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Abstract 

Competition among trees is an important driver of community structure and dynamics in tropical 

forests. Neighboring trees may impact an individual tree’s growth rate and probability of 

mortality, but large-scale geographic and environmental variation in these competitive effects 

has yet to be evaluated across the tropical forest biome. We quantified effects of competition on 

tree-level basal area growth and mortality for trees ≥ 10 cm diameter across 151 ~1-ha plots in 

mature tropical forests in Amazonia and tropical Africa by developing non-linear models that 

accounted for wood density, tree size and neighborhood crowding. Using these models, we 

assessed how water availability (i.e., climatic water deficit) and soil fertility influenced the 

predicted plot-level strength of competition (i.e., the extent to which growth is reduced, or 

mortality is increased, by competition across all individual trees). On both continents, tree basal 

area growth decreased with wood density, and increased with tree size. Growth decreased with 

neighborhood crowding, which suggests that competition is important. Tree mortality decreased 

with wood density and generally increased with tree size, but was apparently unaffected by 

neighborhood crowding. Across plots, variation in the plot-level strength of competition was 

most strongly related to plot basal area (i.e., the sum of the basal area of all trees in a plot), with 

greater reductions in growth occurring in forests with high basal area, but in Amazonia the 

strength of competition also varied with plot-level wood density. In Amazonia, the strength of 

competition increased with water availability because of the greater basal area of wetter forests, 

but was only weakly related to soil fertility. In Africa, competition was weakly related to soil 

fertility, and invariant across the shorter water availability gradient. Overall, our results suggest 

that competition influences the structure and dynamics of tropical forests primarily through 
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effects on individual tree growth rather than mortality, and that the strength of competition 

largely depends on environment-mediated variation in basal area. 

Key words: climatic water deficit; competition; forest dynamics; tree growth; mortality; 

neighborhood effects; soil fertility; trait-based models; tropical forest; wood density.  

Introduction 

Competition is an important driver of community structure and dynamics in forests worldwide 

(Kunstler et al. 2016), particularly in closed-canopy forests such as mature, undisturbed tropical 

forests, where low light levels under the canopy typically limit tree growth. Generally, 

competition with neighboring trees is expected to decrease growth and increase the probability of 

mortality of individual tropical trees (Uriarte et al. 2004, Lasky et al. 2015). However, effects of 

competition on growth and mortality of individual trees have only been quantified within single 

tropical forest sites to date (e.g. Uriarte et al. 2004, Baribault et al. 2012). Whether strong effects 

of competition on demographic rates are pervasive, and whether they vary across environmental 

gradients in the tropics remains unresolved. 

Better knowledge of the effects of competition on tropical tree growth and mortality, and the 

geographic variation thereof, is essential for enhancing understanding of the global terrestrial 

carbon balance. Mature tropical forests have increased in biomass over recent decades (Lewis et 

al. 2009), and those in Amazonia have become more dynamic (McDowell et al. 2018). Mortality 

rates have a key role in controlling biomass in tropical forests (Johnson et al. 2016), as increases 

in mortality over time are influencing the carbon balance of Amazon forests (Brienen et al. 

2015). Changes in the average strength of competition in forests might be one of the driving 

factors of such dynamic changes, since increased biomass (i.e., increased neighborhood 

crowding) leads to enhanced competition, with expected impacts in turn in decreased growth and 



6 

increased mortality. More generally, the underlying causes of tree mortality in the tropics are still 

actively debated (e.g., McDowell et al. 2018), and quantifying their effects on the terrestrial 

carbon balance is a key challenge for ecologists and global change scientists. In addition to 

mortality that results from competition, trees may die from a range of other processes, including 

hydraulic failure in response to drought (large trees in particular; Phillips et al. 2010, Bennett et 

al. 2015, Rowland et al. 2015), from senescence (although effects are weak; Mencuccini et al. 

2005), and from large-scale wind disturbance (Espírito-Santo et al. 2014), but which process(es) 

dominate(s) remains poorly understood. 

Environmental conditions vary considerably across tropical forest sites, and this variation is 

known to strongly influence forest structure and dynamics. Across the Amazon basin, for 

example, water availability generally decreases from north to south, while soil fertility increases 

from east to west (ter Steege et al. 2006). Drier forests generally have a lower stature, lower 

aboveground biomass and basal area, and a more open canopy than wet forests (Quesada et al. 

2012), with typically lower rates of tree growth (Toledo et al. 2011) and stem turnover (Quesada 

et al. 2012). Forests are more dynamic on the high-fertility soils of western Amazonia, with 

higher coarse woody productivity (Malhi et al. 2004, Baker et al. 2009), higher stem mortality 

(Johnson et al. 2016), lower basal area and aboveground biomass, and lower mean wood density 

(WD) than eastern Amazonia (Baker et al. 2004, Malhi et al. 2006, ter Steege et al. 2006, 

Quesada et al. 2012). Environmental gradients are also found across African tropical forests, 

where basal area decreases with both rainfall seasonality and soil fertility (sum of bases; Lewis et 

al. 2013).  

Effects of competition on tree growth and mortality are expected to vary across continental 

environmental gradients in Amazonia and tropical Africa because water and soil nutrient 
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availability influence forest structure and understory light availability. Competition has been 

hypothesized to intensify with resource availability because high resource levels lead to rapid 

growth and resource depletion, whereas plant growth is generally low in stressful habitats (Grime 

1979). In tropical forests, competition is likely to be strongest at high resource (water and/or soil 

nutrient availability) levels, which support a higher basal area. Then, the resulting crowding 

leads to stronger competition because of reduced light availability to individual trees.  

The response of any given focal tree to competition will likely depend not only on the degree 

of crowding in its local neighborhood, but also on its size and functional traits. Smaller trees are 

more strongly affected by competition (Uriarte et al. 2004) because they are more heavily shaded 

by taller neighbors, and likely suffer from greater belowground competition. Shade-intolerant 

tree species, which typically have low wood density (WD; van Gelder et al. 2006), respond more 

strongly to changes in light availability than shade-tolerant species (Bazzaz 1979), and thus are 

likely to be more strongly affected by competition. Indeed, shade-intolerant (Hubbell et al. 2001, 

Canham et al. 2006, Kunstler et al. 2011) and low WD tree species (Kunstler et al. 2016) often 

show greater growth decreases in response to neighborhood crowding. Hence, variation in the 

plot-level strength of competition (i.e., the extent to which growth is reduced, or mortality is 

increased, by competition across all individual trees in a plot) across environmental gradients 

may not only depend on forest basal area, but also on tree size distributions and mean wood 

density. Nevertheless, forest basal area is expected to have the largest effect, because the basal 

area of neighbor trees directly influences resource availability to a focal tree.  

 In this study, we quantify the effects of neighborhood crowding on tree growth and 

mortality across gradients of moisture and soil nutrient availability in Amazonia and tropical 

Africa. Neighborhood crowding likely reflects competition for light (although competition for 
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water and soil nutrients may also play a role), as light is typically the main factor limiting tree 

growth in closed-canopy forests. We use data from 151 ~1 ha-plots to fit non-linear growth and 

mortality models based on tree WD, size, and neighborhood crowding. We use these models to 

estimate the predicted plot-level strength of competition, i.e., to what extent growth across all 

trees is reduced compared to a low level of neighborhood crowding, and assess how water 

availability and soil fertility influence the strength of competition through relationships with 

average tree size, plot basal area and plot wood density. Specifically, we test the following 

predictions: (1) tree growth will decrease, and mortality increase, with neighborhood crowding; 

(2) low WD species will be most strongly affected by neighborhood crowding; (3) variation in 

the plot-level strength of competition will be more strongly related to plot basal area than to 

wood density or mean tree size; (4) the plot-level strength of competition will intensify with 

increasing climatic water availability through relationships with plot basal area on both 

continents; and (5) the predicted plot-level strength of competition will be negatively related to 

soil fertility in Africa because of decreasing basal area with increasing soil fertility (sum of 

bases; Lewis et al. 2013), but be largely independent of soil fertility in Amazonia because of 

weak correlations between soil fertility and basal area (Quesada et al. 2012).  

 

Methods 

Plot data 

We used data from 102 permanent plots in Amazonia from the RAINFOR network and 49 in 

tropical Africa from the AfriTRON network, curated at ForestPlots.net (Lopez-Gonzalez et al. 

2009, 2011; Fig. 1), to span the environmental gradients in each tropical lowland forest region. 

Plots were all below 500 m a.s.l., non-flooded, closed-canopy forests, with a five-fold range of 
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mean annual precipitation in Amazonia (855-4273 mm) and two-fold range in Africa (1377-2716 

mm). Soil fertility, estimated by soil total exchange bases (in cmol(+) kg
-1

), varied from 0.5-13.2 

cmol(+) kg
-1

 in Amazonia, and from 2-13.5 cmol(+) kg
-1

 in Africa. Most plots were 1 ha in size, 

but plot size ranged from 0.25 to 9 ha (Appendix S1: Table S1). Trees ≥ 10 cm diameter at breast 

height (dbh), or above buttresses, were measured for their diameter, identified to species, and 

either mapped or assigned to 0.04 ha subplots. Across all plots, 2,947 species and 73,100 trees 

were included in Amazonia, and 695 species and 20,705 trees in Africa. For each plot, we 

included data from two censuses with an average interval length of 6.3 years (range: 3.0-12.7 

years; Appendix S1: Table S1) and an average starting year of 1994 (range: 1971-2008), and 

calculated annual basal area growth (in cm
2
 yr

-1
) for trees that were present in both censuses. We 

excluded monocotyledonous species (palms and Strelitziaceae) from the growth models, as they 

do not have secondary growth. Neighborhood crowding was expressed as the total basal area of 

neighbor trees within a 0.04-ha subplot (BAneigh) in the first census. We defined neighborhoods 

based on subplots instead of on a fixed radius around each focal tree, to allow inclusion of plots 

for which individual trees were not mapped (Appendix S2). We found that BAneigh accurately 

captured local effects of competition (Appendix S2). Neighborhood crowding likely reflects 

competition for light, although competition for water and soil nutrients may also occur. Other 

processes, for example pathogen accumulation at high densities of conspecific trees that increase 

mortality (negative density-dependence; NDD), may also contribute, but effects of NDD are 

typically weak for large trees (Zhu et al. 2015).   

 

Environmental conditions and wood density 
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Average annual rainfall (in mm yr
-1

) for each of the plots was obtained from WorldClim 2 (Fick 

and Hijmans 2017). Climatic water deficit (CWD; in mm yr
-1

; Chave et al. 2014) was obtained 

from http://chave.ups-tlse.fr/pantropical_allometry.htm. CWD is defined as the cumulative 

amount of water lost by the environment during months in which evapotranspiration exceeds 

rainfall. CWD is negative for sites that experience seasonal drought stress; a CWD of 0 indicates 

absence of seasonal drought stress. Topsoil total exchange bases (TEB; in cmol(+) kg
-1

) was 

included as an indicator of soil fertility, and was obtained from the World Harmonized Soil 

Database (FAO/IIASA/ISRIC/ISS-CAS/JRC 2012). Wood density (WD) data were obtained 

from a global database (Chave et al. 2009, Zanne et al. 2009). In cases where a species-specific 

WD value was not available, we used genus- or family-level mean WD (Baker et al. 2004). 

Genus-level WD was used for 1578 (out of 2947) and for 233 (out of 695) species in Amazonia 

and Africa, respectively. Family-level WD was used for 235 and 186 species in Amazonia and 

Africa, respectively. For stems that remained unidentified, or for which family-level mean WD 

was unavailable (for 37 species in Amazonia and 31 in Africa), we used the mean WD across all 

stems in the plot. 

 

Modeling approach 

We used a combination of (modeling) approaches to evaluate whether the predicted strength of 

competition varied across environmental gradients in Amazonia and Africa. Firstly, we used the 

plot data from both continents to construct non-linear models of individual tree growth and 

mortality as functions of tree size (dbh), neighborhood crowding, and WD. Separate models were 

fitted for Amazonia and tropical Africa. Secondly, we used the estimated parameters of the fitted 

growth models to calculate the strength of competition (Cplot) at the plot level (mortality was 
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excluded because competition effects on mortality were very weak; see Results). As a last step, 

we assessed (1) whether Cplot varied with water availability and soil fertility, and (2) how Cplot
 

was influenced by variation in plot basal area, plot-level WD, and average tree size. Variation in 

Cplot could arise from plot-to-plot differences in average neighborhood crowding (i.e., plot basal 

area), average WD, or average tree size, as each of these influenced the modeled effect of 

competition on individual tree growth. We describe each of these steps in greater detail below. 

We modeled the annual basal area growth (G) and the annual probability of mortality (M) for 

individual trees on each continent as follows: 

G = aG × pG × SG × CG  

M = [1 + aM × pM × SM × CM]
-1

 

where aG and aM are constants, pG and pM are plot-level random effects, and S and C (each 

subscripted for growth and mortality) are non-linear functions that capture effects of tree size and 

competition, respectively: 

𝑆 = dbh&'×exp	(−𝑠0×dbh) 

𝐶 = exp	(−𝑐4×dbh
56×BA9:;<=) 

where s1, s2, c1, and c2 control the shape of the functions and have separate values for growth and 

mortality. S has a flexible form that can produce either an intermediate peak or a continuous 

increase in tree growth with tree size (dbh; Coomes et al. 2014). For mortality, S can produce a 

U-shaped response where mortality both decreases with size for small trees and increases with 

size for larger trees (Rüger et al. 2011, Iida et al. 2014). C is a decreasing function that can 

produce lower growth and higher mortality in trees with greater neighborhood crowding. The 

sensitivity of growth and mortality to competition may vary with tree size (as determined by c2), 

as large trees may be less susceptible to competition than small trees.  
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We applied a trait-based approach to account for taxonomic variation in growth and 

mortality, as a species-level approach was not feasible given the huge diversity of tree species in 

the tropics (e.g., an estimated 15,000 tree species in the Amazon basin; ter Steege et al. 2015). 

WD is known to be a good predictor of tropical tree growth and mortality (e.g., Chao et al. 2008, 

Poorter et al. 2008, Wright et al. 2010, Rüger et al. 2012; Aleixo et al. 2019), therefore we 

defined model parameters a, s1, s2, c1 and c2 as linear functions of WD. As such, WD could 

influence growth and mortality directly, as well as indirectly through effects on size relationships 

and responses to competition (e.g., Hérault et al. 2011, Iida et al. 2014, Kunstler et al. 2016). 

Models were fit using a hierarchical Bayesian approach (Appendix S2, Data S1: 

Model_script.R).  

Using the fitted growth models, we calculated the strength of competition for each plot (Cplot) 

as the percent reduction in plot-level basal area growth due to competition compared to a low, 

baseline level of neighborhood crowding by assessing to what extent growth was reduced for 

each individual tree: 

𝐶>?@A = 1 −
𝐺D
E5FG

DH4

𝐺D
EI5FG

DH4

×100 

where for tree i, 𝐺D
E5F represents predicted basal area growth with the observed level of 

competition, and 𝐺D
EI5F represents its potential growth at a low, baseline level of competition. 

Quantifying plot-level competition based on the growth reduction compared to potential growth 

in the absence of competition may be unrealistic, because a BAneigh of zero is rarely found. Per 

continent, we calculated the 10
th

 percentile of the plot-level 10
th

 percentile values of BAneigh 

(11.3 m
2
 ha

-1
 for Amazonia; 9.8 m

2
 ha

-1
 for Africa). We therefore calculated the strength of 

competition based on a general baseline level of BAneigh = 10 m
2
 ha

-1
 for both continents. Thus, 

Cplot was calculated by comparing predicted plot-level growth (based on all individual trees) with 
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competition to growth at a BAneigh of 10 m
2
 ha

-1
. Growth predictions were based on the posterior 

means of the model parameters. 

For each continent, we examined whether Cplot was correlated with water availability (CWD) 

or soil fertility (TEB). To assess whether variation in Cplot was driven by variation in plot basal 

area, plot-level WD (basal area-weighted mean), or average tree size (the diameter of a tree with 

mean basal area; 𝑑𝑏ℎ0 /𝑛)), we modeled Cplot as a function of plot BA, plot-level WD, and 

average tree size using linear regression. In order to compare effect sizes among the three 

predictors, predictors were standardized by subtracting the mean and dividing the difference by 

the standard deviation. All analyses were performed in R 3.1.2 (R Core Team 2014). 

Results 

Overall responses to competition 

Individual tree growth was strongly affected by competition (Fig. 2; Appendix S1: Table S2), but 

competition effects were stronger in Amazonian than African tropical forests. For example, for a 

20 cm diameter tree with a WD of 0.6 gr cm
-3

, growth decreased by 34% in Amazonia (Fig. 2e,g) 

and 17% in Africa (Fig. 2f,h) as BAneigh increased from 10 to 50 m
2
 ha

-1
. Further, even though 

plot-level basal area was on average slightly lower in Amazonia (25.9 ± 0.44 m
2
 ha

-1
; mean ± 

SE) than in Africa (28.7 ± 0.64 m
2
 ha

-1
), the stronger response of trees to competition in 

Amazonia resulted in greater predicted decreases in plot-level wood production than in Africa. 

Competition reduced plot-level basal area growth (compared to a baseline, low BAneigh value of 

10 m
2
 ha

-1
) by, on average, 31.1% (range: 4.5-25.2%; Fig. 3a,c) in Amazonia, and by 7.4% in 

Africa (range: 5.3-11.7%; Fig. 3b,d).  

In contrast to effects on growth, competition with neighboring trees had little or no effect on 

the probability of mortality. Nevertheless, the mortality model that included competition 
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performed better than the no-competition model for Amazonia (Appendix S1: Table S2). The 

predicted probability of mortality for a 20-cm dbh tree with a WD of 0.6 gr cm
-3

 remained 

constant at 1.4% (Fig. 2m,o) and 1.0% (Fig. 2n,p) per year as BAneigh increased from 10 to 50 m
2
 

ha
-1

 in Amazonia and Africa, respectively. 

 

Effects of wood density and tree size 

Tree basal area growth decreased with increasing WD on both continents (Fig. 2a,b). In 

Amazonia, a 20-cm tree with low WD (0.3 g cm
-3

) grew more than twice as fast as a high WD 

(0.9 g cm
-3

) tree of the same size (Fig. 2a). In Africa, the growth decrease with increasing WD 

was less pronounced (Fig. 2b). Growth increased with tree size on both continents (Fig. 2c,d), 

with low WD species exhibiting stronger size-related increases in growth. 

On both continents, small trees were more strongly affected by competition than large trees 

(Fig. 2e,f). In Amazonia, growth of a 10 cm-tree and a 30 cm-tree decreased by 49% and 27%, 

respectively, as neighbor basal area increased from 10 to 50 m
2
 ha

-1
 (Fig. 2e). Similar growth 

decreases were found in Africa, with a 28% and 18% growth decrease for a 10-cm and a 30-cm 

tree, respectively (Fig. 2f). Amazonian trees with different WD showed similar absolute 

decreases in growth resulting from competition, but on a proportional basis high WD species 

expressed greater decreases than low WD species (48% and 17%, respectively) as BAneigh 

increased from 10 to 50 m
2
 ha

-1
 (Fig. 2g). Conversely, the growth of high WD species in Africa 

was less affected by competition than that of low WD species (decreases of 14% and 28%, 

respectively; Fig. 2h). 

The probability of mortality decreased with WD on both continents (Fig. 2i,j), but the decline 

was more pronounced and more consistent in Amazonia than in Africa. Mortality generally 
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increased with tree size (Fig. 2k,l), particularly for trees > 50 cm dbh, although low abundances 

increased uncertainty for large trees. Small trees with low WD had higher mortality than mid-

sized trees (7% and 23% higher mortality at 10 cm dbh than at 50 cm dbh in Amazonia and 

tropical Africa, respectively), leading to a U-shaped size-mortality relationship. Effects of 

competition on mortality were very weak on both continents, regardless of WD or tree size (Fig. 

2m,n,o,p). 

 

Variation in the strength of competition 

In Amazonia, the plot-level strength of competition (Cplot) was strongly and positively correlated 

with CWD, but negatively correlated with TEB, particularly after accounting for variation in 

CWD (Fig. 3a,b). Plot basal area had the largest effect on Cplot, followed by a positive effect of 

plot WD, and a small negative effect of mean tree size (Fig. 3e). In Africa, Cplot was not 

correlated with CWD, and just weakly, positively correlated with TEB (Fig. 3c,d). Like in 

Amazonia, Cplot was largely driven by a positive effect of plot basal area. Unlike Amazonia, plot-

level WD had little influence on Cplot in tropical Africa (Fig. 3f).  

Discussion 

Large variation in the strength of competition on tree growth across environmental gradients 

Across two continents, we found that competition is an important driver of tropical tree growth, 

but unexpectedly not of mortality. Variation in the plot-level strength of competition across 

tropical forests was large for both continents. As expected, individual tree growth was most 

strongly affected by competition in forests with high basal area, although in Amazonia 

competition was also strong in high WD forests. In Amazonia, as expected, the strength of 

competition on tree growth increased with water availability (CWD), likely because of higher 
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plot basal area in wetter forests (Appendix S1: Fig. S1). However, the strength of competition 

declined slightly with soil fertility (TEB) likely because of lower plot-level WD at high soil 

fertility (Appendix S1: Table S3), and because low WD species in Amazonia appeared to be less 

susceptible to competition. Unexpectedly, the strength of competition did not vary with water 

availability, nor with soil fertility, in Africa. This may have been due to the shorter water 

availability and soil fertility gradients compared to Amazonia in our study, which likely partly 

explains the lack of relationships with environmental conditions in tropical Africa. Given these 

differences, we must be careful in drawing general conclusions across continents. Across the 

same range in environmental conditions (based on Africa, excluding two outliers; Fig. 3b,d), the 

relationship between the strength of competition and CWD was stronger in Amazonia (Pearson’s 

r = 0.40, n = 38 plots) than in Africa (r = -0.12). The relationship between the strength of 

competition and TEB was somewhat stronger for Africa due to outlier exclusion (r = 0.23) than 

for Amazonia (r = 0.10, n = 41 plots). Overall, our results are partly consistent with Grime’s 

(1979) hypothesis that competition is strongest in resource-rich environments because of the 

increased strength of competition under high water availability in Amazonia. 

 

Effects of WD and tree size on growth and mortality 

In contrast, effects of WD and tree size on individual tree growth and mortality were largely 

consistent between Amazonia and tropical Africa. In general, our results confirmed findings of 

previous studies that were based on a single, or a few, tropical forest sites, and indicated that 

these attributes control growth and mortality across most of the tropical forest biome. Tree 

growth and mortality both decreased with WD, as reported by smaller-scale Neotropical studies 

(e.g., Chao et al. 2008, Keeling et al. 2008, Poorter et al. 2008, Wright et al. 2010, Rüger et al. 
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2012). Low WD is associated with an acquisitive strategy that confers rapid growth, but that 

comes at the cost of high mortality because of lower tolerance to stress and damage compared to 

high WD species (Wright et al. 2010). Basal area growth increased with tree size, presumably 

because larger trees have more resources and/or leaf area available to support assimilation of 

carbon (Stephenson et al. 2014). The ontogenetic increase in growth was strongest for low WD 

species (Fig. 2c,d), probably because of the low construction cost of low-density wood. These 

findings are consistent with single-site studies that found that low WD tropical tree species had 

the strongest increase in diameter growth at intermediate tree size (King et al. 2006, Hérault et al. 

2011, but see Rüger et al. 2012).  

Our study is one of the first to show a clearly U-shaped size-mortality relationship (cf. Rüger 

et al. 2011, Iida et al. 2014, Pillet et al. 2018), which we found for low WD species. For trees ≥ 

30 cm dbh, and for high WD trees in general, the risk of death increased nearly monotonically 

with size. Small trees, particularly those with low WD, may be most susceptible to physical 

damage in the understory (Clark and Clark 1991). The higher mortality risk for large trees may 

be a result of the stronger risk of hydraulic failure for large trees (Rowland et al. 2015) rather 

than senescence (Mencuccini et al. 2005). 

 

Competition decreased tree growth but did not influence mortality 

Our results show that growth decreases with increased neighborhood crowding across tropical 

forests on two continents, particularly for small trees. This provides large-scale confirmation that 

results reported to date for single neotropical forest sites in Costa Rica, Ecuador, Panama and 

Puerto Rico (Uriarte et al. 2004, Baribault et al. 2012, Grote et al. 2013, Lasky et al. 2015, 

Fortunel et al. 2016) are typical of the biome. We also expected that low WD species would be 
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most strongly affected by competition. Low WD species were indeed most affected by 

competition in Africa, consistent with earlier findings of strong growth responses of low WD 

species to competition (Kunstler et al. 2016) and light availability (Rüger et al. 2012), which 

supports the notion that shade intolerant tree species respond more strongly to changes in 

resource levels. However, it remains unclear why high WD species in Amazonia were more 

susceptible to competition. The mean and range of neighborhood crowding levels did not vary 

across WD classes (< 0.35 g cm
-3

; 0.35-0.75 g cm
-3

; > 0.75 g cm
-3

; results not shown), thus 

effects of competition were not weaker because low WD species were confined to areas with low 

neighborhood crowding. 

Our results suggest that competition does not strongly influence tree mortality in either 

Amazonia or tropical Africa. The lack of evidence for impacts of competition on mortality could 

be partly due to only including trees ≥ 10 cm dbh in our study. Generally, mortality rates are 

highest for seedlings and saplings (trees < 10 cm dbh; Clark and Clark 1992, Condit et al. 1995) 

because of the low-light conditions in the understory, and mortality resulting from negative 

density-dependent effects (Zhu et al. 2015). Those studies that have found clear effects of 

competition on tropical tree mortality included trees < 10 cm dbh, and likely included a larger 

range of resource levels by focusing on forests in recovery from disturbances such as agricultural 

use (Lasky et al. 2014) and hurricanes (Uriarte et al. 2004). Our findings suggest that 

competition is not a widespread and important driver of mortality for trees ≥ 10 cm dbh in 

mature tropical forests. Instead, it appears that processes such as hydraulic failure (e.g., Rowland 

et al. 2015) and more stochastic wind-disturbances (Espírito-Santo et al. 2014; Aleixo et al. 

2019) may be the dominant causes of mortality, while accelerated growth may eventually 

increase mortality by ensuring that trees reach larger sizes more quickly (cf. Brienen et al. 2015, 
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McDowell et al. 2018). Nevertheless, the effects of competition on growth may still indirectly 

lead to an increased risk of mortality, as suppressed trees will be less likely to escape from 

suppression because of their slow growth, and thus accumulate mortality risk over a longer 

period of time.  

 

Implications for projecting the tropical forest carbon sink 

Our results provide some insights into how competition may influence ongoing and future 

changes in the tropical forest carbon sink. First, we found that the decrease in basal area growth 

due to competition increased strongly with forest basal area. Hence, when forests gain basal area 

over time, greater competition between trees is likely to reduce tree growth, which might explain 

why long-term increases in productivity in Amazonia have leveled off since 2000 (Brienen et al. 

2015). Secondly, we found that, particularly in Amazonia, effects of competition are also 

influenced by stand-level WD. Changes in WD over time (e.g., van der Sande et al. 2016) may 

not only influence standing biomass (Baker et al. 2004), but also alter the strength of 

competition.  

Competition effects should be appropriately incorporated into models that are used for 

projecting future dynamics of tropical forests. In individual-based forest dynamics models, 

effects of competition are typically included (Fyllas et al. 2014), but models could be further 

improved by also including effects of WD, and tree size, on the strength of competition. These 

changes are relatively easy to implement, as direct effects of tree size are already included, and 

WD data are available for many species (Chave et al. 2009). In Dynamic Global Vegetation 

Models that are applied over broad geographical scales, inclusion of forest basal area as a 
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measure of neighborhood crowding will mostly account for geographical variation in the strength 

of competition. Such models could be improved further by including average plot WD. 

In conclusion, our study revealed that in 151 forest plots distributed across Amazonia and 

tropical Africa competition is an important driver of individual tree growth rates, but not of the 

probability of tree mortality. This is, to our knowledge, the first study to evaluate the effects of 

competition on tropical tree growth and mortality at such a broad geographical scale. Given that 

geographic variation in the strength of competition is mainly driven by forest basal area (i.e., 

neighborhood crowding), we anticipate that wood production might decrease as tropical forests 

accrue higher basal area. 
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Figure Legends 

Fig. 1. Maps of the plot locations across gradients in climatic water deficit (CWD) and soil total 

exchange bases (TEB). (a) Amazonia (102 plots); (b) tropical Africa (49 plots). 

Fig. 2. Effects of wood density (WD), tree size, and competition (subplot neighbor basal area; 

BAneigh) on predicted annual basal area growth and mortality across Amazonia (n = 102 plots) 

and tropical Africa (n = 49). Solid lines and symbols indicate predicted effects based on the 

posterior means; shaded areas indicate the 95% credible interval. Boxplots indicate the 

distribution of the variable on the x-axis. BAneigh was kept constant at the mean for quantifying 

effects of WD and tree size on growth and mortality; tree size was kept constant at 20 cm 

diameter for quantifying effects of WD and BAneigh. 

Fig. 3. Relationships between the strength of competition on basal area growth (Cplot: reduction 

in plot-level basal area growth by competition based on a reference value of 10 m
2
 ha

-1
) and 

climatic water deficit (CWD), soil total exchange bases (TEB), plot basal area (BA), plot wood 

density (WD), and mean tree size in Amazonia (n = 102 plots) and tropical Africa (n = 49 plots). 

(a-d) Grey bars represent 95% credible intervals; Pearson’s correlation (r) and partial (rpart) 

correlation coefficients are indicated; (e,f) standardized regression coefficients with 95% 

confidence intervals are indicated. 
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Appendix S1 

 

Table S1. List of included plots. 
Continent Country Plot name Plot code Trees mapped / 

subplots 

Plot area 

(ha) 

Latitude Longitude 

Amazon Bolivia BEEM plot 5 BEE-05 mapped 1 -16.5 -64.6 

Amazon Bolivia Chore 1 CHO-01 0.04 ha subplots 1 -14.4 -61.1 

Amazon Bolivia Cerro Pelao 1 CRP-01 0.04 ha subplots 1 -14.5 -61.5 

Amazon Bolivia Cerro Pelao 2 CRP-02 mapped 1 -14.5 -61.5 

Amazon Bolivia Huanchaca Dos, plot 1 HCC-21 0.04 ha subplots 1 -14.5 -60.7 

Amazon Bolivia Huanchaca Dos, plot 2 HCC-22 0.04 ha subplots 1 -14.5 -60.7 

Amazon Bolivia Isla Huanchaca, plot 1 HCC-23 0.04 ha subplots 1 -14.6 -60.7 

Amazon Bolivia Los Fierros Bosque I LFB-01 0.04 ha subplots 1 -14.6 -60.8 

Amazon Bolivia Los Fierros Bosque II LFB-02 0.04 ha subplots 1 -14.6 -60.8 

Amazon Bolivia Las Londras, plot 1 LSL-01 0.04 ha subplots 1 -14.4 -61.1 

Amazon Bolivia Las Londras, plot 2 LSL-02 0.04 ha subplots 1 -14.4 -61.1 

Amazon Bolivia Mabet plot 1 MBT-01 mapped 1 -10.1 -65.9 

Amazon Bolivia Mabet plot 4 MBT-04 mapped 1 -10.3 -65.6 

Amazon Bolivia Mabet plot 5 MBT-05 mapped 1 -10.0 -65.6 

Amazon Bolivia Mabet plot 6 MBT-06 mapped 1 -10.0 -65.6 

Amazon Bolivia Mabet plot 7 MBT-07 mapped 1 -9.9 -65.7 

Amazon Bolivia Mabet plot 8 MBT-08 mapped 1 -9.9 -65.8 

Amazon Bolivia Ottavio Ranch, Bolivia, 

plot 1, forest 

OTT-01 mapped 1 -16.4 -61.2 

Amazon Bolivia Reserva El Tigre 05 RET-05 mapped 1 -11.0 -65.7 

Amazon Bolivia Reserva El Tigre 06 RET-06 mapped 1 -11.0 -65.7 

Amazon Bolivia Reserva El Tigre 08 RET-08 mapped 1 -11.0 -65.7 

Amazon Bolivia Reserva El Tigre 09 RET-09 mapped 1 -11.0 -65.7 

Amazon Bolivia Sacta plot 1 SCT-01 0.04 ha subplots 1 -17.1 -64.8 

Amazon Bolivia Sacta plot 6 SCT-06 mapped 1 -17.1 -64.8 

Amazon Bolivia Tucavaca plot 1, forest TUC-01 0.04 ha subplots 1 -18.5 -60.8 

Amazon Brazil Alta Floresta plot 1 ALF-01 0.04 ha subplots 1 -9.6 -55.9 

Amazon Brazil Alta Floresta plot 2 ALF-02 mapped 1 -9.6 -55.9 

Amazon Brazil BDFFP, 2303 Dimona 

5-6 

BDF-01 0.04 ha subplots 2 -2.3 -60.1 
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Amazon Brazil BDFFP, 1101 Gaviao BDF-03 0.04 ha subplots 1 -2.4 -59.9 

Amazon Brazil BDFFP, 1102 Gaviao BDF-04 0.04 ha subplots 1 -2.4 -59.9 

Amazon Brazil BDFFP, 1103 Gaviao BDF-05 0.04 ha subplots 1 -2.4 -59.9 

Amazon Brazil BDFFP, 1201 Gaviao BDF-06 0.04 ha subplots 3 -2.4 -59.9 

Amazon Brazil BDFFP, 1105 Gaviao BDF-07 0.04 ha subplots 1 -2.4 -59.9 

Amazon Brazil BDFFP, 1109 Gaviao BDF-08 0.04 ha subplots 1 -2.4 -59.9 

Amazon Brazil BDFFP, 1113 Florestal BDF-09 0.04 ha subplots 1 -2.4 -59.8 

Amazon Brazil BDFFP, 1301 Florestal 

1= plot 1301.1 and 

1301.3 

BDF-10 0.04 ha subplots 2 -2.4 -59.9 

Amazon Brazil BDFFP, 1301 Florestal 

2= plots 1301.4,5,6 

BDF-11 0.04 ha subplots 3 -2.4 -59.8 

Amazon Brazil BDFFP, 1301 Florestal 

3=plots 1301.7,8 

BDF-12 0.04 ha subplots 2 -2.4 -59.9 

Amazon Brazil BDFFP, 3402 Cabo 

Frio 

BDF-13 0.04 ha subplots 9 -2.4 -59.9 

Amazon Brazil BDFFP, 3304 Porto 

Alegre 

BDF-14 0.04 ha subplots 1 -2.4 -60.0 

Amazon Brazil Bionte 1 BNT-01 mapped 1 -2.6 -60.2 

Amazon Brazil Bionte 02 BNT-02 mapped 1 -2.6 -60.2 

Amazon Brazil Bionte 4 BNT-04 mapped 1 -2.6 -60.2 

Amazon Brazil TORRE Caxiuana CAX-06 0.04 ha subplots 1 -1.7 -51.5 

Amazon Brazil Caxiuana Terra Preta CAX-08 0.04 ha subplots 1 -1.8 -51.5 

Amazon Brazil Jacaranda, norte-sul 

(north-south), plots 1-5 

JAC-01 0.04 ha subplots 5 -2.6 -60.2 

Amazon Brazil Jacaranda, leste-oeste 

(east-west), plots 6-10 

JAC-02 0.04 ha subplots 5 -2.6 -60.2 

Amazon Brazil RESEX Chico Mendes: 

Seringal Porongaba 1 

POR-01 0.04 ha subplots 1 -10.8 -68.8 

Amazon Brazil RESEX Chico Mendes: 

Seringal Porongaba 2 

POR-02 0.04 ha subplots 1 -10.8 -68.8 

Amazon Brazil Alto Jurua RST-01 0.04 ha subplots 1 -9.0 -72.3 

Amazon Colombia Amacayacu: Agua 

Pudre E 

AGP-01 0.04 ha subplots 1 -3.7 -70.3 

Amazon Colombia Amacayacu: Agua 

Pudre U 

AGP-02 0.04 ha subplots 1 -3.7 -70.3 

Amazon Colombia Reserva Kalashe 1 KAL-01 0.04 ha subplots 1 11.2 -74.1 

Amazon Colombia Amacayacu: Lorena E LOR-01 0.04 ha subplots 1 -3.1 -70.0 

Amazon Colombia Amacayacu: Lorena U 

subplot 1-13 

LOR-02 0.04 ha subplots 0.52 -3.1 -70.0 

Amazon Ecuador Jatun Sacha 2 JAS-02 0.04 ha subplots 1 -1.1 -77.6 

Amazon Ecuador Jatun Sacha 3 JAS-03 0.04 ha subplots 1 -1.1 -77.6 

Amazon Ecuador Jatun Sacha 4 Full plot JAS-04 0.04 ha subplots 0.96 -1.1 -77.6 

Amazon Ecuador Jatun Sacha 5, till 2002 JAS-05 0.04 ha subplots 1 -1.1 -77.6 

Amazon Ecuador Tiputini 1 TIP-01 0.04 ha subplots 1 -0.7 -76.4 

Amazon Ecuador Tiputini 2 TIP-02 0.04 ha subplots 0.8 -0.6 -76.1 

Amazon Ecuador Tiputini 3 TIP-03 mapped 1 -0.6 -76.2 

Amazon French Guiana Nouragues Grand 

Plateau 11L 

NOU-02 mapped 1 4.1 -52.7 

Amazon French Guiana Nouragues Grand 

Plateau 12L 

NOU-03 mapped 1 4.1 -52.7 

Amazon French Guiana Nouragues Grand 

Plateau 17L 

NOU-08 mapped 1 4.1 -52.7 
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Amazon French Guiana Nouragues Grand 

Plateau 19L 

NOU-10 mapped 1 4.1 -52.7 

Amazon French Guiana Nouragues Petit Plateau 

20H 

NOU-11 mapped 1 4.1 -52.7 

Amazon Guyana Forest reserve Mabura 

hill 01 

FMH-01 mapped 1 5.2 -58.7 

Amazon Guyana Forest reserve Mabura 

hill 01 

FMH-03 mapped 1 5.2 -58.7 

Amazon Guyana Pibiri 05 PIB-05 mapped 1 5.0 -58.6 

Amazon Guyana Pibiri 06 PIB-06 mapped 1 5.0 -58.6 

Amazon Guyana Pibiri 12 PIB-12 mapped 1 5.0 -58.6 

Amazon Peru Altos de Maizal ALM-01 mapped 2 -11.8 -71.5 

Amazon Peru Allpahuayo A ALP-01 0.04 ha subplots 1 -3.9 -73.4 

Amazon Peru Allpahuayo B ALP-02 0.04 ha subplots 1 -4.0 -73.4 

Amazon Peru Allpahuayo C ALP-30 mapped 1 -4.0 -73.4 

Amazon Peru Allpahuayo D ALP-40 mapped 1 -3.9 -73.4 

Amazon Peru Cuzco Amazonico, 

CUZAM1E 

CUZ-01 0.04 ha subplots 1 -12.5 -69.1 

Amazon Peru Cuzco Amazonico, 

CUZAM1U 

CUZ-02 0.04 ha subplots 1 -12.5 -69.1 

Amazon Peru Cuzco Amazonico, 

CUZAM2E 

CUZ-03 0.04 ha subplots 1 -12.5 -69.1 

Amazon Peru Cuzco Amazonico, 

CUZAM2U 

CUZ-04 0.04 ha subplots 1 -12.5 -69.1 

Amazon Peru Jenaro Herrera A 

Terraza Alta 

JEN-11 mapped 1 -4.9 -73.6 

Amazon Peru Jenaro Herrera B 

Varillal 

JEN-12 0.04 ha subplots 1 -4.9 -73.6 

Amazon Peru Jacaratia Los Amigos LAS-02 mapped 1 -12.6 -70.1 

Amazon Peru Manu, alluvial Cocha 

Cashu Trail 3, M1 

MNU-01 mapped 2.25 -11.9 -71.4 

Amazon Peru Manu, terra firme 

terrace, M3 

MNU-03 mapped 2 -11.9 -71.4 

Amazon Peru Manu, terra firme 

ravine, M4 

MNU-04 mapped 1 -11.9 -71.4 

Amazon Peru Manu, alluvial Cocha 

Cashu Trail 12 

MNU-05 mapped 2 -11.9 -71.4 

Amazon Peru Manu, alluvial Cocha 

Cashu Trail 2 & 31 

MNU-06 mapped 2.25 -11.9 -71.4 

Amazon Peru Cocha Salvador Manu, 

mature floodplain 

MNU-08 mapped 2 -12.0 -71.2 

Amazon Peru Sucusari A SUC-01 0.04 ha subplots 1 -3.3 -72.9 

Amazon Peru Sucusari B SUC-02 0.04 ha subplots 1 -3.2 -72.9 

Amazon Peru Sucusari C SUC-03 0.04 ha subplots 1 -3.2 -72.9 

Amazon Peru Sucusari D SUC-04 mapped 1 -3.3 -72.9 

Amazon Peru Sucusari E SUC-05 mapped 1 -3.3 -72.9 

Amazon Peru Tambopata plot zero TAM-01 0.04 ha subplots 1 -12.8 -69.3 

Amazon Peru Tambopata plot one TAM-02 0.04 ha subplots 1 -12.8 -69.3 

Amazon Peru Tambopata plot three TAM-05 0.04 ha subplots 1 -12.8 -69.3 

Amazon Peru Tambopata plot six TAM-07 0.04 ha subplots 1 -12.8 -69.3 

Amazon Peru Tambopata plot seven TAM-08 0.04 ha subplots 1 -12.8 -69.3 

Amazon Venezuela El Dorado, KM93, 

plotGl, ED1 

ELD-01 mapped 0.25 6.1 -61.4 
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Amazon Venezuela El Dorado, KM93, 

plotG2, ED1 

ELD-02 mapped 0.25 6.1 -61.4 

Africa Cameroon Bissombo 1 BIS-01 mapped 1 3.3 12.5 

Africa Cameroon Bissombo 2 BIS-02 mapped 1 3.3 12.5 

Africa Cameroon Bissombo 3 BIS-03 mapped 1 3.3 12.5 

Africa Cameroon Bissombo 4 BIS-04 mapped 1 3.3 12.5 

Africa Cameroon Bissombo 5 BIS-05 mapped 1 3.3 12.5 

Africa Cameroon Bissombo 6 BIS-06 mapped 1 3.3 12.5 

Africa Cameroon Campo Ma'an 1 CAM-01 0.04 ha subplots 1 2.4 9.9 

Africa Cameroon Campo Ma'an 2 CAM-02 0.04 ha subplots 1 2.3 9.9 

Africa Cameroon Campo Ma'an 3 CAM-03 0.04 ha subplots 1 2.4 9.9 

Africa Cameroon Dja Somolomo 1 DJK-01 mapped 1 3.3 12.7 

Africa Cameroon Dja Somolomo 2 DJK-02 mapped 1 3.3 12.7 

Africa Cameroon Dja Somolomo 3 DJK-03 mapped 1 3.4 12.7 

Africa Cameroon Dja Somolomo 4 DJK-04 mapped 1 3.4 12.7 

Africa Cameroon Dja Somolomo 5 DJK-05 mapped 1 3.3 12.8 

Africa Cameroon Dja Somolomo 6 DJK-06 mapped 1 3.3 12.8 

Africa Cameroon Edjagham, plot 4 EJA-04 0.04 ha subplots 1 5.7 9.0 

Africa Cameroon Edjagham, plot 5 EJA-05 0.04 ha subplots 1 5.7 9.0 

Africa Cameroon Nguti plot 1 NGI-01 mapped 1 5.3 9.5 

Africa Cameroon Nguti plot 2 NGI-02 mapped 1 5.3 9.5 

Africa Cameroon Nguti plot 3 NGI-03 mapped 1 5.4 9.6 

Africa Gabon Lope Reitsma LOP-01 mapped 1 -0.2 11.4 

Africa Gabon Monts de Cristal, plot 2 MDC-02 mapped 1 0.6 10.4 

Africa Gabon Monts de Cristal, plot 3 MDC-03 mapped 1 0.6 10.4 

Africa Gabon Monts de Cristal, plot 4 MDC-04 mapped 1 0.5 10.3 

Africa Ghana Asenanyo F.R. 2 ASN-02 mapped 0.6 6.6 -2.2 

Africa Ghana Asenanyo F.R. 4 ASN-04 mapped 0.92 6.5 -2.2 

Africa Ghana Cape Three Points Plot 

9 

CAP-09 mapped 1 4.9 -2.0 

Africa Ghana Cape Three Points Plot 

10 

CAP-10 mapped 1 4.8 -2.0 

Africa Ghana Dadieso 3, occasionally 

flooded 

DAD-31 0.04 ha subplots 0.56 6.0 -3.0 

Africa Ghana Dadieso 4, terra firme DAD-42 mapped 0.72 6.0 -3.0 

Africa Ghana Fure Headwaters 7 FUR-07 mapped 1 5.6 -2.4 

Africa Liberia Cavalla 1 CVL-01 mapped 1 6.2 -8.2 

Africa Liberia Cavalla 8 CVL-08 mapped 1 6.2 -8.2 

Africa Liberia Cavalla 10 CVL-10 mapped 1 6.2 -8.2 

Africa Liberia Cavalla 11 CVL-11 mapped 1 6.2 -8.2 

Africa Liberia Grebo F.R.1 GBO-01 mapped 1 5.4 -7.6 

Africa Liberia Grebo F.R.2 GBO-02 mapped 1 5.4 -7.6 

Africa Liberia Grebo F.R.3 GBO-03 mapped 1 5.4 -7.6 

Africa Liberia Grebo F.R.4 GBO-04 mapped 1 5.4 -7.6 

Africa Liberia Grebo F.R.8 GBO-08 mapped 1 5.4 -7.6 

Africa Liberia Grebo F.R.10 GBO-10 mapped 1 5.4 -7.6 

Africa Liberia Grebo F.R.11 GBO-11 mapped 1 5.4 -7.6 

Africa Liberia Grebo F.R.13 GBO-13 mapped 1 5.4 -7.6 

Africa Liberia Grebo F.R.14 GBO-14 mapped 1 5.4 -7.6 

Africa Liberia Grebo F.R.15 GBO-15 mapped 1 5.4 -7.6 
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Africa Liberia Grebo F.R.16 GBO-16 mapped 1 5.4 -7.6 

Africa Liberia Grebo F.R.18 GBO-18 mapped 1 5.4 -7.6 

Africa Liberia Grebo F.R.19 GBO-19 mapped 1 5.4 -7.6 

Africa Tanzania VTA-ARM-1 VTA-01 0.04 ha subplots 1 -7.8 37.0 

 

 

Table S2. Comparison of individual-based tree growth and mortality models with and without 

effects of competition for 151 plots in Amazonia and tropical Africa. Effects of neighborhood 

crowding were expressed as the basal area of neighbor trees per 0.04 ha subplot (BAneigh). 

Models were compared based on the Watanabe-Akaike Information Criterion (WAIC), with the 

difference from the best model (ΔWAIC) shown. Best models are indicated in bold. 

 

 

 

 

 

 

 

 

 

Table S3. Correlations (Pearson’s r) between the plot-level strength of competition (Cplot), 

climatic water deficit (CWD), total exchange bases (TEB), plot basal area (BA), plot wood 

density (WD), and mean tree size in Amazonia (n = 102 plots) and tropical Africa (n = 49 plots). 

 

 

 

  

    Amazon   Africa   

  growth  mortality  growth  mortality  

Competition index   ΔWAIC   ΔWAIC   ΔWAIC   ΔWAIC   

none  5942  2310  913  0  

BAneigh   0   0   0   98   

 

  Cplot CWD TEB Plot BA Plot WD 

Amazonia      

CWD 0.58     

TEB -0.20 0.12    

Plot BA 0.84 0.54 -0.09   

Plot WD 0.53 0.12 -0.48 0.12  

Mean tree size 0.31 0.17 -0.18 0.56 0.13 

      

Africa      

CWD 0.05     

TEB 0.14 0.07    

Plot BA 0.86 0.16 0.12   

Plot WD 0.04 -0.01 0.11 0.36  

Mean tree size 0.10 0.06 -0.17 0.49 0.51 
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Fig. S1. Plot basal area across gradients in climatic water deficit (CWD) and soil total exchange 

bases (TEB) in the Amazon (n = 102 plots) and tropical Africa (n = 49 plots). Pearson’s 

correlation coefficients (r) are indicated. 
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Detailed description of individual growth and mortality models 

 

Appendix S2 

 

Individual growth and mortality models 

We modelled tree growth and mortality as a function of size, competition and wood density for 

each continent (Amazonia, tropical Africa), using non-linear hierarchical models. Annual basal 

area growth (G) and annual probability of mortality (M) for a tree were modeled as follows: 

 

G = aG × pG × SG × CG  

M = [1 + aM × pM × SM × CM]
-1

 

 

where aG and aM are constants, and pG and pM are plot-level random effects. S and C (for growth 

and mortality) are non-linear functions that capture effects of tree size and competition: 

 

𝑆 = dbh&'×exp	(−𝑠0×dbh) 

𝐶 = exp	(−𝑐4×dbh
56×BA9:;<=) 

 

where dbh indicates diameter at breast height of a tree, and BAneigh its neighbor basal area. s1, s2, 

c1 and c2 control the shape of the functions and have separate values for growth and mortality. To 

aid model fitting, we re-scaled dbh and BAneigh by dividing them by numbers close to their 

observed means. 

We accounted for species-to-species variation in growth and mortality by constructing 

models based on WD. To incorporate WD effects, we defined a, s1, s2, c1 and c2 as linear 

functions of WD. For each of these (here θ), we estimated parameters θmin and θmax to define 

their values at the minimum and maximum WD that was observed among species (WDmin and 

WDmax, respectively). We used linear interpolation to estimate θ for each stem as: 

 

θ = wθmin + (1-w)θmax 

 

where weighting coefficient w is calculated as: 

 

𝑤 =
WDSTU −WD

WDSTU −WDS;9
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We used hierarchical Bayesian modeling to estimate the posterior distribution of the parameters 

for each model. Annual basal area growth (ΔBA) of individual trees was modeled by a normal 

distribution, with a standard deviation that increased as a linear function of dbh. Observations of 

tree survival (D=0) or death (D=1) over the census interval were modeled by a Bernoulli 

distribution whose mean was the compounded probability of mortality over a census interval of y 

years. Plot effects on tree growth and mortality were considered to be normally distributed with a 

mean of one: 

 

ΔBA ~ N(G, σ0 + σdbh × dbh) 

D ~ Bern(1 - (1 - M)
y
) 

pG ~ N(1, σG) 

pM ~ N(1, σM) 

 

where σ0, σdbh, σG, and σM are estimated parameters. All model parameters were assigned 

uninformative priors. We performed Markov chain Monte Carlo sampling with four chains, with 

per chain 750 000 burn-in and 500 000 sampling iterations. We thinned chains by retaining every 

100
th

 sample, and assessed convergence using the Gelman-Rubin criterion (Gelman and Rubin 

1992). To assess whether competition influenced growth and mortality, we compared the model 

with effects of competition with a model that excluded competition by fixing either CG or CM at 

1, based on the Watanabe-Akaike Information Criterion (WAIC; Watanabe 2013, Hooten and 

Hobbs 2015).  

All analyses were performed in R 3.1.2 (R Core Team 2014). MCMC sampling was 

performed using the ‘Filzbach’ sampler, as implemented in the ‘filzbach’ package (Lyutsarev 

and Purves 2013). The Gelman-Rubin criterion was calculated using the ‘coda’ package 

(Plummer et al. 2006). 

 

Comparison of indices of competition 

To assess whether BAneigh accurately captured local effects of competition, we also fit models 

with a neighborhood crowding index (NCI; see Uriarte et al. 2004) instead of BAneigh for a subset 

of 86 plots for which at least 90 % of the trees were mapped. We randomly assigned coordinates 

to trees that were not mapped within the corresponding 0.04 ha subplot. All trees within 10 m of 

the edge of the plot were excluded from analysis, as their neighborhood is partially undefined. 

NCI is considered to be a good proxy for light availability to an individual tree (Grote et al. 

2013). NCI is based on the size of and distance to, neighbor trees within a 10 m radius of the 

focal tree:    

 

NCI =
dbhY

0

distDY
0

]

YH4,D_Y		

 

 

where dist is the distance between focal tree i and neighbor tree j for a total of J neighbor trees. 

For both continents, growth models that included NCI were not better supported than models 

with BAneigh (Table S1). A mortality model that included NCI performed better than a model 

with BAneigh
 
for Africa, but for Amazonia the mortality model without competition was best 

supported (Table S1). Thus, BAneigh generally captured local effects of competition, but not for 
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tree mortality in Africa. Nevertheless, also in models based on NCI, effects of competition on 

mortality were negligible (results not shown). We therefore included results for models that 

included BAneigh only, based on data from all 151 plots. 

 

Table S1. Comparison of individual-based tree growth and mortality models that varied in 

competition index for 86 plots in Amazonia (n = 44) and tropical Africa (n = 42) for which trees 

were mapped. Models were compared based on the Watanabe-Akaike Information Criterion 

(WAIC), with the difference from the best model (ΔWAIC) shown. Best models are indicated in 

bold. NCI = neighborhood crowding index; BAneigh = basal area of neighbor trees per 0.04 ha 

subplot.  
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    Amazon   Africa   

  growth  mortality  growth  mortality  

Competition index   ΔWAIC   ΔWAIC   ΔWAIC   ΔWAIC   

none  1566  0  1079  384  

NCI  177  437  761  0  

BAneigh   0   331   0   295   


