method

[25] to obtain the optimal solution of the MI-SOCP. The

proposed mixed-integer programming optimally selects

the RRHs and designs the corresponding beamformers.

To reduce the complexity further, a suboptimal BnB

method is proposed.

We organize this paper as follows. Section II presents

the network model and assumptions. The JBAC problem is

formulated in Section III. In Section IV, we convert the original

JBAC problem into MI-SOCP and propose the BnB algorithm

to obtain the optimal solution. A low complexity suboptimal

BnB algorithm is introduced in Section V. Simulation results

are provided in Section VI, followed by conclusions in Section

VII.

Notations: Boldface upper-case and boldface lower-case

letters denote matrices and vectors respectively. R and C

denote respectively the sets of real and complex numbers. E[.]
denotes the expected value of a random variable. CN (µ, σ2)
represents the complex Gaussian distribution with mean µ and

variance σ2. The conjugate transpose of a vector is denoted

as (.)H . 0l and 1l represent the l-long all zeros and l-long all

ones vectors respectively. Re{.} and Im{.} represent the real

and imaginary parts of a complex variable, respectively.

II. NETWORK MODEL AND ASSUMPTION

A. System Model

We consider a downlink transmission of a cache-enabled

Cloud-RAN with L RRHs and K users. Each RRH consists

of N antennas and each user is equipped with a single

antenna as depicted in Figure 1. We consider a set of RRH

L = {1, 2, · · · , L} and a set of users K = {1, 2, · · · ,K}. Each

RRH is attached to the BBU by a capacity limited fronthaul

link. The BBU can access the content server that contains

F number of contents. It is also assumed that each RRH

has a local storage with a limited size. Each user is served

cooperatively by a cluster of RRHs during each time frame.

We define wl,k ∈ C
N×1 as the beamforming vector at the

RRH l for transmitting data to user k. The transmit signal of

RRH l can be expressed as

xl =

K
∑

k=1

wl,ksk, ∀l ∈ L, (1)

where sk ∈ C denotes the data symbol for user k with unit

power, i.e., E[|sk|2] = 1. The received signal at the user k

can be written as:
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Figure 1: Paradigm of Cache-enabled downlink Cloud-RAN with
limited fronthaul.

yk =

L
∑

l=1

h
H
l,kwl,ksk +

K
∑

i=1,i 6=k

L
∑

l=1

h
H
l,kwl,isi + nk, ∀k ∈ K,

(2)

where the noise at the receiver nk ∈ C is distributed according

to CN (0, σ2
k), k ∈ K, and hl,k ∈ C

N×1 is the channel vector

from RRH l to user k. The signal to interference plus noise

ratio (SINR) at the receiver of user k is given by

SINRk =
|∑L

l=1 h
H
l,kwl,k|

2

∑K
i=1,i 6=k |

∑L
l=1 h

H
l,kwl,i|2 + σ2

k

, ∀k ∈ K. (3)

B. Cache Model and Request Model

We consider F = {1, 2, · · · , F} as a library of F contents.

All the contents are of the same normalized size. We denote

the local storage size of RRH l as Yl (Yl < F ), which is

also the total number of contents that can be stored. Let C ∈
{0, 1}F×L denote the caching placement matrix where cf,l =
1 indicates that the f -th content is stored in the l-th RRH

and cf,l = 0 otherwise. Due to storage limitation, we have

to constrain
∑F

f=1 cf,l ≤ Yl. There is a time scale difference

between the long-term caching placement and the short-term

transmission, so we consider that cache placement matrix C

is known a priori and fixed.

We define bl,k as the RRH-MU association indicator, where

bl,k = 1 means that the user k is served by the RRH l and

bl,k = 0 otherwise. The relation between bl,k and wl,k is

described as:

{

bl,k = 0 ⇔ wl,k = 0, ∀l ∈ L, ∀k ∈ K,

bl,k = 1 ⇔ wl,k 6= 0, ∀l ∈ L, ∀k ∈ K.
(4)

Define a user requests matrix as R ∈ R
F×K , where

rf,k = Bk log2(1 + γk) if the k-th user requests for the f -th

content and demands a target SINR γk. Otherwise, rf,k = 0,

where Bk is the user bandwidth. If the requested content

of user k is available in a RRH l, the user can get the

content directly from RRH l without relying on the fronthaul.

Otherwise, RRH l needs to fetch this content from the BBU via

the fronthaul link. Our aim is to maximize delivery of contents

from RRH whenever possible and to minimize reliance on

BBU. Hence, this has an indirect impact on the delay as

the contents are aimed to be delivered by RRHs whenever

possible. We assume that a user cannot request more than one

content at each scheduled time slot.

C. Network Cost Model

we consider the network cost as the sum of the costs of

fronthaul and transmission power. We denote the content file

requested by the user k as fk and model the fronthaul cost as

[18]:

CB =

L
∑

l=1

K
∑

k=1

F
∑

f=1

bl,k(1− cfk,l)rf,k. (5)

The transmission power cost is modeled using the beam-

forming vectors of RRHs as

Cp =

L
∑

l=1

K
∑

k=1

‖wl,k‖22. (6)

The total network cost can be expressed as:

CN = Cp + ηCB , (7)

where η is a weighting factor (η > 0).

For the purpose of joint processing, we assume that CSI,

caching placement matrix and user request matrix are available

at the BBU.

III. PROBLEM FORMULATION

We formulate the problem as minimizing the total network

cost for the Cloud-RAN while admitting as many users as

possible and satisfying transmission power, admitted users’

QoS and the fronthaul capacity.

A. Network Cost Minimization

The QoS constraint is written as:

SINRk ≥ γk, ∀k ∈ K, (8)

where γk is the target SINR of user k. Since the rotation

of each element of wl,k by an arbitrary phase angle, i.e.,

wl,k exp(jφ) for any φ, will not have any impact on the

network power consumption and the QoS constraints, i.e., (6)



and (8), the SINR constraint can be formulated into a standard

SOCP constraint as follows:

√

√

√

√

K
∑

i=1,i 6=k

|
L
∑

l=1

hH
l,kwl,i|2 + σ2

k ≤

1√
γk

Re

{ L
∑

l=1

h
H
l,kwl,k

}

, ∀k ∈ K, (9a)

Im

{ L
∑

l=1

h
H
l,kwl,k

}

= 0, ∀k ∈ K, . (9b)

The transmit power of RRH l is equal to
∑K

k=1 ‖wl,k‖22,

hence, the power budget constraint is:

K
∑

k=1

‖wl,k‖22 ≤ PM
l , ∀l ∈ L, (10)

where PM
l represents the power budget of RRH l.

The data transfer rate from database cloud to RRH l

according to (5) is equal to
∑K

k=1

∑F
f=1 bk(1 − cfk,l)rf,k.

The fronthaul is constrained as follows:

K
∑

k=1

F
∑

f=1

bl,k(1− cfk,l)rf,k ≤ RM
l , (11)

where RM
l represents the maximum fronthaul capacity link of

the RRH l.

For a given set of users, the optimization of cost taking into

consideration of QoS, power budget and fronthaul capacity can

be formulated as,

P1 : min
{wl,k,bl,k}

CN (12a)

s.t.

√

√

√

√

K
∑

i=1,i 6=k

|
L
∑

l=1

hH
l,kwl,i|2 + σ2

k ≤

1√
γk

Re

{ L
∑

l=1

h
H
l,kwl,k

}

, ∀k ∈ K, (12b)

Im

{ L
∑

l=1

h
H
l,kwl,k

}

= 0, ∀k ∈ K, (12c)

K
∑

k=1

‖wl,k‖22 ≤ PM
l , ∀l ∈ L, (12d)

K
∑

k=1

F
∑

f=1

bl,k(1− cfk,l)rf,k ≤ RM
l , (12e)

‖wl,k‖22 ≤ bl,kP
M
l , ∀l ∈ L, ∀k ∈ K, (12f)

bl,k ∈ {0, 1}, ∀l ∈ L, ∀k ∈ K. (12g)

The QoS constraint (12b) ensures that user k achieves the

target SINR γk. The total power budget constraint (12d) means

that the total transmit power of RRH l is below the maximum

transmit power. The fronthaul constraint (12e) indicates that

the data transfer rate from database cloud to RRH l is not

more than the link capacity. The constraint (12f) is to ensure

that when bl,k = 0, wl,k = 0. The constraint (12g) indicates

that the value of bl,k can only be 0 or 1.

B. AC for Downlink Beamforming

The problem P1 is MI-SOCP [19], [20], [22], [26]. The

problem will turn out to be infeasible if the number of

users seeking access exceeds the number of antennas at each

RRH or when the data rate requirement exceeds the fronthaul

capacity. In this case, only a subset of users will be selected

for transmission and the remaining users will be dropped

temporarily. This is equivalent to the AC at the physical layer

level which is the focus of this paper. However, a higher-level

AC will also be required to monitor non-admitted users and

allocate higher priority to those users that had been denied

access for a longer period due to poor channel conditions

etc. Hence, we incorporate the maximization of the number of

admitted users to the total network cost minimization problem,

and reach a two-stage problem. The first stage is to maximize

the admitted users while satisfying the constraints as follows:

P2 : max
{wl,k,bl,k,ak}

K
∑

k=1

ak (13a)

s.t. (12d) − (12f), (13b)

SINRk ≥ γk
ak + 1

2
, ∀k ∈ K, (13c)

bl,k ≤ ak + 1

2
, ∀l ∈ L, ∀k ∈ K, (13d)

L
∑

l=1

bl,k ≥ ak + 1

2
, ∀l ∈ L, ∀k ∈ K, (13e)

bl,k ∈ {0, 1}, ak{−1, 1} ∈, ∀l ∈ L, ∀k ∈ K, (13f)

where ak is the MU access indicator, whereas ak = 1 means

that the user k accesses the network and ak = −1 otherwise.

The constraints (12f) and (13d) guarantee that when ak =
−1, ∀k ∈ K both bl,k = 0 and wl,k = 0, ∀l ∈ L. i.e., this is

formulated such as way that when a user k is not admitted,

it sets automatically the corresponding beamformer to zero

and the link of this user to RRH to be inactive. In addition,

when ak is 1, the constraint in (13c) will be transformed to

SINRk ≥ γk, i.e., an admitted user k should satisfy the target

SINR γk. However, if ak = −1, the corresponding constraint

will turn out to be SINRk ≥ 0, i.e., if a user k is not admitted,

the corresponding QoS constraint will hold true always, i.e.,

it will be ignored. If ak = 1, the constraint (13e) means that

user k should be served by at least one RRH. However, if

ak = −1, i.e. when the user k is not admitted, the constraint

(13d) will turn out to be bl,k ≤ 0 and the constraint (13e) will

turn out to be
∑L

l=1 bl,k ≥ 0, i.e., it will automatically force

bl,k to be zero for all values of l. i.e., none of the RRH will

be attached to the user k. The second stage is to solve the



following problem with the selected set of users in the first

stage.

P1 : min
{wl,k,bl,k,ak}

CN (14a)

s.t. (12d) − (12f), (13c) − (13f). (14b)

C. Joint Beamforming and AC (JBAC)

The principle aim of our optimization is to maximize as

many admitted users as possible within the constraints of avail-

able transmission power (12d) and fronthaul capacity (12e)

as formulated in P2. However, if there is a choice between

selection of users, we wish to admit users that reduce demand

on fronthaul traffic and RRH transmission power. Hence we

have explicitly included cost CN together with the user maxi-

mization in the optimization cost as described in Section C. In

case if we do not include CN , the problem formulation P2 will

maximize admitted users within the constraints of (12d) and

(12e). As the aim is to maximize users, it will allocate users

until at least one of the constraints (12d) and (12e) is violated.

It is very likely that admitted users will be restricted only by

one of the constraints, for example, if the fronthaul capacity

constraint is very tight compared to the power constraint. If

there is a choice between users for example user j or user

k, both requiring identical data rate, cost in P2, will not

guarantee choosing the user that require less power assuming

both users will satisfy the power limit. In this case, there

are multiple solutions for the problem in P2. However, when

both the cost CN and the user admission are combined into

one cost, it ensures that we maximize the number of users

while allocating users that demand less fronthaul capacity and

transmission power. This will also ensure a unique solution of

the problem considered in this manuscript. Hence, by adopting

the approach in [19], we convert the two-stage problem to

JBAC problem by introducing two small positive constants

α, β, which are used as penalty factors for user admission

and feasibility guarantee, respectively. The JBAC problem is

expressed as:

P3 : min
{wl,k,bl,k,ak}

αCN + (1− α)

k
∑

k=1

(ak − 1)2 (15a)

s.t. (10), (11), (12f), (13d) − (13f), (15b)

|∑L
l=1 h

H
l,kwl,k|2 − β−1(ak − 1)

∑K
i=1,i 6=k |

∑L
l=1 h

H
l,kwl,i|2 + σ2

k

≥ γk, ∀k ∈ K. (15c)

The second part of the cost function
∑k

k=1(ak − 1)2 ensures

that admitting more users reduces the overall cost function

value. When the user k is dropped, we have ak = −1,

which ensures that bl,k = 0,wl,k = 0, ∀l ∈ L. The QoS

requirement constraint (15c) of user k will be satisfied when

we use a proper feasibility guarantee factor β. Specifically,

when 0 < β ≤ min
k∈K

2
γk(

∑
L
l=1

PM
l

∑
L
l=1

‖hl,k‖2+σ2

k
)

holds, the

problem P3 is always feasible [19].

Although we reformulate the two-stage problem as a JBAC

problem with a simple form P3, this problem is still non-

convex due to the constraint (15c) and discrete values of con-

straint (13f). In the following, this problem will be converted

into a mixed-integer programming problem (MIP).

We first define a vector bk ∈ R
L×1, k = 1, ....,K, that could

take one of the following combinations [27]:

bk ∈



































0
0
.

.

0













,













1
0
.

.

0













,













0
1
.

.

0













,













1
1
.

.

0













, ....,













1
1
.

.

1



































. (16)

If the lth element of bk is one, it represents that the kth user

is served by the lth RRH and ak = 1. When all the elements

of this vector are zeros, then the kth user is dropped and this

is only the case where ak = −1.

We transform the problem (15) to a convex problem by

manipulating the constraint (15c) to a more attractive (SOCP)

form. The key step is to rewrite (15c) into the following form:

|∑L
l=1 h

H
l,kwl,k − β−1(ak − 1)|2

∑K
i=1,i 6=k |

∑L
l=1 h

H
l,kwl,i|2 + σ2

k

≥ γk, ∀k ∈ K. (17)

As stated before, since an arbitrary phase rotation of wl,k,

will not affect the transmission power consumption and the

QoS constraints, the problem can be written in the form of

MI-SOCP as follows:

min
{wl,k,bl,k,ak}

αCN + (1− α)

k
∑

k=1

(ak − 1)2 (18a)

s.t. (12d) − (12f), (13d) − (13f), (18b)

Re

{ L
∑

l=1

h
H
l,kwl,k − β−1(ak − 1)

}

≥
√

√

√

√γk

{ K
∑

i=1,i 6=k

|
L
∑

l=1

hH
l,kwl,i|2 + σ2

k

}

, (18c)

Im

{ L
∑

l=1

h
H
l,kwl,k − β−1(ak − 1)

}

= 0. (18d)

The value of β can be determined as

0 < β ≤ min
k∈K

2√
γk(

∑
L
l=1

PM
l

∑
L
l=1

‖hl,k‖2+σ2

k
)
.

Furthermore, it can be shown that β satisfies the SINR

constraint explicitly when ak = −1. The main advantage of

the proposed MI-SOCP formulation over the mixed-integer

semidifinite program (MI-SDP) is that it significantly reduces

computational complexity.

IV. THE OPTIMAL ALGORITHM BASED ON THE

BRANCH AND BOUND METHOD

The JBAC formulation is a combinatorial optimization prob-

lem. To obtain the optimal solution for a such a problem, an

exhaustive search is generally required. Due to this exhaustive

search enumerations increase exponentially with the number

of variables which needs more time and more storage for

computation. Hence, we propose to use BnB method to solve

it. In the sequel, we introduce the BnB method and our



algorithm to solve the MI-SOCP problem in (18) and to obtain

beamformers for each RRH. Branching is the first step in the

BnB method where the feasible set of the problem is divided

into subsets according to various combinations of bk in (16).

The second is bounding step to evaluate the lower bounds

of those subproblems. Subsets will be divided into smaller

subsets which will create a tree structure. In this method, some

of the branches will be removed or pruned according to the

following conditions:

1. The branch corresponding to an infeasible subproblem.

2. The branch with an optimal objective value that is above

the best-known global objective value of the minimization

problem (18).

The global lower bound will be updated at each level only

if the current global lower bound is greater than the minimum

of the lower bounds of all subsets. We now develop an optimal

RRH allocation technique based on the BnB method from the

original problem in (18). We first relax the constraints in (13f)

as follows:

0L×1 ≤ bk ≤ 1L×1, k = 1, 2, 3, ....,K,

ak ∈ [−1, 1]. (19a)

After the above relaxation, the problem (18) becomes an

SOCP problem and can be optimally solved. By solving the

problem (18), the lower bound of the original problem will

be obtained. If all the elements of bk and ak are integer

values, then the problem is deemed to have been solved with

the optimal solution. If the problem (18) is infeasible, then

the original problem is also infeasible and the algorithm will

be terminated. The branching step will start when solving

the problem (18) results in non-integer values. The number

of branches will be all combinations of values that bk and

ak can take. We generate the branches in the first level by

allocating the first user to the RRHs and solving the problem

(18) to obtain the objective value at each branch. Then we

sort all the objective values in descending order and choose

the last branch (the branch with the minimum objective value)

to proceed to the next level. The rest of the branches will be

stored. This process will be repeated until the last level is

reached. At this level, the branch with the minimum objective

value will be chosen and the objective value of this branch

will be designated to a variable Globalobjectivevalue. Then

we remove all the branches with objective values higher than

Globalobjectivevalue at all levels from the algorithm. The

branch with the next least objective value in the previous level

will be picked up and proceed to the next level until the last

level is reached. The objective values of all branches at the

last level will be compared to the Globalobjectivevalue. If

they are higher than Globalobjectivevalue, then they will be

removed from the algorithm, otherwise, the branch with the

minimum objective value at the last level will be assigned

to be Globalobjectivevalue. We repeat the above procedure

until all branches are pruned. The solution will be the variable

vector bk and ak of the branches of the paths which are traced

back from the minimum objective value of the last level to

Algorithm 1: OPTIMAL ALGORITHM BASED ON BnB

METHOD TO SOLVE MI-SOCP
1: Step 1: Set Globalobjectivevalue =∞, level = 0,K =
{1, 2, ....,K}, Result = ∅, Node = 0, F inalSolution = infeasible

2: Step 2: Solve SOCP the problem in (18) with the relaxed integer
constraints and obtain the objective value.

3: if all solution (bk and ak) consist of integer elements then

4: FinalSolution← [a1, ......, ak],







b11 . . b1k
. . . .
. . . .
bl1 . . blk






and go to

step 10.
5: else if Objective value< Globalobjectivevalue then

6: go to step 3.
7: else

8: go to step 10.
9: end if

10: Step 3:

11: if objective value≤ Globalobjectivevalue then

12: m← 1,blevel = 0, alevel = −1 and go to step 4.
13: else

14: go to step 9.
15: end if

16: Step 4: Update level = level + 1, levelTemp = ∅ and go to step 5.
17: Step 5: Generate the branch.
18: if m = 1 then

19: blevel = 0, alevel = −1
20: else

21: blevel =Decimal to binary (m− 1), alevel = 1
22: end if

23: Node← Node+ 1
24: Γ(Node)← [Γ(parentNode) alevel]
25: Γ1(Node)← [Γ1(ParentNode) blevel] store Γ(Node) and

Γ1(Node) to this branch and got to step 6.
26: Step 6: Solve SOCP relaxation problem (18) with the values saved at

this branch.
27: if subproblem is feasible then

28:
29: if level 6= K then

30: save Objective value to this branch and attach this branch
levelResult and go to step 7.

31: else

32: if objective value< Globalobjectivevalue then

33: Globalobjectivevalue← objective value

34: FinalSolution← [a1, ......, ak],







b11 . . b1k
. . . .
. . . .
bl1 . . blk







35: end if

36: end if

37: else

38: remove this branch and go to step 7.
39: end if

40: Step 7: Update q = q + 1.
41: if q ≤ 2L then

42: go to step 5.
43: else if level 6= K then
44: go to step 8.
45: else

46: go to step 9.
47: end if

48: Step 8: sort levelResult in decreasing order and add them to Result.
Empty levelResult.

49: Step 9:

50: if Result 6= ∅ then

51: collect the last branch from Result and recall the saved values with
this branch and go to step 3.

52: else

53: go to step 10
54: end if

55: Step 10: terminate and show the FinalSolution.
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Figure 2: Illustrated model for the proposed BnB based optimal algorithm with two RRHs and three users.

the first level. The computational complexity depends on the

number of branches and bounds. The proposed BnB based

algorithm is summarized in Algorithm 1.

The algorithm is illustrated using an example in

Figure 2 which shows the key steps of the BnB

method. There are two RRHs and three users.

According to the reference of Algorithm 1, the variables

Globalobjectivevalue, Cost, F inalSolution, Level,K,

Result and Node are initialized with suitable values. The

branch numbers and all levels are depicted in Figure 2. In

step 2 of Algorithm 1, the problem (18) is solved with relaxed

integer constraints. If the solutions (bk and ak) obtained with

the relaxed constraints are integer values, then the algorithm

will be terminated at this stage. Otherwise, the algorithm will

proceed to the next step (Level 1 in Figure 2). The relaxed

problem in (18) will be solved for all possibilities so that

the first user can take by settings b1 = [0 0], a1 = −1,

i.e., the user 1 is served by neither RRH1 nor RRH2; and

b1 = [1 0], a1 = 1, i.e., the user 1 is served by the RRH1;

and b1 = [0 1], a1 = 1, i.e., the user 1 is served by the

RRH2; and b1 = [1 1], a1 = 1, i.e., the user 1 is served

by both RRH1 and RRH2. This generates branch 1, branch

2, branch 3 and branch 4, respectively, as shown in Figure 2

which are steps 4, 5, 6 and 7 of the Algorithm 1. We pick

the branch with the minimum objective value (branch 2 in

Figure 2) at Level 1 to proceed to the next level (step 8 and

9 in the Algorithm 1). We keep repeating this process at each

level until we reach the last level. At the last level (Level 3

in Figure 2), from all the branches created at this level (Level

3), we select the branch with the minimum objective value

(branch 11 in Figure 2) and assign the objective value of this

branch to the variable Globalobjectivevalue.

Next, all the branches at every level with objective values

higher than the Globalobjectivevalue will be removed from

the algorithm (branch 12, branch 9, branch 8, branch 5 and

branch 1 in Figure 2). The next least objective value in the

previous levels will be chosen to proceed to the next level

(branch 4 in Figure 2). The objective values of branches

which are generated from branch 4 at Level 2, i.e., branch

13, branch 14, branch 15 and branch 16 in Figure 2 will

be compared to the Globalobjectivevalue. If they are higher

than the Globalobjectivevalue, then they will be removed

and the algorithm will be terminated. Otherwise, the minimum

objective value branch will be taken to the next level and more

branches will be generated until the last level is reached. The

procedure will be repeated until all the branches are removed

from the algorithm. The solution will be the values of bk, ak
of the branches of the path which are traced back from the

minimum objective value at the last level to the first level

(branch 11, branch 7 and branch 2 in Figure 2). If the last

level cannot be reached, i.e., all the branches in a specific

level turn out to be infeasible, then the relaxed problem will

be solved for bk = [0 0], ak = −1. This means that the kth

user will be dropped from the network. Then the algorithm

will continue until the last level is reached and the solution

will be obtained from other branches as explained above.



V. THE SUBOPTIMAL ALGORITHM BASED ON

THE BRANCH AND BOUND METHOD

To reduce complexity, we propose a suboptimal BnB algo-

rithm to solve the relaxed problem in (18). The design of this

algorithm is based on the first feasible solution achieved by the

optimal algorithm using the BnB method. The SOCP problem

(18) with the relaxed integer constrains in (19a) will be solved.

If all the elements of bk and ak at the solution are integers,

then we consider that the problem has been solved and the

algorithm will be ended. If the relaxed problem is infeasible,

then the original problem is also infeasible. Branching step

will be carried out to generate branches according to all

possibilities of vector bk and ak as mentioned in Algorithm 1.

The branches in the first level will be generated by allocating

the first user to the RRHs and the problem will be solved to

obtain the objective value at each branch of every level. Then

all objective values are sorted in the descending order and the

last branch (the branch with the minimum objective value) will

be chosen to proceed to the next level. The rest of the branches

will be removed. This algorithm does not need to keep the

objective values of all other branches after choosing the branch

with the minimum value. This feature is an advantage in terms

of reducing the memory requirement during the process. This

procedure will be carried out until the last level is reached. At

the last level, the branch with the minimum objective value

will be chosen and all other branches will be removed. The

solution will be the variable vector bk and ak of the branches

of the paths which are traced back from the minimum objective

value of the last level to the first level. Algorithm 2 summaries

the proposed suboptimal BnB algorithm.

The major steps of the suboptimal algorithm can be illus-

trated using the same example as in Algorithm 1. The branch

numbers and all the levels are indicated in Figure 3. The

problem (18) is solved with the relaxed integer constraints.

If the solutions obtained by setting the relaxed values of

constraints are non integer values, then the Algorithm 2 will

proceed to the next level (Level 1 in our example). Branches

will also be generated considering all the possibilities of b1

and a1 (branch 1, branch 2, branch 3 and branch 4 in Figure

3). The branch with the minimum objective value (branch 2

in our example) will be chosen to proceed to the next level.

The remaining branches will be removed from the algorithm.

This process will be repeated until the last level is reached

(Level 3 in Figure 3). At the last level, the branch with the

minimum objective value will be chosen and the solution will

be obtained from the value of bk and ak of the branches of

the path which are traced back from the minimum objective

value at the last level to the first level (branch 11, branch 7

and branch 2 in our example).

The complexity of the proposed algorithms is mainly de-

termined by two most important parameters: the convergence

speed of the algorithm and the number of arithmetic operations

in each iteration. The interior point method proposed in [28]

is used to solve the subproblems as the binary variables are

relaxed. In the worst-case, the number of subproblems for the

Algorithm 2: SUBOPTIMAL ALGORITHM BASED ON

BnB METHOD TO SOLVE MI-SOCP
1: Step 1: Set Globalobjectivevalue =∞, Level = 0,K =
{1, 2, ....,K},Γ = ∅,Γ1 = ∅, F inalSolution = infeasible.

2: Step 2: Solve SOCP the problem in (18) with the relaxed integer
constraints and obtain the objective value.

3: if all solution (bk and ak) consist of integer elements then

4: FinalSolution← [a1, ......, ak],







b11 . . b1k
. . . .
. . . .
bl1 . . blk






and go to

step 7.
5: else if Objective value< Globalobjectivevalue then

6: go to step 3.
7: else
8: go to step 7.
9: end if

10: Step 3: Update Level = Level + 1, ResultTemp = ∅,m =
1,blevel = 0, alevel = −1.

11: Step 4: Generate the branch.
12: if m = 1 then

13: blevel = 0, alevel = −1
14: else

15: blevel = Decimal to binary (m− 1), alevel = 1
16: end if

17: Step 5: Solve SOCP relaxation problem in (18) with the values
Γ, alevel and Γ1,blevel saved at this branch.

18: if Objective value< Globalobjectivevalue then

19: Globalobjectivevalue← Objective value
20: if level = K then

21: FinalSolution← [a1, ......, ak],







b11 . . b1k
. . . .
. . . .
bl1 . . blk







22: else

23: Γ← alevel
24: Γ1 ← blevel

25: end if

26: else

27: remove this branch.
28: end if

29: Step 6: Update q = q + 1.
30: if q ≤ 2L then

31: go to step 4.
32: else

33: go to step 3.
34: end if

35: Step 7: terminate and show the FinalSolution.

K number of users and L number of RRH is
∑K

k=1(2
L)k in

case of the optimal solution. Each of these subproblem is an

SOCP and consists of KL linear constraints. O[
√
KL log( 1

ǫ
)]

iterations are required to converge with ǫ solution accuracy at

the termination of the algorithm using interior point method.

Each iteration requires at most O[K3L3 +K2L2] arithmetic

operations [29] in the worst-case. For the proposed suboptimal

algorithm, only K(2L) number of subproblems is required to

be solved, therefore the complexity is reduced substantially.

VI. SIMULATION RESULTS

A. Network Performance versus Target SINR

For the simulation results, we consider a Cloud-RAN net-

work with three RRHs, (i.e., L = 3), each equipped with N

= 2 antennas and K = 6 users. The target SINRs requirement

for all the users is identical. The channels between the RRH

and the users have been generated using a Rayleigh fading

model. Each entry of the channel vector is independently and
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Figure 3: Illustrated model for the proposed BnB based suboptimal algorithm with two RRHs and three users.
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Figure 4: Average number of admitted users versus target SINR for
three different schemes, optimal method, sub-optimal method and a
simple decoupled design method.

identically distributed symmetric zero-mean complex Gaussian

random variable with variance one. The maximum transmit

power at the RRH (PM
l ) is 5 Watt. The available channel

bandwidth is 5 MHz and the parameter α is set 0.05. The

maximum fronthaul link capacity of RRH l link (RM
l ) is

100 Mbps. We also assume that all the RRHs are equipped

with a local storage of equal size (cache) of Y (Yl = Y ).
Each user submits contents request independently. Different
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Figure 5: Average transmit power per admitted user versus target
SINR.

users cannot request the same content simultaneously. Cache

placement matrix is known at RRHs. The constant η in the

problem (7) is set to 1. The simulation results are based on

100 Monte Carlo experiments. We evaluate the performance of

the two proposed algorithms using MI-SOCP in terms of the

average number of admitted users and the average transmission

power per admitted user versus the target SINR as shown in

Figure 4 and Figure 5, respectively. As expected, the number

of admitted users declines as the data rate for the admitted



user increases. Similarly, the transmission power per admitted

user increases as the target SINR increases. Although the

optimal algorithm is able to allocate more users and consumes

less power, the sub-optimal algorithm have the advantage

of requiring lower complexity while achieving a comparable

performance. The optimal algorithm is able to achieve the best

performance because it searches for all possible combinations

of bk and ak, where as the suboptimal algorithm searches

for the solution through only K iterations. Furthermore, we

assessed the performance of our joint optimization algorithms

with a decoupled optimization algorithm. We have chosen a

decoupled method based on BnB method. In this method,

we use maximum ratio transmission (MRT) beamformers for

each possible admitted user, then we solve the problem P2 of

user maximization and user association to obtain the optimal

number of admitted users and RRHs allocation. Then we

perform beamformer design and power allocation only for

those set of admitted users. We compared the results using

MRT method with our proposed algorithms. The results shows

that our proposed algorithms outperform MRT method in

terms of the average number of admitted users versus the

target SINR as shown in Figure 4. We also evaluated the

cost function of the proposed algorithms and MRT method as

shown Figure 6. Again our proposed algorithms perform better

than MRT method with low cost function. There is a trade-off

between user admission and fronthaul cost plus transmission

power through the parameter α in the cost function (18). As

α increases, the number of admitted user decreases as shown

in Figure 7. We have studied the advantage of introducing

caching contents at RRH from the simulation results provided

in Figure 8. We have studied the impact of varying the

fronthaul capacity limit for a given target SINR of 10dB

and computing the average number of admitted users. As

seen, the average number of admitted users is more than that

without caching contents at RRH as the fronthaul capacity has

significant impact on the overall system performance limits.

Furthermore, as observed in other simulations, we also expect

the same trend for the case of optimal BnB SOCP.

In order to assess the running time of the algorithms, we

investigated the running time for each algorithm at a certain

target SINR of 2dB as shown in Table I. Even though

the optimal algorithm provides an attractive user admission

solution, it requires very long time for processing, hence sub

optimal algorithm provides a compromise between optimal

solution and computational complexity.

Table I: Average running time of the algorithms

Method Time (sec)

MRT-optimal 2.85× 104

Proposed-optimal 2.26× 103

Proposed-sub-optimal 1.41× 102

B. Network Performance versus Total Number of Users

For the simulation results of the proposed optimal BnB and

suboptimal algorithm, we consider a Cloud-RAN with two
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Figure 6: Average cost function versus SINR.
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Figure 7: Average number of admitted users versus target SINR of
the proposed sub-optimal method for two different network cost -
user admission cost combinations.

RRHs, (i.e, L = 2), each equipped with N = 2 antennas. The

target SINR requirement for all the users is 6 dB. The rest of

the system assumptions have been assumed the same as that

in the previous subsection.

In Figure 9, we study the trade-off in terms of the average

network cost (Cn) and the total number of admitted users. We

evaluate the performance of the two proposed algorithms using

MI-SOCP in terms of the average number of admitted users

and the average transmission power versus the total number

of users as shown in Figure 10 and Figure 11 respectively. As

seen in Figure 10, with more users deployed in the network,

the growth of the average number of admitted users becomes

slow, since some users have to be temporarily dropped. Figure
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Figure 9: Average network cost versus average number of admitted
users when the target SINR is 6dB.

11 depicts the average transmit power versus the total number

of users. As seen, the average transmission power increases as

the number of users increases.

VII. CONCLUSION

In this paper, we developed a JBAC technique for a cache-

enabled Cloud-RAN with limited fronthaul capacity. The one-

stage objective function is able to minimize the total network

cost including the power cost and the fronthaul cost while

admitting as many users as possible under a number of

constraints such as QoS for each user, transmit power at RRHs

and fronthaul capacity. The problem in its original form is

non-convex, and was converted into MI-SOCP by relaxing
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Figure 10: Average number of admitted users versus total number of
users.
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Figure 11: Average transmit power versus total number of users.

the integer variables. The optimal RRHs allocation and user

maximization were solved using the BnB method. A subop-

timal algorithm was also proposed to reduce computational

complexity.
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