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ON THE CUMULATIVE PARISIAN RUIN OF MULTI-DIMENSIONAL BROWNIAN

MOTION RISK MODELS

LANPENG JI

Abstract: Consider a multi-dimensional Brownian motion which models the surplus processes of multiple lines

of business of an insurance company. Our main result gives exact asymptotics for the cumulative Parisian ruin

probability as the initial capital tends to infinity. An asymptotic distribution for the conditional cumulative

Parisian ruin time is also derived. The obtained results on the cumulative Parisian ruin can be seen as gener-

alizations of some of the results derived in [5]. As a particular interesting case, the two-dimensional Brownian

motion risk model is discussed in detail.

Key Words: multi-dimensional Brownian motion; cumulative Parisian ruin; exact asymptotics; ruin probabil-

ity; quadratic programming problem.

AMS Classification: 91B30, 60G15, 60G70

1. Introduction

Consider an insurance company which operates simultaneously d (d ≥ 1) lines of business. It is assumed that

the surplus processes of these lines of business are described by a multi-dimensional risk model:

U(t) = u+ µt−X(t), t ≥ 0,(1)

where u = (u1, u2, . . . , ud)
⊤, with ui ≥ 0, is a (column) vector of initial capitals of these business lines, µ =

(µ1, . . . , µd)
⊤, with µi > 0, is a vector of net premium income rates, and X(t) = (X1(t), X2(t), · · · , Xd(t))

⊤, t ≥
0 is a vector of net loss processes by time t.

In recent years, there has been an increasing interest in risk theory in the study of multi-dimensional risk models

with different stochastic processes modeling X(t), t ≥ 0; see, e.g., [1] for an overview. In comparison with the

well-understood 1-dimensional risk models, the study of multi-dimensional risk models is more challenging.

We consider in this paper the multi-dimensional Brownian motion risk model, i.e.,

X(t) = AB(t), t ≥ 0,(2)

where A ∈ R
d×d is a non-singular matrix, and B(t) = (B1(t), . . . , Bd(t))

⊤, t ≥ 0 is a standard d-dimensional

Brownian motion with independent coordinates. Multi-dimensional Brownian motion risk models have drawn

a lot of attention due to its tractability; see, e.g., [6, 10] and references therein.

We shall investigate the cumulative Parisian ruin problem of the multi-dimensional Brownian motion risk model

(1) with X defined by (2). The cumulative Parisian ruin was first introduced by [11] based on the occupation

(or sojourn) times of the 1-dimensional risk process. In the multi-dimensional setup the cumulative Parisian
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2 LANPENG JI

ruin time (at level r > 0) is defined as

τr(u) := inf

{
t > 0 :

∫ t

0

I(U(s) < 0)ds > r

}
,(3)

where I(·) is the indicator function, and the inequality for vectors U(s) < 0 is meant component-wise. As

remarked in [11] “the parameter r could be interpreted as the length of a clock started at the beginning of the

first excursion, paused when the process returns above zero, and resumed at the beginning of the next excursion,

and so on.”. Clearly, if r is set to be 0 one obtains the simultaneous ruin time τ0(u) for the multi-dimensional

Brownian motion risk model, i.e.,

τ0(u) := inf {t > 0 : U(t) < 0} = inf {t > 0 : Ui(t) < 0, ∀1 ≤ i ≤ d} ,

which has been discussed recently in [5] under a different context.

In this paper our primary focus is on the infinite-time cumulative Parisian ruin probability defined as

P {τr(u) <∞} .

Note that in the 1-dimensional setup, we have from (5) in [7] (see also [11]) that

P {τr(u) <∞} = P

{∫ ∞

0

I(B1(t)− µ1t > u)dt > r

}

=

(
2(1 + µ2

1r)Ψ(µ1

√
r)− µ1

√
2r√
π

e−
µ2
1r

2

)
e−2µ1u(4)

for all u ∈ R, where Ψ(s) is the standard normal survival function.

It turns out that explicit formula for the cumulative Parisian ruin probability in the multi-dimensional setup is

difficult to obtain. In this case, it is of interest to derive some asymptotic results by letting the initial capitals

tend to infinity. We shall assume that

u = αu = (α1u, α2u, . . . , αdu), αi > 0, u ≥ 0,

and consider the asymptotics of the cumulative Parisian ruin probability as u → ∞. For simplicity, hereafter

we denote

τr(u) := τr(u), u ≥ 0.(5)

Define

g(t) =
1

t
inf

x≥α+µt
x⊤Σ−1x, t ≥ 0, with Σ = AA⊤,(6)

where 1/0 is understood as ∞. Our principal result presented in Theorem 3.1 shows that, for any r ≥ 0,

P {τr(u) <∞} = P

{∫ ∞

0

I(X(t)− µt > αu)dt > r

}

∼ CIHI(r)u
1−m

2 e−
inft≥0 g(t)

2 u, u→ ∞,(7)

where CI > 0, m ∈ N are known constants and HI(r) is a counterpart of the celebrated Pickands constant;

explicit expressions of these constants will be displayed in Section 3.
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As a by-product, we also derive in Theorem 3.1 the asymptotic distribution of

τr2(u)|τr1(u) <∞, u→ ∞

for any 0 ≤ r1 ≤ r2 <∞. The approximation of the above quantity is of interest in risk theory; it will provide

us with some idea of when cumulative Parisian ruin actually occurred at level r2 knowing that it has occurred

at some level r1. We refer to [1, 9, 13] and references therein for related discussions on ruin times.

It is worth mentioning that there are some related interesting studies on the asymptotic properties of sojourn

times above a high level of 1-dimensional (real-valued) stochastic processes; see, e.g., [2–4]. We refer to [7, 8]

for recent developments. The multi-dimensional counterparts of this problem are more challenging, and to the

best knowledge of the author there has been no result in this direction. Our study on the cumulative Parisian

ruin probability for the multi-dimensional Brownian motion risk models covers this gap in a sense by deriving

some asymptotic properties of the sojourn times.

As an important illustration, the two-dimensional Brownian motion risk model is discussed in detail. Asymptotic

results for the cumulative Parisian ruin probabilities and the conditional cumulative Parisian ruin times are

obtained for the full range of the parameters involved in the model.

The rest of this paper is organised as follows. In Section 2 we introduce some notation and present some

preliminaries, which are extracted from [5]. The main results are presented in Section 3, followed by a discussion

on the two-dimensional Brownian motion risk model in Section 4. The technical proofs are displayed in Section

5 and Section 6.

2. Notation and Preliminaries

We assume that all vectors are d-dimensional column vectors written in bold letters with d ≥ 2. Operations

with vectors are meant component-wise, e.g., λx = xλ = (λx1, . . . , λxd)
⊤ for any λ ∈ R,x ∈ R

d. Further,

we denote 0 = (0, . . . , 0)⊤ ∈ R
d. If I ⊂ {1, . . . , d}, then for a vector a ∈ R

d we denote by aI = (ai, i ∈ I)

a sub-block vector of a. Similarly, if further J ⊂ {1, . . . , d}, for a matrix M = (mij)i,j∈{1,...,d} ∈ R
d×d we

denote by MIJ=MI,J = (mij)i∈I,j∈J the sub-block matrix of M determined by I and J . Moreover, write

M−1
II = (MII)

−1 for the inverse matrix of MII whenever it exists.

As we will see, the solution to the quadratic programming problem involved in (6) is the key to our discussions.

We introduce the next lemma stated in [12] (see also [5]), which is important for several definitions in the sequel.

Lemma 2.1. Let M ∈ R
d×d, d ≥ 2 be a positive definite matrix. If b ∈ R

d \ (−∞, 0]d, then the quadratic

programming problem

PM (b) : Minimise x⊤M−1x under the linear constraint x ≥ b

has a unique solution b̃ and there exists a unique non-empty index set I ⊆ {1, . . . , d} such that

b̃I = bI 6= 0I , M−1
II bI > 0I ,(8)

and if Ic = {1, . . . , d} \ I 6= ∅, then b̃Ic =MIcIM
−1
II bI ≥ bIc .(9)
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Furthermore,

min
x≥b

x⊤M−1x = b̃
⊤
M−1b̃ = b⊤I M

−1
II bI > 0.

Definition 2.2. The unique index set I that defines the solution of the quadratic programming problem in

question will be referred to as the essential index set.

Consider the minimisation problem involved in (6), i.e., infx≥α+µt x
⊤Σ−1x. For any fixed t ≥ 0, we define

b(t) = α + µt, and let I(t) ⊆ {1, . . . , d} be the essential index set of the quadratic programming problem

PΣ(b(t)).

Note that the two-layer minimisation problem in the exponent of (7), i.e.,

inf
t≥0

g(t) = inf
t≥0

1

t
inf

x≥α+µt
x⊤Σ−1x

has been solved in Lemma 2.2 in [5], with the aid of Lemma 2.1. More precisely, it is proved therein the function

g(t), t ≥ 0 is convex and attains its unique minimum at some t0. Let I = I(t0) be the essential index set of the

quadratic programming problem PΣ(b) with b = b(t0) = α+ µt0. Then

t0 =

√
α⊤

I Σ
−1
II αI

µ⊤
I Σ

−1
II µI

> 0,(10)

and

g(t0) = inf
t≥0

g(t) =
1

t0
b⊤I Σ

−1
II bI .(11)

Hereafter, we shall use the notation b = b(t0), and use I = I(t0) for the essential index set of the quadratic

programming problem PΣ(b). Furthermore, let b̃ be the unique solution of PΣ(b). If I
c = {1, . . . , d} \ I 6= ∅, we

define (cf. (9)) weakly essential index set and unessential index set by

K = {j ∈ Ic : b̃j = ΣjIΣ
−1
II bI = bj}, and J = {j ∈ Ic : b̃j = ΣjIΣ

−1
II bI > bj}.(12)

As we shall see, the index set I determines m, inft≥0 g(t) and HI(r) in the asymptotics (7), whereas both I and

K determine the constant CI . Moreover, the set J , whenever non-empty, contains indices that do not play any

role in the asymptotic result, but it does appear in the proof (see (33)).

Next, define for t > 0

gI(t) :=
1

t
b(t)⊤I Σ

−1
II b(t)I =

1

t
α⊤

I Σ
−1
II αI + 2α⊤

I Σ
−1
II µI + µ⊤

I Σ
−1
II µIt.

Clearly, by (11) we have

ĝ := g(t0) = gI(t0).

Furthermore, we denote

g̃ := g′′I (t0) = 2t−3
0 (α⊤

I Σ
−1
II αI),

which will appear in the definition of the constant CI in Section 3.
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3. Main Results

We introduce some constants that will appear in the main results. First we write

m := ♯{i : i ∈ I} ≥ 1

for the number of elements of the essential index set I. Further, define the following constant (existence is

confirmed in Theorem 3.1)

HI(r) = lim
T→∞

1

T
HI(r, T ),(13)

with

HI(r, T ) =

∫

Rm

e
1
t0

x⊤
I Σ−1

II
bI
P

{∫

t∈[0,T ]

I((X(t)− µt)I > xI)dt > r

}
dxI , r < T.(14)

Moreover, set

CI :=
1√

(2πt0)m |ΣII |

∫

R

e−g̃ x2

4 ψ(x) dx,

where |ΣII | denotes the determinant of the matrix ΣII , and for x ∈ R

ψ(x) =





1, if K = ∅,
P

{
Y K > 1√

t0
(µK − ΣKIΣ

−1
II µI)x

}
, if K 6= ∅.

(15)

Here the index set K is defined in (12), Y K is a Gaussian random vector with mean vector 0K and covariance

matrix DKK given by

DKK = ΣKK − ΣKIΣ
−1
II ΣIK .

The next theorem constitutes our main results. Its proof is demonstrated in Section 5.

Theorem 3.1. Let τr(u) be defined in (5) (see also (3)). We have, for any r ≥ 0,

P {τr(u) <∞} ∼ CIHI(r)u
1−m

2 e−
ĝ

2u, u→ ∞,(16)

where

0 < HI(r) <∞, ∀r ≥ 0.(17)

Moreover, we have, for any 0 ≤ r1 ≤ r2 <∞ and any s ∈ R,

lim
u→∞

P

{
τr2(u)− t0u√

2u/g̃
≤ s
∣∣∣τr1(u) <∞

}
=

HI(r2)
∫ s

−∞ e−
x2

2 ψ(
√
2/g̃x) dx

HI(r1)
∫∞
−∞ e−

x2

2 ψ(
√
2/g̃x) dx

.(18)

Remarks 3.2. (a). If d = 1, we have from (16) that

P {τr(u) <∞} ∼ 1

µ1
H{1}(r)e

−2α1µ1u, u→ ∞.

This together with (4) yields that

H{1}(r) = µ1

(
2(1 + µ2

1r)Ψ(µ1

√
r)− µ1

√
2r√
π

e−
µ2
1r

2

)
.(19)

(b). As in [5] we can check that the results in Theorem 3.1 still hold for general α,µ ∈ R
d such that αi > 0, µi > 0

for some 1 ≤ i ≤ d.
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4. Two-dimensional Brownian motion risk models

In this section, we focus on the two-dimensional Brownian motion risk models given by

U(t) = αv + µt−AB(t), t ≥ 0,(20)

with α = (α1, α2)
⊤ > 0 and µ = (µ1, µ2)

⊤ > 0 and

Σ = AA⊤ =


 1 ρ

ρ 1


 , ρ ∈ (−1, 1).

We aim to find the asymptotics of the cumulative Parisian ruin probability and the asymptotic distribution

of the conditional cumulative Parisian ruin as u tends to infinity, for all the possible values of ρ ∈ (−1, 1),

α = (α1, α2)
⊤ > 0 and µ = (µ1, µ2)

⊤ > 0.

In order to simplify the analysis, we first do some variable changes. Consider µ1 = ab, with a = 1/µ1, b = µ2
1.

By the self-similarity of Brownian motion we derive that

τr(u) = inf

{
t ≥ 0 :

∫ t

0

I

(
X1(s)− µ1s > α1u

X2(s)− µ2s > α2u

)
ds > r

}

= inf

{
t ≥ 0 :

∫ t

0

I

(
X1(b

−1(bs))− a(bs) > α1u

X2(b
−1(bs))− µ2b

−1(bs) > α2u

)
ds > r

}

d
= inf

{
t ≥ 0 :

∫ µ2
1t

0

I

(
X1(s)− s > α1µ1u

X2(s)− µ2/µ1s > α2µ1u

)
ds > µ2

1r

}
,

where
d
= denotes equivalence in distribution. Next we denote

v = α1µ1u, µ = µ2/µ1, α = α2/α1, r̃ = µ2
1r,(21)

and define

τr̃(v) := inf

{
t ≥ 0 :

∫ t

0

I

(
X1(s)− s > v

X2(s)− µs > αv

)
ds > r̃

}
.

Clearly, we have

τr̃(v)
d
= µ2

1 · τr(u).(22)

Thanks to this equivalence, we can derive the results for the cumulative Parisian ruin time τr(u), by applying

Theorem 3.1 to the cumulative Parisian ruin time τr̃(v) of the auxiliary risk model

Ũ(t) = α̃v + µ̃t−AB(t), t ≥ 0,(23)

with (recall also (21))

α̃ = (1, α)⊤ > 0, µ̃ = (1, µ)⊤ > 0.

Note that the auxiliary risk model defined in (23) is easier to analyse as it involves a smaller number of

parameters (namely, ρ, α, µ) than the original risk model (20).

The main results of this section are displayed in Theorem 4.1 below. From these results we can observe how

different values of ρ yield different scenarios of the asymptotic behaviour, which shows an interesting reduction
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of dimension phenomenon; see also [5] for discussions on this phenomenon. The proof of Theorem 4.1 is deferred

to Section 6.

Theorem 4.1. Consider the original two-dimensional Brownian motion models described in (20). Recall the

notation in (21).

(i). Suppose α and µ satisfy one of the following conditions:

(i.C1) µ < 1 and α < 1,

(i.C2) µ < 1, α ≥ 1 and µ ≤ 1/α,

(i.C3) µ ≥ 1, α < 1 and µ ≤ 1/α.

We have, for any r ≥ 0,

(i.R1). If −1 < ρ < α+µ
2 , then, as u→ ∞

P {τr(u) <∞} ∼ H{1,2}(µ
2
1r)√

α1µ1t20π(1− ρ2)g̃
u−

1
2 e−

ĝ

2α1µ1u,(24)

where

t0 =

√
1 + α2 − 2αρ

1 + µ2 − 2µρ
, ĝ =

2

t0

1 + α2 − 2αρ

1− ρ2
+

2(1 + αµ− µρ− αρ)

1− ρ2
, g̃ = 2t−3

0

1 + α2 − 2αρ

1− ρ2
,

and, for any r̃ ≥ 0

H{1,2}(r̃) = lim
T→∞

1

T

∫

R2

e

(
1−ρµ

1−ρ2
+ 1=ρα

t0(1−ρ2)

)
x1+

(
µ−ρ

1−ρ2
+ α−ρ

t0(1−ρ2)

)
x2
P

{∫

t∈[0,T ]

I

(
X1(t)− t > x1

X2(t)− µt > x2

)
dt > r̃

}
dx.

Furthermore, for any 0 ≤ r1 ≤ r2 <∞ and any s ∈ R

lim
u→∞

P

{
τr2(u)− t0α1/µ1u√

2α1/(µ3
1g̃)u

≤ s
∣∣∣τr1(u) <∞

}
=

H{1,2}(µ
2
1r2)

H{1,2}(µ
2
1r1)

Φ(s),(25)

where Φ(s) is the standard normal distribution function.

(i.R2). If ρ = α+µ
2 , then, as u→ ∞

P {τr(u) <∞} ∼ 1

2
H{1}(µ

2
1r) e

−2α1µ1u,

where (cf. (19))

H{1}(r̃) = 2(1 + r̃)Ψ(
√
r̃)−

√
2r̃√
π
e−

r̃
2 .

Furthermore, for any 0 ≤ r1 ≤ r2 <∞ and any s ∈ R

lim
u→∞

P

{
τr2(u)− α1/µ1u√

α1/µ3
1u

≤ s
∣∣∣τr1(u) <∞

}
=

√
2 H{1}(µ

2
1r2)√

π H{1}(µ
2
1r1)

∫ s

−∞
e−

x2

2 Ψ

(
µ− ρ√
(1− ρ2)

x

)
dx,

where Ψ(s) = 1− Φ(s) is the standard normal survival function.

(i.R3). If α+µ
2 < ρ < 1, then, as u→ ∞

P {τr(u) <∞} ∼ H{1}(µ
2
1r) e

−2α1µ1u,

and for any 0 ≤ r1 ≤ r2 <∞ and any s ∈ R

lim
u→∞

P

{
τr2(u)− α1/µ1u√

α1/µ3
1u

≤ s
∣∣∣τr1(u) <∞

}
=

H{1}(µ
2
1r2)

H{1}(µ2
1r1)

Φ(s).
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(ii). Suppose α and µ satisfy one of the following conditions:

(ii.C1) µ ≥ 1 and α ≥ 1,

(ii.C2) µ < 1, α ≥ 1 and µ > 1/α,

(ii.C3) µ ≥ 1, α < 1 and µ > 1/α.

We have, for any r ≥ 0,

(ii.R1). If −1 < ρ < α+µ
2αµ , then (24) and (25) hold.

(ii.R2). If ρ = α+µ
2αµ , then, as u→ ∞

P {τr(u) <∞} ∼ 1

2µ
H{2}(µ

2
1r) e

−2α2µ2u,

where (cf. (19))

H{2}(r̃) = µ

(
2(1 + µ2r̃)Ψ(µ

√
r̃)− µ

√
2r̃√
π
e−

µ2r̃

2

)
.

Furthermore, for any 0 ≤ r1 ≤ r2 <∞ and any s ∈ R

lim
u→∞

P

{
τr2(u)− α2/µ2u√

α2/µ3
2u

≤ s
∣∣∣τr1(u) <∞

}
=

√
2 H{2}(µ

2
1r2)√

π H{2}(µ
2
1r1)

∫ s

−∞
e−

x2

2 Ψ

(
µ1 − ρµ2√
(1− ρ2)µ2

x

)
dx,

(i.R3). If α+µ
2αµ < ρ < 1, then, as u→ ∞

P {τr(u) <∞} ∼ 1

µ
H{2}(µ

2
1r) e

−2α2µ2u,

and for any 0 ≤ r1 ≤ r2 <∞ and any s ∈ R

lim
u→∞

P

{
τr2(u)− α2/µ2u√

α2/µ3
2u

≤ s
∣∣∣τr1(u) <∞

}
=

H{2}(µ
2
1r2)

H{2}(µ
2
1r1)

Φ(s).

5. Proofs of Theorem 3.1

In this section we present the proof of Theorems 3.1. We shall focus on the case where r > 0, since the case

where r = 0 has been included in [5].

First, by the self-similarity of Brownian motion we have, for any u > 0,

P {τr(u) <∞} = P

{∫ ∞

0

I(X(t)− µt > αu)dt > r

}
= P

{
u

∫ ∞

0

I(X(t) >
√
u(α+ µt))dt > r

}
.

Next, we have the following sandwich bounds

pr(u) ≤ P {τr(u) <∞} ≤ pr(u) + r0(u),(26)

where

pr(u) := P

{
u

∫

t∈△u

I(X(t) >
√
u(α+ µt))dt > r

}
, r0(u) := P

{
u

∫

t∈△̃u

I(X(t) >
√
u(α+ µt))dt > 0

}
,

with (recall the definition of t0 in (10))

△u =

[
t0 −

ln(u)√
u
, t0 +

ln(u)√
u

]
, △̃u =

[
0, t0 −

ln(u)√
u

]
∪
[
t0 +

ln(u)√
u
,∞
)
.

In order to convey the main ideas and to reduce the complexity, we shall prove the theorem in several steps and

finally we complete the proof by putting all the arguments together.
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5.1. Analysis of r0(u). This step is concerned with sharp upper bound for r0(u) when u is large. Note that

r0(u) = P

{
∃t∈△̃u

X(t) >
√
u(α+ µt)

}
.

The following result is Lemma 4.1 in [5] (there was a misprint with
√
u missing, and in eq.(30) therein u should

be
√
u).

Lemma 5.1. For all large u we have

r0(u) ≤ C
√
ue

− ĝu

2 −
(

min(g′′(t0+),g′′(t0−))
2 −ε

)
(ln(u))2

(27)

1 holds for some constant C > 0 and some sufficiently small ε > 0 which do not depend on u.

5.2. Analysis of pr(u). Denote, for any fixed T > 0 and u > 0

△j;u = △j;u(T ) = [t0 + jTu−1, t0 + (j + 1)Tu−1], −Nu ≤ j ≤ Nu,

where Nu = ⌈T−1 ln(u)
√
u⌉ (here ⌈x⌉ denotes the smallest integer larger than x).

Denote

Aj,u = u

∫

t∈∆j;u

I(X(t) >
√
u(α+ tµ))dt,

and define

pr,j;u = P {Aj,u > r} , pr,i,j;u = P {Ai,u > r, Aj,u > r} .

It follows, using a similar idea as in [7], that

pr(u) ≤ P





Nu∑

j=−Nu

Aj,u > r





= P





Nu∑

j=−Nu

Aj,u > r, there exists exactly one j such that Aj,u > 0





+P





Nu∑

j=−Nu

Aj,u > r, there exist i 6= j such that Ai,u > 0 & Aj,u > 0





≤ p1,r(u) + Π0(u),(28)

and by Bonferroni’s inequality

pr(u) ≥ P





Nu−1∑

j=−Nu+1

Aj,u > r





≥ P {∃ −Nu + 1 ≤ j ≤ Nu − 1 such that Aj,u > r}

≥ p2,r(u)−Π0(u),(29)

where

p1,r(u) =

Nu∑

j=−Nu

pr,j;u, p2,r(u) =

Nu−1∑

j=−Nu+1

pr,j;u, Π0(u) =
∑

−Nu≤i<j≤Nu

p0,i,j;u.

In the following two subsetions we shall focus on the analysis of pi,r(u), i = 1, 2, and Π0(u), respectively.

1Note that in general g′′(t0+) 6= g′′(t0−); see Remark A.7 in [5] for an example.
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5.2.1. Analysis of the single sum pi,r(u), i = 1, 2. First, with the aid of Lemma 4.2 in [5] we can check that

0 < HI(r, T ) ≤ HI(0, T ) <∞.(30)

Lemma 5.2. For any T > 0 and r ∈ (0, T ), we have as u→ ∞

p1,r(u) ∼ p2,r(u) ∼
1√

(2πt0)m|ΣII |
HI(r, T )

T
u

1−m
2 e−

ĝu

2

∫

R

e−
g̃x2

4 ψ(x) dx,(31)

where ψ(x) is given in (15).

Proof: We shall focus on the asymptotics of p1,r(u), which is easily seen to be asymptotically equivalent to

p2,r(u) as u→ ∞.

Fix T > 0. We shall prove the lemma in two steps. In Step I we derive that (31) holds for any r ∈ (0, T )

at which HI(r, T ), as a function of r, is continuous, and then in Step II we show that HI(r, T ), r ∈ (0, T ) is

actually continuous everywhere, implying that (31) holds for all r ∈ (0, T ).

Step I: The claim follows from similar arguments as in the proof of Lemma 4.3 in [5]. By the independence and

stationary increments property and the self-similarity of Brownian motion we derive that

pr,j;u = P

{
u

∫

t∈[t0+
jT

u
,t0+

(j+1)T
u

]

I

(
X(t0 +

jT

u
) +X(t)−X(t0 +

jT

u
) >

√
u(α+ tµ)

)
dt > r

}

= P

{∫

t∈[0,T ]

I

(
Zj;u +

1√
u
(X(t)− tµ) >

√
ubj;u

)
dt > r

}
,

where Zj;u is an independent of B Gaussian random vector with mean vector 0 and covariance matrix Σj;u =

cj;uΣ with cj;u = cj;u(T ) = t0 + jT/u, and

bj;u = bj;u(T ) = b(t0 +
jT

u
) = b+

jT

u
µ.

Denote (recall Ic = K ∪ J in (12))

ZK(t,xI) = (X(t)− tµ)K − ΣKIΣ
−1
II xI ,

ZJ(t,xI) = (X(t)− tµ)J − ΣJIΣ
−1
II xI ,

and define Y Ic to be an independent of B Gaussian random vector with mean vector 0Ic and covariance matrix

DIcIc = ΣIcIc − ΣIcIΣ
−1
II ΣIIc . Using the same arguments as in [5] gives

p1,r(u) =
u−m/2

√
(2π)m |ΣII |

∑

−Nu≤j≤Nu

1

c
m/2
j;u

exp

(
−1

2
ugI(t0 +

jT

u
)

)∫

Rm

fj;u(T,xI)Pj;u(r, T,xI) dxI

=:
1

T

1√
(2π)m |ΣII |

u(1−m)/2e−
ĝu

2 Rr,T (u),(32)

where

Rr,T (u) = exp

(
ĝu

2

)
T√
u

∑

−Nu≤j≤Nu

1

c
m/2
j;u

exp

(
−1

2
ugI(t0 +

jT

u
)

)

×
∫

Rm

fj;u(T,xI)Pj;u(r, T,xI) dxI ,
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and

fj;u(T,xI) = exp

(
1

cj;u
x⊤
I Σ

−1
II (bj;u)I −

1

2ucj;u
x⊤
I Σ

−1
II xI

)
,

Pj;u(r, T,xI) = P

{∫

t∈[0,T ]

I(E(j, u, r,xI , t))dt

}
,

with the event E(j, u, r,xI , t) defined as

E(j, u, r,xI , t) =




(X(t)− tµ)I > xI

√
cj;uY K + 1√

u
ZK(t,xI) >

jT√
u
(µK − ΣKIΣ

−1
II µI)

√
cj;uY J + 1√

u
ZJ(t,xI) >

√
u(bJ − ΣJIΣ

−1
II bI + (µJ − ΣJIΣ

−1
II µI)

jT
u )


 .(33)

Using similar argument as in Section 5.4 in [5] we can prove that

lim
u→∞

Rr,T (u) = t
−m/2
0 HI(r, T )

∫ ∞

−∞
e−

gI
′′(t0)x2

4 ψ(x) dx

holds for any r ∈ (0, T ) at which HI(r, T ) is continuous. This together with (32) yields that (31) holds for any

r ∈ (0, T ) at which HI(r, T ) is continuous.

Step II: We show that HI(r, T ) is continuous at any point r ∈ (0, T ). Hereafter, let r ∈ (0, T ) be arbitrarily

chosen and fixed. We shall adopt an idea of [7]. Recall

HI(r, T ) =

∫

Rm

e
1
t0

x⊤
I Σ−1

II
bI
P

{∫

t∈[0,T ]

I((X(t)− µt)I > xI)dt > r

}
dxI .

We first show that
∫

Rm

e
1
t0

x⊤
I Σ−1

II
bI
P

{∫

t∈[0,T ]

I((X(t)− µt)I > xI)dt = r

}
dxI = 0.(34)

To this end, we consider the probability space (Cd([0, T ]),F ,P∗) which is induced by the multi-dimensional

Brownian motion with drift {B(t)−A−1µt, t ∈ [0, T ]}, where Cd([0, T ]) is the Banach space of all d-dimensional

continuous vector functions over [0, T ], and F is the Borel σ-field of Cd([0, T ]). With the above notation, (34)

becomes
∫

Rm

e
1
t0

x⊤
I Σ−1

II
bI
P
∗
{
w ∈ Cd([0, T ]) :

∫

t∈[0,T ]

I((Aw(t))I > xI)dt = r

}
dxI = 0.(35)

Denote, for the fixed r,

D(r)
xI

=

{
w ∈ Cd([0, T ] :

∫

t∈[0,T ]

I((Aw(t))I > xI)dt = r

}
, xI ∈ R

m.

By the continuity of w, one can see that

D(r)
xI

∩D(r)
x′

I

= ∅, xI 6= x′
I ∈ R

m.

Thus, for any finite number of distinct points x
(1)
I , . . . ,x

(N)
I ∈ R

m we have

N∑

i=1

P
∗{D(r)

x
(i)
I

} = P
∗{∪N

i=1D
(r)

x
(i)
I

} ≤ 1.

This means that the set defined by

A(r)
n = {xI : xI ∈ R

m such that P∗{D(r)
xI

} > 1/n}
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consists of at most n− 1 distinct xI ’s. Therefore,

{xI : xI ∈ R
m such that P∗{D(r)

xI
} > 0} = ∪∞

n=1A
(r)
n

must be a countable set. Consequently,
∫

Rm

e
1
t0

x⊤
I Σ−1

II
bI
P
∗
{
D(r)

xI

}
dxI = 0,

which means that (34) holds for the fixed r ∈ (0, T ). Next, for any small ε ∈ (0, r/2) we have

P

{∫

t∈[0,T ]

I((X(t)− µt)I > xI)dt > r ± ε

}
≤ P

{∫

t∈[0,T ]

I((X(t)− µt)I > xI)dt > r/2

}
.

Note that HI(r/2, T ) <∞; see (30). Thus, by the dominated convergence theorem we derive that

lim
ε↓0

HI(r + ε, T ) = HI(r, T ),

and

lim
ε↓0

HI(r − ε, T ) = HI(r, T ) +

∫

Rm

e
1
t0

x⊤
I Σ−1

II
bI
P

{∫

t∈[0,T ]

I((X(t)− µt)I > xI)dt = r

}
dxI ,

which together with (34) conclude the continuity of HI(r, T ) at this r. Since such r was arbitrarily chosen in

(0, T ), we conclude that HI(r, T ), r ∈ (0, T ) is a continuous function. This completes the proof. �

5.2.2. Estimation of the double-sum Π0(u). In this subsection we shall focus on asymptotic upper bounds

of Π0(u), as u→ ∞. Note that

Π0(u) =
∑

−Nu≤i<j≤Nu

p0,i,j;u =
∑

−Nu≤i<j≤Nu

p0,i,j;u

j=i+1

+
∑

−Nu≤i<j≤Nu

p0,i,j;u

j>i+1

=: Π0,1(u) + Π0,2(u).(36)

Since

p0,i,j;u = P
{
∃t∈△i;uX(t) >

√
u(α+ µt), ∃t∈△j;uX(t) >

√
u(α+ µt)

}
,

we obtain from (52) in [5] that

lim
u→∞

Π0,1(u)

u(1−m)/2 exp
(
− ĝ

2u
) = Q1

(
2HI(0, T )

T
− HI(0, 2T )

T

)
(37)

for some constant Q1 > 0 which does not depend on T . Similarly,

lim
u→∞

Π0,2(u)

u(1−m)/2 exp
(
− ĝ

2u
) ≤ Q2T

∑

j≥1

exp
(
− ĝ

8t0
(jT )

)
(38)

holds with some constant Q2 > 0 which does not depend on T .

Now we are ready to present the proof of Theorem 3.1.

Proof of (16) and (17). We have from (26)-(31) and (36)-(38) that, for any T1, T2 > 0

lim sup
u→∞

P {τr(u) <∞}
CIu

1−m
2 e−

ĝ

2u
≤ HI(r, T1)

T1
+Q1

(
2HI(0, T1)

T1
− HI(0, 2T1)

T1

)
+Q2T1

∑

j≥1

exp
(
− ĝ

8t0
(jT1)

)
,(39)

lim inf
u→∞

P {τr(u) <∞}
CIu

1−m
2 e−

ĝ

2u
≥ HI(r, T2)

T2
−Q1

(
2HI(0, T2)

T2
− HI(0, 2T2)

T2

)
−Q2T2

∑

j≥1

exp
(
− ĝ

8t0
(jT2)

)
.(40)
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Note that it has been shown in [5] that

HI(0) = lim
T→∞

HI(0, T )

T
<∞.

Letting T2 → ∞ in (40), with T1 in (39) fixed, we have

lim sup
T→∞

HI(r, T )

T
<∞.

Furthermore, letting T1 → ∞ we conclude that

lim inf
T→∞

HI(r, T )

T
= lim sup

T→∞

HI(r, T )

T
<∞.

Therefore, it remains to prove that

lim inf
T→∞

HI(r, T )

T
> 0(41)

holds. To this end, first note that

P {τr(u) <∞} ≥ pr(u) ≥ P





Nu−1∑

j=−Nu+1;j∈{2k:k∈Z}
Aj,u > r





≥ P {∃ −Nu + 1 ≤ j ≤ Nu − 1, j ∈ {2k : k ∈ Z} such that Aj,u > r}

≥ p3,r(u)− Π̃(u),

where

p3,r(u) =

Nu−1∑

j=−Nu+1;j∈{2k:k∈Z}
pr,j;u, Π̃(u) =

∑

−Nu≤i<j≤Nu;i,j∈{2k:k∈Z}
p0,i,j;u.

Similar augments as in the derivation of (40) gives that, for some T3 > 0,

lim inf
u→∞

P {τr(u) <∞}
CIu

1−m
2 e−

ĝ

2u
≥ HI(r, T3)

2T3
−Q3T3

∑

j≥1

exp
(
− ĝ

8t0
(jT3)

)

holds with some constant Q3 > 0 which does not dependent on T3. This together with (39) yields that

lim inf
T1→∞

HI(r, T1)

T1
≥ HI(r, T3)

2T3
−Q3T3

∑

j≥1

exp
(
− ĝ

8t0
(jT3)

)

≥ HI(r, r + 1)

2T3
−Q3T3

∑

j≥1

exp
(
− ĝ

8t0
(jT3)

)
,

holds for all T3 ≥ r + 1, where the last inequality follows since HI(r, T ) as a function of T is non-decreasing.

Since for sufficiently large T3 the right-hand side of the above formula is positive, we conclude that (41) is valid.

Thus, the proof of (16) and (17) is complete. �

Proof of (18). We have, for any s ∈ R

P

{
τr2(u)− t0u√

u
≤ s
∣∣τr1(u) <∞

}
=

P

{
τr2 (u)−t0u√

u
≤ s, τr1(u) <∞

}

P {τr1(u) <∞}

=
P {τr2(u) ≤ ut0 +

√
us}

P {τr1(u) <∞}

=
P

{
u
∫ t0+s/

√
u

0
I(X(t) > (α+ µt)

√
u)dt > r2

}

P {τr1(u) <∞} .(42)
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Furthermore, using the same arguments as in the proof of (16) we can show, as u→ ∞

P

{
u

∫ t0+s/
√
u

0

I(X(t) > (α+ µt)
√
u)dt > r2

}

∼ P

{
u

∫ t0+s/
√
u

t0−ln(u)/
√
u

I(X(t) > (α+ µt)
√
u)dt > r2

}

∼ HI(r2)√
(2πt0)m |ΣII |

∫ s

−∞
e−g̃ x2

4 ψ(x) dxu
1−m

2 e−
ĝ

2u.

Consequently, by plugging the above asymptotics and (16) into (42) and rearranging, we obtain (18). Thus, the

proof is complete. �

6. Proof of Theorem 4.1

The proof of Theorem 4.1 will be done by first deriving the corresponding results for the cumulative Parisian

ruin problem of the auxiliary risk model (23), as v → ∞, and then using the equivalence described in (22).

In order to apply Theorem 3.1 to the auxiliary risk model (23), a crucial step is to find the minimiser of the

g-function given by

g(t) =
1

t
inf

x≥α̃+µ̃t
x⊤Σ−1x,

for which we must first solve the quadratic programming problem PΣ(α̃+ µ̃t) involved. To this end, we adopt a

direct approach, which is different from that in [5]. It follows from Lemma 2.1 that the g-function has different

expressions on different sets of t defined below:

(S1). On the set E1 = {t ≥ 0 : ρ(α+ µt) ≥ (1 + t)}, g(t) = g2(t) := g{2}(t) =
1
t (α+ µt)2;

(S2). On the set E2 = {t ≥ 0 : ρ(1 + t) ≥ (α+ µt)}, g(t) = g1(t) := g{1}(t) =
1
t (1 + t)2;

(S3). On the set E3 = [0,∞) \ (E1 ∪ E2), g(t) = g0(t),

where

g0(t) := g{1,2}(t) =
1

t
(α̃+ µ̃t)⊤Σ−1(α̃+ µ̃t)

=
1 + α2 − 2αρ

1− ρ2
1

t
+

2(1 + αµ− ρα− ρµ)

1− ρ2
+

1 + µ2 − 2ρµ

1− ρ2
t.

Moreover, it is easy to see that the unique minimiser of g0(t), t ≥ 0 is t
(0)
0 =

√
1+α2−2αρ
1+µ2−2µρ , the unique minimiser of

g1(t), t ≥ 0 is t
(1)
0 = 1, and the unique minimiser of g2(t), t ≥ 0 is t

(2)
0 = α/µ. Note that all functions gi(t), t ≥ 0,

i = 0, 1, 2, are decreasing to the left of their own minimiser and then increasing to infinity.

In order to find the global minimiser of the g-function and the exact form of the sets Ei, i = 1, 2, 3, we shall

discuss the following four cases, separately.

(1). µ < 1 and α < 1, (2). µ ≥ 1 and α ≥ 1,

(3). µ < 1 and α ≥ 1, (4). µ ≥ 1 and α < 1.

6.1. Case (1) µ < 1 and α < 1. Clearly, we have E1 = ∅ for any ρ ∈ (−1, 1). To analyse E2 we distinguish

the following three sub-cases:

(1.1). α < µ, (1.2). α > µ, (1.3). α = µ.
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6.1.1. Case (1.1) α < µ. In this case, we have

E2 =





∅, if −1 < ρ ≤ α;

{t ≥ 0 : t ≤ w}, if α < ρ < µ ;

[0,∞), if µ ≤ ρ < 1,

with w =
ρ− α

µ− ρ
.

This combined with the fact that E1 = ∅ for any ρ ∈ (−1, 1) yields that, if −1 < ρ ≤ α then g(t) ≡ g0(t), t ≥ 0

where the minimum is attained at the unique point t
(0)
0 , if µ ≤ ρ < 1 then g(t) ≡ g1(t), t ≥ 0 where the minimum

is attained at the unique point t
(1)
0 , and if α < ρ < µ then

g(t) =





g0(t), if t > w;

g1(t), if t ≤ w,
with g0(w) = g1(w),

and thus

inf
t≥0

g(t) = min

(
inf
t≤w

g1(t), inf
t>w

g0(t)

)
.

In order to derive inft≤w g1(t) and inft>w g0(t) we need to check if t
(1)
0 < w and if t

(0)
0 > w. We can show that

t
(1)
0 < w ⇔ ρ >

α+ µ

2
, t

(0)
0 > w ⇔ ρ <

α+ µ

2
, t

(0)
0 = t

(1)
0 = w ⇔ ρ =

α+ µ

2
.(43)

Note that α < α+µ
2 < µ. Thus, we have for α < ρ < µ

inf
t≥0

g(t) =





g0(t
(0)
0 ), if α < ρ < α+µ

2 ;

g0(t
(0)
0 ) = g1(t

(1)
0 ), if ρ = α+µ

2 ;

g1(t
(1)
0 ), if α+µ

2 < ρ < µ,

and in each of the above three cases the minimiser of the function g(t), t ≥ 0 is unique. Using the notation in

Theorem 3.1, the above findings for Case (1.1) α < µ are summarized in the following lemma:

Lemma 6.1. (1). If −1 < ρ < α+µ
2 , then

t0 = t
(0)
0 , I = {1, 2}, K = ∅, ĝ = g0(t

(0)
0 ), g̃ = g′′0 (t

(0)
0 ).

(2). If ρ = α+µ
2 , then

t0 = t
(0)
0 = t

(1)
0 = w, I = {1}, K = {2}, ĝ = g0(t

(0)
0 ) = g1(t

(1)
0 ) = 4, g̃ = g′′1 (t

(1)
0 ) = 2.

(3). If α+µ
2 < ρ < 1, then

t0 = t
(1)
0 , I = {1}, K = ∅, ĝ = g1(t

(1)
0 ) = 4, g̃ = g′′1 (t

(1)
0 ) = 2.
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6.1.2. Case (1.2) α > µ. In this case, we have (recall w = α−ρ
ρ−µ )

E2 =





∅, if −1 < ρ ≤ µ;

{t ≥ 0 : t ≥ w}, if µ < ρ < α ;

[0,∞), if α ≤ ρ < 1.

Thus, we have that, if −1 < ρ ≤ µ then g(t) ≡ g0(t), t ≥ 0 where the minimum is attained at the unique

point t
(0)
0 , if α ≤ ρ < 1 then g(t) ≡ g1(t), t ≥ 0 where the minimum is attained at the unique point t

(1)
0 , and if

µ < ρ < α then

g(t) =





g0(t), if t < w;

g1(t), if t ≥ w.

Similarly as in Case (1.1), we have for µ < ρ < α

inf
t≥0

g(t) =





g0(t
(0)
0 ), if µ < ρ < α+µ

2 ;

g0(t
(0)
0 ) = g1(t

(1)
0 ), if ρ = α+µ

2 ;

g1(t
(1)
0 ), if α+µ

2 < ρ < α,

and in each of the above three cases the minimiser of the function g(t), t ≥ 0 is unique. Summarizing the above

we conclude that the results in Lemma 6.1 still hold for Case (1.2) α > µ.

6.1.3. Case (1.3) α = µ. In this case, we have

E2 =





∅, if −1 < ρ < µ;

[0,∞), if µ ≤ ρ < 1.

Using similar arguments as in Case (1.1) and noting that α+µ
2 = α = µ, we could prove that the results in

Lemma 6.1 still hold for Case (1.3) α = µ.

Consequently, we conclude that Lemma 6.1 holds for Case (1) µ < 1 and α < 1.

6.2. Case (2) µ ≥ 1 and α ≥ 1. Clearly, we have E2 = ∅ for any ρ ∈ (−1, 1). To analyse E1 we distinguish

the following three sub-cases:

(2.1). α < µ, (2.2). α > µ, (2.3). α = µ.

6.2.1. Case (2.1) α < µ. In this case, we have

E1 =





∅, if −1 < ρ ≤ 1/µ;

{t ≥ 0 : t ≥ Q}, if 1/µ < ρ < 1/α ;

[0,∞), if 1/α ≤ ρ < 1,

with Q =
1− ρα

µρ− 1
.

This combined with the fact that E2 = ∅ for any ρ ∈ (−1, 1) yields that, if −1 < ρ ≤ 1/µ then g(t) ≡ g0(t), t ≥ 0

where the minimum is attained at the unique point t
(0)
0 , if 1/α ≤ ρ < 1 then g(t) ≡ g2(t), t ≥ 0 where the

minimum is attained at the unique point t
(2)
0 , and if 1/µ < ρ < 1/α then

g(t) =





g0(t), if t < Q;

g2(t), if t ≥ Q,
with g0(Q) = g2(Q),
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and thus

inf
t≥0

g(t) = min

(
inf
t≥Q

g2(t), inf
t<Q

g0(t)

)
.

In order to derive inft≥Q g2(t) and inft<Q g0(t) we need to check if t
(2)
0 > Q and if t

(0)
0 < Q. We can show that

t
(2)
0 > Q ⇔ ρ >

α+ µ

2αµ
, t

(0)
0 < Q ⇔ ρ <

α+ µ

2αµ
, t

(0)
0 = t

(2)
0 = Q ⇔ ρ =

α+ µ

2αµ
.(44)

Note that 1/µ < α+µ
2αµ < 1/α. Thus, we have for 1/µ < ρ < 1/α

inf
t≥0

g(t) =





g0(t
(0)
0 ), if 1/µ < ρ < α+µ

2αµ ;

g0(t
(0)
0 ) = g2(t

(2)
0 ), if ρ = α+µ

2αµ ;

g2(t
(2)
0 ), if α+µ

2αµ < ρ < 1/α,

and in each of the above three cases the minimiser of the function g(t), t ≥ 0 is unique. Using the notation in

Theorem 3.1, the above findings for Case (2.1) α < µ are summarized in the following lemma:

Lemma 6.2. (1). If −1 < ρ < α+µ
2αµ , then

t0 = t
(0)
0 , I = {1, 2}, K = ∅, ĝ = g0(t

(0)
0 ), g̃ = g′′0 (t

(0)
0 ).

(2). If ρ = α+µ
2αµ , then

t0 = t
(0)
0 = t

(2)
0 = Q, I = {2}, K = {1}, ĝ = g0(t

(0)
0 ) = g2(t

(2)
0 ) = 4αµ, g̃ = g′′2 (t

(2)
0 ) = 2α−1µ3.

(3). If α+µ
2αµ < ρ < 1, then

t0 = t
(2)
0 , I = {2}, K = ∅, ĝ = g2(t

(2)
0 ) = 4αµ, g̃ = g′′2 (t

(2)
0 ) = 2α−1µ3.

Case (2.1) and Case (2.2) can be analysed similarly, and we can conclude that Lemma 6.2 holds for Case (2)

µ ≥ 1 and α ≥ 1.

6.3. Case (3) µ < 1 and α ≥ 1. To analyse E1, E2 we distinguish the following three sub-cases:

(3.1). µ < 1/α, (3.2). µ > 1/α, (3.3). µ = 1/α.

6.3.1. Case (3.1) µ < 1/α. In this case, we have

E1 =





∅, if −1 < ρ ≤ 1/α;

{t ≥ 0 : t ≤ Q}, if 1/α < ρ < 1,
E2 =





∅, if −1 < ρ ≤ µ;

{t ≥ 0 : t ≥ w}, if µ < ρ < 1.
(45)

This implies that, if −1 < ρ ≤ µ then g(t) ≡ g0(t), t ≥ 0, where the minimum is attained at the unique point

t
(0)
0 , if µ < ρ ≤ 1/α then

g(t) =





g0(t), if t < w;

g1(t), if t ≥ w,

implying that

inf
t≥0

g(t) = min

(
inf
t≥w

g1(t), inf
t<w

g0(t)

)
,
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and if 1/α < ρ < 1 then

g(t) =





g2(t), if t ≤ Q;

g0(t), if Q < t < w ;

g1(t), if t ≥ w.

implying that

inf
t≥0

g(t) = min

(
inf
t≤Q

g2(t), inf
Q<t<w

g0(t), inf
t≥w

g1(t)

)
.(46)

Note that Q < w for any µ < ρ < 1. Similarly as (43) and (44) we have, for any µ < ρ < 1(≤ α)

t
(1)
0 < w ⇔ ρ <

α+ µ

2
, t

(0)
0 > w ⇔ ρ >

α+ µ

2
, t

(0)
0 = t

(1)
0 = w ⇔ ρ =

α+ µ

2
,(47)

and, for any 1/α < ρ < 1

t
(2)
0 < Q ⇔ ρ >

α+ µ

2αµ
, t

(0)
0 > Q ⇔ ρ <

α+ µ

2αµ
, t

(0)
0 = t

(2)
0 = Q ⇔ ρ =

α+ µ

2αµ
.(48)

Furthermore, it follows that α+µ
2αµ > 1

2 (1/µ + µ) > 1 in the considered case µ < 1/α ≤ 1, then from (48) we

conclude that t
(2)
0 > Q, t

(0)
0 > Q hold for any 1/α < ρ < 1, which helps to further simplify (46) as follows,

inf
t≥0

g(t) = min

(
inf
t≤Q

g2(t), inf
Q<t<w

g0(t), inf
t≥w

g1(t)

)
= min

(
inf

Q<t<w
g0(t), inf

t≥w
g1(t)

)
.(49)

After some simple calculations as before, we can show that for µ < ρ < 1

inf
t≥0

g(t) =





g0(t
(0)
0 ), if µ < ρ < α+µ

2 ;

g0(t
(0)
0 ) = g1(t

(1)
0 ), if ρ = α+µ

2 ;

g1(t
(1)
0 ), if α+µ

2 < ρ < 1,

and in each of the above three cases the minimiser of the function g(t), t ≥ 0 is unique. Summarizing the above

findings we can conclude that Lemma 6.1 holds for Case (3.1).

6.3.2. Case (3.2) µ > 1/α. In this case, we have (45) still holds. It follows that, if −1 < ρ ≤ 1/α then

g(t) ≡ g0(t), t ≥ 0, where the minimum is attained at the unique point t
(0)
0 , if 1/α < ρ ≤ µ then

g(t) =





g0(t), if t > Q;

g2(t), if t ≤ Q,

implying that

inf
t≥0

g(t) = min

(
inf
t≤Q

g2(t), inf
t>Q

g0(t)

)
,

and if µ < ρ < 1 then

g(t) =





g2(t), if t ≤ Q;

g0(t), if Q < t < w ;

g1(t), if t ≥ w.

implying that

inf
t≥0

g(t) = min

(
inf
t≤Q

g2(t), inf
Q<t<w

g0(t), inf
t≥w

g1(t)

)
.(50)
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Note that in this case both (47) and (48) are still valid for the corresponding values of ρ mentioned therein.

Furthermore, it follows that α+µ
2 ≥ √

αµ > 1 in the considered case µ > 1/α, then from (47) we conclude that

t
(1)
0 < w, t

(0)
0 < w hold for any µ < ρ < 1, which helps to further simplify (50) as follows,

inf
t≥0

g(t) = min

(
inf
t≤Q

g2(t), inf
Q<t<w

g0(t), inf
t≥w

g1(t)

)
= min

(
inf
t≤Q

g2(t), inf
Q<t<w

g0(t)

)
.(51)

Thus, we can show that for 1/α < ρ < 1

inf
t≥0

g(t) =





g0(t
(0)
0 ), if 1/α < ρ < α+µ

2αµ ;

g0(t
(0)
0 ) = g2(t

(2)
0 ), if ρ = α+µ

2αµ ;

g2(t
(2)
0 ), if α+µ

2αµ < ρ < 1,

and in each of the above three cases the minimiser of the function g(t), t ≥ 0 is unique. Summarizing the above

findings we can conclude that Lemma 6.2 holds for Case (3.2).

6.3.3. Case (3.3) µ = 1/α. In this case, we have that (45) still holds. As now α+µ
2 = α+µ

2αµ ≥ 1, we obtain that

(i) in Lemma 6.1 (the same to (i) in Lemma 6.2) is valid for any −1 < ρ < 1.

Consequently, we can conclude that for Case (3) µ < 1 and α ≥ 1, if further µ ≤ 1/α then Lemma 6.1 holds,

and if further µ > 1/α then Lemma 6.2 holds.

6.4. Case (4) µ ≥ 1 and α < 1. To analyse E1, E2 we distinguish the following three sub-cases:

(4.1). 1/µ < α, (4.2). 1/µ > α, (4.3). 1/µ = α.

6.4.1. Case (4.1) 1/µ < α. In this case, we have

E1 =





∅, if −1 < ρ ≤ 1/µ;

{t ≥ 0 : t ≥ Q}, if 1/µ < ρ < 1,
E2 =





∅, if −1 < ρ ≤ α;

{t ≥ 0 : t ≤ w}, if α < ρ < 1.
(52)

This implies that, if −1 < ρ ≤ 1/µ then g(t) ≡ g0(t), t ≥ 0, where the minimum is attained at the unique point

t
(0)
0 , if 1/µ < ρ ≤ α then

g(t) =





g0(t), if t < Q;

g2(t), if t ≥ Q,

implying that

inf
t≥0

g(t) = min

(
inf
t≥Q

g2(t), inf
t<Q

g0(t)

)
,

and if α < ρ < 1 then

g(t) =





g2(t), if t ≥ Q;

g0(t), if w < t < Q ;

g1(t), if t ≤ w.

implying that

inf
t≥0

g(t) = min

(
inf
t≥Q

g2(t), inf
w<t<Q

g0(t), inf
t≤w

g1(t)

)
.(53)



20 LANPENG JI

Note that Q > w for any 1/µ < ρ < 1. Similarly as in Case (3.1) we have for 1/µ < ρ < 1

inf
t≥0

g(t) =





g0(t
(0)
0 ), if 1/µ < ρ < α+µ

2αµ ;

g0(t
(0)
0 ) = g2(t

(2)
0 ), if ρ = α+µ

2αµ ;

g2(t
(2)
0 ), if α+µ

2αµ < ρ < 1,

and in each of the above three cases the minimiser of the function g(t), t ≥ 0 is unique. Summarizing the above

findings we can conclude that Lemma 6.2 holds for Case (4.1).

6.4.2. Case (4.2) 1/µ > α. In this case, we have (52) still holds. It follows that, if −1 < ρ ≤ α then g(t) ≡
g0(t), t ≥ 0, where the minimum is attained at the unique point t

(0)
0 , if α < ρ ≤ 1/µ then

g(t) =





g0(t), if t > w;

g1(t), if t ≤ w,

implying that

inf
t≥0

g(t) = min

(
inf
t≤w

g1(t), inf
t>w

g0(t)

)
,

and if 1/µ < ρ < 1 then

g(t) =





g2(t), if t ≥ Q;

g0(t), if w < t < Q ;

g1(t), if t ≤ w.

implying that

inf
t≥0

g(t) = min

(
inf
t≥Q

g2(t), inf
w<t<Q

g0(t), inf
t≤w

g1(t)

)
.(54)

Similarly as before, we can show that for α < ρ < 1

inf
t≥0

g(t) =





g0(t
(0)
0 ), if α < ρ < α+µ

2 ;

g0(t
(0)
0 ) = g1(t

(1)
0 ), if ρ = α+µ

2 ;

g1(t
(1)
0 ), if α+µ

2 < ρ < 1,

and in each of the above three case the minimiser of the function g(t), t ≥ 0 is unique. Summarizing the above

findings we can conclude that Lemma 6.1 holds for Case (4.2).

6.4.3. Case (4.3) 1/µ = α. In this case, we have that (52) still holds. As now α+µ
2 = α+µ

2αµ ≥ 1, we obtain that

(i) in Lemma 6.2 (the same to (i) in Lemma 6.1) is valid for any −1 < ρ < 1.

Consequently, we can conclude that for Case (4) µ ≥ 1 and α < 1, if further 1/µ < α then Lemma 6.2 holds,

and if further 1/µ ≥ α then Lemma 6.1 holds.

The following corollary is a collection of the main findings in Sections 6.1, 6.2, 6.3, 6.4.

Corollary 6.3. Consider the auxiliary two-dimensional Brownian motion models described in (23).

(i). Suppose α and µ satisfy one of the following conditions:

(i.C1) µ < 1 and α < 1,

(i.C2) µ < 1, α ≥ 1 and µ ≤ 1/α,
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(i.C3) µ ≥ 1, α < 1 and µ ≤ 1/α.

We have

(i.R1). If −1 < ρ < α+µ
2 , then

t0 = t
(0)
0 , I = {1, 2}, K = ∅, ĝ = g0(t

(0)
0 ), g̃ = g′′0 (t

(0)
0 ).

(i.R2). If ρ = α+µ
2 , then

t0 = t
(0)
0 = t

(1)
0 , I = {1}, K = {2}, ĝ = g0(t

(0)
0 ) = g1(t

(1)
0 ) = 4, g̃ = g′′1 (t

(1)
0 ) = 2.

(i.R3). If α+µ
2 < ρ < 1, then

t0 = t
(1)
0 , I = {1}, K = ∅, ĝ = g1(t

(1)
0 ) = 4, g̃ = g′′1 (t

(1)
0 ) = 2.

(ii). Suppose α and µ satisfy one of the following conditions:

(ii.C1) µ ≥ 1 and α ≥ 1,

(ii.C2) µ < 1, α ≥ 1 and µ > 1/α,

(ii.C3) µ ≥ 1, α < 1 and µ > 1/α.

We have

(ii.R1). If −1 < ρ < α+µ
2αµ , then

t0 = t
(0)
0 , I = {1, 2}, K = ∅, ĝ = g0(t

(0)
0 ), g̃ = g′′0 (t

(0)
0 ).

(ii.R2). If ρ = α+µ
2αµ , then

t0 = t
(0)
0 = t

(2)
0 , I = {2}, K = {1}, ĝ = g0(t

(0)
0 ) = g2(t

(2)
0 ) = 4αµ, g̃ = g′′2 (t

(2)
0 ) = 2α−1µ3.

(i.R3). If α+µ
2 < ρ < 1, then

t0 = t
(2)
0 , I = {2}, K = ∅, ĝ = g2(t

(2)
0 ) = 4αµ, g̃ = g′′2 (t

(2)
0 ) = 2α−1µ3.

Consequently, by using results in Corollary 6.3 and applying Theorem 3.1 we can obtain asymptotic results for

the cumulative Parisian ruin probability and the conditional cumulative Parisian ruin time of the auxiliary risk

model (23), as v → ∞. Finally, Theorem 4.1 follows by directly using the equivalence described in (22).
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