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ON THE CUMULATIVE PARISIAN RUIN OF MULTI-DIMENSIONAL BROWNIAN
MOTION RISK MODELS

LANPENG JI

Abstract: Consider a multi-dimensional Brownian motion which models the surplus processes of multiple lines
of business of an insurance company. Our main result gives exact asymptotics for the cumulative Parisian ruin
probability as the initial capital tends to infinity. An asymptotic distribution for the conditional cumulative
Parisian ruin time is also derived. The obtained results on the cumulative Parisian ruin can be seen as gener-
alizations of some of the results derived in [5]. As a particular interesting case, the two-dimensional Brownian
motion risk model is discussed in detail.

Key Words: multi-dimensional Brownian motion; cumulative Parisian ruin; exact asymptotics; ruin probabil-
ity; quadratic programming problem.

AMS Classification: 91B30, 60G15, 60G70

1. INTRODUCTION

Consider an insurance company which operates simultaneously d (d > 1) lines of business. It is assumed that

the surplus processes of these lines of business are described by a multi-dimensional risk model:
(1) Uft)=u+put—X(t), t>0,

where w = (uy,us,...,uq)", with u; > 0, is a (column) vector of initial capitals of these business lines, pu =
(p1s - -y pta) T, with p; > 0, is a vector of net premium income rates, and X (t) = (X1 (t), Xo(t),- -+, Xa(t)) ", t >
0 is a vector of net loss processes by time t¢.

In recent years, there has been an increasing interest in risk theory in the study of multi-dimensional risk models
with different stochastic processes modeling X (t),t > 0; see, e.g., [I] for an overview. In comparison with the
well-understood 1-dimensional risk models, the study of multi-dimensional risk models is more challenging.

We consider in this paper the multi-dimensional Brownian motion risk model, i.e.,
(2) X(t)=AB(t), t=0,

where A € R4 is a non-singular matrix, and B(t) = (By(t),...,Ba(t))",t > 0 is a standard d-dimensional
Brownian motion with independent coordinates. Multi-dimensional Brownian motion risk models have drawn
a lot of attention due to its tractability; see, e.g., [0, 10] and references therein.

We shall investigate the cumulative Parisian ruin problem of the multi-dimensional Brownian motion risk model
(1) with X defined by (2). The cumulative Parisian ruin was first introduced by [11] based on the occupation

(or sojourn) times of the 1-dimensional risk process. In the multi-dimensional setup the cumulative Parisian
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2 LANPENG JI

ruin time (at level 7 > 0) is defined as

(3) Tr(u) := inf {t >0: /Ot]I(U(s) < 0)ds > r} )

where I(+) is the indicator function, and the inequality for vectors U(s) < 0 is meant component-wise. As
remarked in [11] “the parameter r could be interpreted as the length of a clock started at the beginning of the
first excursion, paused when the process returns above zero, and resumed at the beginning of the next excursion,
and so on.”. Clearly, if r is set to be 0 one obtains the simultaneous ruin time 1o(u) for the multi-dimensional

Brownian motion risk model, i.e.,
To(w):=inf{t >0:U@}) <0} =inf{t>0:U;(t) <0, V1<i<d},

which has been discussed recently in [5] under a different context.

In this paper our primary focus is on the infinite-time cumulative Parisian ruin probability defined as
P{7.(u) < co}.
Note that in the 1-dimensional setup, we have from (5) in [7] (see also [11]) that
P{r(u) <0} = P {/000 I(B1(t) — pat > w)dt > r}

2 uw2r
(2(1 + )0 (/) — P )
s

(4) e

for all u € R, where ¥(s) is the standard normal survival function.
It turns out that explicit formula for the cumulative Parisian ruin probability in the multi-dimensional setup is
difficult to obtain. In this case, it is of interest to derive some asymptotic results by letting the initial capitals

tend to infinity. We shall assume that
u = au = (qu, asu, . ..,qqu), a; >0, u>0,

and consider the asymptotics of the cumulative Parisian ruin probability as ©w — oo. For simplicity, hereafter

we denote

(5) Tr(u) =1 (w), u>0.

Define

(6) g(t) = %mzigiut:cTE_lx, t>0, with X =AAT,

where 1/0 is understood as co. Our principal result presented in Theorem 3.1 shows that, for any r > 0,

P{r(u) <o} = P {/OOO (X () — pt > au)dt > 7‘}

1—m i"ftZO g(t)

(7) ~ CrHi(r)u ™2 e 7 2 “  u— o0,

where C; > 0, m € N are known constants and H;(r) is a counterpart of the celebrated Pickands constant;

explicit expressions of these constants will be displayed in Section 3.
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As a by-product, we also derive in Theorem 3.1 the asymptotic distribution of
Ty (W) 7, (W) < 00,  u— 00

for any 0 < ry <19 < 0o. The approximation of the above quantity is of interest in risk theory; it will provide
us with some idea of when cumulative Parisian ruin actually occurred at level ro knowing that it has occurred
at some level 7. We refer to [1, 9, 13] and references therein for related discussions on ruin times.

It is worth mentioning that there are some related interesting studies on the asymptotic properties of sojourn
times above a high level of 1-dimensional (real-valued) stochastic processes; see, e.g., [2—1]. We refer to [7, &]
for recent developments. The multi-dimensional counterparts of this problem are more challenging, and to the
best knowledge of the author there has been no result in this direction. Our study on the cumulative Parisian
ruin probability for the multi-dimensional Brownian motion risk models covers this gap in a sense by deriving
some asymptotic properties of the sojourn times.

As an important illustration, the two-dimensional Brownian motion risk model is discussed in detail. Asymptotic
results for the cumulative Parisian ruin probabilities and the conditional cumulative Parisian ruin times are
obtained for the full range of the parameters involved in the model.

The rest of this paper is organised as follows. In Section 2 we introduce some notation and present some
preliminaries, which are extracted from [5]. The main results are presented in Section 3, followed by a discussion
on the two-dimensional Brownian motion risk model in Section 4. The technical proofs are displayed in Section

5 and Section 6.

2. NOTATION AND PRELIMINARIES

We assume that all vectors are d-dimensional column vectors written in bold letters with d > 2. Operations
with vectors are meant component-wise, e.g., A = A = (\z1,...,Arg) | for any A € R,z € R?. Further,
we denote 0 = (0,...,0)" € R4 If I C {1,...,d}, then for a vector a € R? we denote by a; = (a;,i € I)
a sub-block vector of a. Similarly, if further J C {1,...,d}, for a matrix M = (m4;); je(1,...ay € RI*4 e
denote by Myy= My ; = (m;j)ier,jes the sub-block matrix of M determined by I and J. Moreover, write
Mfll = (M)~ for the inverse matrix of M;; whenever it exists.

As we will see, the solution to the quadratic programming problem involved in (6) is the key to our discussions.

We introduce the next lemma stated in [12] (see also [5]), which is important for several definitions in the sequel.

Lemma 2.1. Let M € R4 d > 2 be a positive definite matriz. If b € R?\ (—oc,0]¢, then the quadratic

programming problem
Prs(b) : Minimise " M~ '@ under the linear constraint > b
has a unique solution b and there ezists a unique non-empty index set I C {1,...,d} such that

(8) B]Zb]%()[, MI_Ilb[ >0[7

(9) and  if 1°={1,...,d}\ I #0, then bye = My M *b; > bye.
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Furthermore,

~T ~
mg%wTM_la: =b M~'b=0b; M;'b; > 0.
T2

Definition 2.2. The unique index set I that defines the solution of the quadratic programming problem in

question will be referred to as the essential index set.

Consider the minimisation problem involved in (6), i.e., infz>aput 2" X'z, For any fixed t > 0, we define
b(t) = e+ pt, and let I(t) C {1,...,d} be the essential index set of the quadratic programming problem
Ps(b(t)).

Note that the two-layer minimisation problem in the exponent of (7), i.e.,

1
inf g(t) = inf — inf x'X 7'z
t>0 t>0 t x>a+tut

has been solved in Lemma 2.2 in [5], with the aid of Lemma 2.1. More precisely, it is proved therein the function
g(t),t > 0 is convex and attains its unique minimum at some ¢o. Let I = I(tg) be the essential index set of the

quadratic programming problem Ps(b) with b = b(ty) = o + uto. Then

Tz—l
(10) to = | AL 5 g,
IRNTa
and
(11) g(to) = inf g(t) = ~bI b,
i to T

Hereafter, we shall use the notation b = b(tg), and use I = I(tg) for the essential index set of the quadratic
programming problem Py (b). Furthermore, let b be the unique solution of Ps(b). If I° ={1,...,d}\I # 0, we

define (cf. (9)) weakly essential index set and unessential index set by
(12) K={jel®:bj=%;% by =b;}, andJ={jel®:b;=%,57br >b;}.

As we shall see, the index set I determines m, inf;>¢ ¢g(¢) and H;(r) in the asymptotics (7), whereas both I and
K determine the constant Cj. Moreover, the set J, whenever non-empty, contains indices that do not play any
role in the asymptotic result, but it does appear in the proof (see (33)).
Next, define for t > 0
1 _ 1 _ _ _
g1(t) = zb(tﬁznlb(t)l = ;0‘;21110‘1 +2a] Sy + g S gt
Clearly, by (11) we have
g :=g(to) = g1(to).
Furthermore, we denote
g = g/ (to) = 2t5*(a] Bp7 eup),

which will appear in the definition of the constant C7 in Section 3.
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3. MAIN RESULTS
We introduce some constants that will appear in the main results. First we write
m:=f{i:iel} >1

for the number of elements of the essential index set I. Further, define the following constant (existence is

confirmed in Theorem 3.1)

. 1
(13) Hi(r) = jjl_rgo T’H;(r, T),
with
(14) Hi(r,T) = / el i1 brp {/ I(X () — pt); > )dt > r} dzr, r<T.
m t€[0,T]

Moreover, set

1 ~ 52
Cr:= —/e‘gTw(w) dz,
\/(27Tt0)m|211‘ R

where |X;7| denotes the determinant of the matrix X7, and for z € R
1, if K =0,
]P’{YK > (g - zmz;;ul)x} L if K A0

Here the index set K is defined in (12), Y g is a Gaussian random vector with mean vector O and covariance

(15) P(x) =

matrix Dg g given by
Drr =Skk — Sk1511 21k

The next theorem constitutes our main results. Its proof is demonstrated in Section 5.

Theorem 3.1. Let 7.(u) be defined in (5) (see also (3)). We have, for any r > 0,

1—m g

(16) P{r.(u) <oo} ~CrH;(r)u =2 e 2%  u— o0,
where
(17) 0<Hi(r)<oo, ¥r>0.

Moreover, we have, for any 0 <11 <71y < 00 and any s € R,

(18) lim P{TT?(U)_tOu <s HI(T2>ijO e‘éz/)( 2/gz) dx

uU— 00 \/m - 2

M) 25, e (/2 Ge) da
Remarks 3.2. (a). If d = 1, we have from (16) that

Try (u) < oo} =

1
P{r (u) < o0} ~ #—H{l}(r)e_ml“l", U — 00.
1

This together with (4) yields that

(19) Hiny(r) = (2(1 + /@7«)\1;(”1\/;) _ Ml\/ﬂe_uiv) .

VT
(b). Asin [5] we can check that the results in Theorem 3.1 still hold for general o, u € R? such that o; > 0, j1; > 0
for some 1 < i <d.
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4. TWO-DIMENSIONAL BROWNIAN MOTION RISK MODELS
In this section, we focus on the two-dimensional Brownian motion risk models given by
(20) U(t) = av+ ut— AB(t), t >0,
with @ = (a1, a2)" >0 and p = (p1,p2) " > 0 and

soaaT= 1P} e,
p 1
We aim to find the asymptotics of the cumulative Parisian ruin probability and the asymptotic distribution
of the conditional cumulative Parisian ruin as w tends to infinity, for all the possible values of p € (—1,1),
a=(a,a2)" >0and p = (1, p2)" > 0.

In order to simplify the analysis, we first do some variable changes. Consider y; = ab, with a = 1/u;,b = p2.

By the self-similarity of Brownian motion we derive that

o Xi(s) — pas >
T-(u) = inf<t>0: / I 1(8) — s > e ds >
0 Xa(s) — p2s > azu
b X167 (bs)) — a(b
inf tZO:/]I 1(b7 (b)) — albs) > aru ds >r
0 Xo(b71(bs)) — p2b~ ' (bs) > aau
uit X —
inf tzo:/ g ) —e>emu ds > p2ry
0 Xo(s) — pa/p1s > aopu

where £ denotes equivalence in distribution. Next we denote

(21) U= Qa1u1u, /’L:MQ/ula 042042/041, F:M?T,

t — S v
77(v) ::inf{t>0:/0 H( ilii—u5>>ow >ds>?}.

(22) m(v) £ @2 7(w).

and define

Clearly, we have

Thanks to this equivalence, we can derive the results for the cumulative Parisian ruin time 7,.(u), by applying

Theorem 3.1 to the cumulative Parisian ruin time 7#(v) of the auxiliary risk model

(23) U(t)=av+ pt — AB(t), t>0,
with (recall also (21))
)' >0, p=(,p">0.

a=(l,«a

Note that the auxiliary risk model defined in (23) is easier to analyse as it involves a smaller number of
parameters (namely, p, a, p) than the original risk model (20).
The main results of this section are displayed in Theorem 4.1 below. From these results we can observe how

different values of p yield different scenarios of the asymptotic behaviour, which shows an interesting reduction
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of dimension phenomenon; see also [5] for discussions on this phenomenon. The proof of Theorem 4.1 is deferred

to Section 6.

Theorem 4.1. Consider the original two-dimensional Brownian motion models described in (20). Recall the
notation in (21).
(i). Suppose a and p satisfy one of the following conditions:

(i.Cl) p<landa <1,

(i.C2) p<l,a>1and p<1/a,

1C3) p>1,a<land p<1/a.

We have, for any r > 0,
(LR1). If =1 < p < %L then, as u — oo

Hirop (12 .
(24) P {7, (1) < o0} ~ e UAT) s

Voamtr(l - p?)g

where

1+a2—-2ap . 21+a?—-2ap 2(1+au—pp—ap) 1+ a?—2ap
tO: T L .2 o, 9= D) + D) ’ g:2t0 1 _ 92
14+ p% —2pp to 1—-p 1—p 1—p

and, for anyr >0

N B e e e 2 O | O L e 9%
R2 te[0,T)

T—o00 Xz(t) — ut > x2

Hi12)(7)
Furthermore, for any 0 <r; <71y < oo and any s € R

_ H 2
(25) lim P{ 2 (w) t0a1~/u1u < sl (u) < o0 p = M@(S),
u—00 201 /(wig)u Hii 2y (i)

where ®(s) is the standard normal distribution function.

(1LR2). If p= Lt then, as u — oo
1 2 —2a1p1u
P {7 (u) < oo} ~ SHpuy(pir) e ,

where (cf. (19))

9

[SIpd]

2r

™

Hy(7) =201+ HP(VF) -

e

S

Furthermore, for any 0 <r; <re < oo and any s € R

_ 2 H 2 s N _
i pl T Ze/me :V{Mgﬁ>/ Y LN
u—00 Vo /uiu VT Hiy(pir) Jow

where W(s) =1 — ®(s) is the standard normal survival function.

(LR3). If “tL < p <1, then, as u — oo

P{7(u) < 0o} ~ Hiy(uir) e 2ormm,
and for any 0 <r; <ry < oo and any s € R

B 2
lim P {Tr2 (u) — on/pmu < 8|1 (u) < oo} = 7H{1}(Nér2)¢(s).

U—00 A /Oél/le)’U -
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(ii). Suppose a and p satisfy one of the following conditions:
(ii.Cl) p>1 and a > 1,
(ii.C2) p<l,a>1and p>1/c,
(ii.C3) p>1, <1 andp>1/a.
We have, for any r > 0,
(iLR1). If =1 < p < G2k, then (24) and (25) hold.

(ii.R2). If p= 3:5’ then, as u — 0o

1 — L u
P{7.(u) < oo} ~ ﬂrﬂm}(#?r) e oana

where (cf. (19))

V2 _ﬁv")
e” 'z |.

Hizy(r) = p <2(1 + ) (V) — N

Furthermore, for any 0 <r; <71y < o0 and any s € R

_ 2 H 2 s 22 _
hmp{%(w%/ﬂzu 57ﬁ<u><oo}—f{2}(““"z’)/ 2y (lﬂﬂuzx> o,

A

oo Vo /udu VT Hpgy (i) (1= p?)pa
(i.R3). If%ﬁ < p <1, then, as u — o0

1
P{7.(u) < oo} ~ ;/H{z} (uir) e 22kt

and for any 0 <1y <ry < oo and any s € R

. Ty (1) — 2/ pigu Hoy (uira)
lim P{ 2= < |7, (1) < 00 p = 22 P(s).
=00 { Vs /udu () } Hyay(pir1) (#)

5. PROOFS OF THEOREM 3.1

In this section we present the proof of Theorems 3.1. We shall focus on the case where r > 0, since the case
where r = 0 has been included in [5].

First, by the self-similarity of Brownian motion we have, for any u > 0,
P{7(u) < 00} = IE”{/OOO]I(X(t) — pt > au)dt > r} = P{u /OOO]I(X(t) > Vu(a+ pt))dt > r} .
Next, we have the following sandwich bounds
(26) pr(u) <P {7(u) < oo} < pp(u) + ro(u),
where
po(u) =P {u /t LX) > Viile+ )i > r} . ro(u) =P {u /t _UX() > Ve )it > o} ,
€Ay €A,

with (recall the definition of ¢y in (10))

Ny = [to— hi;g),to—i-m(\/g)], Ay = [o,to—ln(\/g)} U [t0+hi%),oo).

In order to convey the main ideas and to reduce the complexity, we shall prove the theorem in several steps and

finally we complete the proof by putting all the arguments together.
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5.1. Analysis of ro(u). This step is concerned with sharp upper bound for r¢(u) when u is large. Note that
ro(u) = P {HtEAuX(t) > V(o + ut)} .

The following result is Lemma 4.1 in [5] (there was a misprint with y/u missing, and in eq.(30) therein u should

be /u).

Lemma 5.1. For all large u we have

min(g”’ (tg+),9"" (tg—))

(27) ro(u) < Cyfue™ 5~ (P02 —) (tnw)?
L holds for some constant C > 0 and some sufficiently small € > 0 which do not depend on .
5.2. Analysis of p,(u). Denote, for any fixed T'> 0 and u > 0

Njou = Djau(T) = [to+ jTu to+ (G + D)Tu™"), =Ny <j < Ny,

where N, = [T~!In(u)y/u] (here [2] denotes the smallest integer larger than ).

Denote
Au=u [ X0 > Valao+ )t
EAj'u
and define
Priw =P{Aju>7}, Priju=P{Ain>r Aju>r}.
It follows, using a similar idea as in [7], that
Ny,
pr(u) < P Z Aju>r
j=—Nu
Ny,
=P Z A >r, there exists exactly one j such that A, >0
j=—N.
Ny
+P Z A;. >r, there exist i # j such that A;, >0& A;, >0
j=—N.
(28) < pry(u) + o(u),

and by Bonferroni’s inequality

N,—1
P Z Aj7u >r

pr(u) >
j=—Ny+1
> P{3-N,+1<j<N,—1such that A;, >r}
(29) > par(u) —o(u),

u_l

p1, r Z Drju, P2, 7‘( ) = Z DPr.jius O(U) = Z Po,i,ju-

Jj=—Nu —N,+1 — N, <i<j<N,

In the following two subsetions we shall focus on the analysis of p; »(u),7 = 1,2, and IIy(u), respectively.

I'Note that in general g’ (to+) # g” (to—); see Remark A.7 in [5] for an example.
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5.2.1. Analysis of the single sum p; ,(u),7 = 1,2. First, with the aid of Lemma 4.2 in [5] we can check that
(30) 0<Hi(r,T) <H;(0,T) < 0.

Lemma 5.2. For any T >0 and r € (0,T), we have as u — 0o

1 Hi(r,T) 1-m _gu e?
D) Prr() ~ par(u) ~ uz e 2 /e T (x) dr,
(2nto)™ 8| T R

where Y(x) is given in (15).

Proof: We shall focus on the asymptotics of pq,(u), which is easily seen to be asymptotically equivalent to
p2.r(u) as u — oo.

Fix T > 0. We shall prove the lemma in two steps. In Step I we derive that (31) holds for any r € (0,7
at which H;(r,T'), as a function of r, is continuous, and then in Step II we show that H;(r,T),r € (0,T) is
actually continuous everywhere, implying that (31) holds for all r € (0,T).

Step I: The claim follows from similar arguments as in the proof of Lemma 4.3 in [5]. By the independence and

stationary increments property and the self-similarity of Brownian motion we derive that

iT T
Prju = P u/ ) ) H<X(t0+])+X(t)_X(t0+])>\/ﬂ(a+tu)>dt>r
t€to+ 1T to+ YT DT w -

P {/te[o,T} H<Zj;u + %(X(t) —tp) > \/ﬁbm> gt > r} 7

where Z.,, is an independent of B Gaussian random vector with mean vector 0 and covariance matrix ¥;., =

G2 With ¢juy = ¢j;u(T) = to + jT/u, and
T T
b = bju(T) =blty+ L) =b+Lp.
o u
Denote (recall I¢ = K U J in (12))

Zk(t,xr) (X(t) — tw)k — 1S s,

Zy(twr) = (X(t)—tp)s —Siuliier,

and define Y jc to be an independent of B Gaussian random vector with mean vector 07 and covariance matrix

Dycje = Sjege — ZICIEfllZHC. Using the same arguments as in [5] gives

(u) u " S e ( Lugit +jT)) Fia( T 1) Py (r, T, 27) dae
Pi,r(u = T 75 €XP | —5uUgr(to — —— B y LI ) 5ul\Ty 4,2 1
(277)m|211| NN, C?ZQ 2 U R Jiu Jiu
1 1 gu
(32) = ("2 T R, 1 (u),
T\/@em)m S|

where
B gu\ T 1 1 T
R,r(u) = exp (2) NG Z e exp (—2ug1(to + 7)
—Nu,<j<Nu “ju

x fiw (T, 2r) P (r, T, xr) day,
]Rm



ON THE CUMULATIVE PARISIAN RUIN OF MULTI-DIMENSIONAL BROWNIAN MOTION RISK MODELS 11

and

1 _ 1
fiw(Txr) = exp (m?EUl(bj;u)I - m

Ty—1
x; X mI) )
Cjsu

Pj;u(r7 T7 iB[) = P / H(E(j,u,?", :B17t))dt 3
te[0,T]
with the event E(j,u,r, r,t) defined as

(X () —t)r > zr
(33) EGou,rant) = | oYk + g Zx(ter) > To(py — SxiSiny)

VeuY 5+ J=Zy(txr) > Vulby — XS br + (e — S8 ) i)
Using similar argument as in Section 5.4 in [5] we can prove that

_ 91" (t)=?
1

lm R.r(u) = t5™ *H(r,T) / T ¥(z) dz

umroo —oo
holds for any r € (0,T") at which Hj(r,T) is continuous. This together with (32) yields that (31) holds for any
r € (0,T) at which H;(r,T) is continuous.
Step II: 'We show that H;(r,T) is continuous at any point r € (0,7). Hereafter, let € (0,7T) be arbitrarily
chosen and fixed. We shall adopt an idea of [7]. Recall

Ho(r,T) = / et @l Dibrp / I(X(t) = pt); > @)t > r b day.
te[0,T]
We first show that
(34) / el Zilbrp {/ (X (1) — pt)r > @1)dt = r} day = 0.
te[0,T]

To this end, we consider the probability space (Cy4([0,T7]), F,P*) which is induced by the multi-dimensional
Brownian motion with drift {B(t) — A= ut,t € [0,T]}, where Cy([0,T]) is the Banach space of all d-dimensional
continuous vector functions over [0, 7], and F is the Borel o-field of Cy([0,T]). With the above notation, (34)

becomes

(35) / eTo 1 Z11 br {'w € Cy([0,7]) : / I((Aw(t)); > x7)dt = r} da; = 0.
m te[0,T]

Denote, for the fixed r,

DY) = {'w € Ca([0,T] : /

I((Aw(t)); > xy)dt = 7‘} , ;7 € R™.
€[0,1)

By the continuity of w, one can see that

DY) NDY) =0, @ @) cR™

Thus, for any finite number of distinct points mgl), . ,a:gN) € R™ we have

N
DD =PHUL DI <
i=1

This means that the set defined by

A" = {@; : x; € R™ such that P*{D{} > 1/n}
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consists of at most n — 1 distinct x;’s. Therefore,
{z:2xr € R™ such that IP’*{DC(JI)} >0} = AW
must be a countable set. Consequently,
/ eo®1 Zil b {D(;)} dx; =0,
which means that (34) holds for the fixed r € (0,T"). Next, for any small € € (0,r/2) we have
P / I(X(t)—pt)y>xndt >r+tep <P / I(X(t) —pt)r > xp)dt >1/2 5.
te[0,T] te[0,T]
Note that H;(r/2,T) < oo; see (30). Thus, by the dominated convergence theorem we derive that
mH;(r+¢e,T)=Hi(r,T),
eJ0
and
. P IR )
hig'}-l[(r—s,T):H[(r,T)—i— efo ST ST PIP I(X(t) — pt)r > xr)dt =71 dzxg,
€ m t€[0,T)

which together with (34) conclude the continuity of H(r,T") at this r. Since such r was arbitrarily chosen in

(0,T), we conclude that H;(r,T),r € (0,T) is a continuous function. This completes the proof. O

5.2.2. Estimation of the double-sum IIy(u). In this subsection we shall focus on asymptotic upper bounds

of Ip(u), as u — oo. Note that

(36) To(w)= > Poiju= D,  Poigut D, Doiju = Hoi(u)+Tlpa(u).
~N.<i<j<N. ~NLSi<j<N., ~N,<i<j<N.,
j=it1 j>it1

Since

Poigu = P{Fen, . X () > Vula+ put), Jen, X () > Vu(a+ put)},

we obtain from (52) in [5] that

II 2H (0, T 0,27
(37) hm 0,1(,“) — — Ql < HI( K ) o HI( ) ) >
w00 4 (1-m) /2 exp (—%u) T T
for some constant ()1 > 0 which does not depend on 7. Similarly,
I —~
(38) lim 02 _ o1 Y exp (—i( jT))
U0 1 (1-m)/2 exp (—%U) i1 8to

holds with some constant Q2 > 0 which does not depend on T'.
Now we are ready to present the proof of Theorem 3.1.

Proof of (16) and (17). We have from (26)-(31) and (36)-(38) that, for any 71,75 > 0

(39)limsup]P{Tr(u) < ?o} < Hi(r,Th) Lo (27—[1(0,T1) B HI(O,QTl)) +Q2leexp( g (jTl)),

u—=oo  Cru 172"" 67%1‘ T T T 8to

.. {7 (u) < oo} Hi(r, Ty) 2H1(0,T5)  H1(0,273) g ..
> - _ _ _9 i),
(40) lim inf Cw oI 2 T Q1 T T QQTgJéleXp( 8t (J 2))
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Note that it has been shown in [5] that

H;(0) = lim @ < o0.

T—o00
Letting T — oo in (40), with T3 in (39) fixed, we have
T
lim sup Hi(rT) < 0.
T—o0 T

Furthermore, letting 77 — oo we conclude that

T T
lim inf Hi(r, 1) = lim sup Hi(r,T) < oc.
T—o0 T 00 T
Therefore, it remains to prove that
T
(41) lim inf LIIGEY) >0
T—00
holds. To this end, first note that
N,—1
P{r-(u) < o0} > pp(u)>P Z Ajou >
=—Ny+1;j€{2k:kEZ}
> P{3-N,+1<j<N,—1,j€{2k:keZ}such that 4;, >r}
> par(u) — T(u),
where
Ny—1 N
p3,r(u) = Z Prjsus (u) = Z Poijiu-
j=—N,+1;5€{2k:kEZ} —N,<i<j<Ny;i,je{2k:keZ}

Similar augments as in the derivation of (40) gives that, for some T3 > 0,

P T3)
lim inf {7 (u S_) = OO} > Hi(r, Ts) Qs3T5 Z eXp(—— jT3)>
U—00 C[U 5 e 2u 2175

holds with some constant Q3 > 0 which does not dependent on T5. This together with (39) yields that

. . H](?“,T1) 7‘[[(7“ T3
- ' 7 > .,
ljl{nmf ) o7, — Q375 E eXp( (jTg))

7—[1(7;#7"34—) — QsTs Z eXP(—*(JTs))

Y

holds for all T5 > r + 1, where the last inequality follows since Hy(r,T) as a function of T is non-decreasing.
Since for sufficiently large T3 the right-hand side of the above formula is positive, we conclude that (41) is valid.
Thus, the proof of (16) and (17) is complete. O
Proof of (18). We have, for any s € R

P{% < 5,7 (u) < oo}
P {7, (u) < oo}
P{7.,(u) < uty+ /us}
P{r., (u) < oo}
P {u ST V(X (1) > (o + pt)a)dt > 7«2}
P {7, (u) < oo} '

P{T“(“\)F < slmp () < oo} =
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Furthermore, using the same arguments as in the proof of (16) we can show, as u — oo

P {u /tOJrS/\/EH(X(t) > (o + pt)y/u)dt > 7"2}
0

to+s/vu
~PLu / (X (t) > (@ + pt)Vu)dt > 1y
to—In(w)/ v/

Hi(ra) s

\/ (2’/Tt0)m |E]]| —c0

Consequently, by plugging the above asymptotics and (16) into (42) and rearranging, we obtain (18). Thus, the

e_’g%w(x) deu T e 8,

proof is complete. 0

6. PROOF OF THEOREM 4.1

The proof of Theorem 4.1 will be done by first deriving the corresponding results for the cumulative Parisian
ruin problem of the auxiliary risk model (23), as v — oo, and then using the equivalence described in (22).

In order to apply Theorem 3.1 to the auxiliary risk model (23), a crucial step is to find the minimiser of the
g-function given by

inf z'X7 'z

t) =
g( ) xz>a+npt

1
7 )
for which we must first solve the quadratic programming problem Ps (& + fit) involved. To this end, we adopt a
direct approach, which is different from that in [5]. It follows from Lemma 2.1 that the g-function has different
expressions on different sets of ¢ defined below:
(S1). On the set By = {t > 0: p(a+put) > (14+1)}, g(t) = g2(t) := gq21(t) =
(S2). On the set By = {t > 0:p(1+1t) > (a+ut)}, g(t)=g1(t) =gy (t) =
(S3). On the set E5 =[0,00) \ (E1 U E3), g¢(t) = go(t),

(a4 pt)?;
(1+1)%

B N

where

Go0(t) == 9oy () = %(a + TSN (E + it)

1+a®> =2ap1  2(1 4 ap—pa — pp) N L+ p° —2pp

t.
1—p2 ¢ 1—p2? 1—p2

Moreover, it is easy to see that the unique minimiser of go(t),¢ > 0 is t(()o) =4/ %, the unique minimiser of
g1(t),t >01is tél) =1, and the unique minimiser of g2(t),¢ > 0 is téQ) = a/u. Note that all functions g;(¢),t > 0,
1 =0,1,2, are decreasing to the left of their own minimiser and then increasing to infinity.

In order to find the global minimiser of the g-function and the exact form of the sets F;,i = 1,2,3, we shall
discuss the following four cases, separately.

(1). p<landa<l1l, (2). p>1land a>1,
(3). pu<landa>1, (4). p>land a<l.

6.1. Case (1) ¢ <1 and a < 1. Clearly, we have E; = () for any p € (—1,1). To analyse Es we distinguish

the following three sub-cases:

1. a<p, (12).a>p (1.3). a=u.
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6.1.1. Case (1.1) a < p. In this case, we have

0, if -1<p<a;

. . p—a

Ey=¢ {t>0:t<w}, if a<p<up; with w:,u—p'
[0, 00), if p<p<l,

15

This combined with the fact that F; = @ for any p € (—1,1) yields that, if —1 < p < « then g(t) = go(t),t >0

where the minimum is attained at the unique point t(()o), if p < p < 1then g(t) = g1(t),t > 0 where the minimum

is attained at the unique point tél), and if @ < p < p then

go(t), if t> w; )
g(t) = with go(w) = g1(w),
a1 (t), if t<w,

and thus

inf g(t) = min (tigi 91(t), nf go(ﬂ) :

t>0

In order to derive inf;<,, g1(t) and infys,, go(t) we need to check if t(()l) < w and if t(()o) > w. We can show that

(43) t()<w & p>#, t(()o)>w & p<% tgo):tél):w & p:OH_M.

Note that a < a+“ < pt. Thus, we have for a < p <

9ot it < p< ot
nfg(t) = golt) = g (tg"), if p=
a(t5"), it <<,

and in each of the above three cases the minimiser of the function g(¢),¢ > 0 is unique. Using the notation in

Theorem 3.1, the above findings for Case (1.1) a < p are summarized in the following lemma:
Lemma 6.1. (1). If =1 < p < °F% then
to=1", I={12}, K=0, §=g(t{), 3= ait").
(2). If p = <L then
=10 =15) =w, I={1}, K={2}, §=a(ty)) =a(ts)) =4, §=9{(t5") =2

(3). If “51 < p <1, then

to=t", T={1}, K=0, g=qt")=4, g=g/t")=2
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6.1.2. Case (1.2) a > p. In this case, we have (recall w = 2=£)

p—u

0, if —1<p<yp;

Ey=9q {t>0:t>w}, if u<p<a;
[0, 0), if a<p<l1.

Thus, we have that, if —1 < p < p then g(t) = go(t),t > 0 where the minimum is attained at the unique
point téo), if « < p < 1then g(t) = g1(t),t > 0 where the minimum is attained at the unique point t(()l), and if

1< p < athen

go(t), if t < w;

o) = g1(t), if t>w.

Similarly as in Case (1.1), we have for p < p < «

90(t$”), if p<p< ot
infg(t) = ¢ go(t$”) = gr ("), if p =4t
gl(tgl)), if O‘T'W <p<a,

and in each of the above three cases the minimiser of the function g(¢),¢ > 0 is unique. Summarizing the above

we conclude that the results in Lemma 6.1 still hold for Case (1.2) a > p.

6.1.3. Case (1.3) a = p. In this case, we have

0, if —1<p<y
By — p<p
0,00), if p<p<l.

Using similar arguments as in Case (1.1) and noting that % = a = pu, we could prove that the results in

Lemma 6.1 still hold for Case (1.3) o = p.
Consequently, we conclude that Lemma 6.1 holds for Case (1) < 1 and o < 1.

6.2. Case (2) p > 1 and a > 1. Clearly, we have E; = () for any p € (—1,1). To analyse E; we distinguish

the following three sub-cases:
2. a<p, (22).a>p (23).a=p.

6.2.1. Case (2.1) o < pi. In this case, we have

0, if —1<p<1/y;

. . 1 — pa

Ey=¢ {t>0:t>Q}, if 1/u<p<l/a; with Q:m,
[0, 00), if 1/a<p<l,

This combined with the fact that Fy = @) for any p € (—1,1) yields that, if —1 < p < 1/p then g(t) = go(t),t >0

where the minimum is attained at the unique point t(()o), if 1/a < p < 1 then g(t) = g2(t),t > 0 where the

minimum is attained at the unique point t((f), and if 1/ < p < 1/a then

t), if ¢ ;
gy =4 * b D ith 0(Q) = 02(Q),
gQ(t)7 if ¢ 2 Q7
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and thus

t>0

uf () = win 1 2(0) o).

In order to derive inf;>g g2(t) and inf,;<g go(t) we need to check if t((f) > @ and if t(()o) < Q. We can show that

44) tP>Q = p> AT H V<@ o p< atp V=P =Q o p= 0K
2o 2o 20
Note that 1/p < O‘J”L < 1/a. Thus, we have for 1/pu < p <1/«
0) . atp.
go(tO )7 if 1/M<p< Wﬁ»
0 2\ ot .
inf g(t) = 9o(ty") = ga(t), if p= G
2t if Sok<p<l/a,

and in each of the above three cases the minimiser of the function g(t),¢ > 0 is unique. Using the notation in

Theorem 3.1, the above findings for Case (2.1) a < p are summarized in the following lemma:

Lemma 6.2. (1). If -1 < p < 2 then

2cep ?

to=t, I={1,2}, K=0, 5=go(t"), =gyt

(2). If p = g:}’f, then
o=t =17 =Q, I={2}, K={1}, g=0(t]") = 02(t") = dap, §=gh(t) =207"p%.
(3). If 3+“<p<1 then
to=ty), I=1{2}, K=0, §=gt)=4ap, §=g5t)=20""4".

Case (2.1) and Case (2.2) can be analysed similarly, and we can conclude that Lemma 6.2 holds for Case (2)

pw>1and o> 1.
6.3. Case (3) p <1 and a > 1. To analyse F1, Es we distinguish the following three sub-cases:
(31). p<1l/a, (32). p>1/a, (33). p=1/cu

6.3.1. Case (3.1) p < 1/a. In this case, we have

0, if —1<p<1/a 5 0, if —1<p<y

(45) By = 2
{t>0:t<Q}, if l/a<p<l, {t>0:t>w}, if p<p<l.

This implies that, if —1 < p < p then g(t) = go(t),t > 0, where the minimum is attained at the unique point
t(()o), if 4 < p<1/a then
go(t), if t < w;
g(t) = _
g1(t), if t>w,
implying that

inf g(t) = min <3§£91() lgfjgo(t)»
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and if 1/a < p < 1 then

glt) =19 go(t), if Q<t<w;
g1(t), if t>w.
implying that
(46) tlrzlgg(t) = min <t1£g 92(1), ot 9o (1), inf gl(t)) ~

Note that @ < w for any p < p < 1. Similarly as (43) and (44) we have, for any u < p < 1(< )

(47) t(()l)<w & p<aT—|—,u, tgo)>w & p>a—2i—u, tgo):t(gl)zw & p:a;—M,
and, for any 1/a < p <1
tu (0) a+p 0) _ 42 a+p
8) 1 - 2 t e p< B 404D g & p= :
(48) Y <@ P> g o > @ P< G o Tl =€ P = San
Furthermore, it follows that %ﬁ > 1(1/p+ p) > 1 in the considered case p < 1/a < 1, then from (48) we

conclude that t((JQ) > Q, t(()o) > (@ hold for any 1/a < p < 1, which helps to further simplify (46) as follows,

tigfv gl(t)> = min ( tigi 9 (t)) :

After some simple calculations as before, we can show that for p < p <1

(49) inf  go(t),

inf 90(t), Q<t<w

info(0) = min ( jnf 1), int

g0(t6”), if < p< o
infg(t) =1 go(ty”) = gu(tg), if p=3;
a(t”), if 4t <p<l,

and in each of the above three cases the minimiser of the function g(t),¢ > 0 is unique. Summarizing the above

findings we can conclude that Lemma 6.1 holds for Case (3.1).

6.3.2. Case (3.2) p > 1/a. In this case, we have (45) still holds. It follows that, if —1 < p < 1/a then

g(t) = go(t),t > 0, where the minimum is attained at the unique point t(()O), if 1/a < p < p then

if t>Q;
if t<Q,

9o(1),

(t) =
! QQ(t),

implying that

Inf g(t) = min < jof ga(t), inf go(t)) )

and if p < p < 1 then

92(t)a if ¢ S Q;
g(t) =19 go(t), if Q<t<w;
g1(t), if t>w.

implying that

(50) inf

inf g(¢) = min (ggg o), it golt).

<t<w

t1§£ a1 (t)) .
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Note that in this case both (47) and (48) are still valid for the corresponding values of p mentioned therein.
Furthermore, it follows that O‘Tﬂ‘ > Jap > 1 in the considered case p > 1/a, then from (47) we conclude that

t(()l) < w,téo) < w hold for any pu < p < 1, which helps to further simplify (50) as follows,

t>0 Q<t<w QR<Lt<w

(51) inf g(¢) = min (tigcfg 92(t), _inf go(t), 2§£ 91(t)> = min (tigg 92(t), inf go(t)) :

Thus, we can show that for 1/a < p <1

90(t?), it 1/a<p< $2
. _ 0 2y o
nfg(t) =1 golt”) = ga(t), it p= 5L

g2 (t), it SH<p<l,

and in each of the above three cases the minimiser of the function g(t),¢ > 0 is unique. Summarizing the above

findings we can conclude that Lemma 6.2 holds for Case (3.2).

6.3.3. Case (3.3) = 1/a. In this case, we have that (45) still holds. As now 2t = %ﬁ: > 1, we obtain that

(i) in Lemma 6.1 (the same to (i) in Lemma 6.2) is valid for any —1 < p < 1.

Consequently, we can conclude that for Case (3) p < 1 and « > 1, if further g < 1/« then Lemma 6.1 holds,
and if further g > 1/« then Lemma 6.2 holds.

6.4. Case (4) 1> 1 and a < 1. To analyse Ej, F5 we distinguish the following three sub-cases:
(4. 1/p<a, (42).1/p>a, (4.3).1/u=c.

6.4.1. Case (4.1) 1/p < o In this case, we have

0, if —1<p<1/u; 0, if —1<p<a
(52) B = p<1/p By — p<
{t>0:t>Q}, if 1/p<p<l, {t>0:t<w}, if a<p<ll

This implies that, if —1 < p < 1/u then g(t) = go(¢),¢ > 0, where the minimum is attained at the unique point

téo), if 1/ < p < « then

gO(t)a if t< Qv
g(t) = ,
gQ(t)7 if ¢ Z Qa
implying that
inf g(t) = min (tlgg 92(t), jmf go(b‘)) ,
and if a < p < 1 then
git) =1 go(t), if w<t<Q;
g1(t), if t<w.

implying that

(53) i g(0) = win (fuf (0). i an(0). Juf 1(0).
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Note that @ > w for any 1/p < p < 1. Similarly as in Case (3.1) we have for 1/u < p <1

0 . [0
go(t(())), if 1/u<p<ﬁ§
. _ 0 2 . -+
infg(t) =4 go(te”) = ga(t5?), i p= 5 ;
gQ(tgf)), if ‘3%5 <p<1l,

and in each of the above three cases the minimiser of the function g(¢),¢ > 0 is unique. Summarizing the above

findings we can conclude that Lemma 6.2 holds for Case (4.1).

6.4.2. Case (4.2) 1/u > «. In this case, we have (52) still holds. It follows that, if —1 < p < « then g(t) =

go(t),t > 0, where the minimum is attained at the unique point t(()o), if « < p<1/p then

go(t), if t > w;
g(t) = _
a1(t), if ¢t <w,
implying that
inf g(t) = min < iof g1(t), inf go(t)> ;
and if 1/ < p <1 then
92(t)a if t > Q;
9() = go(t), if w<t<Q:
g1(t), if t<w.

implying that

4 e — win (it - . |
(54) Inf 9(t) = min <§§Q (), inf g(t), fof gl(t>)
Similarly as before, we can show that for « < p <1
gO(t(()O))a if a< p< #;
. 0 ) . ’
inf g(t) = go(t)) = g1 (8", if p= ot
a1 (), if ot < p <,

and in each of the above three case the minimiser of the function g(¢),t > 0 is unique. Summarizing the above

findings we can conclude that Lemma 6.1 holds for Case (4.2).

6.4.3. Case (4.3) 1/p = a. In this case, we have that (52) still holds. As now 3£ = %r:: > 1, we obtain that

(i) in Lemma 6.2 (the same to (i) in Lemma 6.1) is valid for any —1 < p < 1.

Consequently, we can conclude that for Case (4) ¢ > 1 and « < 1, if further 1/ < « then Lemma 6.2 holds,
and if further 1/ > « then Lemma 6.1 holds.

The following corollary is a collection of the main findings in Sections 6.1, 6.2, 6.3, 6.4.

Corollary 6.3. Consider the auziliary two-dimensional Brownian motion models described in (23).
(i). Suppose a and p satisfy one of the following conditions:
(i.C1) p<land a <1,
(1.C2) u<l,a>1and p<1/a,
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1C3) p>1,a<land p<1/a.
We have

: +

(LR1). If =1 < p < 2FE, then

to=1", I={1,2}, K=0, §=g"), 5=gt).
(1R2). If p= <2 then
o=ty =ti", I={1}, K={2}, 9=gy)=at!) =4, §=4/(t") =2
(1LR3). If £ < p <1, then
to=t§"), I={1}, K=0, g=qat") =4, g=4/1t5")=2.

(ii

). Suppose o and p satisfy one of the following conditions:
(ii.C1) u>1and a > 1,

(ii.C2) p<l,a>1and p>1/a,
(ii.C3) p>1, a<1andp>1/a.
We have

(ii.R1). If -1 < p< %ﬁ then
to=ty), I={12}, K=0. §=go(ty"). §=g5ts").

(ii.R2). If p = &4 then

Sap
to=t" =5, T={2}, K={1}, §=0(t]") = ga2(t5") = dan, §=g5(t) =2a7"ps%,
(LR3). If 3£ < p <1, then
to=ty), I={2}, K=0, §=ga(tc") =4op, §=g5(t5") =2a""4"
Consequently, by using results in Corollary 6.3 and applying Theorem 3.1 we can obtain asymptotic results for

the cumulative Parisian ruin probability and the conditional cumulative Parisian ruin time of the auxiliary risk

model (23), as v — co. Finally, Theorem 4.1 follows by directly using the equivalence described in (22).
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