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Scalar-type kernels for block Toeplitz operators

M. Cristina Câmara∗† and Jonathan R. Partington‡

Abstract

It is shown that the kernel of a Toeplitz operator with 2×2 symbol
G can be described exactly in terms of any given function in a very
wide class, its image under multiplication by G, and their left inverses,
if the latter exist. As a consequence, under many circumstances the
kernel of a block Toeplitz operator may be described as the product of
a space of scalar complex-valued functions by a fixed column vector of
functions. Such kernels are said to be of scalar type, and in this paper
they are studied and described explicitly in many concrete situations.
Applications are given to the determination of kernels of truncated
Toeplitz operators for several new classes of symbols.

Keywords: Toeplitz kernel, model space, truncated Toeplitz operator
MSC (2010): 47B35, 30H10, 35Q15.

1 Introduction

Kernels of Toeplitz operators (also called Toeplitz kernels) have generated
an enormous interest for various reasons, among which is the fact that they
have fascinating properties and a rich structure, they are important in many
applications, and several relevant classes of analytic functions can be pre-
sented as kernels of Toeplitz operators. For instance, model spaces (defined
below) are Toeplitz kernels. Two recent surveys of this area are [21] and
[11].

It is natural to expect that kernels of block Toeplitz operators, whose
study provides a clear example of the fruitful interplay between operator
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theory, complex analysis and linear algebra, will have an even richer and
more involved structure. The case of Toeplitz operators with 2× 2 symbols
is particularly interesting for its connections to truncated Toeplitz operators
[9, 8] and the corona theorem [6], and because their study leads to various
surprising results. One of these unexpected results is that, as we prove in
Theorem 3.1, one can explicitly describe the kernel of a Toeplitz operator
with 2×2 symbol G, not necessarily bounded, in terms of any given function
f in a very wide class, its image under multiplication by G, and their left
inverses, assuming that the latter exist. As a result of this, we show that,
although those kernels consist of vector functions, in many cases they behave
as having a scalar nature, since they can be expressed as the product of a
space of scalar functions by a fixed vector function. These kernels will be
called scalar-type Toeplitz kernels.

A natural question arising in this case regards which properties of scalar
Toeplitz kernels remain valid for scalar-type Toeplitz kernels. While Coburn’s
Lemma, stating that for ϕ ∈ L∞(R), either kerTϕ or kerT ∗

ϕ is zero, cannot
be extended in the same form to the case of a general 2×2 bounded symbol
G, even if kerTG and kerT ∗

G are both of scalar type, Theorem 3.7 may be
seen as a version of Coburn’s Lemma for 2× 2 symbols. Moreover we show
that any scalar-type Toeplitz kernel is the product of a fixed vector function
by a scalar nearly S∗-invariant space K, which is closed if G ∈ L2×2

∞ and
therefore, using a well known result by Hitt [22], can be characterized as
the product of a scalar Toeplitz kernel, in fact a model space, by a fixed
2× 1 function (Theorem 3.16). Although this model space is not known in
general, by using the corona theorem we obtain sufficient conditions for K
to be a model space, explicitly described in terms of the functions f and g,
leading to conditions for injectivity and invertibility for TG (Theorem 3.13
and its corollaries). We note that some related results can be found in [18,
Prop. 4.6]. We show moreover that, as in the case of scalar symbols, every
scalar-type Toeplitz kernel has a maximal function (Theorem 3.17).

The results of Section 3 are applied in Section 4 to study and describe the
kernel of truncated Toeplitz operators in two different classes which extend
previously studied ones. In the first case we show that the kernels are given
by the product of a model space, which is explicitly determined, by a fixed
vector function in H+

∞, and we establish necessary and sufficient conditions
for injectivity and invertibility of the truncated Toeplitz operators. In the
second case we also obtain an explicit description of the kernel as a product
of a scalar Toeplitz kernel by a fixed function.
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We write C
+ and C

− for the upper and lower complex half-planes, and
H±

p (1 ≤ p ≤ ∞) for the associated Hardy spaces of analytic functions
on C

±. The operators P± are the standard Riesz projections from Lp =
Lp(R) onto the subspaces H±

p . It will be recalled that functions in H+
p have

inner/outer factorizations. For two inner functions θ, ϕ we write θ � ϕ or
ϕ � θ to mean that θ is a divisor of ϕ in H+

∞. We may also use the strict
versions of these relations, written ≺ and ≻.

The Smirnov class N+ consists of all analytic functions f = g+/h+,
where g+ ∈ H+

1 and h+ ∈ H+
2 with h+ outer. We may instead take g+, h+ ∈

H+
∞ (see, e.g. [25]).
These notions can be found in standard texts on Hardy spaces, such as

[23] and [25].
For G ∈ Ln×n

∞ , with n = 1, 2, . . ., the Toeplitz operator TG on (H+
2 )n

is the composition P+MG, where MG denotes multiplication by G. For
θ ∈ H+

∞ inner, the model space Kθ is kerTθ, which equals H+
2 ⊖ θH+

2 =
H+

2 ∩ θH−
2 .

For a unital algebraA, we write G(A) for the group of invertible elements.

We use the notation (f, g) interchangeably with [f g]T =

[
f
g

]

.

2 Motivation: matrix symbols with a bounded fac-

torization

Let G ∈ (L∞)2×2 admit a bounded (Wiener–Hopf) factorization ([13, 24])
on the real line, of the form

G = G− diag(rk1 , rk2)G−1
+ , (2.1)

where G± ∈ G(H±
∞)2×2, k1, k2 ∈ Z, and

r(ξ) =
ξ − i

ξ + i
, for ξ ∈ R. (2.2)

The class of matrix functions admitting such a factorization includes, in
particular, all 2× 2 matrix functions G with elements in the algebra Cµ(Ṙ)
of Hölder-continuous functions in Ṙ := R ∪ {∞} with exponent µ ∈ (0, 1),
or in the Wiener algebra W (Ṙ) ([13, 24]), as long as detG ∈ GL∞. If
k1 = k2 ≥ 0 in (2.1), then kerTG = {0}; if at least one of the integers
k1, k2 is negative, then kerTG 6= {0}. Let us assume, for simplicity, that
ind(detG) = 0, in which case k1 = −k2 = −k, say, and (2.1) takes the form

G = G− diag(r−k, rk)G−1
+ , k ∈ Z

+
0 = {0, 1, 2, . . .}, (2.3)
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and let G± =
[

g±ij

]

i,j=1,2
. Rewriting the equation (2.3) as

GG+ diag(rk, r−k) = G− (2.4)

and taking the first columns of the matrices on the left and right-hand side
of (2.4), we obtain

Grkg+ = g−, with g± =
(
g±11, g

±
21

)
. (2.5)

On the other hand, kerTG consists of all functions ϕ+ ∈ (H+
2 )2 such that

Gϕ+ = ϕ− with ϕ− ∈ (H−
2 )2. (2.6)

From (2.5) and (2.6) we have then

G[rkg+ ϕ+] = [g− ϕ−] (2.7)

and, on taking determinants on both sides and noting that detG = d−d
−1
+

where d± = detG± ∈ GH±
∞, it follows that

d−1
+ det[rkg+ ϕ+] = d−1

− det[g− ϕ−]. (2.8)

The left-hand side of this identity is in H+
2 , while the right-hand side is in

H−
2 . Consequently, they are both equal to zero and we have that

ϕ+ = Λrkg+, ϕ− = Λ̃g−, (2.9)

where Λ and Λ̃ are scalar functions defined a.e. on R. To show that Λ = Λ̃, we
now take into account the fact that the invertibility of G± in (H∞)2×2 means
that the first column of G± is a corona pair in C

± ([27, 6]) and therefore left-
invertible in H±

∞, with left inverse given by g̃T±, where g̃± = (g±22,−g
±
12)/d±,

and
g̃T±g± = 1 in C

±. (2.10)

In fact, from (2.6) and (2.9) we have

G(Λrkg+) = Λ̃g−,

and it follows from (2.5) that Λg− = Λ̃g−. Multiplying both sides by g̃T− on

the left we conclude that Λ = Λ̃. Then multiplying both sides of the two
equations in (2.9) by g̃T+ and g̃T− respectively, we obtain moreover that

Λ = r−k(g̃T+ϕ+) = g̃T−ϕ− with g̃T±ϕ± ∈ H±
2 . (2.11)
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Therefore rkΛ = g̃T+ϕ+ ∈ kerTr−k = Krk , where Krk is the model space
H+

2 ⊖ rkH+
2 , and it follows from (2.9) and (2.11) that

kerTG ⊂ Krkg+.

Conversely, Krkg+ ⊂ kerTG because if P ∈ Krk then

G(Pg+) = G− diag(r−k, rk)G−1
+ (Pg+)

= G− diag(r−kP, rkP )(1, 0)

= G−(r
−kP, 0) ∈ (H−

2 )2.

Thus
kerTG = Kg+, (2.12)

where K is a scalar model space, associated with the inner function rk, and
g+ is a fixed vector function. So we see that for a wide class of Toeplitz
operators with 2 × 2 matrix symbols, including for instance all invertible
2× 2 Hölder-continuous matrices G with ind(detG) = 0, the corresponding
kernels are spaces of vector functions which can nonetheless be described
as the product of a certain space K of scalar functions by a fixed vector
function. We say in this case that kerTG is a scalar-type Toeplitz kernel.

The same result would hold in the case of any 2 × 2 matrix symbol G
for which one can find a solution to

Gf = g (2.13)

with f = rkg+ and g = g− where k ∈ Z
+
0 , g± ∈ (H±

∞)2, such that g± satisfy
the condition of Carleson’s corona theorem in C

± ([19, 6]). These conditions
can be seen in terms of left invertibility of f and g by saying that there exist
vector functions g̃± ∈ (H∞)2 such that

g̃T±g± = 1 in C
±. (2.14)

The main difficulty in applying these results consists in the fact that it is in
general very difficult, or even impossible, to find solutions to (2.13) satisfying
the above-mentioned conditions. We may however find other solutions to
(2.13), satisfying less restrictive conditions; it is natural to ask then whether
such a relation would still allow us to describe the kernel of TG, and whether
the kernel would be of scalar type.

In the next section we shall show that it is indeed possible to describe
the kernel of a Toeplitz operator with 2 × 2 symbol G and give conditions
for it to be a scalar-type kernel, for a very general set of symbols, in terms
of a solution to Gf = g where f and g are assumed to be left-invertible
vector functions in a very general class. In particular, we shall not assume
any analyticity conditions on the functions f and g.
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3 Scalar-type kernels for Toeplitz operators with

2× 2 symbols

Let F denote the space of all complex-valued functions defined almost ev-
erywhere on R, where as usual we identify two functions if they are equal
almost everywhere. Let G ∈ F2×2 and let

D = {f+ ∈ (H+
2 )2 : Gf+ ∈ (L2)

2}. (3.1)

The operator TG : D → (H+
2 )2 defined by

TG f+ = P+(Gf+), f+ ∈ D, (3.2)

where P+ : (L2)
2 → (H+

2 )2 denotes the orthogonal projection, is called the
Toeplitz operator with symbol G. If G ∈ (L∞)2×2, then TG is a bounded
operator on (H+

2 )2. Another class of symbols of interest arises on taking
G ∈ λ+(L2)

2×2, where λ+(ξ) = ξ + i; then TG is densely defined on (H+
2 )2.

In what follows f and g denote left-invertible functions in F2×1 with left
inverses f̃T and g̃T , where f̃ , g̃ ∈ F2×1. We assume moreover that G ∈ F2×2

and, unless said otherwise, detG ∈ GF .

We write J for the matrix J =

[
0 −1
1 0

]

.

The following result shows that, surprisingly, given a Toeplitz operator
TG, one can describe its kernel in terms of any given function f , its image
under multiplication by G, g = Gf , and their left inverses if they exist.
Although, necessarily, with a somewhat technical appearance, it leads on to
explicit characterizations of Toeplitz kernels, as we shall show here.

Theorem 3.1. If f and g are left-invertible functions in F2×1 such that

Gf = g (3.3)

and we define
S =

(
detG.fT (H+

2 )2
)
∩
(
gT (H−

2 )2
)
, (3.4)

and, for each s ∈ S,

Hs
+ =

{

ψ+ ∈ (H+
2 )2 : ff̃Tψ+ +

s

detG
Jf̃ ∈ (H+

2 )2
}

(3.5)

and
Hs

− =
{
ψ− ∈ (H−

2 )2 : gg̃Tψ− + sJg̃ ∈ (H−
2 )2
}
, (3.6)
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then ϕ+ ∈ kerTG if and only if

ϕ+ = Λf +
s

detG
Jf̃, (3.7)

where

s ∈ S with Hs
± 6= ∅, Λ ∈ f̃THs

+, Λ +
s

detG
g̃T (GJf̃) ∈ g̃THs

−. (3.8)

As we shall see later, it is possible for the space S in the statement of
the theorem to reduce to {0}, in which case Hs

± may be empty.
Naturally, although f and g in (3.3) can be chosen in a very general

class, it is important that they are such that the description given by The-
orem 3.1 for the kernel of TG is useful, in the sense that it allows for a good
understanding of the kernel. There is no general method to obtain good
solutions, in that sense, and the choice of f and g must be made on a case
by case basis. However, as we show in Example 3.3 below, the great degree
of freedom that we are allowed in that choice can permit us to obtain a
clear description of kerTG in terms of natural solutions to Gf = g with no
particular analytic properties.

Proof. (i) Let ϕ+ ∈ kerTG, i.e., ϕ+ ∈ (H+
2 )2 and Gϕ+ = ϕ− ∈ (H−

2 )2.
From this identity and (3.3) we have that

G[f ϕ+] = [g ϕ−]. (3.9)

Let
s = detG. det[f ϕ+] = det[g ϕ−]. (3.10)

Now, since det[f Jf̃ ] = 1, we have

det
[

f
s

detG
Jf̃
]

=
s

detG
= det[f ϕ+]

and analogously
det[g sJg̃] = s = det[g ϕ−].

Therefore,

det
[

f
(

ϕ+ −
s

detG
Jf̃
)]

= 0 = det[g (ϕ− − sJg̃)],

and, since f and g are left invertible, it follows that there are scalar functions
Λ, Λ̃ ∈ F such that

ϕ+ = Λf +
s

detG
Jf̃, (3.11)

and

7



ϕ− = Λ̃g + sJg̃. (3.12)

Multiplying (3.11) and (3.12) on the left by f̃T and g̃T , respectively, and
taking into account the fact that f̃TJf̃ = g̃TJg̃ = 0, we get

Λ = f̃Tϕ+, Λ̃ = g̃Tϕ−. (3.13)

Moreover, from (3.11), (3.12), and the assumption that Gf = g, we have

Gϕ+ = ϕ− =⇒ Λg +
s

detG
GJf̃ = Λ̃g + sJg̃, (3.14)

and, multiplying the last equation on the left by g̃T , we get

Λ +
s

detG
(g̃TGJf̃) = Λ̃. (3.15)

On the other hand, multiplying (3.11) and (3.12) on the left by fTJ and
gTJ respectively, we have

fTJϕ+ =
s

detG
fTJJf̃ = −

s

detG
fT f̃ = −

s

detG
, (3.16)

and

gTJϕ− = sgTJJg̃ = −s, (3.17)

taking into account the fact that fT f̃ = gT g̃ = 1. Therefore,

s = − detG.fTJϕ+ = −gTJϕ−,

and we conclude that s ∈ S and, since ϕ± ∈ Hs
± by (3.11)–(3.13), that

Hs
± 6= ∅. From (3.11)–(3.15) we see that (3.8) holds.

(ii) Conversely, suppose that ϕ+ = Λf+ s
detGJf̃ , where s,Λ and Λ̃ satisfy

(3.8). Then, since Λ ∈ f̃THs
+, we have, for some ψ+ ∈ (H+

2 )2,

Λ = f̃Tψ+, where ff̃Tψ+ = −
s

detG
Jf̃ + F+, F+ ∈ (H+

2 )2,

and therefore

ϕ+ = (f̃Tψ+)f +
s

detG
Jf̃ = ff̃Tψ+ +

s

detG
Jf̃

= −
s

detG
Jf̃ + F+ +

s

detG
Jf̃ = F+ ∈ (H+

2 )2.
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On the other hand, using Lemma 3.2 below, we have

Gϕ+ = Λg +
s

detG
GJf̃ = Λg +

s

detG
[(g̃TGJf̃)g + detG.Jg̃]

=
(

Λ +
s

detG
(g̃TGJf̃)

)

g + sJg̃ = (g̃Tψ−)g + sJg̃ = gg̃Tψ− + sJg̃

with ψ− ∈ Hs
−; therefore, Gϕ+ ∈ (H−

2 )2 and it follows that ϕ+ ∈ kerTG.

Lemma 3.2. Let Gf = g; then GJf̃ = g̃T (GJf̃)g + detG.Jg̃.

Proof. We have G[f Jf̃ ] = [g GJf̃ ], thus detG = det[g GJf̃ ]. On the
other hand, det[g Jg̃] = 1, so we also have detG = det[g detG.Jg̃]. It
follows that det[g (GJf̃ − detG.Jg̃)] = 0, and therefore, for some β ∈ F ,

GJf̃ = βg + detG.Jg̃.

Multiplying this equation on the left by g̃T , we get β = g̃TGJf̃ , since
g̃TJg̃ = 0.

Note that any function g belonging to (H±
∞)2 or to (H±

2 )2 is left invert-
ible in F2×1 if it is not identically zero. Indeed if, for instance, the first
component g1± of g± is not identically zero, then we can take g̃± = (g−1

1+, 0).

Example 3.3. Let G =

[

θ 0

h r

]

, where h ∈ L∞, θ is an inner function, and

r(ξ) =
ξ − i

ξ + i
for ξ ∈ R. Note that in this case the first component of any

element in kerTG belongs to the model space Kθ.
We have Gf = g with f = (θ,−hθr) and g = (1, 0) and we can take as

their left inverses the functions f̃T and g̃T with f̃ = (θ, 0) and g̃ = (1, 0).
We shall now use Theorem 3.1 to describe kerTG. We have

S = {P−(hψ+) +
k

ξ − i
: ψ+ ∈ H+

2 , k ∈ C} ⊂ H−
2

because from (3.4) we have, for ψ1±, ψ2± ∈ H±
2 ,

rθ[θ − hθr]

[
ψ1+

ψ2+

]

= [1 0]

[
ψ1−

ψ2−

]

⇐⇒ rψ1+ − hψ2+ = ψ1−

⇐⇒ rψ1+ − 2i
ψ1+(i)

ξ − i
− P+(hψ2+) = ψ1− − 2i

ψ1+(i)

ξ − i
+ P−(hψ2+).

(3.18)
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Since the left-hand side of this equation is in H+
2 while the left-hand side is

in H−
2 , both sides must be equal to 0, so we have from the right-hand side

of (3.18) that

ψ1− = P−(hψ2+) +
k

ξ − i
with ψ2+ ∈ H+

2 , k ∈ C. (3.19)

Conversely, if ψ1− takes the form (3.19), then ψ1− ∈ S because (3.18) holds

with ψ1+ =
k

ξ + i
+ rP+(hψ2+).

We see that S 6= {0}, since
1

ξ − i
∈ S. Given any s ∈ S of the form

given by the right-hand side of (3.19), we have

Hs
+ = {(ϕ1+, ϕ2+) ∈ (H+

2 )2 : −hrϕ1+ + sr ∈ H+
2 }

= {(ϕ1+, ϕ2+) ∈ (H+
2 )2 : P−(hrϕ1+) = P−(sr)}

and Hs
− = (H−

2 )2. Since in this case g̃T (GJf̃) = 0 we have from (3.8) that

Λ ∈ f̃THs
+ ∩ g̃THs

−, which is equivalent to

Λ = θϕ1+ with ϕ1+ ∈ Kθ, P−(hrϕ1+) = P−(sr).

Therefore, from Theorem 3.1, specifically (3.7),

ϕ+ =

(

ϕ1+, −P
+(hrϕ1+) +

k̃

ξ + i

)

,

with ϕ1+ ∈ Kθ and k̃ ∈ C, where we took into account the fact that

P−(sr) = P−(hrϕ1+) and P+(sr) = P+(rP−(hψ+)) +
k

ξ+i = k̃
ξ+i with

k̃ ∈ C. Thus we have

kerTG = {(ϕ1+, −P
+(hrϕ1+)) : ϕ1+ ∈ Kθ}+ span

{(

0,
1

ξ + i

)}

.

If θ is a finite Blaschke product of degree n, then dimkerTG = n + 1;
otherwise dimkerTG = ∞.

As a consequence of Theorem 3.1, we have the following.

Corollary 3.4. If Gf = g and

(
detG.fT (H+

2 )2
)
∩
(
gT (H−

2 )2
)
= {0}, (3.20)
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and we define

H+ = {ψ+ ∈ (H+
2 )2 : ff̃Tψ+ ∈ (H+

2 )2}, (3.21)

H− = {ψ− ∈ (H−
2 )2 : gg̃Tψ− ∈ (H−

2 )2}, (3.22)

K = f̃TH+ ∩ g̃TH−, (3.23)

then
kerTG = Kf. (3.24)

Since 0 ∈ S, with S defined in (3.4), we also have the following con-
sequence of Theorem 3.1, which can be understood as establishing a lower
bound for kerTG.

Corollary 3.5. If Gf = g then, with the same notation as in Corollary 3.4,
we have

Kf ⊂ kerTG.

By Coburn’s Lemma [14], for any Toeplitz operator with scalar symbol
ϕ ∈ L∞, either kerTϕ or kerT ∗

ϕ = kerTϕ is zero. It is well known that this
property no longer holds when we consider Toeplitz operators with matrix
symbol, since TG and T ∗

G = TḠT may both have a non-zero kernel. However,
using the result of Corollary 3.4, we can state what may be seen as a version
of Coburn’s Lemma for 2 × 2 block Toeplitz operators with symbol G. We
shall need the following, which can easily be verified:

Lemma 3.6. Let G be a 2× 2 matrix. Then

detG.I = −GJGTJ. (3.25)

Theorem 3.7. Let detG ∈ F \ {0}. Then either kerTG or kerT
G

T is of
scalar type.

Proof. Assume that kerT
G

T 6= {0} and let ψ+ ∈ kerT
G

T , ψ+ 6= 0. Then we

have G
T
ψ+ = ψ− ∈ (H−

2 )2 and

G
T
ψ+ = ψ− ⇐⇒ GT ψ+ = ψ− ⇐⇒ GJGTJ(Jψ+) = −GJψ−

⇐⇒ detG.(Jψ+) = GJψ−. (3.26)

Therefore, GF+ = detG.F− with F± = Jψ∓ ∈ (H±
2 )2. For any ϕ+ ∈ kerTG,

we have Gϕ+ = ϕ− ∈ (H−
2 )2, so G[ϕ+ F+] = [ϕ− detG.F−], and it follows

that
detG. det[ϕ+ F+] = detG. det[ϕ− F−],
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i.e., on a set of positive measure in R,

det[ϕ+ F+] = det[ϕ− F−]. (3.27)

Since the left-hand side of (3.27) represents a function in H+
1 while the

right-hand side represents a function in H−
1 , both are equal to zero. Since

F+ and F− = GF+ admit left inverses because neither is identically equal
to zero, it follows that every ϕ+ ∈ kerTG is a scalar multiple of F+.

Corollary 3.8. For every G ∈ (L2×2
∞ ) with detG ∈ L∞\{0}, either kerTG =

{0}, or kerT ∗
G = {0}, or both kernels are of scalar type.

Corollary 3.9. If detG admits a (canonical) bounded factorization [24]
detG = d−d+ with d± ∈ GH±

∞, then both kerTG and kerT
G

T are of scalar
type. In particular, kerTG and kerT

G
T are of scalar type whenever detG =

1.

Proof. From (3.26) we have that G
T
ψ+ = ψ− ⇐⇒ G(d−1

+ Jψ−) = d−Jψ+.
Since any ϕ+ ∈ (H+

2 )2 can be written in the form ϕ+ = d−1
+ Jψ− for some

ψ− ∈ (H−
2 )2, and any ϕ− ∈ (H−

2 )2 can be written in the form ϕ− = d−Jψ+

for some ψ+ ∈ (H+
2 )2, it follows that kerTG = {0} if and only if kerT

G
T =

{0}. The result now follows from Corollary 3.8.

Note that, for block Toeplitz operators, it is not always the case that a
non-zero kernel can be given by a symbol of determinant 1, as the following

simple example shows: let G =

[
r 0
r 0

]

. The kernel of TG is (k, h) where

k ∈ Kr and h ∈ H+
2 . The symbol can only have rows of the form (p 0),

for if p, q ∈ L∞ and pk + qh ∈ H−
2 for all k ∈ Kr and h ∈ H+

2 , then, taking
k = 0 we see that q = 0.

While Corollary 3.4 provides sufficient conditions for the kernel of a
Toeplitz operator with 2× 2 symbol to be of scalar type, condition (3.20) is
not a necessary one. To see this, let us consider the solution to Gf = g that
we obtain from (2.1) if we take the second columns of the matrix functions
on the left and on the right hand sides of (2.3), instead of the first columns
as was done in Section 2. We get, using the same notation,

Gf = g, with f =

[
g+12
g+22

]

, g = rk
[
g−12
g−22

]

.

Assuming, for simplicity, that detG = 1, we can choose G± such that
detG± = 1, and thus as left inverses for f and g we can take f̃T and
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g̃T given by

f̃ = J

[
g+11
g+21

]

=

[
−g+21
g+11

]

, g̃ = r−kJ

[
g−11
g−21

]

= r−k

[
−g−21
g−11

]

.

Applying Theorem 3.1, we have S = fT (H+
2 )2 ∩ gT (H−

2 )2 = Krk 6= {0};
for each s ∈ S = Krk , we have Hs

+ = (H+
2 )2 and

Hs
− =

{

ψ− ∈ (H−
2 )2 : sr−k

[
−g−21
g−11

]

∈ (H−
2 )2
}

= (H−
2 )2,

because sr−k ∈ H−
∞ for s ∈ Krk . Therefore, from (3.8),

Λ ∈ f̃T (H+
2 )2 = H+

2 , (3.28)

and, since in this case GJf̃ = Jg̃, which implies that g̃TGJf̃ = 0, we must
also have

Λ ∈ g̃T (H−
2 )2 = H−

2 . (3.29)

From (3.28) and (3.29) we get Λ = 0 and it follows that kerTG = KrkJf̃ =
Krk(g

+
11 , g

+
21) as in Section 2.

The next result shows that every scalar-type Toeplitz kernel, for a 2× 2
matrix symbol G, is of the form (3.24) with K given by (3.21)–(3.23), if f
and g = Gf have left inverses.

Theorem 3.10. If kerTG = Kf , where f is a fixed function in F2×1 such
that f and g = Gf possess left inverses f̃T and g̃T , respectively, and K ⊂ F ,
then

K = f̃TH+ ∩ g̃TH−,

where H± are defined as in (3.21)–(3.22).

Proof. Let k be any element of K. Then kf ∈ kerTG and we have

kf = ψ+ ∈ (H+
2 )2, G(kf) = ψ− ∈ (H−

2 )2. (3.30)

From the first equation we get that k = f̃Tψ+, so ff̃
Tψ+ = fk = ψ+ ∈

(H+
2 )2; therefore ψ+ ∈ H+.
Analogously, from the second equation in (3.30), we have kg = ψ− ∈

(H−
2 )2. Therefore k = g̃Tψ− and ψ− is such that gg̃Tψ− = gk = ψ− ∈

(H−
2 )2; thus ψ− ∈ H−. We conclude that K ⊂ f̃TH+ ∩ g̃TH−.
Conversely, if k ∈ fTH+ ∩ g̃TH−, then kf ∈ kerTG (as in the last part

of the proof of Theorem 3.1, with s = 0) and, since kerTG = Kf , we have
kf = k0f with k0 ∈ K. Multiplying on the left by f̃T , we conclude that
k = k0 ∈ K, so fTH+ ∩ g̃TH− ⊂ K.

13



Naturally, one can say more about the space K if further assumptions
are made on f and g in (3.3).

Theorem 3.11. If f = θf+, where θ is an inner function and f+ ∈ (H+
∞)2,

and g = f− ∈ (H−
∞)2, where f± possess left inverses f̃T± with f̃± ∈ (H±

∞)2,
then

kerTG = Kθf+.

Proof. In this case we have H± = (H±
2 )2 and, if f̃T± are left inverses for f±,

then f̃ = θf̃+ and g̃ = f̃− provide left inverses for f and g respectively; the
result now follows from (3.23) and (3.24).

We say that f± = (f1±, f2±) ∈ (H±
∞)2 is a corona pair in C

± if and only
if there exists f̃± ∈ (H±

∞)2 such that f̃T±f± = 1. In this case we say that
f± ∈ CP±. By the Corona Theorem, f± ∈ CP± if and only if

inf
z∈C±

(
|f±1 (z)|+ |f±2 (z)|

)
> 0. (3.31)

Thus, under the conditions of Theorem 3.11, we have f± ∈ CP±.
The next theorem generalises Theorem 3.11, establishing sufficient con-

ditions for K, in Corollary 3.4, to be a model space or a shifted model space.
We shall use the following well-known result, which follows easily from the
observation that if α, β are coprime inner functions then αϕ+ ∈ βH+

2 if
and only if ϕ+ ∈ βH+

2 (a consequence of the uniqueness of the inner–outer
factorization).

Lemma 3.12. If ϕ+ ∈ H+
2 and α1 and α2 are inner functions, then α1ϕ+ ∈

α2H
+
2 if and only if ϕ+ ∈

α2

γα
H+

2 , where γα = gcd{α1, α2}.

Theorem 3.13. Let detG have a canonical bounded factorization detG =
d−d

−1
+ (as in Section 2), and let Gf = g with componentwise inner–outer

factorizations

f = (α1f1+, α2f2+), g = (β1f1−, β2f2−), (3.32)

where α1, α2, β1 and β2 are inner functions, f1±, f2± are outer functions in
H±

∞, and (f1±, f2±) ∈ CP±. Then

kerTG = Kγαγβ





α1

γα
f1+

α2

γα
f2+



 = Kγαγβ γαf, (3.33)

where {
γα = gcd{α1, α2},
γβ = gcd{β1, β2}.

(3.34)
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Proof. In this case we have S = {0} and kerTG is given by Corollary 3.4. Let
[f̃1± f̃2±], with (f̃1±, f̃2±) ∈ (H±

∞)2, be left inverses for (f1±, f2±), respec-
tively, so that f̃ = (α1f̃1+, α2f̃2+) and g̃ = (β1f̃1−, β2f̃2−) are left inverses
for f and g, respectively.

For any ψ+ = (ψ1+, ψ2+) ∈ (H+
2 )2 we have then

ff̃Tψ+ =

[
f1+f̃1+ψ1+ + α1α2f̃2+f1+ψ2+

α1α2f̃1+f2+ψ1+ + f2+f̃2+ψ2+

]

so ff̃Tψ+ ∈ (H+
2 )2 if and only if

{
α2α1f̃2+f1+ψ2+ ∈ H+

2 ,

α1α2f̃1+f2+ψ1+ ∈ H+
2 ,

⇐⇒

{
α1f̃2+f1+ψ2+ ∈ α2H

+
2 ,

α2f̃1+f2+ψ1+ ∈ α1H
+
2 ,

⇐⇒

{

f̃2+f1+ψ2+ ∈ α2

γα
H+

2 ,

f̃1+f2+ψ1+ ∈ α1

γα
H+

2 ,
(3.35)

with γα defined by (3.34). Thus (ψ1+, ψ2+) ∈ H+ if and only if ψ1+, ψ2+ ∈
H+

2 and

ψ1+ =
α1

γα

ϕ1+

f̃1+f2+
, ψ2+ =

α2

γα

ϕ2+

f̃2+f1+
, with ϕ1+, ϕ2+ ∈ H+

2 ,

where, since ϕ1+

f2+
= ψ1+

γα
α1
f̃1+ ∈ N+ ∩L2 and ϕ2+

f1+
= ψ2+

γα
α2
f̃2+ ∈ N+ ∩L2,

we have
ϕ1+

f2+
,
ϕ2+

f1+
∈ H+

2 . (3.36)

Analogously, we get that (ψ1−, ψ2−) ∈ H− if and only if ψ1−, ψ2− ∈ H−
2

with

ψ1− =

(
β1
γβ

)
ϕ1−

f̃1−f2−
, ψ2+ =

(
β2
γβ

)
ϕ2−

f̃2−f1−
, ϕ1−, ϕ2− ∈ H−

2 ,

where
ϕ1−

f2−
,
ϕ2−

f1−
∈ H−

2 . (3.37)

Thus K = f̃TH+ ∩ g̃TH− consists of the functions k such that

k = [α1f̃1+ α2f̃2+]

[
α1

γα

ϕ1+

f̃1+f2+
α2

γα

ϕ2+

f̃2+f1+

]

= [β1f̃1− β2f̃2−]






(
β1

γβ

)
ϕ1−

f̃1−f2−(
β2

γβ

)
ϕ2−

f̃2−f1−




 , (3.38)
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i.e.,

k = γα

(
ϕ1+

f2+
+
ϕ2+

f1+

)

= γβ

(
ϕ1−

f2−
+
ϕ2−

f1−

)

.

Taking (3.36) and (3.37) into account, it follows that K ⊂ γαH
+
2 ∩ γβH

−
2 .

Conversely, if k = γαϕ+ = γβϕ−, with ϕ± ∈ H±
2 , we can write

k = γαϕ+ = γαf̃
T fϕ+ = f̃T (γαfϕ+),

where γαfϕ+ ∈ H+ because γαfϕ+ ∈ (H+
2 )2 and ff̃T (γαfϕ+) = fγαϕ+.

Thus k ∈ f̃TH+ and, analogously, we can show that k ∈ g̃TH−, so that
k ∈ f̃TH+∩g̃H− = K. We conclude that K = γαH

+
2 ∩γβH

−
2 = γαKγαγβ .

Corollary 3.14. With the same assumptions as in Theorem 3.13, TG is
injective if and only if γα and γβ are constant.

Corollary 3.15. If the assumptions of Theorem 3.13 are satisfied, with

f =

[
α
O+

]

, g =

[
β
O−

]

,

where α, β are inner functions and O+, O− ∈ H+
∞ are outer functions, then

TG is injective.

Note that, if detG has a canonical bounded factorization and f ∈ CP+

and g ∈ CP−, then TG is invertible ([6]). Roughly speaking, Corollary 3.15
means that if we have Gf+ = f− with f± ∈ (H±

∞)2, and the two components
of f± “approach zero simultaneously at some point” in C

±∪R (so that they
do not satisfy the corona conditions (3.31)),we may still have an injective
Toeplitz operator as long as they do not “approach zero simultaneously”
through a common inner factor.

Suppose now that kerTG is of scalar type, kerTG = Kf as in Theorem
3.10. If kerTG 6= {0}, we may now ask, in view of the results of Theorems
3.11 and 3.13, whether a scalar type kerTG can always be described as the
product of some fixed 2 × 1 function by a scalar Toeplitz kernel, and in
particular a model space.

Toeplitz kernels constitute an important subset of the class of nearly
S∗-invariant subspaces of H+

2 . Here by S∗ we denote the backward shift
operator S∗ = P+r̄P+

|H+

2

; a subspace M of H+
2 is nearly S∗-invariant if and

only if S∗ϕ+ ∈M for all ϕ+ ∈M such that ϕ+(i) = 0. Hitt proved (in the
unit disk setting) that any nontrivial closed nearly S∗-invariant subspace
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of H+
2 has the form M = hKθ where θ is an inner function vanishing at

i, h
ξ−i ∈ M is the element of unit norm with positive value at i which

is orthogonal to all elements of M vanishing at i, and h is an isometric
multiplier from Kθ into H+

2 ([22, 27]).
In the next theorem we show that, if kerTG is of scalar type, then it is

the product of a scalar nearly S∗-invariant subspace (which can be explicitly
described) with a fixed 2× 1 function.

Note that, when kerTG is of scalar type and kerTG 6= {0}, then there
exist F± ∈ (H±

2 )2 \ {0} such that GF+ = F− and, if F± = (F1±, F2±), then
either F1± or F2± is not identically zero, and thus F± has a left inverse
defined a.e. on R. We shall assume, without loss of generality, that F1± 6= 0,
so that F−1

1± are defined a.e. on R. If kerTG = Kf with f = (f1, f2) and
Gf = g = (g1, g2), as in Theorem 3.10, then

Fj+ = k0fj , Fj− = k0gj (j = 1, 2),

where k0 ∈ K and k0, f1, g1 are different from zero a.e. on R.
We shall also use the following notation: if F± ∈ H±

2 \ {0}, then we
write F± = I±O±, where I+, I− are inner functions and O+, O− are outer
functions in H+

2 . If F± = 0 then we write F± = I±O± with I±, O± = 0. If
α is an inner function, then gcd{α, 0} = α.

Theorem 3.16. Let kerTG be of scalar type, kerTG 6= {0}, with kerTG =
Kf as in Theorem 3.10. Then there exist an F ∈ F2×1 and a nearly S∗-
invariant subspace K̃ ⊂ H+

2 , which is closed if G ∈ L2×2
∞ , such that kerTG =

K̃F . Moreover, if F+ = (F1+, F2+) 6= 0 is a given element of kerTG and
GF+ = F− = (F1−, F2−) with Fj± = Ij±Oj± (j = 1, 2), using the notation
above, and we suppose that F1± 6= 0, then

kerTG = K̃
F+

γ+O1+
= K̃

(
I1+
γ+

,
F2+

γ+O1+

)

, (3.39)

where

K̃ =

{

ψ̃+ ∈ kerTγ−γ+O1−/O1+
∩ kerTγ−γ+O2−/O1+

:
O2+

O1+
ψ̃+ ∈ H+

2

}

,

(3.40)
γ+ = gcd(I1+, I2+), γ− = gcd(I1−, I2−). (3.41)

Proof. Let F+ = (F1+, F2+) 6= 0 belong to kerTG and let GF+ = F− =
(F1−, F2−), where we assume that F1± 6= 0. Since we can write f = k−1

0 F+

with k0 ∈ K, we have kerTG = (Kk−1
0 )F+, and we can then assume that

kerTG = KF+ and apply Theorem 3.10.
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Defining H± as in (3.21)–(3.22), we have, for f = F+ and f̃ = (F−1
1+ , 0),

ψ+ ∈ H+ ⇐⇒ ff̃Tψ+ ∈ (H+
2 )2, ψ+ ∈ (H+

2 )2

⇐⇒ (f̃Tψ+)f ∈ (H+
2 )2, ψ+ ∈ (H+

2 )2

⇐⇒ F−1
1+ψ1+(F1+, F2+) ∈ (H+

2 )2, ψ1+ ∈ H+
2 , ψ2+ ∈ H+

2

⇐⇒ ψ1+F2+ ∈ F1+H
+
2 , ψ1+ ∈ H+

2 , ψ2+ ∈ H+
2 .

We have

ψ1+F2+ ∈ F1+H
+
2 ⇐⇒ ψ1+I2+

O2+

O1+
∈ I1+H

+
2 . (3.42)

In this case ψ1+O2+/O1+ ∈ N+ ∩ L2 = H+
2 and it follows from the second

relation in (3.42) and Lemma 3.12 that the right hand side of (3.42) is
equivalent to

ψ1+
O2+

O1+
=
I1+
γ+

ϕ+ with ϕ+ ∈ H+
2 and γ+ = gcd{I1+, I2+}.

Since ψ1+ ∈ H+
2 and

O1+

O2+

I1+
γ+

ϕ+ ∈ H+
2 ⇐⇒

O1+

O2+
ϕ+ ∈ H+

2

we conclude that

ψ1+F2+ ∈ F1+H
+
2 , ψ1+ ∈ H+

2

⇐⇒ ψ1+ = ψ̃+
I1+
γ+

, with ψ̃+ ∈ H+
2 ,

O2+

O1+
ψ̃+ ∈ H+

2 .
(3.43)

So, ψ ∈ f̃TH+ if and only if ψ = F−1
1+ψ1+, where ψ1+ satisfies (3.43), i.e.,

f̃TH+ =

{

ψ ∈ F : ψ =
ψ̃+

γ+O1+
with ψ̃+ ∈ H+

2 ,
O2+

O1+
ψ̃+ ∈ H+

2

}

. (3.44)

Analogously we get, for F2− 6= 0 and γ− defined in (3.41),

g̃TH− =

{

ψ ∈ F : ψ =
ψ̃−

γ−O1−
with ψ̃− ∈ H−

2 ,
O2−

O1−
ψ̃− ∈ H−

2

}

. (3.45)

Therefore, for ψ to belong to K = f̃TH+ ∩ g̃TH−, the functions ψ̃± ∈ H±
2

in (3.44)–(3.45) must be such that

ψ̃+

γ+O1+
=

ψ̃−

γ−O1−
,
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i.e., ψ̃+ ∈ kerTγ−γ+O1−/O1+
, and the condition ψ̃−O2−/O1− ∈ H−

2 in (3.45)
can be expressed by

γ−γ+
O2−

O1+
ψ̃+ ∈ H−

2 , i.e., ψ̃+ ∈ kerTγ−γ+O2−/O1+
.

Finally, taking into account the last condition in (3.43), we have

K = f̃TH+ ∩ g̃TH− =
1

γ+O1+
K̃,

where, for F2+, F1+ 6= 0,

K̃ =

{

ψ̃+ ∈ kerTγ−γ+O1−/O1+
∩ kerTγ−γ+O2−/O1+

:
O2+

O1+
ψ̃+ ∈ H+

2

}

.

It is easy to see that K̃ is nearly S∗-invariant, because Toeplitz kernels are
nearly S∗-invariant subspaces and if O2+

O1+
ψ̃ ∈ H+

2 and r−1ψ̃+ ∈ H+
2 , then

O2+

O1+
ψ̃r−1 ∈ N+ ∩ L2 = H+

2 .

If F2± = 0, then H± = (H±
2 )2 and we again find that K = K̃

F+

γ+O1+
,

where

K̃ = kerTγ−γ+O1−/O1+
∩ kerTγ−γ+O2−/O1+

= kerTγ−O1−/F1+
∩ kerT

γ−
O2−
F1+

if F2+ = 0, F2− 6= 0,

and

K̃ = kerTγ−γ+O1−/O1+
= kerTF1−/F1+

if F2+ = 0, F2− = 0.

Finally, if G ∈ L2×2
∞ then kerTG is closed, and it follows from (3.39) that

K̃ I1+
γ+

is closed, so K̃ is closed.

Since K̃ is nearly-invariant, it follows from Hitt’s theorem that it can be
written as K̃ = Kθ g+, where Kθ is a model space and g+ is a scalar function
(an isometric multiplier); however, there is no reason to suppose that K̃ is
a Toeplitz kernel.

Related to these results, a very natural question regarding scalar type
Toeplitz kernels is whether they have a maximal function. It was proved in
[7] that for every ϕ+ ∈ H+

2 there exists a so called minimal kernel Km(ϕ+)
such that very other kernel K with ϕ+ ∈ K contains Km(ϕ+). We say
that ϕ+ is a maximal function for K if K = Km(ϕ+); every scalar Toeplitz
kernel has a maximal function. For scalar type Toeplitz kernels we have the
following, taking the result of Theorem 3.16 into account.
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Theorem 3.17. If kerTG, with G ∈ L2×2
∞ , is of scalar type, then there exists

a maximal function for kerTG.

Proof. Let kerTG = K̃F and K̃ = Kθ g+ as above. Thus kerTG = Kθ g+ F ,
so let us write f = g+ F . Now Kθ is a model space with maximal function
ϕ+, say; let ϕ+ = IO, where I is inner and O is an outer function in
H+

2 . Then Kθ = kerT(ĪŌ/O) (by [7]) and every element in K has the form

[IO/Ō]ψ−, where ψ− ∈ H−
2 .

Obviously ϕ+f belongs to kerTG. Suppose that ϕ+f = IOf belongs
to the kernel of some TH with H ∈ L2×2

∞ ; then H(IOf) = ϕ− ∈ (H−
2 )2.

We want to prove that kerTG is contained in kerTH . Take any element
[IO/Ō]ψ−f ∈ Kθ f ; we haveH[IO/Ō]ψ−f = (ψ−/Ō)H(IOf) = (ψ−/Ō)ϕ−.
Since this is (componentwise) in the Smirnov class N− and in L2, it is in
(H−

2 )2. Therefore [IO/Ō]ψ−f is in kerTH .

Note that, as remarked by R. O’Loughlin, not all block Toeplitz kernels
have a maximal function. This is an immediate consequence of Theorem 5.5
and Corollary 5.3 in [7].

4 Applications to truncated Toeplitz

operators

Let h ∈ F and, for any inner function θ, let

Dθ = {fθ ∈ Kθ : hfθ ∈ L2}. (4.1)

The operator Aθ
h : Dθ → Kθ defined by

Aθ
hfθ = Pθ(hfθ), fθ ∈ Dθ, (4.2)

where Pθ : L2 → Kθ denotes the orthogonal projection, is called the trun-
cated Toeplitz operator (in Kθ) with symbol h. If h belongs to the Sobolev
space λ+L2, where λ+(ξ) = ξ + i, then Aθ

h is densely defined on Kθ; if
h ∈ L∞, then Aθ

h is a bounded operator on Kθ.
It is clear that ϕ1+ ∈ kerAθ

h if and only if ϕ1+ ∈ H+
2 and the following

two conditions hold:
{

θϕ1+ = ϕ1−,
hϕ1+ = ϕ2− − θϕ2+, with ϕ1−, ϕ2− ∈ H−

2 , ϕ2+ ∈ H+
2 .

(4.3)
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Therefore, kerAθ
h consists of the first components of the elements in the

kernel of the Toeplitz operator TG with

G =

[
θ 0
h θ

]

, (4.4)

defined on D = {Φ+ ∈ (H+
2 )2 : GΦ+ ∈ (L2)

2}. In particular, we have that
kerAθ

h = {0} if and only if kerTG = {0}. Thus we can apply the results of
Section 3, for G of the form (4.4), to study the kernels of truncated Toeplitz
operators. Note that we have Gf = g with f = (f1, f2) and g = (g1, g2) if

and only if g1 = θf1 and h =
g2 − θf2

f1
.

The following is a consequence of Theorem 3.16 and Corollary 3.9.

Theorem 4.1. The kernel of any truncated Toeplitz operator is the product
of a nearly S∗-invariant subspace of H+

2 , given in (3.40) and (3.41), by an
inner function.

Proof. Let h be the symbol of the truncated Toeplitz operator Aθ
h, and let

G be defined by (4.4). By Corollary 3.9, kerTG is of scalar type and, if

kerTG 6= {0}, then by Theorem 3.16 we have kerTG = K̃
F+

γ+O1+
, where

F+ = (F1+, F2+) is a given function in (H+
2 )2 with F1+ = I1+O1+ ∈

Kθ , F1+ 6= 0, γ+ � I1+, and K̃ is given by (3.40) and (3.41). Therefore

kerTG = K̃

(
I1+
γ+

,
F2+

γ+O1+

)

, and kerAθ
h =

I1+
γ+

K̃.

Remark 4.2. Recently, Ryan O’Loughlin [26] has arrived at a similar result
by a different route. Namely, it follows from [12, Cor. 4.5] that the kernel of
a 2× 2 block Toeplitz operator TG can be written as F0((H

+
2 )r ⊖Θ(H+

2 )r
′
),

where r and r′ are integers with 1 ≤ r′ ≤ r ≤ 2, Θ ∈ (H+
∞)r×r′ is inner, and

F0 ∈ (H+
2 )2×r; in the case G =

[
θ 0
g θ

]

, it is possible to take r′ = r = 1,

although no explicit formula for Θ is given.
Note that if K1ϕ+ = K2ψ+, where K1 and K2 are model spaces and
ϕ+ = (ϕ1+, ϕ2+), ψ+ = (ψ1+, ψ2+) are analytic in C

+, then we have mul-
tipliers ψ+1/ϕ1+ and ψ+2/ϕ2+ from one model space onto another, so that
the work in [15], [17] and [10] can be applied. Indeed, if wKα = Kβ , then
β = cαw/w, where c is a unimodular constant.

Regarding the formula (3.40) for K̃ in Theorem 3.16, note that, for G
of the form (4.4), if kerTG 6= {0} then F1± 6= 0 and we have θF1+ = F1−
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if and only if O1−

O1+
= θI1+I1−. Therefore the symbol γ−γ+

O1−

O1+
in (3.40) is

bounded. Moreover, from (3.40) we have:

K̃ =

{

ψ̃+ ∈ kerT
θ(I1+/γ+)(I1−/γ−)

∩ kerT
γ−γ+

O2−
O1+

:
O2+

O1+
ψ̃+ ∈ H+

2

}

,

which takes the form

K̃ = kerT
θ(I1−/γ−)

∩ kerT
γ−

O2−
F1+

if F2+ = 0, F2− 6= 0, (4.5)

and
K̃ = kerTθ = Kθ if F2+ = F2− = 0.

It may happen that the inner function mentioned in Theorem 4.1 is nec-
essarily a constant, as it happens if the symbol h of the truncated Toeplitz
operator is in H−

∞. In that case, for γ = gcd(θ, (h̄)i), it is easy to see

that F+ = (F1+, F2+) = (γ−γ(i)
ξ−i , 0) ∈ kerTG, with G given by (4.4), and

GF+ = (F1−, F2−) =
1−γ̄γ(i)

ξ−i (θ̄γ, hγ). With the notation of Theorem 3.16,

we have γ− = 1 , I1− = θ̄γ , O2− = 1−γ̄γ(i)
ξ−i , and it follows from (4.5) that

kerAθ
h = kerTθ̄ = Kγ (as may also be verified by direct calculation).

We now apply the previous results to studying the kernels of some classes
of TTO. Our motivation for the examples that we shall consider is the
following. The kernels of TTO with so-called θ-separated symbols, of the
form

h = αh1 + βh2, (h1 ∈ H−
∞, h2 ∈ H+

∞), (4.6)

where
αβ � θ, (4.7)

were studied in [8]. We consider here two cases where h1 ∈ H+
∞ and

h2 ∈ H−
∞. In the first case we assume that h1 and h2 are inner, with h1 ≺ α

and h2 ≺ β. In the second case we assume that h1 and h2 are rational
functions, h1 = R+

1 ∈ R+, and h2 = R−
2 ∈ R− with R± = R ∩H±

∞, where
R is the set of rational functions, which generalizes the study of truncated
Toeplitz operators with θ-separated symbols to the case where h1 and h2
admit poles in the lower and upper half planes, respectively.
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4.1 The first case: Aθ
h with h = C1α + C2β,

Toeplitz operators with almost-periodic symbols of the form (4.4) where
θ(ξ) = eiλξ, with λ ∈ R, and

h(ξ) = C1 exp(−iaξ) + C2 exp(ibξ), with a, b ∈ R
+ and a, b < λ,

have been studied by several authors (see, e.g., [5, 16]). In this section we
generalize this class by studying symbols of the form (4.4) with

h = C1α+ C2β, (C1, C2 ∈ C \ {0}),

where α, β are non-constant inner functions satisfying the following condi-
tions:

α, β ≺ θ, (4.8)

for some n ≥ 1, (αβ)n−1 ≺ θ, (αβ)n � θ, (4.9)

either αnβn−1 � θ or αnβn−1 � θ, (4.10)

either αn−1βn � θ or αn−1βn � θ. (4.11)

If γ, δ are inner functions such that either γ � δ or δ � γ, we say that
min{γ, δ} = γ if γ � δ and min{γ, δ} = δ if δ � γ. With this notation,

if (4.10) holds then either αn � θβ
n−1

or θβ
n−1

� αn, so in the first case

min{θβ
n−1

, αn} = αn, and in the second case min{θβ
n−1

, αn} = θβ
n−1

.
Analogously, if (4.11) holds, then either αn−1βnθ � α or α � αn−1βnθ,

and min{αnβnθ, α} , min{β, θαn−1β
n−1

} also exist.
Note that, if ǫ is a singular inner function (for instance, an exponential

exp(iλξ) for a given positive real λ) and λ, a, b are real positive numbers
with a, b < λ, then θ = ǫλ , α = ǫa , β = ǫb always satisfy (4.8)-(4.11) if we
take n to be the smallest integer such that λ

a+b ≤ n.
More ambitiously, we may take θ1, θ2 as coprime singular inner func-

tions and consider α = θa1θ
b
2, β = θc1θ

d
2 . There is then a set of inequali-

ties that a, b, c, d must satisfy, namely, all lie in [0, 1), (n − 1)(a + c) ≤ 1,
(n−1)(b+d) ≤ 1 with at least one inequality strict, n(a+c) ≥ 1, n(b+d) ≥ 1,
and similar inequalities for (4.10) and (4.11).

The solution to Gf = g obtained in Proposition 4.3 below is analogous to
the one obtained in [16] for a particular class of symbols G with θ = exp(iξ).
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Proposition 4.3. (i) A solution to Gf = g with f = (f+1 , f
+
2 )T ∈ (H+

∞)2

and g = (g−1 , g
−
2 ) ∈ (H−

∞)2 is given by

f+1 = µ(Cn−1
1 αn−1 − Cn−2

1 C2α
n−2β + . . .+ (−1)n−1Cn−1

2 βn−1),

(4.12)

f+2 = (−1)nCn
2 µβ

nθ, (4.13)

g−1 = θf+1 , (4.14)

g−2 = Cn
1 α

nµ, (4.15)

where
µ = min{θβ

n−1
, α}. (4.16)

(ii) If µ = αn, then f = λ1F+, where

λ1 = min{αnβnθ, α}, (4.17)

F+ = (F+
1 , F

+
2 ) is a corona pair in (H+

∞)2 (written F+ ∈ CP+, see(3.31)),
and g is a corona pair in (H−

∞)2 (written g ∈ CP−).

(iii) If µ = θ β
n−1

, then f = λ2F+, where

F+ ∈ CP+ , λ2 = min{β, θαn−1β
n−1

}, (4.18)

and g ∈ CP−.

Proof. (i) It is easy to see that Gf = g and f+2 ∈ H+
∞, g−2 ∈ H−

∞. It remains
to prove that

f+1 ∈ H+
∞, θf+1 ∈ H−

∞,

for which it is enough to see that µαn−1 ∈ H+
∞ (from (4.16) and (4.9)) and

θµβn−1 ∈ H−
∞ (from (4.16) and the fact that, if µ = αn then αn � θβ

n−1
).

(ii) If µ = αn then
αnβn−1 � θ (4.19)

and

f+1 = α(Cn−1
1 − Cn−2

1 C2(αβ) + . . .+ (−1)n−1Cn−1
2 (αβ)n−1), (4.20)

f+2 = (−1)nCn
2 α

nβnθ, (4.21)

g−1 = θf+1 , (4.22)

g−2 = Cn
1 . (4.23)

Clearly g = (g−1 , g
−
2 ) ∈ CP−. On the other hand,

f = λ1(F
+
1 , F

+
2 ), (4.24)
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where λ1 is defined by (4.17) and F+
1 , F

+
2 ∈ H+

∞. If λ1 = αnβnθ, then it is
clear that (F+

1 , F
+
2 ) ∈ CP+ because F+

2 = (−1)nCn
2 ; if λ1 = α, then

F+
1 = Cn−1

1 − Cn−2
1 C2(αβ) + . . .+ (−1)n−1Cn−1

2 (αβ)n−1, (4.25)

F+
2 = (−1)n(αn−1βnθ) = (−1)nCn

2 h
+ (4.26)

with h+ ∈ H+
∞ because in this case α � αnβnθ. We can write

αβ = (αn−1βnθ)(θαnβ
n−1

)α2 = h+( θαnβ
n−1

︸ ︷︷ ︸

∈H+
∞ by (4.19)

) α2
︸︷︷︸

∈H+
∞

,

and comparing the expressions (4.25) and (4.26) for F+
1 and F+

2 respectively,
we see that (F+

1 , F
+
2 ) ∈ CP+.

(iii) If µ = θβ
n−1

, then
θ � αnβn−1 (4.27)

and

f+1 = θ(Cn−1
1 (αβ)n−1 − Cn−2

1 C2(αβ)
n−2 + . . .+ (−1)n−1Cn−1

2 ),(4.28)

f+2 = (−1)nCn
2 β, (4.29)

g−1 = Cn
1 (αβ)

n−1 − Cn−2
1 C2(αβ)

n−2 + . . .+ (−1)n−1Cn−1
2 , (4.30)

g−2 = Cn
1 α

nβ
n−1

θ. (4.31)

We have (g−1 , g
−
2 ) ∈ CP−, using (4.27) as above. On the other hand,

(f+1 , f
+
2 ) = λ2(F

+
1 , F

+
2 ) with F+

1 , F
+
2 ∈ H+

∞,

where λ2 is defined in (4.18). If λ2 = β, then it is clear that (F+
1 , F

+
2 ) ∈ CP+

since F+
2 = (−1)nCn

2 ; if λ2 = θαn−1β
n−1

, then θᾱn−1β̄n−1 � β, which
implies that θ̄αn−1βn ∈ H+

∞ and

F+
1 = Cn−1

1 − Cn−2
1 C2(αβ) + . . .+ (−1)n−1Cn−1

2 (αβ)n−1,

F+
2 = (−1)nCn

2 θα
n−1βn.

Using the relation αβ = (θαn−1βn)(θαn−1β
n−1

)α, where θαn−1β
n−1

∈ H+
∞

by (4.9), we see as above that (F+
1 , F

+
2 ) ∈ CP+.

As a consequence of Theorem 3.13 and Proposition 4.3, we have then:
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Theorem 4.4. If

G =

[
θ 0

C1α+ C2β θ

]

,

where C1, C2 ∈ C \ {0} and α, β satisfy (4.8)–(4.11), then

kerTG = λ̄Kλf,

where f = (f+1 , f
+
2 ) is defined by (4.12)–(4.13) and (4.16), and

λ =

{

min{αnβnθ, α}, if αnβn−1 � θ,

min{β, θαn−1β
n−1

}, if αnβn−1 � θ.

The cases C1 = 0 and C2 = 0 are rather easier, and we omit them.

Corollary 4.5. With the same assumptions as in Theorem 4.4

kerAθ
C1ᾱ+C2β = λ̄Kλf

+
1 .

Corollary 4.6. With the same assumptions as in Theorem 4.4, TG (respec-
tively, Aθ

h) is injective if and only if λ is a constant and, in that case, TG
(respectively, Aθ

h) is invertible.

Proof. The injectivity is a direct consequence of Corollary 4.5. On the other
hand, the operator Aθ

h is equivalent after extension to TG [3, 9]; therefore
both operators are simultaneously invertible or not. In this case detG = 1
and Gf+ = f− has a solution f± ∈ (H±

∞)2 with f± ∈ CP± and therefore the
operator TG is invertible [6].

Example 4.7. Take θ(ξ) = eiξ, α(ξ) = eiaξ, β(ξ) = eibξ, (0 < a, b < 1) and
write h = C1α + C2β (C1, C2 ∈ C \ {0}). We also write Kλ = Keλ for
λ > 0, where eλ(ξ) = eiλξ.

Depending on α and β there are various possibilities for kerAθ
h, some of

which we indicate in Figure 1, where we have:

A: Ka+b−1e
i(1−b)ξ.

B: Ka(C1 − C2e
i(a+b)ξ).

C: K1−a−b(C1 − C2e
i(a+b)ξ).

D: Kb(C1e
i(1−2b−a)ξ − C2e

i(1−b)ξ).
E: K2a+2b−1(C1e

i(1−a)ξ − C2e
i(1−b)ξ).
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Figure 1: Dependence of kerAθ

h
on α and β

Figure 1 provides a better understanding of the dependence of kerAθ
h

on the parameters a and b. For instance, one can see that on the lines
a + b = 1/n the operator is invertible. On the other hand it can easily
be verified that the expressions for kerAθ

h “on the left hand side” and “on
the right hand side” of the dotted lines coincide, thus making apparent the
continuous dependency of the kernel on the parameters α and β across those
lines.
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4.2 The second case: Aθ
h with h = αR+

1 + βR−
2

Let h = αR+
1 + βR−

2 , with

α, β � θ, αβ ≻ θ, R+
1 ∈ R+, R−

2 ∈ R−, (4.32)

where R± = R ∩ H±
∞. We shall exclude the degenerate cases R+

1 = 0 and
R−

2 = 0.
If α = β = θ, then the operators Aθ

h are the so-called finite-rank trun-
cated Toeplitz operators of Type I [20, 4].

We assume here that θ is an inner function that is not a finite Blaschke
product (written θ 6∈ FBP), otherwise the matrix G would be rational, and
also that α, β, αβ/θ 6∈ FBP. Note that if α, β ∈ FBP, then h ∈ R; this case
was studied in [8].

We have:

G =

[
θ 0

αR+
1 + βR−

2 θ

]

, (4.33)

and Gf = g holds with

f =

[
α

−αβ
θ R

−
2

]

, g =

[
θα
R+

1

]

. (4.34)

Let

R+
1 =

N1

D+
1

, (4.35)

where N1 and D+
1 are polynomials without common zeroes, with degN1 ≤

degD+
1 = n1, such that all zeroes of D+

1 are in C
−, and

F−
2 =

N2

D−
2

, (4.36)

where N2 and D−
2 are polynomials without common zeroes with degN2 ≤

degD−
2 = n2, such that all zeroes of D−

2 are in C
+. Condition (3.20) is

satisfied in this case, by Lemma 4.11 below. In fact we have

[

α − αβ
θ R

−
2

] [ϕ1+

ϕ2+

]

= [θα R+
1 ]

[
ϕ1−

ϕ2−

]

⇐⇒ αϕ1+ − αβ
θ R

−
2 ϕ2+ = θαϕ1− +R+

1 ϕ2−

⇐⇒
αβ

θ
︸︷︷︸

6∈FBP

D+
1 D

−
2

︸ ︷︷ ︸

p1

(

θ

β

D−
2

D−
2

ϕ1+ −
N2

D−
2

ϕ2+

)

︸ ︷︷ ︸

∈H+

2

= D−
2 D

+
1

︸ ︷︷ ︸

p2

(

θαD+
1

D+
1

ϕ1− +
N1

D+
1

ϕ2−

)

︸ ︷︷ ︸

∈H−
2

,
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so both sides of the equation must be equal to zero.
We have the following left inverses for f and g:

f̃ = (α, 0), g̃ = (θα, 0), (4.37)

so H± are defined by

H+ = {(ψ1+, ψ2+) ∈ (H+
2 )2 : R−

2 βθψ1+ ∈ H+
2 },

H− = {(ψ1−, ψ2−) ∈ (H−
2 )2 : θαR+

1 ψ1− ∈ H−
2 }. (4.38)

From (4.38), we have that, for ϕ+ ∈ H+
2 :

R−
2 θβψ1+ = ϕ+ ⇐⇒

N2

D−
2

ψ1+ =
θ

β
ϕ+ ⇐⇒

N2

D−
2

ψ1+ =
θ

β

D−
2

D−
2

ϕ+. (4.39)

Now let

(

N2

D−
2

)

i

denote the inner factor in an inner–outer factorization of

N2

D−
2

. Since
θ

β

D−
2

D−
2

is inner and there are no common zeroes for N2 and D−
2

we have

γ2 := gcd

{(

N2

D−
2

)

i

,
θ

β

D−
2

D−
2

}

= gcd

{(

N2

D−
2

)

i

,
θ

β

}

, (4.40)

and it follows from (4.38) and (4.39) that (ψ1+, ψ2+) ∈ H+ if and only if
ψ1+, ψ2+ ∈ H+

2 and

ψ1+ ∈
θ

βγ2

D−
2

D−
2

H+
2 . (4.41)

Analogously, defining

γ1 = gcd

{(
N1

D+
1

)

i

,
θ

α

D+
1

D+
1

}

= gcd

{(
N1

D+
1

)

i

,
θ

α

}

, (4.42)

we have that (ψ1−, ψ2−) ∈ H− if and only if

ψ1−, ψ2− ∈ H−
2 and ψ1− ∈

α

θ
γ1
D+

1

D+
1

H−
2 . (4.43)

Therefore, from (3.24), K is defined by the equation

[α 0]





θ
βγ2

D−
2

D−
2

ϕ+

ψ2+



 = [θα 0]





αγ1
θ

D+

1

D+

1

ϕ−

ψ2−



 (4.44)
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with ϕ±, ψ2± ∈ H±
2 , i.e.,

K =

(

θ

αβ
γ2
D−

2

D−
2

H+
2

)

∩

(

γ1
D+

1

D+
1

H−
2

)

. (4.45)

Consequently,

kerTG = Kf = K

[
α

−αβ
θ R

−
2

]

= K
αβ

θ

[
θ/β
−R−

2

]

= H+
2 ∩

(

γ1γ2
D1+

D+
1

D−
2

D−
2

αβ

θ
H−

2

)

︸ ︷︷ ︸

kerT
η−1




γ2

θ
β
D−

2

D−
2

−γ2
N2

D−
2





︸ ︷︷ ︸

∈(H2
∞)2 by (4.40) and (4.42)

with

η = γ1γ2
D1+

D+
1

D−
2

D−
2

αβ

θ
. (4.46)

We have thus shown:

Theorem 4.8. If g = αR+
1 + βR−

2 , where α, β are inner functions and
(4.32) is satisfied, then, for G defined by (4.33), we have

kerTG = kerTη−1




γ2

θ
β
D−

2

D−
2

−γ2
N2

D−
2



 and kerAθ
g = γ2

θ

β

D−
2

D−
2

kerTη−1 , (4.47)

with the notation above and η given by (4.46).

Remark. Note that γ2
θ
β
D−

2

D−
2

is an inner function. Also note that if

(

γ1
θ

α

D+
1

D+
1

)(

γ2
θ

β

D−
2

D−
2

)

� θ

then kerTη−1 is a model space, and in that case we have kerTG = {0} (and
kerAθ

g = {0}) if and only if η is a constant.

Some auxiliary results

Lemma 4.9. Let α be an inner function, α 6∈ FBP, and let p1, p2 be poly-
nomials. Then αp1H

+
2 ∩ p2H

−
2 = {0}.
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Proof. If there are ϕ± ∈ H±
2 such that αp1ϕ+ = p2ϕ−, then both sides of

this equation must be equal to a polynomial p, by an easy generalization of
Liouville’s Theorem, and we have αϕ+ = p

p1
∈ H+

2 , i.e., α
p
p1

= ϕ+ ∈ H+
2 .

Therefore, αp/p1 = P+ (αp/p1) must be rational, which is impossible since
α 6∈ FBP.

Corollary 4.10. αH+
2 ∩H−

2 = {0}, where H±
2 = (ξ ± i)H±

2 .

As a consequence of Lemma 4.9 we can obtain the following generaliza-
tion:

Lemma 4.11. Let α be an inner function, α 6∈ FBP, and let R+
1 =

N1

D+
1

,

R−
2 =

N2

D−
2

, where N1, D
+
1 , N2, D

−
2 are polynomials such that N1 and D+

1

(and similarly N2 and D−
2 ) have no common zeroes, all zeroes of D+

1 (re-
spectively, D−

2 ) are in C
− (respectively, C

+) and degN1 ≤ degD+
1 = n1

and degN2 ≤ degD−
2 = n2. Then

αR−
2 H

+
2 ∩R+

1 H
−
2 = {0}. (4.48)

Proof. If ϕ± ∈ H±
2 and

α
N2

D−
2

ϕ+ =
N1

D+
1

ϕ−,

then

αD+
1 D

−
2

︸ ︷︷ ︸

p1

(

N2

D−
2

ϕ+

)

︸ ︷︷ ︸

∈H+

2

= D−
2 D

+
1

︸ ︷︷ ︸

p2

(

N1

D+
1

ϕ−

)

︸ ︷︷ ︸

∈H−
2

= 0

by Lemma 4.9, and (4.48) follows.
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